
Space-efficient Relative Error Order Sketch over Data Streams

Ying Zhang† Xuemin Lin† Jian Xu† Flip Korn§ Wei Wang†

†University of New South Wales & NICTA §AT&T Labs-Research
{yingz,lxue,xujian,weiw}@cse.unsw.edu.au flip@research.att.com

Abstract
We consider the problem of continuously maintaining or-

der sketches over data streams with a relative rank er-
ror guarantee ϵ. Novel space-efficient and one-scan ran-
domised techniques are developed. Our first randomised
algorithm can guarantee such a relative error precision
ϵ with confidence 1 − δ using O(1

ϵ2 log 1
δ log ϵ2N) space,

where N is the number of data elements seen so far in a
data stream. Then, a new one-scan space compression tech-
nique is developed. Combined with the first randomised al-
gorithm, the one-scan space compression technique yields
another one-scan randomised algorithm that guarantees
the space requirement is O(1

ϵ log(1
ϵ log 1

δ) log2+α ϵN
1−1/2α) (for

α > 0) on average while the worst case space remains
O(1

ϵ2 log 1
δ log ϵ2N). These results are immediately ap-

plicable to approximately computing quantiles over data
streams with a relative error guarantee ϵ and significantly
improve the previous best space bound O(1

ϵ3 log 1
δ log N).

Our extensive experiment results demonstrate that both
techniques can support an on-line computation against high
speed data streams.
1 Introduction

Statistics computation in data streams is often required by
many applications, including processing of relational type
queries, [3, 8, 9, 10, 16, 17], data mining [18, 24, 28], and
high speed network management [4, 6]. Among various
statistics, order statistics computation is one of the most
challenging, and is employed in many real applications,
such as web ranking aggregation and log mining [1, 12],
sensor data analysis [14], trends and fleeting opportunities
detection in stock markets [3, 23], and load balanced data
partitioning for distributed computation [25, 27]. Most or-
der statistics computation problems require memory size
linearly proportional to the size of a data stream for exact
answers by one-scan techniques [1, 20]; this may be imprac-
tical in data stream applications where streams are massive
in size and fast in arrival speed. Consequently, approximate
computation is a good alternative.

In this paper, we consider the problem of continu-
ously maintaining order sketches over a data stream with
a guaranteed relative rank error. This problem arises in

The work of the first three authors was partially supported by ARC
Discovery Grant (DP0346004).

many applications where rank-oriented queries are involved
[1, 12, 25], including computing quantiles. A φ-quantile
(φ ∈ (0, 1]) of an ordered set of N data elements is the ele-
ment with rank ⌈φN⌉. Quantile computation is a key com-
ponent in online decision support (e.g. portfolio risk mea-
surement in the stock market [23]). It is also useful for the
applications including data summarization via equal-depth
histograms [26], data mining [21], and data partitioning
[27].

It has been shown in [2, 15, 25, 22] that a space-efficient
ϵ-approximation quantile summary can be maintained so
that, for a quantile φ, it is always possible to find an element
at rank r′ with the precision guarantee |⌈φN⌉ − r ′| ≤ ϵN .
These approximate quantile algorithms are immediately ap-
plicable to the problem of maintaining order sketches; how-
ever, they only guarantee the rank errors within absolute
precision ϵN . If N is known in advance, then relative er-
ror guarantees of ϵφN can be (over)satisfied by these al-
gorithms using uniform error ϵ ′ = ϵφ0, which is the rel-
ative error at the φ0-quantile with the lowest rank (that is,
φ0 = 1/N), though this is an undesirable solution since it
wastes space by obtaining finer error than needed at most
ranks. Moreover, if N is not known (e.g., an “infinite”
stream), then no such minimum error bound will suffice.
Therefore, the existing quantile techniques as cited above
are not applicable to the relative error metric.

Using the relative error metric to measure approximation
is not only of theoretical interest but is also very useful in
many applications. For instance, as pointed out in [7], finer
error guarantees at higher ranks are often desired in network
management.1 This is because IP traffic data often exhibits
skew towards the tail and it is exactly in the most skewed
region where one wants finer rank error guarantees, to get
more precise information about changes in values. Rela-
tive error is also motivated by the problem of approximately
counting inversions on a stream [19].

The problem of finding approximate quantiles with rel-
ative error guarantees was first studied by Gupta and
Zane [19], who developed a one-scan randomized tech-
nique with O(1

ϵ3 log2 N) space requirement for approxi-
mately counting inversions, by maintaining an order sketch

1Note that the form of our relative error metric is biased towards the
head (i.e., finer error guarantees towards lower ranks). Clearly, finer er-
ror guarantees towards the tail may be obtained if the data elements are
ordered in reverse.

with the relative rank error guarantee ϵ. However, the tech-
nique requires advance knowledge of (an upper bound on)
N to do one-scan sampling. This potentially limits its ap-
plications. Cormode et al. [7] studied the related problem
of computing biased quantiles, that is, the set of quantiles
Φ = {φi = φi

0 : 1 ≤ i ≤ k}, for a fixed k and some φ0,
which are estimated with precision ϵφiN . [7] gives an algo-
rithm to approximate such biased quantiles with determinis-
tic error guarantees which performs very well against many
real data sets. While the problem of computing biased quan-
tiles focuses on the relative rank error guarantee bounded
by a minimum quantile φk

0N , our problem addresses rel-
ative error guarantees at all ranks, no matter how small φ
is. As shown in Section 2, the application of their tech-
nique to our problem leads to a linear space requirement
Ω(N) in the worst case; this can render the deterministic
technique impracticable in applications where small space
usage is imperative.

Given this motivation, in this paper we present novel,
space-efficient algorithms to continuously maintain order
statistics over data streams without any advance knowledge
of N . Our techniques guarantee sub-linear space 2 bounds,
and they are based on a one-scan multi-layer randomization.
Our contributions may be summarized as follows:

1. We develop a novel, one-scan randomized algorithm
(“MR”) which guarantees the precision ϵ of rela-
tive rank errors with confidence 1 − δ and requires
O(1

ϵ2 log 1
δ log ϵ2N) space.

2. We also develop an effective one-scan space com-
pression technique. Combined with the above one-
scan randomized technique, it leads to a more space-
efficient one-scan randomized algorithm (“MRC”)
which guarantees the average space requirement
O(1

ϵ log(1
ϵ log 1

δ) log2+α ϵN
1−1/2α) (for α > 0), while the worst

case space requirement remains O(1
ϵ2 log 1

δ log ϵ2N).
3. These algorithms are the first that can compute approxi-

mate quantiles with relative error guarantees at all ranks
in sub-linear space, for applications where N is un-
known. Our results also significantly improve upon the
best existing space bound of O(1

ϵ3 log 1
δ log N) for ap-

plications where (an upper-bound of) N is given a pri-
ori.3

4. To complement our theoretical analysis, we present ex-
perimental results demonstrating that our techniques
can efficiently compute approximate quantiles over high
speed data streams using very small space.

The rest of the paper is organized as follows. Section 2
gives the background knowledge information, problem def-
initions, as well as a brief overview of some closely related
work. Section 3 presents our one-scan multi-layer random-
ization techniques. Section 4 presents a new one-scan space
compression technique. In Section 5, we report our experi-
ment results. Section 6 concludes the paper.

2Note that the space requirement in this paper refers to the maximum
temporary storage during the computation.

3This is immediately obtained from the original space bound
O(1

ϵ3
log2 N) in [19], where the confidence is 1

N2 instead of δ.

2 Background Information
In this section, we first present the problem statement,

followed by a brief introduction of some most closely re-
lated techniques. Finally, we present preliminaries. Table 1
summarizes the math notations used throughout the paper.

Table 1. Math Notation

Notation Definition
D a whole data stream
Di,j a data stream from ith to jth issued elements
N number of data stream elements seen so far
s (S) set of sample elements
Γ (D, G) set of data elements
X (Y) random variables
ϵ (1 − δ) precision (confidence) requirement
r (τ) rank
r−, r+ lower and upper bounds of r
e (r(e), v(e)) a data element (rank and value of e)
p (p(e)) probability (of e)
w (w(e)) weight (of e)
σ(e) summation of element weights upto e

2.1 Problem Statement
In this paper, we study the following rank query over a

data stream with a total order on elements’ values. For dis-
cussion simplification, we assume that a data element has a
single value and the total order means an increasing order
of data values.
Rank-Element (RE) Query: Given a rank r, find the ele-

ment with rank r.
It was shown [20] that any algorithm for computing exact

φ-quantiles of an ordered set of N data elements requires
Ω(N1/κ) space if κ scans of the data set are allowed. Con-
sider that quantiles computation may be immediately trans-
formed to RE queries. This makes it impractical to compute
exact results of RE queries for very large data sets since
multiple scans are very costly, even infeasible (e.g. data
streams). On the other hand, in many data stream applica-
tions an approximate processing of rank queries suffices. In
this paper we investigate the problem of approximate pro-
cessing of RE queries regarding a rank approximation.

Suppose that r is the given rank in a RE query, and
r′ is the rank of an approximate solution. We could use
the constant-based absolute error metric; that is, enforce
|r − r′| ≤ ϵ for a given ϵ. Clearly, such an absolute error
precision guarantee leads to the space requirement Ω(N/ϵ)
even for an off-line environment. In this paper, we use the
relative error metric: Err(r′, r) = |r′−r|

r . An answer to RE
regarding r is a relative ϵ-approximate if Err(r ′, r) ≤ ϵ.

Example 1. A data stream {15, 8, 10, 9, 1, 8, 10, 9, 6, 7,
8, 13, 5, 4, 2, 3} consists of 16 data elements. The sorted
order of the sequence is { 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 9, 9,
10, 10, 13, 15 }. Let ϵ = 0.2. For a rank 5, the RE query
returns the element 5; its relative ϵ-approximate answer is
either the element 4, or 5, or 6.
Quantile Computation and RE Query. Without loss of
generality, we may assume that a φ-quantile is simply an

element with rank φN in a data stream with N elements.
Clearly, a relative ϵ-approximate answer r ′ to φN of the
RE query leads to a φ′ (φ′ = r′/N) such that |φ−φ′|

φ ≤ ϵ.
Therefore, our results in this paper can be immediately ap-
plied to computing quantiles with relative error guarantees.
ProblemDescription. In the remaining of the paper, we in-
vestigate the problem of continuously maintaining a subset
S of elements over a data stream D such that at any time,
S can be used to return a relative ϵ-approximate answer to
the RE rank queries. The aim is to minimize the maximum
memory space required in such a continuous computation.
2.2 Related Work

Greenwald and Khanna [15] developed a one-scan tech-
nique with O(1

ϵ log(ϵN)) space bound and deterministic er-
ror guarantee |r − r′| ≤ ϵN , while Manku et al [25] pro-
vided a space efficient randomized algorithm, with space
bound O(1

ϵ log2(1
ϵ log 1

ϵδ)), to achieve such an error guar-
antee with confidence 1 − δ. Gilbert et al [13] developed
a one-scan randomized technique to handle the applications
where elements may be deleted. Arasu et al [2] and Lin et
al [22] recently developed space-efficient ϵ-approximation
techniques for sliding windows. Distributed algorithms
over sensor networks have also been recently developed by
Greenwald et al [14] and Cormode et al. [5].

Below, we discuss some closely related techniques.
Some of them will be applied to our one-scan space com-
pression techniques. Specifically, we will apply the ap-
proximate algorithm in [15], named GK-algorithm there-
after, as well as the merge technique in [2, 14, 22], named
Algorithm-MERGE thereafter. We will apply these as
black-boxes in our algorithm.
GK-algorithm. Using λ as a parameter, it maintains a set
(sketch) of tuples over a data stream with N elements, ξ =
{(ei, r

−
i , r+

i) : 1 ≤ i ≤ m}, with the following properties
with respect to λ and N :
GK1: each ei ∈ D;
GK2: for 1 ≤ i ≤ m − 1, v(ei) ≤ v(ei+1), r−i < r−i+1; 4

GK3: for 1 ≤ i ≤ m, r−i ≤ r(ei) ≤ r+
i ,

GK4: r+
1 ≤ λN + 1,

GK5: r−m ≥ (1 − λ)N ,
GK6: for 2 ≤ i ≤ m, r+

i ≤ r−i−1 + 2λN .
For each tuple (ei, r

−
i , r+

i) in the above quantile sketch, ei

is one of the data elements in the data stream seen so far.
Here, e1 and en have the smallest value and the largest
value, respectively. To be efficient, the algorithm uses
two parameters gi and ∆i to control r−i and r+

i , where
gi = r−i − r−i−1, ∆i = r+

i − r−i , and r−i =
∑

j≤i gj .
The following theorem has been proven in [15].
Theorem 1. A set ξ of tuples with the properties GK1-GK6
with respect to λ and N has the precision guarantee λN
for absolute rank errors; that is, for each r (1 ≤ r ≤ N),
there is a (ei, r

−
i , r+

i) in ξ such that r − λN ≤ r−i ≤ r+
i ≤

r + λN . (This implies r − λN ≤ r(ei) ≤ r + λN .)
4In the actual implementation of GK-algorithm, r+i ≤ r+

i+1 for each
i. However, this does not affect the precision of GK-algorithm.

Algorithm-MERGE. Suppose that a data stream D is di-
vided into q disjoint sets of elements, {Di : 1 ≤ i ≤ q}.
Let GK-algorithm run on each Di to generate a sketch
ξi with precision guarantee λiNi for absolute rank errors
where Ni = |Di|. Then, Algorithm-MERGE (∪q

i=1ξi) in
[2, 14, 22] can generate a global sketch ξ on D that satisfies
GK1-GK6 with respect to the following λ and

∑q
i=1 Ni,

where

λ =
∑q

i=1 λiNi∑q
i=1 Ni

. (1)

According to Theorem 1, ξ has the absolute rank error pre-
cision guarantee

∑q
i=1 λiNi.

CKMS-algorithm. In the very recent work [7], the problem
of estimating biased quantiles has been studied. As defined
in the last section, a set of biased quantiles Φ = {φi =
φi

0 : 1 ≤ i ≤ k} for a pre-fixed k and some φ0 are to be
estimated with precision ϵφiN . The CKMS-algorithm is a
variation of GK-algorithm; it modifies GK6 to

r+
i − r−i−1 ≤ f(ri, N), (2)

where f(ri, N) is defined as 2ϵ max(r−i−1, φkN, 1/2ϵ). It
was shown [7] that this algorithm can guarantee the relative
ϵ-approximation for a RE query with the ranks in [φkN, N]
with a poly-logarithmic space requirement. However, to
apply CKMS-algorithm to RE queries across all ranks in
[1, N], φkN has to be enforced to 1; that is,

f(ri, N) = 2ϵ max{r−i−1,
1
2ϵ

}. (3)

This will immediately lead to a linear space requirement
Ω(N), by CKMS-algorithm, in the worst case. Below is
such an example.

Example 2. Suppose that a data stream is divided into a
number of batches Bi such that each batch consists of n
consecutively arrived elements. In each batch Bi, a later
arrived element has larger value. Moreover, the values of
data elements of each batch Bi are always assigned be-
tween the value of the second last tuple and the value of
the last tuple in the sketch created by CKMS-algorithm for
the first i − 1 batches.

As shown in [7], there must be at least 1
ϵ log ϵn tuples

in an order sketch to ensure the relative ϵ-approximation of
ranks. We choose n such that 1

ϵ log ϵn ≥ 3. Suppose that
after applying CKMS algorithm to B1, there are m1 tuples
generated in the sketch ξ1. Clearly, m1 ≥ 3.

According to the insertion and merge rules in CKMS-
algorithm, it can be immediately verified that:
• The new tuples are between the second last and the last

tuples in ξ1.
• Any new tuples cannot merge with any tuples before the

second last tuple (inclusive) in ξ1 due to (2) and (3) to
maintain the relative ϵ-approximation.

• Due to the sortedness of B1 and B2, the last tuple in ξ1
already reaches its maximum merging capacity. Conse-
quently, the last tuple in the new sketch can merge with
another 2ϵ

1+2ϵn elements in B2 to reach the new maximum
capacity.

These immediately imply that after adding B2, the number
of sketch tuples is increased by at least 1. These proper-
ties also hold for every batch insertion; consequently the
number of tuples generated by CKMS-algorithm is at least
N
n = Ω(N). Our experiments also demonstrate this in sec-
tion 6.
Randomized Algorithms. In [19], Gupta and Zane pro-
posed a one-scan randomized algorithm with O(1

ϵ3 log2 N)
space requirement. The main idea is to appropriately select
1
ϵ log N ranks to do approximation such that for each se-
lected rank, a uniform sampling method with a same sam-
pling rate is developed. The lower the rank is, the higher the
sampling rate is. Since this algorithm always has to sam-
ple data elements from the first element of a data stream for
each selected rank and the sampling rates for different ranks
are different, it is not applicable to the applications when the
upper bond of N is not known a priori and only one scan of
a dataset is allowed.

Manku et al in [25] proposed a very effective space com-
pression technique based on an adaptive sampling tech-
nique. However, the effectiveness of this space compres-
sion technique mainly relies on an exponential reduction of
sampling rates along with the increment of N . Therefore,
that space compression technique can only guarantee the
precision ϵN of absolute rank errors but cannot guarantee
the relative ϵ-approximation of rank errors. Consequently,
it is infeasible to combine the techniques in [25] and [19] to
reduce the space requirement in [19].
2.3 Preliminaries

In this paper, we propose a novel randomized algorithm
based on a multi-layer sampling technique. By avoiding
sampling data elements from the first data stream element
at each level/layer, our one-scan technique can work for the
applications where N is not known a priori.

In our algorithm, we maintain a global sketch (i.e. set of
tuples) with the following form ξ = {(ej, τ

−
j , τ+

j) : 1 ≤
j ≤ m} over a data stream D, such that:

SK1: for 1 ≤ j ≤ m − 1, v(ej) ≤ v(ej+1), τ−
j < τ−

j+1,
SK2: for 1 ≤ j ≤ m, ej ∈ D and τ−

j ≤ τ+
j .

Note that in our algorithms it is impossible to impose the
same property, τ−

j ≤ r(e) ≤ τ+
j , as that in GK-algorithm;

this is because of the nature of a randomization. To resolve
this, we enforce the following properties.

Theorem 2. Suppose that ξ is a set of tuples, over a data
streamD withN elements, which satisfies the constraints in
SK1 and SK2. Suppose that ξ also has the following prop-
erties regarding an interval R = [rmin, rmax] of ranks:

SK3: ∀r ∈ R, ∃(ej , τ
−
j , τ+

j) ∈ ξ such that [τ−
j , τ+

j] ⊆
[r(1 − ϵ/2), r(1 + ϵ/2)];

SK4: for a r ∈ R, if [τ−
j , τ+

j] ⊆ [r(1 − ϵ/2), r(1 + ϵ/2)],
then r(ej) ∈ [r(1 − ϵ), r(1 + ϵ)].

Then, ξ can always provide a relative ϵ-approximate answer
to a RE query r with r ∈ R.

Proof. SK3 and SK4 immediate imply that such an ξ can
always provide a relative ϵ-approximate answer to a RE
query.

3 Multi-Layer Randomization
In our algorithm, we divide the whole rank range into dis-

joint intervals with exponentially increased lengths, so that
a local sketch is maintained for each interval of ranks with
properties SK1-SK4 where SK4 is ensured with confidence
1 − δ. We can show that the space required in our algo-
rithm is O(1

ϵ2 (log 1
δ) log ϵ2N). The section is organized as

follows. We first present the randomization technique; then
show the quality of our randomization. This is followed by
our query algorithms and space complexity analysis.
3.1 The Randomization

Lk

Li

L1

L0

S0s0

Sisi

S1s1

sk

Current itemStart
02 n 4 n0 2i+1n0

2k n0+12i n0+12 n0+1

Figure 1. Illustration of our algorithm
The basic idea of the algorithm is as depicted in Figure

1. For a given n0 we divide the data stream D into ⌈log N
n0

⌉
non-disjoint substreams: {Li : 0 ≤ i ≤ ⌈log N

n0
⌉ − 1},

where
• L0 represents the data stream starting from the 1st issued

element.
• for 1 ≤ i ≤ ⌈log N

n0
⌉ − 1, Li represents the data stream

starting from the (2in0 + 1)th issued element.
Let Ri = [2in0, 2i+1n0] if i ≥ 1 and R0 = [1, 2n0]. For
each substream Li (except the last substream) of D, two
sets, si and Si, of sample points are sampled by a uniform
sampling method, while the last substream Lk we sample
only sk. Clearly, there will be 2⌈log N

n0
⌉ − 1 sub-sketches

maintained: two (si and Si) per “level” Li except the last
level (only one sk). Then, a sketch obtained from F i =
(∪i

j=0sj) ∪ Si is for approximating the ranks in Ri. Note
that a sample set si may serve globally for the ranges Rj

(j ≥ i), while Si is used locally for Ri.
At each level Li, the uniform sampling method randomly

choose an element from each batch of consecutively arrived
2i elements; we divide Li into such disjoint batches. The set
of sampled elements over the first 2in0 arrived points in Li
are kept in si, while the remaining are kept in Si as depicted
in Figure 1. In the next subsection, we will show that an

appropriate selection of n0 leads to a very good sampling
quality. The algorithm is described in Algorithm 1.

Algorithm 1 : Multi-layer Randomization
Input: Data stream D and n0 (derived from ϵ and δ).
Output: sample sets si and Si for 0 ≤ i ≤ ⌈log N

n0
⌉ − 1

Description:
1: k := 0; N := 0; s0 := ∅; S0 := ∅;
2: while e arrives do
3: N := N + 1;
4: if ⌈log N

n0
⌉ − 1 > k then

5: k := k + 1; sk := ∅; Sk := ∅;
6: end if
7: for j = 0 to k do
8: if ramj(e) = 1 and j ̸= k then
9: Si := Si + {e};

10: else if ramk(e) = 1 then
11: sk := sk + {e};
12: end if
13: end for
14: end while

In the algorithm, rami () is used to randomly select one
element from a batch of 2i elements; rami(e) = 1 means
that the element e should be selected.

Example 3. For the data stream in Example 1 where N =
16, let n0 = 2. There are 3 levels,L0 (the whole stream),L1

consisting of the most recent 12 elements, andL2 consisting
of the most recent 8 elements.
At levelL0, the algorithm takes every element and put the

first 4 arrived elements in s0 and the remaining in S0.
At level L1, the algorithm randomly selects one element

from each of {1, 8}, {10, 9}, {6, 7}, {8, 13}, {5, 4}, and
{2, 3}, respectively, where ram1() is used for this purpose.
The two sample elements obtained from {1, 8, 10, 9} are put
in s1, and the remaining are put in S2.
At level L2, the algorithm randomly selects one ele-

ment (controlled by ram2() from each of {6, 7, 8, 13} and
{5, 4, 2, 3}, respectively. The two sample points are put in
s2, while S2 = ∅.

It is immediate that if we keep all sample elements then
the space required is O(N log N). Note that |si| = n0 for
i ≥ 1 and |s0| = 2n0. We will show later that at each level,
we need only to keep O(n0) elements in Si since we need
only to approximate the ranks in Ri. Before proving this,
we will first show the quality of our randomization.
3.2 Quality of our Randomization

In this subsection, we will show that for each i (1 ≤ i ≤
⌈log N

n0
⌉ − 1), the sketch constructed from sorting the ele-

ments in Fi = (∪i
j=0sj)∪Si, as follows, ensures SK1-SK3,

while a violation of SK4 has a small probability δ if n0 is
chosen appropriately.

As a sample element e in si ∪ Si is a representative
of a batch of 2i data elements, we = 2i represents its
weight. Suppose that for each i, the elements in F i are
sorted according to the element values increasingly; that is,
for eq, el ∈ Fi, v(eq) ≥ v(el) if q > l. For every ele-
ment eq ∈ Fi, we use σFi(eq) to denote the accumulative

weights
∑q

j=1 wej . Note that the weights of elements in Fi

are from 1 to 2i as the weight for an e ∈ sj (j < i) is 2j .
For each element ej ∈ Fi, we make τ−

j = τ+
j =

σFi(eq). Therefore, for each i, the sketch created is ξ i =
{(ej, τ

−
j , τ+

j) : 1 ≤ j ≤ |Fi|}.
Since ξ0 takes all the data stream elements, it is immedi-

ate that ξ0 satisfies SK1-SK4. Below we show the quality
of ξi for i ≥ 1 regarding SK4 and SK3 as it is trivial that
SK1 and SK2 are enforced.

For a given rank r ∈ Ri and an ϵ, let

Γi,r,ϵ = {e : e ∈ ξi & σFi(e) ∈ [r(1 − ϵ), r(1 + ϵ)]},
Qr,ϵ = {e : e ∈ D & r(e) ∈ [r(1 − ϵ), r(1 + ϵ)]}.

Theorem 3. If n0 ≥ 16
ϵ2 log(2/δ), then for any r ∈ Ri

(1 ≤ i ≤ ⌈log N
n0
⌉ − 1), p(Γi,r, ϵ

2
̸⊆ Qr,ϵ) ≤ δ.

Theorem 3 implies that an appropriate selection of n0
will make the violation of SK4 have a small probability
δ. The proof is based on a stronger version of Chernoff-
Hoeffding bounds. It is well-known that Chernoff-
Hoeffding bounds also hold for independent bounded ran-
dom variables where the variables can take any values in an
interval [0, 1]. Below are the Chernoff-Hoeffding bounds
for independent bounded random variables 5.

Lemma 1. Chernoff-Hoeffding Bounds [11]: LetX1, X2,
X3, ..., Xn be independent random variables with values in
[0, b], X =

∑
i=1 Xi, and ϵ ∈ (0, 1]. Then,

p(X > (1 + ϵ)E(X)) < exp(−E(X)ϵ2/3b), and (4)

p(X < (1 − ϵ)E(X)) < exp(−E(X)ϵ2/2b) (5)

To prove Theorem 3, the following two sets of random
variables are constructed.

Left-Bound Trials for ξi: For each (ej , τ
−
j , τ+

j) ∈ ξi, let

Xr,ϵ,j =
{

wej , if r(ej) ≤ r(1 − ϵ)
0, otherwise (6)

Right-Bound Trials for ξi: For each (ej , τ
−
j , τ+

j) ∈ ξi, let

Yr,ϵ,j =
{

wej , if r(ej) ≤ r(1 + ϵ)
0, otherwise (7)

Let Xr,ϵ =
∑|ξi|

j=1 Xr,ϵ,j and Yr,ϵ =
∑|ξi|

j=1 Yr,ϵ,j .
It can be immediately verified that p(Xr,ϵ,j = w(ej)) =

qj

wej
where qj denotes the number of elements whose ranks

are not great than r(1 − ϵ) and which fall into the stream
segment where ej is selected. Consequently, E(Xr,ϵ) =
r(1 − ϵ). Similarly, we can show that E(Yr,ϵ) = r(1 + ϵ).
Below we prove Theorem 3.

5In the original form of Chernoff-Hoeffding bound, those bounded
variable values are in [0, 1]. It can be immediately extended to [0, b] for a
b > 1.

Proof. Without loss of generality, we prove the theorem for
ϵ ≤ 1/4. If ϵ > 1/4, then we can use this theorem to
achieve the precision 1/4. For a similar reason, we assume
δ ≤ 1/2. Note that for those independent bounded random
variables constructed above, b = 2i.

Since r ∈ [2in0, 2i+1n0], we have
r

b
> n0. (8)

To prove the theorem, we need only to prove
p(∃e ∈ Γi,r, ϵ

2
, e ̸∈ Qr,ϵ) ≤ δ. (9)

To prove (9), we prove the following instead:

p(∃e ∈ Γi,r, ϵ
2
, r(e) < r(1 − ϵ)) ≤ δ

2
, (10)

p(∃e ∈ Γi,r, ϵ
2
, r(e) > r(1 + ϵ)) ≤ δ

2
(11)

Clearly, an event “∃e ∈ Γi,r, ϵ
2
, r(e) < r(1 − ϵ)” must

imply an event “Xr,ϵ ≥ r(1 − ϵ
2)”. Therefore,

p(∃e ∈ Γi,r, ϵ
2
, r(e) < r(1 − ϵ)) ≤ p(Xr,ϵ ≥ r(1 − ϵ

2
))

Similarly, an event “∃e ∈ Γi,r, ϵ
2
, r(e) > r(1 + ϵ)” must

imply an event “Yr,ϵ ≤ (1 + ϵ
2)r. Thus,

p(∃e ∈ Γi,r, ϵ
2
, r(e) > r(1 + ϵ)) ≤ p(Yr,ϵ ≤ (1 +

ϵ
2
)r) (12)

Below we first prove the inequality (10). Immediately, (1−
ϵ
2)r ≥ (1 + ϵ

2)(1 − ϵ)r. Consequently,

p(Xr,ϵ ≥ r(1 − ϵ

2
)) ≤ p(Xr,ϵ > (1 +

ϵ

2
)(1 − ϵ)r) (13)

From the upper-tail of Chernoff-Hoeffding Bound and
ϵ ≤ 0.25 and (8), we have the following:

p(Xr,ϵ > (1 +
ϵ

2
)(1 − ϵ)r) = p(Xr,ϵ > (1 +

ϵ

2
)E(Xr,ϵ))

< exp(−(1 − ϵ)ϵ2r/3 × 4 × b) ≤ exp(− ϵ2n0

16
)

Thus, when n0 ≥ 16
ϵ2 log 2/δ, p(Xr,ϵ > (1 + ϵ

2)(1− ϵ)r) <
δ
2 ; consequently (10) holds.

It can be verified that (1+ ϵ
2)r ≤ (1−0.4ϵ)(1+ϵ)r when

ϵ ≤ 1
4 . Consequently,

p(Yr,ϵ ≤ (1 +
ϵ

2
)r) ≤ p(Yr,ϵ ≤ (1 − 0.4ϵ)E(Yr,ϵ)). (14)

By the lower-tail of Chernoff-Hoeffding bound, the choice
of n0 as above, (12), and (14), (11) is immediate. Thus
Theorem 3 holds.

Due to Theorem 3, we set n0 = 16
ϵ2 log(2/δ) in Algorithm

1. It can be immediately verified that SK3 will be always
met regarding each ξi and Ri. Below is the query algorithm
(Algorithm 2) to return such a tuple from ξ i for a r ∈ Ri

such that SK3 is satisfied.
Based on the above results, Theorem 2 immediately im-

plies that ξ = ∪∀iξi is able to return an ϵ-approximate an-
swer to a RE query (for a given r) with confidence 1 − δ.

Algorithm 2 : RE query
Input: 1 ≤ r ≤ N and {ξi : 0 ≤ i ≤ ⌈log N

n0
⌉ − 1}.

Output: a data element e such that r(e) ∈ [r(1 − ϵ), r(1 + ϵ)]
with 1 − δ confidence.

Step 1: Find i such that 2in0 ≤ r ≤ 2i+1n0.
Step 2: Return ej in ξi if σFi(ej) is the first not smaller than r.

3.3 Space and Time Complexities
Let n0 = 16

ϵ2 log(2/δ), in this section we discuss the
space complexities of Algorithm 1, and the time complexi-
ties for Algorithms 1 and 2, respectively.
Space Complexity. For each tuple (ej , τ

−
j , τ+

j) ∈ ξi,
τ−
j = τ+

j = σFi(eq). As the value of σFi(eq) will change
when new elements are sampled, we do not materialize ξ i

for efficiency reasons. Instead, we keep every s i, and main-
tain only the smallest n0 tuples (with respect to the values)
in Si. This is because Si is only used to query the ranks
in Ri = [2in0, 2i+1n0] by Algorithms 2. Note |s0| = 2n0

and |si| = n0 when i ≥ 1. There are totally O(log N
n0

)
layers. Therefore, the space requirement of Algorithm 1 is
O(1

ϵ2 log(1
δ) log(ϵ2N

log 1/δ)) (= O(n0 log N
n0

)).

Time Complexity. In our implementation, we maintain
binary search trees (such as AVL trees) on the data ele-
ment values in each si and Si, respectively. Therefore, Al-
gorithm 1 runs in O(log(ϵ2N

log1/δ) log(ϵ−2 log 1
δ)) time for

processing each element. We claim, without proof, due
to space limits, that Algorithm 2 can run in average time
O(1

ϵ2 log 1
δ log log(ϵ2N

log1/δ)) by these data structures when
ξi is not materialized.
4 Space Reduction Algorithm

In this section, we present an effective one-scan space
reduction algorithm on each si and Si generated by Al-
gorithm 1. Although the worst case space requirement re-
mains the same - O(1

ϵ2 log 1
δ log ϵ2N), this one-scan space

reduction technique combining with Algorithm 1 leads to
O(1

ϵ log(1
ϵ log 1

δ) log2+α ϵN
1−1/2α) (for α > 0) space on average.

The compress technique is based on GK-algorithm.
Overview of the Algorithm. In order to meet the precision
guarantee requirement as shown in the next several sections,
for each si we use GK-algorithm with the parameter λ = ϵ

8 .
For each Si, we want to have a sketch with the properties

GK1-GK6 in order to have a fixed absolute “rank” error
guarantee 2 × 2i (i.e., λ|Si| = 2 × 2i). As the size of
Si is not known because of no advance knowledge of N ,
it is impossible to figure out the parameter (λ), in advance,
in GK-algorithm. Moreover, modifying GK-algorithm with
the absolute rank error guarantee 2 × 2 i does not yield a
similar space bound to that in the original GK-algorithm.
To resolve this, in our compression technique we divide S i

into disjoint substreams with sizes exponentially increased.
Then, for each sub-stream we apply GK-algorithm with an
appropriately chosen λ.

Finally, we merge the GK-sketches on sj (for 1 ≤ j ≤

i) with Si using Algorithm-MERGE. If we use a similar
space truncation condition as that in section 3.3, it can be
guaranteed that the worst case space requirement remains
the same as that of Algorithm 1.

Below are the details of our algorithms.
4.1 Key Observations

Suppose that we can represent Fi, generated by Algo-
rithm 1, by another sketch {(ej, τ

−
j , τ+

j) : 1 ≤ j ≤ m′},
such that the new sketch satisfies GK1-GK6 if we replace
r(ej) by σFi(ej) in GK3, and replace r−j and r+

j by τ−
j and

τ+
j , respectively. Then by Theorem 1, this sketch can satisfy

SK1-SK3 for Ri if the precision guarantees in GK1-GK6
are chosen appropriately. Immediately, GK3 and Theorem
3 imply such a sketch violates SK4 with a small probability
δ.

Suppose that the rank of an element e ∈ si is r according
to the values’ order in si. It is immediate that σsi(e) = 2ir.
Now, GK-algorithm (si, λi) (λi is the precision required by
GK-algorithm) returns a “GK-sketch” ϱ ′ = {(ej, r

−
j , r+

j) :
1 ≤ j ≤ m} satisfying GK1-GK6. Here, GK-algorithm
runs on si by discounting element weights. Let:

wi ⊗ ϱ′ := {(ej , τ
−
j = wir

−
j , τ+

j = wir
+
j) : 1 ≤ j ≤ m} (15)

It is immediate that wi ⊗ ϱ′ satisfies GK1-GK6 regarding
λ = λj and N = wi|si| where in GK3, we replace r(e) by
σsi(e). Similar results hold for Si.

Suppose that there are q sample sets, {Tj : 1 ≤ j ≤ q}
generated by Algorithm 1, where a Tj is either in the form
of a sl or Sl. Consequently, elements in a Tj have the same
weight, denoted by w ′

j . Let ϱj = GK-algorithm (Tj , λj).
We have the following theorem.
Theorem 4. Let ϱ = Algorithm-MERGE (∪q

j=1w
′
j ⊗ ϱj).

Then, ϱ satisfy GK1-GK6 regarding λ =
Pq

j=1 λjw′
j |Tj |Pq

j=1 w′
j |Tj| and

N =
∑q

j=1 w′
j |Tj | if r(e) is replaced by σ∪q

j=1Tj
(e) in

GK3.
Proof. This theorem is immediate based on the proof of (1)
in [2, 14, 22].

By Theorem 4 and Theorem 1, it is immediate that for
each κ ∈ [1,

∑q
j=1 w′

j |Tj|], an element (e, τ−, τ+) ∈
ϱ can always be obtained such that [τ−, τ+] ∈ [r −∑q

j=1 λjw′
j |Tj |, r +

∑q
j=1 λjw′

j |Tj|]. Together with the
fact that σ∪q

j=1Tj
(e) ∈ [τ−, τ+] (GK3), this implies that we

can apply Theorem 3 if
∑q

j=1 λjw′
j |Tj | can be controlled

appropriately. This is what we will do in our space reduc-
tion algorithm.
4.2 The Algorithm

In this subsection, we will compress each Fi, generated
by Algorithm 1, such that the absolute errors over R i =
[ri,min, ri,max] are within ϵ

2ri,min in order to meet SK1-
SK4 by using GK1-GK6.

Consider that in Algorithm 1, the number of sample el-
ements for R0 = [1, 2n0] is large and cannot be effec-
tively reduced by the absolute error guarantee ϵ

2 × 1. In

our space reduction algorithm, we further divide R 0 into
several rank intervals. Specifically, we make R ′

0 = [1, 2 8
ϵ],

and R′
i = [2i 8

ϵ , 2i+1 8
ϵ] for i ≥ 1. Note that N may not

in the form of a 2k 8
ϵ but this will not affect our results. To

simplify our presentation, we also assume that 2 i0 8
ϵ = 2n0

(= O(1
ϵ2 log 2

δ)); we can always increase n0 a bit to make
the equality hold.

To generate compressed sketches, which serve for the
rank queries corresponding to the rank intervals {R ′

i : 0 ≤
i ≤ i0 − 1}, we feed our compression algorithm with s0

and S0. As s0 and S0 together contain every data element
in a stream, different parts of the whole stream are fed to
our algorithm with different compression rates. Algorithm
3 gives a brief description of our space reduction algorithm,
where Di,j denotes the set of elements issued from ith time
to jth time.
Algorithm 3 : Compression
Input: ϵ, δ, n0 = O(1

ϵ2
log 2

δ), {si, Si : i ≥ 0} continuously
generated by Algorithm 1 on a stream D.

Output: Sketches {ϱ′
i, ϱi : i ≥ 0}.

Phase 1: ϱ′
0: the smallest 2 8

ϵ elements dynamically maintained
from D.

Phase 2: for i = 1 to i0 − 1,

• ϱ′
i := GK-algorithm (D2i 8

ϵ +1,2i+1 8
ϵ

, λi = ϵ
8); and

• ϱi := Approximate (D2i+1 8
ϵ +1,∞, ϵ); (described in Algo-

rithm 4)

Phase 3: for i = i0 to k,

• ϱ′
i := 2i−i0+1⊗GK-algorithm (si−i0+1, λi = ϵ

8); and
• ϱi := Approximate (Si−i0+1, ϵ); (described in Algorithm 4)

Below, we describe the algorithm - Approximate ().
4.3 Approximate ()

Let Si = D2i+1 8
ϵ +1,∞ for 1 ≤ i ≤ i0 − 1 and Si =

Si−i0+1 for i0 ≤ i ≤ k. In this subsection, we combine
GK-algorithm and Algorithm-Merge in a novel way to ap-
proximately represent an Si (i ≥ 1).

Consider that Si will be queried against the rank interval
R′

i = [r′i,min, r′i,max] where r′i,min = 2i 8
ϵ and r′i,max =

2i+1 8
ϵ . To make an appropriate use of Theorem 3 we retain

the absolute rank error to be at most ϵ
4 × (2i 8

ϵ)(considering
a merge step later). This can make our sketch to be built
meet SK3-SK4. Since such a sketch responses only to the
rank queries in R′

i, we do not need to consider an element e
in Si such that σSi(e) > r′i,max(1 + ϵ

2) = r′i,max + ϵr′i,min

(noting SK3), where r ′
i,max = 2i+1 8

ϵ = 2r′i,min.
Note that in the sketch maintained by Approximate (),

every tuple is in form (e, τ−, τ+) with τ− ≤ σSi(e) ≤ τ+.
Thus, we filter out a new element enew if v(enew) ≥ v(ec)
where ec is the lowest ranked element with its τ− value has
the following property:

τ− ≥ r′i,max + ϵr′i,min(= 2i+1 8
ϵ

+ ϵ(2i 8
ϵ
)). (16)

This is the filter to be used in our algorithm Approximate ().
ec is called cut-off element.

Let ϵ1 = ϵ(1− 1
2α)

4 for an α > 0. The basic ideas of the
algorithm Approximate () are as follows:

• run GK-algorithm on the first issued 8
ϵ × 2i

wi
elements in

Si regarding ϵ1.
• For a data element e′ issued thereafter, feed GK-

algorithm with e′ only if it passes the above filter regard-
ing the current Si; that is, v(e′) < v(ec). Here ec is the
current cut-off element.

• For the elements passing the filter, we divide them ex-
ponentially into q − 1 sets {Gj : 2 ≤ i ≤ q} such that
Gj consists of 2j 8

ϵ
2i

wi
elements passing the filter between

(2j 8
ϵ

2i

wi
+ 1)th time and 2j+1 8

ϵ
2i

wi
th time. GK-algorithm

is run on Gj regarding ϵ1(1
2×2α)j−1.

Algorithm 4 gives a description of the algorithm Approxi-
mate().
Algorithm 4 : Approximate
Input: ϵ, α > 0, Si.
Output: ϱi.
Description:

1: if i ≤ i0 − 1 then
2: wi := 1
3: else
4: wi := 2i−i0+1;
5: end if
6: j := 1; K := 0; ϵ1 =

ϵ(1− 1
2α)

4 ;
7: while New element e′ from Si do
8: get ec from Algorithm-MERGE (∪j

l=1ρl);
9: if v(e′) < v(ec) then

10: K := K + 1;
11: feed GK-algorithm with e′ for continuously building ρj

with precision guarantee ϵ1(1
2×2α)j−1;

12: ifK = 2j 8
ϵ × 2i

wi
then

13: j := j + 1; K := 0;
14: end if
15: end if
16: end while
17: Return Algorithm-MERGE (∪j

l=1wi ⊗ ρl) (as ϱi);

Remark 1. To further reduce the space, we also use a trun-
cation mechanism similar to that in section 3.3 to filter out
the tuples (if possible) in the existing sketch every time when
a new element is inserted into it. However, to maintain the
space guarantee in GK-algorithm, we do not filter out the
tuples from current ρl where GK-algorithm is still running.
To control the worst case space requirement in Algorithm

4, we keep n0 as a threshold. Once the current total num-
ber of tuples kept exceeds n0, the algorithm changes the
mode and runs the filter-out (truncation) only mode for new
coming elements as well as the existing tuples in the current
sketch. This includes all ρl.

4.4 Precision and Space Complexity
We first show that the sketches produced by the algorithm

Compression, Algorithm 3, follow SK1-SK3.

Let χ0 = ϱ′0. Clearly, χ0 meets SK1-SK4 regarding R′
0

and ϵ.
For 1 ≤ i ≤ ⌈log ϵN

8 ⌉ − 1, let χi = Algorithm-MERGE
(∪i

j=0(ϱ′j) ∪ ϱi).
Theorem 5. For 1 ≤ i ≤ ⌈log ϵN

8 ⌉ − 1, χi meets SK1-SK3
regarding ϵ and R′

i = [2i 8
ϵ , 2i+1 8

ϵ].
Proof. Suppose that ϱi := Algorithm-MERGE (∪q

j=1wi ⊗
ρl) is output by Algorithm 4. By Theorem 4, ϱ j follows
GK1-GK6 regarding N ′

i = 2i

wi

∑q
j=1 2j−1 8

ϵ and

λ′
i =

ϵ1wi
2i

wi

8
ϵ

∑q
j=1(

1
2α)j−1

N ′
i

≤
ϵ
4 × (2i 8

ϵ)
N ′

i

Applying Theorem 4 to χi, it is immediate that χi satisfies
GK1-GK6 regarding Ni and

λ′′
i =

ϵ
8

∑i
j=1(2

j 8
ϵ) + λ′

iN
′
i

Ni
≤

ϵ
2 × 2i 8

ϵ

Ni

It is immediate that χi meet SK1-3 regarding ϵ and R ′
i =

[2i 8
ϵ , 2i+1 8

ϵ].

Note that in Theorem 5, “a χi follows GK3” implies that
we already replace r(e) by σFi(e) where Fi denotes the set
of sample elements sent to Algorithm 3 for generating χ i;
here Fi is slightly different than Fi in section 3 due to repar-
titioning R0. Immediately, GK3 and Theorem 3 imply that
χi violates SK4 with the probability less than δ for R ′

i.
Clearly, for a RE query Algorithm 2 can be modified by

checking SK3 using the first “hit” paradigm [15]. The the-
orem below is immediate.

Theorem 6. The sketches {χi : 0 ≤ i ≤ ⌈log ϵN
8 ⌉ − 1}

can give an ϵ-approximate answer to a RE query with con-
fidence at least 1 − δ.

Next we show the space requirement in Algorithm 4. At
each level i, we first estimate the total number of elements
passing the filter. Note that in Si (i ≥ 1), an element e
passes the filter means that v(e) < v(el) where el is the cur-
rent cut-off element; that is, el is the lowest ranked element
whose τ−

l ≥ 2i+1 8
ϵ + ϵ(2i 8

ϵ) in the current χi. As χi fol-
lows SK4, it is immediate that τ−

j ≤ τ+
j ≤ (2+3ϵ/2)(2i 8

ϵ).

Theorem 7. Let ai = (2 + 3ϵ/2)(2i 8
ϵ). Suppose that each

element’s value distribution is the same and independent
with each other. Then, the expected number Ns of elements
e in Si passed the filter during Algorithm 4 is not greater
than

ai

wi
(ln

N

ai
+ C), (17)

where C is an constant and wi is the weight in Si.

Proof. According to the data distributions’ assumption,
each new element has an equal opportunity to take any rank
regarding the existing sample elements. Suppose that at the

time when an element is sampled from a jth segment, Ij ,
with 2i elements; and suppose that there are l sample el-
ements that are before the cut-off element e l, as specified
above, including el. Then each element e′ in Ij has the
probability l

j to pass the filter.
Clearly, wil ≤ ai as the difference of two adjacent tu-

ples’ τ− values in the sketch is at least wi according to
GK-algorithm and Algorithm-MERGE [2, 15, 22]. Thus,
a sampled element in Ij has the probability at most ai/wi

j
to be kept. Consequently, the expected number N s of
the total elements pass the filter has the property: Ns ≤
ai
wi

(
∑Ni/wi

j=ai/wi

1
j + 1). Thus, the theorem holds.

Theorem 8. Suppose that the elements’ distributions satisfy
the conditions in Theorem 7. Then, in Algorithm 4 at layer i
∑

∀j |ρj | is expected to beO(1
ϵ log ai

wi

ln1+α N
ai

1−1/2α), where α >
0.

Proof. By the space result in GK-algorithm [15], we have
|ρj | ≤ C 4(2×2α)j−1

ϵ(1−1/2α) log((1−1/2α)ϵ/4
(2×2α)j−1 2j−1(8

ϵ
2i

wi
)). This im-

plies that |ρj | = O((2×2α)j−1

ϵ(1−1/2α) log ai
wi

).
Assume there are k such ρj . According to Theorem 7,∑k−1
j=1 2j−1 8

ϵ
2i

wi
≤ ai

wi
(ln N

ai
+ c).

By an elementary calculation, it is immediate that k ≤
C′ log2(ln N/ai + c). Again, by elementary calculation it

is immediate that
∑k

j=1 |ρj | = O(1
ϵ log ai

wi

ln1+α N
ai

1−1/2α).

In fact, we can show that Algorithm 3 has the following
space guarantee combining with Algorithm 1.

Corollary 1. Suppose that the elements’ distributions sat-
isfy the conditions in Theorem 7. Then, the space (i.e., the
maximum number of elements in the sketches) in Algorithm
3 is expected to beO(1

ϵ log(1
ϵ log 1

δ) ln2+α ϵN
1−1/2α) for a α > 0.

Proof. Note that ai/wi ≤ n0 and the space requirement
by Algorithm 4 are dominant factors. There are totally
O(log ϵN) layers.

As described in Remark 1, once the total number of tu-
ples in ϱi exceeds n0 the algorithm just stops any further
call of GK-algorithm. Instead, we filter out both new com-
ing element and the existing sketch tuples whenever nec-
essary. It is immediate that the number of elements kept
is less than ai

wi
which is bounded by O(n0) for i ≥ i0,

and O(2i

ϵ) for i ≤ i0 − 1. Consequently, the worst case
space requirement in Algorithm 3 is O(n0 log ϵ2N +n0) =
O(1

ϵ2 log 1
δ log ϵ2N).

4.5 Final Notes
As with the algorithms in section 3, we do not material-

ize the results by Algorithm-MERGE for queries and filters.
Instead, for each subsketch we maintain a tail and a head.
A tail gives the latest tuple that has been added to the global
sketch. To filter-out the existing tuples in the local sketches,
we need only to examine those tails iteratively. Should any

existing tuples be filtered out appropriately as described in
Remark 1, the cut-off element must be one of those tails. So,
we maintain a max-heap on the tails for quickly finding the
cut-off element without running Algorithm-MERGE. Note
that once GK-algorithm compresses or inserts a new ele-
ment, we may have to update the heap once. Therefore,
the complexity for processing each element at one level is
O(Cgk + Cheap) if we also maintain a min-heap on heads.
here, Cgk is the running costs of GK-algorithm per element
and Cheap is the costs of one update to a heap.

It is clear that queries can be processed in a similar way
as Algorithm-MERGE.
5 Performance Evaluation

In this section, we present results of a performance eval-
uation of our algorithms. We use the Algorithm 1 in [7] and
the algorithm in [19] as benchmark algorithms to evaluate
our techniques in this paper. The following algorithms are
implemented and evaluated:
MR: The multi-layer randomization technique (Algorithm

1) combining with a simple space reduction technique
presented in section 3.3.

MRC: The combination of Algorithm 1 and Algorithm 3,
as well as the sub-algorithms in section 4.

CKMS: The deterministic approximate algorithm (Algo-
rithm 1) in [7], using φkN ≡ 1, as described in section
2.2.

GZ: The randomization algorithm proposed in [19] with an
advance knowledge of N .

All experiments have been carried out on a PC with Intel
P4 2.8GHz CPU and 1G memory. The operating system is
Debian Linux. We implement the algorithms in C++ and
compile them with gnu Gcc 3.3.4. We implement CKMS
using TREE and BATCH structures as suggested in [7] for a
speed-up. For GZ algorithm, given N , δ, and ϵ the sample
space is fixed and could be extremely large due to the factor
O(1

ϵ3). In case that the space required exceeds stream size
N , we just keep all data elements.

Notation Definition (Default Values)
d Stream Model (Real data DP.)
N Stream size (10M)
ϵ Guaranteed precision (0.02)
1 − δ Confidence (0.99)
R set of ranks ({ i × 20K: 1 ≤ i ≤ 500})
α Compress factor (1)

Table 2. System Parameters.
We have done the performance evaluations against the

parameters that may affect performance studies. They are
listed in Table 2.

We used five types of building blocks to generate data to
evaluate the different algorithms. In the Uni (Nor) model,
each element value follows uniform (normal) distribution.
In the Sort (Rev) model, elements values are sorted by a
non-decreasing (non-increasing) order. A stream of data el-
ements in the Semimodel is partitioned into groups with the
average group size 2K such that values in later groups are
larger than those in earlier groups, while data values within
each group are in a random order.

In our experiments, to avoid favouring one particular
stream order we generate a “heterogeneous” data distribu-
tion model - Htr. In the Htr model, a stream is divided
into blocks with average size 2K. Note that different sizes
of value domains usually do not affect space requirements
if the domain sizes are large enough to allow each element
to take a distinct value. In our Htr data, for each block we
use a value domain with 5000 distinct values. For each pair
of consecutive blocks, the intersection of the two value do-
mains is randomly selected from length 0 (no intersection)
to 5000 (using the same value domain). Moreover, for the
elements in each block we randomly choose a stream model
from one of Uni, Nor, Sort, and Rev.

We also evaluate the performance of the algorithms
against a real data set from NYSE (New York Stock Ex-
change). The data set contains stock transaction records of
DELL from Dec 3rd 2001 to Oct 31st 2002 where for each
transaction, the average price per volume is recorded up to
8 decimal digits. We use the average prices as data values
and the data set is called DP with about 11 million data el-
ements (transaction records). The arrival order of elements
is based on transactions’ time stamps.

Finally , we test the performance of the algorithms over a
data stream with very large volume. As there is no real sin-
gle stock data with more than 11 million elements at hand,
we concatenate 100 million transaction records from some
18 stocks (DELL, CSCO, SUN, etc) of NYSE during the
trade period Nov/2000 - Oct/2002. Again, we use average
price of each transaction as an element value. The whole
data set size is about 2G and is named GIGR.

5.1 Space Evaluation
In this subsection, we do a performance evaluation on the

space efficiency of our techniques. We normalized by the
maximum number of tuples in a sketch during a continuous
processing. We also record the ratio of such maximum num-
ber of tuples in a sketch over the number of data elements
in the current stream, which is called space ratio.

MR CKMSMRC GZ

20%

40%

60%

80%

100%

10M8M6M4M2M

Sp
ac

e R
ati

o

Data
Figure 2. Linear Space by CKMS-algorithm

In our first experiment, we run algorithms GZ, CKMS,
MR, MRC against a data stream constructed in the way as
described in Example 2 (Section 2). We set the size of each
batch to 2K and the whole data stream size to 10M, while
other parameters are set to their default values. For each
algorithm, we record the space ratios at a set of certain mo-
ments, as depicted in Figure 2. The space ratios in these
4 algorithms are reported in Figure 2, respectively. Figure
2 clearly demonstrates a linear space requirement(0.7N) by
CKMS for this data. Note that in this experiment, the arrival
order of element values is specially designed in an “anti-

CKMS” way to show its worst case. GZ requires the space
N because the small value ϵ = 0.02 cause the sample size
larger than N .

10M

3M

1M

0.1M

100M80M60M40M20M

Sp
ac

e U
sa

ge

Data

MR
MRC

CKMS

Figure 3. 2G Real Data: GIGR
In our second experiment, we evaluate the algorithms,

GZ, CKMS, MR, and MRC, against the Gigabytes data
(GIGR) using the system default values. This time, we
record the space requirement in terms of number of ele-
ments. Figure 3 reports the results. Here we observe that
CKMS, when used to obtain relative error at all ranks, can
suffer on real data, not just on the synthetic data observed
above. Note that we did not show the space requirement of
GZ as again, the sample size exceeds the total number of
the elements.

MRMRC CKMS GZ

10%
1%

0.1%
0.01%

0.001%

DPSemiHtrUni
Sp

ac
e

R
at

io
(a) ϵ = 0.2

100%
10%

1%
0.1%

0.01%

DPSemiHtrUni

Sp
ac

e
R

at
io

(b) ϵ = 0.02

Figure 4. Space Efficiency over Diff. Stream Models
In the third experiment, we evaluate the space efficiency

of MR, MRC, CKMS, and GZ against several different data
streams (in particular, Uni, Semi, Htr, DP) with the same
size 10M (millions). Note that DP is a subset of GIGR. We
set ϵ = 0.2 and 0.02, respectively, while the other param-
eters use default values. Figure 4 reports the results. It is
interesting to note that CKMS performs very well against
the Uni model. However, our MRC algorithm has the best
performance against other data sets including the real data
set; it outperforms CKMS and GZ by at least about an order
of magnitude. Moreover, MRC has a quite stable good per-
formance against all these data, while GZ does not perform
very well against all these data, again, due to the cubic order
of 1

ϵ .
MR CKMSMRC

5%

4%

2%

0%
10M8M6M4M2M

Sp
ac

e
R

at
io

Data
(a) Htr

0%

2%

4%

6%

8%

10%

10M8M6M4M2M

Sp
ac

e
R

at
io

Data
(b) DP

Figure 5. Space Efficiency with ϵ = 0.02
Now, we evaluate the space efficiency as a function of

data stream length. We run this set of experiments against
two data streams – Htr and DP (real data) – and let other
parameters use system default values. Since the space re-
quirement of GZ exceeds N , the space ratio for GZ is al-

ways 100%. Therefore, we exclude the space ratio from GZ
in our graphs. The results are reported in Figure 5. This ex-
periment further validates the space efficiency of MRC. We
also note that the performance of CKMS is not very stable.
Remark 2. To prevent any possible confusion, we want to
point out that the space ratio drops as the stream size in-
creases does not mean that the overall space usage drops.
In fact, the required space in this paper refers to maximum
temporary storage during the computation; consequently it
never drops as a stream size continuously increases.
Remark 3. Based on space usage demonstrated so far
against MR and MRC, we do not further evaluate CKMS
for the rest of our performance studies since time cost is
directly related to space usage (MRC and CKMS apply a
similar space reduction technique, which is linear in the
number of samples). We also do not present results from
GZ since, in our experiments below, the space required by
GZ exceeds N , when ϵ ≤ 0.05, due to the cubic order of 1

ϵ .
3%

2%

1%

10M8M6M4M2M

Sp
ac

e
R

at
io

Data

α=1
α=1/2
α=1/4

(a) DP on Diff. α

1.5%

1%

0.5%

0.1%
0.990.950.900.80

Sp
ac

e
R

at
io

1 - δ

MRC
MR

(b) DP on Diff. 1 − δ

Figure 6. Space Efficiency for Diff. α and 1 − δ

In the fifth set of experiments, we evaluate the impact
of α (in Algorithm 4). We choose α= 1

4 , 12 ,1 and run MRC
against 10M real data DP with other parameters using de-
fault values. Our experiment results (Figure 6(a)) demon-
strate that the space requirements are close though α = 1
gain the edge. We also evaluate the impact of confidence
1−δ on MR and MRC. The experiment is conducted against
different 1 − δ values: 0.8, 0.9, 0.95, 0.99, while other pa-
rameters adopt default values. The results are reported in
Figure 6(b). As expected, the memory space needed by MR
and MRC increases when confidence increases.

0%

0.5%

1%

1.5%

 0.02 0.04 0.06 0.08 0.1

Sp
ac

e
R

at
io

ε

MR
MRC

(a) Htr

0%

0.5%

1%

1.5%

 0.02 0.04 0.06 0.08 0.1

Sp
ac

e
R

at
io

ε

MR
MRC

(b) DP
Figure 7. Space Consumption against Diff. ϵ

In the sixth set of experiments, we examine the effect
of different ϵ values. Htr and DP data streams (data sets)
are used against different ϵ values, while other parameters
adopt default values. The results are reported in Figure 7.
The experiment further demonstrates the space efficiency of
MRC.
5.2 Evaluating Processing Costs

In this subsection, we evaluate the sketch maintenance
costs of MR and MRC. We want to measure the process-
ing time per element. We record the average time needed

for processing every batch of 20K elements; this estimate
is used as the processing delay “per element”. In addition,
we estimate the maximum delay per element using the max-
imum average delay over all batches.

MR MRC

1×10-6

1×10-5

1×10-4

1×10-3

GIGRDPSemiHtrUni

Pr
oc

es
si

ng
 ti

m
e

(s
)

(a) Avg. Processing Delay
1×10-6

1×10-5

1×10-4

1×10-3

GIGRDPSemiHtrUni

Pr
oc

es
si

ng
 ti

m
e

(s
)

(b) Max. Processing Delay
Figure 8. Delay per Element with ϵ = 0.02

In the first set of experiments, we evaluate the aver-
age delay and maximum delay per element with respect to
ϵ = 0.02 and the five streams (Uni, Htr, Semi, DP, GIGR),
while other parameters adopt system default values. Fig-
ure 8 reports the experiment results. ¿From our results on
maximum and average delay per data element, we can draw
a very positive conclusion below. MRC can support a real
time computation for a stream with arrival rate from about
7K elements (GIGR) per second to 60K (Htr) elements per
second on average for a small precision ϵ = 0.02 and high
confidence 0.99, while in the worst case it can still sup-
port a stream with the arrival rate from about 1.3K ele-
ments/second (GIGR) to 10K elements (Uni). MR is even
faster since it doesn’t have to continually prune the space
using a compression procedure.

6x10-5

4.5x10-5

3x10-5

1.5x10-5

 0.02 0.04 0.06 0.08 0.1

Pr
oc

es
si

ng
 ti

m
e

(s
)

ε

MR
MRC

(a) Htr

6x10-5

4.5x10-5

3x10-5

1.5x10-5

 0.02 0.04 0.06 0.08 0.1

Pr
oc

es
si

ng
 ti

m
e

(s
)

ε

MR
MRC

(b) DP
Figure 9. Avg. Delay per Element vs Diff. ϵ

In the second set of evaluations, we examine the effect of
different relative error guarantees - ϵ. We conduct experi-
ments for two streams Htr and DP, while other parameters
use default values. The experiment results are reported in
Figure 9.
5.3 Evaluating Accuracy

We use the real data stream DP to evaluate the accuracy
of MR and MRC. It is immediate that if we want to guar-
antee the precision by the confidence 1− δ for processing t
queries, we need to enlarge the space requirement a bit by
replacing δ by δ

t in MR and MRC. However, in our evalua-
tion we discount such a requirement.

We evaluate the actual relative errors by MR and MRC
for RE queries at different ranks spanning 1 to N . We issue
the query set R (500 queries) with the default value after
the sketches are created. We run the two algorithms against
DP data stream with default settings for other parameters.

Figure 10(a) reports the relative errors obtained from the
sketch generated by MRC, while Figure 10(b) reports the
relative errors from the sketches by MR. It demonstrates
that no relative errors exceeds the error guarantee (ϵ = 0.02)
in MRC and MR, respectively. As expected that MR pro-

10-2

10-3

10-4

10-5

10M8M6M4M2M0

Es
tim

at
io

n
Er

ro
r

Rank

0.02

(a) MRC

10-2

10-3

10-4

10-5

10M8M6M4M2M0

Es
tim

at
io

n
Er

ro
r

Rank

0.02

(b) MR
Figure 10. Actual Relative Errors for ϵ = 0.02

vides higher accuracy than that by MRC. This is because
that MR generates the sample set with a larger size.

5.4 Summary
As a short summary, our comprehensive performance

study clearly demonstrates that the proposed algorithms are
both effective and efficient. MR and MRC can both sup-
port real time processing of rapid streams. Note that MRC
requires much less space than MR does, while MR pro-
vides better accuracy. Although the deterministic algorithm
CKMS [7] requires a linear space Ω(N) in the worst case,
it still performs reasonably well in our performance study,
especially for the Uni stream data. GZ algorithm generally
requires large space for a small ϵ value; consequently, it is
not applicable to situations where ϵ is small. Overall, the
algorithm MRC could be significantly more space-efficient
and more cost-efficient than CKMS, by an order of magni-
tude, in our experiments. Therefore, in applications where
small space guarantee is crucial, MRC is the best choice.

6 Conclusions
In this paper, we developed novel techniques for main-

taining online order sketches so that rank queries can be an-
swered with a relative error guarantee. This work provides
the first space-efficient streaming techniques that process
approximate rank queries with relative error guarantees,
without advance knowledge of N . Besides proven accu-
racy and space guarantees, our algorithms are also efficient
enough to support on-line computation of very high speed
data streams with element arrival rate up to 60K/second.
In fact, our technique may be immediately extended to the
problem of counting inversions with similar space require-
ments. For space limits, we omit the discussions in this
paper.

Future work includes investigating if tighter space
bounds can be found for our algorithms, as well as studying
this problem over distributed data streams.

References
[1] M. Ajtai, I. S. Jayram, R. Kumar, and D. Sivakumar. Ap-

proximate counting of inversions in a data stream. In STOC
2002.

[2] A. Arasu and G. S. Manku. Approximate counts and quan-
tiles over sliding windows. In PODS04, 2004.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In PODS’02.

[4] E. Cohen and H. Kaplan. Spatially-decaying aggregation
over a network: model and algorithms. In SIGMOD’04.

[5] C. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Ras-
togi. Holistic aggregates in a networked world: Distributed
tracking of approximate quantiles. In SIGMOD2005, 2005.

[6] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Finding hierarchical heavy hitters in data streams. In VLDB
2003.

[7] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Effective computation of biased quantiles over data streams.
In ICDE’05, 2005.

[8] A. Das, J. Gehrke, and M. Riedewald. Approximate join
processing over data streams. In SIGMOD’03, 2003.

[9] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining
stream statistics over sliding windows: (extended abstract).
In SODA03, 2002.

[10] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Pro-
cessing complex aggregate queries over data streams. In
SIGMOD, 2002.

[11] D. Dubhashi and A. Panconesi. Concentration of
Measure for Computer Scientists: Chapter 1, pp 12.
www.cs.unibo.it/˜ pancones/papers.html, 1998.

[12] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank
aggregation methods for the web. In WWW01, 2001.

[13] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
How to summarize the universe: Dynamic maintenance of
quantiles. In VLDB2002, 2002.

[14] M. Greenwald and S. Khanna. Power-conserving computa-
tion of order-statistics over sensor networks. In PODS’04.

[15] M. Greenwald and S. Khanna. Space-efficient online com-
putation of quantile summaries. In SIGMOD’01, 2001.

[16] S. Guha and N. Koudas. Approximating a data stream for
querying and estimation: Algorithms and performance eval-
uation. In ICDE 2002, 2002.

[17] S. Guha, N. Koudas, and K. Shim. Data-streams and his-
tograms. In STOC 2001, 2001.

[18] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clus-
tering data streams. In FOCS’00, 2000.

[19] A. Gupta and F. Zane. Counting inversions in lists. In
SODA’03, 2003.

[20] J.I.Munro and M.S.Paterson. Selection and sorting wiith
limited storage. In TCS12, 1980.

[21] T. Johnson, S. Muthukrishnan, T. Dasu, , and
V. Shkapenyuk. Mining database structure; or, how
to build a data quality browser. In SIGMOD, 2002.

[22] X. Lin, H. Lu, J. Xu, and J. X. Yu. Continuously maintaining
quantile summaries of the most recent n elements over a data
stream. In ICDE, 2004.

[23] S. Manganelli and R. Engle. Value at risk models in finance.
European Central Bank Working Paper Series No. 75, 2001.

[24] G. Manku and R. Motwani. Approximate frequency counts
over data streams. In VLDB 2002, 2002.

[25] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Random
sampling techniques for space efficient online computation
of order statistics of large datasets. In SIGMOD, 1999.

[26] V. Poosala, P. Haas, Y. Ioannidis, and E. Shekita. Improved
histograms for selectivity estimation of range predicates. In
VLDB’96, 1996.

[27] V. Poosala and Y. Ioannidis. Estimation of query-result dis-
tribution and its application in parallel-join load balancing.
In The VLDB Journal, 1996.

[28] J. Yu, Z. Chong, H. Lu, and A. Zhou. False positive or false
negative: Mining frequent itemsets from high speed transac-
tional data streams. In VLDB’04, 2004.

