
Selecting Stars: Thek Most Representative Skyline Operator

Xuemin Lin1 Yidong Yuan1 Qing Zhang2 Ying Zhang1

1 School of Computer Science and Engineering 2 E-Health Research Center
The University of New South Wale & NICTA, Australia CSIRO ICTCenter, Australia
{lxue, yyidong, yingz }@cse.unsw.edu.au qing.zhang@csiro.au

Abstract
Skyline computation has many applications including

multi-criteria decision making. In this paper, we study the
problem of selectingk skyline points so that the number of
points, which are dominated by at least one of thesek sky-
line points, is maximized. We first present an efficient dy-
namic programming based exact algorithm in a2d-space.
Then, we show that the problem is NP-hard when the dimen-
sionality is3 or more and it can be approximately solved by
a polynomial time algorithm with the guaranteed approxi-
mation ratio1 − 1

e . To speed-up the computation, an effi-
cient, scalable, index-based randomized algorithm is devel-
oped by applying the FM probabilistic counting technique.
A comprehensive performance evaluation demonstrates that
our randomized technique is very efficient, highly accurate,
and scalable.

1. Introduction
Given a set ofd-dimensional points, the skyline consists

of the points, called “skyline points”, which are not dom-
inated by another point. A pointp = (p[1], p[2], ..., p[d])
dominatesanother pointq = (q[1], q[2], ..., q[d]) iff p[i] ≤
q[i] (for 1 ≤ i ≤ d) and there is at least one dimension
j such thatp[j] < q[j]. The skyline computation (or the
skyline operator) is crucial to many multi-criteria decision
making applications. A typical example is a list of hotels,
each of which contains two numerical attributesdistance
(say, to the beach) andprice, for on-line booking. Fig-
ure 1(a) shows a sample list. In this application, the best
choice to a client, who wants to spend holiday in the beach,
may be as close as possible to the beach while also cost ef-
fective. Consequently, the “best” choices form the skyline
(see Figure 1(b)).

id dist (km) price ($)

p1 4 150
p2 3 110
p3 2.5 240
p4 2 180
p5 1.7 270
p6 1 195
p7 1.2 210

(a) Hotels

dist

price

p1

p2

p6

p4 p5

p3

p7skyline

(b) Skyline

Figure 1. A Skyline Example

Skyline computation has recently received a great deal of
attention in the database community. A number of efficient
algorithms for computing all skyline points (i.e.full skyline)

have been reported in the literature [4, 9, 13, 22, 29, 33]. It
has been shown in [3, 13] that the expected number of sky-
line points isΘ(lnd−1 n/(d − 1)!) for a random dataset.
With the presence of a possibly large number of skyline
points, the full skyline may be less informative. In the above
example, it may be hard for users to make a good, quick se-
lection by referencing the full skyline that consists of too
many hotels.

To resolve this, a system may be required to providek
skyline points. Suchk skyline points should be most repre-
sentative. Consider that the full skyline represents a whole
dataset. In this paper, we quantify the concept of “repre-
sentative” by the population. Specifically, we investigate
the problem (called “top-k representative skyline points”)
of computingk skyline points such that the total number
of (distinct) data points dominated by one of thek skyline
points is maximized. In the above example,p6 is returned
if k = 1, while p2 andp6 are returned ifk = 2.

The computation of top-k representative skyline points
(top-k RSP) may facilitate many applications including top-
k queries when multi-criteria are involved. With respect to
the above example, if users only want to seek hotels to
make a selection based on the price and the distance, then
a solution to the top-k RSP can provide users with the con-
fidence that thesek hotels are already representing (better
than) the maximum possible number of available options
(hotels). Moreover, the top-k RSP also provides a novel
ranking mechanism for top-k queries.

Selecting data points with certain designated dominance
properties has been recently investigated in [7, 8, 21, 29].
Nevertheless, to the best of our knowledge our top-k RSP
problem is novel and it is inherently different than the prob-
lems in [7, 8, 21, 29]; consequently these existing tech-
niques are not applicable to the top-k RSP problem. Mo-
tivated by this, in this paper we develop efficient, novel al-
gorithms to compute the top-k representative skyline points.
This is the first work regarding the problem of top-k RSP.
Our contributions can be summarized as follows.
• We propose a novel skyline operator, top-k representative

skyline, so that thek skyline points with the maximal
number of dominated points can be produced to facilitate
on-line user queries.

• In a2d-space, we develop an efficient dynamic program-
ming based algorithm to solve the problem.

• We show that the problem is NP-hard in ad-dimensional
space whend is 3 or more. Then, we show that by an
immediate transformation to the set cover problem, the

1

problem can be solved by a greedy heuristic with the ap-
proximation ratio1 − 1

e .
• Observe such a greedy heuristic may not be scalable nor

efficient. We develop a novel, efficient, scalable, index-
based randomized algorithm, with a theoretical accuracy
guarantee, by using a probabilistic counting technique –
FM algorithm [12].
Besides theoretical analysis, an extensive experimental

evaluation demonstrates that our randomized algorithm is
both time- and space- efficient, as well as highly accurate.

The rest of the paper is organized as follows. Section 2
gives the problem definition and presents the related work.
Section 3 reviews two existing techniques that will be em-
ployed in our algorithms. Section 4 presents the exact al-
gorithm in2-dimensional space and our results for a multi-
dimensional space are presented in section 5. Our extensive
experimental evaluation is reported in section 6. Section 7
concludes the paper.

2. Background Information
We first state the problem. Then, we present the related

work. Below in Table 1 we summarise the math notation
used throughout the paper.

Notation Definition
P a set of data points
d dimensionality of a space
n |P |
p, q a data point
SP the set of skyline points ofP
m |SP |
s (S) a (set of) skyline point (points)
D(S) the set of points dominated by ones ∈ S

e an entry in anR-tree
S.fm (s.fm) FM sketch set atS (s)
eH the heap top of a heapH

Table 1. Math Notation

2.1. Problem Statement
Suppose thatP is a set ofd-dimensional data points. For

a data pointq ∈ P , D({q}) denotes the set of points inP
that are dominated byq; for a setQ of data points,D(Q)
denotes the set of points each of which is dominated by a
q ∈ Q. Clearly,D(Q) =

⋃

∀q∈Q D({q}).
Example 1. Regarding Figure 1(b),D({p4}) = {p3},
D({p6}) = {p3, p5, p7}, andD({p4, p6}) = {p3, p5, p7}.

The problem oftop-k representative skyline points(top-
k RSP) is formally defined as follows.
Top-k RSP.Given a setP of points and an integerk, com-
pute a setS of k skyline points such that|D(S)| is maxi-
mized. Note that when|SP | ≤ k, SP is the solution.

In this paper, we study the problem of efficiently com-
puting top-k RSP.

2.2. Related work
Computing full skyline. Efficiently computing skyline is
first investigated by Kunget al. in [23]. Bentleyet al. [3]
provide an efficient algorithm with an expected linear run-
ning time if the data distribution on each dimension is inde-
pendent.

Börzs̈onyi et al. [4] first investigate the skyline compu-
tation problem in the context of databases and propose an
SQL syntax for the skyline query. They also develop the
skyline computation techniques based onblock-nested-loop
and divide-conquerparadigms, respectively. Chomickiet
al. [9] propose another block-nested-loop based computa-
tion technique, SFS (sort-filter-skyline), to take the advan-
tages of a pre-sorting. The SFS paradigm is significantly
improved by Godfreyet al. in [13]. Tan et al. [33] pro-
pose the firstprogressivetechnique that can output skyline
points without having to scan the whole dataset. Two aux-
iliary data structures are proposed,bitmapandsearch tree.
Kossmannet al. [22] present anotherprogressivetechnique
based on the nearest neighbour search technique onR-tree
[32, 15], which adopts a divide-and-conquer paradigm on
the dataset indexed byR-tree. Papadiaset al. [29] propose a
branch and bound search technique (BBS) to progressively
output skyline points on datasets indexed byR-tree. One
of the most important properties of BBS in [29] is that it
guarantees the minimum I/O costs.

Kapoor [20] studies the problem of dynamically main-
taining an effective data structure for an incremental sky-
line computation in a2-dimensional space. Chanet al. [6]
investigate the skyline computation problem for partially-
ordered value domains.
Data points with designated dominance properties.Ob-
serve that the number of skyline points may be large; thus
the full skyline is not always very informative. The problem
of selecting data points with some designated dominance
properties has been recently investigated in [8, 7, 21, 29].

Koltun and Papadimitriou [21] aim to find a minimum set
of points to approximately dominate all data points. Specif-
ically, for a givenε (ε ≥ 0), find a subsetQ of a given
P , with the minimum cardinality, such that everyp ∈ P is
dominated by a(1− ε)q whereq ∈ Q. In [21], the maximal
vector problem is investigated. Here, we state their problem
with our setting. It has been shown that the problem can be
solved by a greedy heuristic in a2d-space, and it is NP-hard
for d = 3 or more. Then, it shows the problem can be ap-
proximately solved with a poly-logarithmic cardinality (for
ε > 0) of Q regarding the values’ domain. This problem
is inherently different than our problem – top-k RSP. First,
it does not guarantee that the data points inQ are skyline
points unlessε = 0; when ε = 0, all skyline points are
returned. Second, the size ofQ is poly-logarithmic regard-
ing the values’ domain. Consequently, the results and the
techniques in [21] are not applicable to top-k RSP.

Chanet al.[8] investigate the problem of computing top-
k frequent skyline points based on a new metric,skyline
frequency. Skyline frequency of a pointp is the number of
subspaces wherep is a skyline point. In [7], Chanet al. de-
velop efficient algorithms to compute skyline points each of
which is a skyline point in all subspaces with dimensional-
ity k for a givenk.

The most related problem to our top-k RSP has been
investigated in [29]. Papadiaset al. [29] propose ak-
dominating query. It aims to compute a setQ of k points
such that

∑

p∈Q |D({p})| is maximized. The problem ofk-
dominating query is also inherently different than our top-

k RSP. First, ak-dominating query does not always return
skyline points; for instance,p6 andp7 are returned regard-
ing Figure 1 whenk = 2 (p7 is not a skyline point). Sec-
ond, in the problem ofk-dominating query we only need to
record the number of dominated points for each data point
and there is no need to consider the situation that a data
point may be dominated by many other points. The algo-
rithms for processing ak-dominating query cannot be used
to our top-k RSP.
Other Related Work. There also have been a number of
research results in the literature regarding variations ofsky-
line computation. These include computing skyline in a dis-
tributed environment [1, 18], continuously processing sky-
line queries in data streams [26, 34], skyline cube computa-
tion [30, 37] and its dynamic maintenance [36], computing
skyline efficiently in a subspace [35], effectively materializ-
ing dominance relationships [24], and multi-source skyline
query processing [10].

3. Preliminaries
We present briefly the skyline computation algorithm,

BBS [29], as well as a probabilistic algorithm, FM [12],
for counting distinct data elements. They will be employed
in our approximate algorithm for top-k RSP.
3.1. BBS Algorithm

Suppose that a datasetP is indexed by anR-tree. To
compute skyline, BBS traverses theR-tree in the order, such
that it always evaluates and expands the tree node closest to
the origin among all un-visited nodes. To do that, amin-
heapis built against a designatedmindist(say, the summa-
tion of all coordinate values) of the lower-left corner of the
minimum bounding box (MBB) of every entry (node).

Initially, BBS inserts all the child entries of the root
of the R-tree into the heap. Iteratively, the heap tope of
the heap is examined against the already computed skyline
points. If e is dominated by an already computed skyline
point,1 thene is just simply discarded from the heap. Oth-
erwise, ife is a data point, then the data point is output as
a skyline point; ife is not a data point, then discarde and
insert the child entries ofe, which are not dominated by any
current skyline point, into the heap. BBS terminates when
the heap is empty. In order to efficiently examine the dom-
inance relationship, an in-memoryR-tree is maintained on
the current skyline points.

BBS has the properties that 1) any progressively gener-
ated skyline point is guaranteed to be a skyline point against
P , 2) it is I/O optimal, 3) a node entry is read by disk I/O
only once.
3.2. FM Algorithm

FM algorithm proposed by Flajolet and Martin [12] is
a bitmap based algorithm that can efficiently estimate the
number of distinct elements (data points). LetB be a
bitmap of lengthL with subindexes[0, L − 1], and all bits
are initialized as0 (i.e. B[j] = 0 for 0 ≤ j ≤ L − 1). Sup-
pose thath() is a randomly generated hash function which
hashes each elementID into an integer in[0, L − 1] such
that for each data pointp in a collectionP of data points,

1A point s dominates entrye iff s dominates the lower-left corner ofe.

Prob{h(p) = i} = 1
2i+1 . In our implementation, we use

the public code from Massive Data Analysis Lab [27] to
randomly generate such hash functions. An FM sketch on
P is a bitmap with lengthL which is defined as:

Fm={B : ∀0≤j≤L − 1, B[j]=1 iff ∃p∈P, h(p)=j}.

In order to improve the accuracy of FM algorithm, mul-
tiple copies (sayz) of FM sketches are constructed; each is
constructed against an independently generated hash func-
tion. Letfm(P) represent the set ofz FM sketches gener-
ated overP. That is,fm(P) = {Fm1,Fm2, . . . ,Fmz},
where each elementp ∈ P is hashed into thesez FM
sketches, respectively, as described above.

Let min(B) denote the least bit (from left) of a bitmap
B with value0; if no such bit exists thenmin(B) = L. The
numbern of distinct elements inP is estimated by:

A=
1

ϕ
2

Pz

i=1
min(Fmi)/z, whereϕ

def
=

2E(min(Fm1))

n
. (1)

Note that in formula (1),E(min(Fm1)) cannot be ex-
plicitly represented andn is not known. In our implemen-
tation we approximately chooseϕ as0.775351 according
to the approximate results in [12]. Eachmin(Fmi) related
to Fmi is defined in the same way asmin(B) related to
B. As shown in [12],E(min(Fmi)) = E(min(Fmj))
(1 ≤ i < j ≤ z); this, together with Theorem 2 in [12] and
the Central Limit Theorem(pp 229 in [11]), immediately
leads the following theorem by the independence assump-
tion.

Theorem 1. Let n be the number of distinct elements inP
andA be the estimation of FM algorithm as shown in (1).
For a given0 < δ < 1 andz, if L = O(log n + log z +
log δ−1), then|A − n| < εn holds with probability at least

1 − δ, whereε = O(
√

log δ−1

z
).

Two sets offm sketches (say,fm(P) and fm(Q))
generated by the sameL and the same set ofz hashing
functions may be merged by thebitwise-or operator(de-
noted by

∨

) as follows. Letfm(P) = {Fmi : 1 ≤
i ≤ z}, fm(Q) = {Fm′

i : 1 ≤ i ≤ z}. We de-
fine fm(P)

∨

fm(Q) as{Fmi

∨

Fm′
i : 1 ≤ i ≤ z},

where eachFmi

∨

Fm′
i is also a bitmap with subindexes

[0, L − 1], such that for1 ≤ i ≤ z: ∀0 ≤ j ≤ L − 1,

(Fmi

∨

Fm′
i)[j] = 1 iff Fmi[j] = 1 orFm′

i[j] = 1.

An important feature of FM algorithm is that the bitwise-
or operator provides an equivalent way to generate a set of
FM sketches overP ∪ Q. The following lemma can be
immediately verified.

Lemma 1. Given a set ofz hash functions and two col-
lections,P andQ, of data points, we havefm(P ∪ Q) =
fm(P)

∨

fm(Q).

4. Two-dimensional Space
We investigate the problem of the top-k RSP in a2d-

space. We first show the problem can be solved by a dy-
namic programming algorithm. Then, we develop a sweep-
line technique [31] to efficiently compute the parameters
needed in the dynamic programming algorithm.

4.1. Dynamic Programming Based Algorithm
Suppose that{s1, s2, . . . , sm} is a collection of skyline

points in a2d-space, which are sorted in the ascending order
of x-coordinate values; consequently, they are also sorted
in the descending order ofy-coordinate values. Eachsi is
represented by(si[x], si[y]). As depicted in Figure 2, for
each pair{si, sj} of skyline points,∆(si, sj) denotes the
set of data points that are dominated bysi but not dominated
by sj (see Figure 2 for an example).

∆(s4,s1) are the
points in the

shadowed region,
i.e., p9, p10

p7

p10s4
s5

s1

p1 p3

s2

p6

y

x

p2

s3

p8

p5

p4

p9

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Figure 2. Skyline and∆(si, sj)

Let opt(si, k) denote the number of data points domi-
nated by at least one of thek skyline points in an exact so-
lution of the top-k RSP restricted to{s1, . . . , si}, where the
exact solution containssi. We have

opt(si, k) = max
1≤j<i

{|∆(si, sj)| + opt(sj , k − 1)} (2)

Note thatopt(si, 1) is the number of points dominated by
the skyline pointsi. Let OPT (k) denote the the number of
points dominated by at least one of thek skyline points in
the exact solution of top-k RSP with respect to the whole
set of skyline points. Clearly,

OPT (k) = max
1≤i≤m

{opt(si, k)} (3)

Based on formulae (2) and (3), the V-optimal dynamic
programming technique [19] can be immediately used to
solve our top-k RSP. The algorithm runs inO(km2) time if
each|∆(si, sj)| (for 1 ≤ j < i ≤ m) is pre-computed and
the skyline points are also pre-computed. In the following
subsection, we present an efficient technique to compute the
skyline points and|∆|.
4.2. Computing Skyline and|∆|

As an immediate approach, the skyline and|∆| can be
computed separately. First, all skyline points are computed
over a given dataset by an existing algorithm. Then, com-
pute the corresponding|∆| values (initially,0) for each data
point. This näıve approach is not efficient because a data
point may be counted multiple times if it is contained by
several∆(si, sj). Below, we present a sweep-line [31]
based algorithm to efficiently compute|∆| values and sky-
line points simultaneously by sorting data points first.

As depicted in Figures 3, the region dominated by the
skyline points can be partitioned into a number ofcells
{Ca,b : 1 ≤ a ≤ b ≤ m} where the lower-left corner
and the upper-right corner ofCa,b are (sb[x], sa[y]) and
(sb+1[x], sa−1[y]), respectively. Whena = 1 (or b = m),
s0[y] (or sm+1[x]) is defined as the maximum value ofy-
coordinates (orx-coordinates) in the data space.

Let |Ca,b| denote the number of data points that are
contained byCa,b but not on thetop horizontal line(i.e.,
y = sa−1[y]) excepta = 1 nor on the right vertical line

(i.e., x = sb+1[x]) of Ca,b exceptb = m. Immediately,
wheni > j,

|∆(si, sj)| =
∑

j<a≤i,i≤b≤m

|Ca,b| (4)

Consequently, wheni > j,
|∆(si, sj)| = |∆(si, sj+1)| +

∑

i≤b≤m

|Cj+1,b| (5)

For example,|∆(s4, s1)| = |∆(s4, s2)|+ |C2,4|+ |C2,5| =
2, as depicted in Figure 3.

sweep-line

∆(s4,s1) are the
points in the

shadowed cells
p7

p10s4
s5

s1

p1 p3

s2

p6

y

x

p2

s3

p8

p5

p4

p9

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

b = 1 2 43 5

a = 1

2

3
4
5

C2,4 C2,5

∆(s4,s2) are the
points in the

bold border cells

Figure 3. Cells and∆(si, sj)

Our sweep-line algorithm uses a horizontal line to sweep
alongy-dimension from the bottom to the top to iteratively
compute the skyline points and|Ca,b|s. Specifically, for
data points encountered by the sweep-line, we process those
data points from left to right as follows. If a data pointp
is dominated by a current skyline point, then increase the
number of points of the cell, containingp, by 1; otherwise,
it is a new skyline point. Iteratively, once a new skyline
point sj is found, the computation of every|Cj+1,b| (for
b ≥ j) has been completed; consequently,|∆(si, sj)| (for
i > j) now can be calculated by using formula (5). Then,
all |Cj+1,b| (for b ≥ j) can be discarded. Clearly, the total
space required isO(m2), which is dominated by maintain-
ing all |∆(si, sj)| values (1 ≤ j < i ≤ m).

To facilitate such a sweep-line technique, we first sort the
data pointsp lexicographically on(p[y], p[x]). To speed-
up the computation, all

∑

i≤b≤m |Cj+1,b| can be accumu-
latively computed fromi = m to i = j + 1. Note that
{Cj+1,b : j + 1 ≤ b ≤ m} are already sorted according
to thex-coordinates of their lower-left corners. Therefore,
the computation of the skyline points and all|∆| values can
be done inO(m2 + n log m) wheren is the number of to-
tal data points. Consequently, the total time of our dynamic
programming algorithm runs inO(km2 + n log m).

5. Multi-dimensional Space
The dynamic programming algorithm provides an exact

solution to top-k RSP in a2d-space; nevertheless, there are
two issues to be addressed.
Issue 1: The dynamic programming algorithm cannot be

extended to computing the top-k RSP in a multi-
dimensional space whend is 3 or more. Consequently,
the problem of top-k RSP is left open generally.

Issue 2: The space requirement in our dynamic program-
ming algorithm is quadraticO(m2). Therefore, it is not
scalable whenm is large since additional I/O costs may
be required if the space requirement is too large to fit in
memory. Moreover, if the dataset is indexed (say, by an
R-tree), this algorithm does not make the use of such in-
dex to reduce the I/O costs.

This section is organized as follows. We first address Is-
sue 1 by sections 5.1 and 5.2. Then, we develop an efficient,
scalable, index-based (R-tree based) randomized algorithm
to address Issue 2.
5.1. Complexity

We show that top-k RSP is NP-hard in a multi-
dimensional space when the dimensionality is3.

x

z
y

(a) Plane x + y + z = 1 (b) Grid

Figure 4. A Transformation

Theorem 2. Given a set of points in a3d-space, the prob-
lem of computing top-k RSP is NP-hard.
Proof. As depicted in Figure 4, we can divide one part (see
the shaded area in Figure 4(a)) of the planex + y + z = 1
into grid cells (see Figure 4(b)) such that each grid cell has
at most3 data points. According to the proofs of Theorem
3.3 and Theorem 4.1 in [25], the problem of findingk grid
cells to contain the maximum number of points is NP-hard
regarding this setting.

For a cell containing at least one data point, we choose
3 grid points including all data points in the cell; in case if
the number of data points in the cell is less than3, then we
randomly choose non-data grid points to make it3. Then,
we create a new point by using the minimums, among these
3 grid points, in each coordinate, respectively, as its3 co-
ordinate values. It can be immediately verified those new
created data points are the skyline points which only dom-
inate the data points in its corresponding cells. Therefore,
the problem of computing top-k RSP is also NP-hard.
5.2. Greedy Algorithm

In fact, top-k RSP can be immediately transformed into
themaximum coverageproblem [16]; consequently it can be
solved approximately by a greedy heuristic. Below in Al-
gorithm 1, we present the greedy heuristic. Note thatD(S)
is the set of points each of which is dominated by at least
one point inS andSP is the skyline of datasetP .

Algorithm 1 Greedy (k, P)
Input: k: an integer;P : a set of data points.
Output: k skyline points.
Description:
Step 1: computeSP ;
Step 2:∀s ∈ SP : computeD({s});
Step 3:
1: S := ∅;
2: while |S| < k andSP − S 6= ∅ do
3: chooses ∈ SP − S such that|D({s} ∪ S)| is maximized;
4: S := {s} ∪ S;
5: return S;

Lemma 2. [16]: Algorithm 1 returns an approximate solu-
tion to top-k RSP with the approximate ratio1 − 1

e . 2

In our implementation, we assume that the datasetP is
indexed byR-tree [2, 14]. We use BBS to computeSP in

2Here,e is Euler’s constant rather than an entry in anR-tree.

Step 1. Then, for eachp ∈ P we compute{D({s}) : ∀s ∈
SP } by a window query per data pointp ∈ P − SP against
SP , where the window uses the origin as the lower-left cor-
ner andp as the upper-right corner, as suggested in [29]. We
apply the sort-merge paradigm in Step 3.

The space required to compute and store allD({s}) is
O(mn) and may not fit in the memory. In fact, we found
that whend = 5, 45% of D({s})s have to be written to
the disk with1G memory. This not only requires additional
disk I/O in Step 2 but also in Step 3 (I/O costs could be very
expensive). We address the issue by our algorithm in the
next subsection.

5.3. FM-based Algorithm

We modify Algorithm 1 by removing the requirement of
computing and storing everyD({s}) (∀s ∈ SP). As with in
2d-space we may divide the space dominated by the skyline
points into grid cells and compute the number of points con-
tained by each cell. Unlike2d-space, in a multidimensional
space withd ≥ 3 an “arbitrary” combination ofk skyline
points may be probed in Step 3. Consequently, the count of
each cell should be stored and the space required isO(md)
that may be too larger to fit in memory whenm is large and
d ≥ 3. Thus, this is not a good alternative.

On the other hand, keeping only|D({s})| (∀s ∈ SP)
does not provide enough information to accurately estimate
|D(S)| for a setS of skyline points since there could be
many data points dominated by more than one skyline point
in S. For instance, in the example of Figure 2, pointp3 is
dominated bys1, s2, ands3.

To overcome the over-counting issue, we apply a
duplicate-insensitive counting technique, FM algorithm,to
approximately counting the number of points dominated by
a skyline points; that is, we maintain a sets.fm of z FM
sketches (bitmaps) ats, each of which hasL bits and is
generated by hashing the data points inD({s}). Then, to
compute|D(S)| we only need to apply the bitwise-or op-
erator

∨

, as described in section 3.2, on{s.fm : s ∈ S}
to get a FM sketch set (and then use formula (1)). Accord-
ing to Lemma 1, this is the same as if we use FM algorithm
to approximately computing|D(S)|. This is the basic idea
of our algorithm. Below, we outline our FM-based algo-
rithm in Algorithm 2. Note that in our algorithm, all FM
sketch sets are created by the same set ofz hash functions
randomly generated.

Algorithm 2 FMGreedy (k, z, L, P)
Input: k, z, L: integers;P : a dataset.
Output: k skyline points.
Description:
Step 1: computeSP ;
Step 2:∀s ∈ S, compute FM sketch sets.fm;
Step 3:
1: S := ∅; initialize thez bitmaps inS.fm;
2: while |S| < k andSP − S 6= ∅ do
3: chooses ∈ SP − S such thatEst(s.fm

W

S.fm) is max-
imized;

4: S := {s} ∪ S; S.fm := s.fm
W

S.fm;
5: return S;

Note thatEst(s.fm
∨

S.fm) is calculated by the for-

mula (1) in section 3.2. The following Theorem immedi-
ately follows from Theorem 1 and Lemma 2.
Theorem 3. Algorithm 2 has the approximate ratio(1 −
1
e)(1 + O(

√

log δ−1

z
)) with confidence1 − δ if each bitmap

has the lengthL = O(log n + log z + log δ−1).
Our experiments in section 6 demonstrate that when

z = 32 andL = 32, Algorithm 2 has very similar accuracy
to Algorithm 1. The Step 3 of Algorithm 2 can be executed
in time O(kzm). Sincez is up-to32 in our implementa-
tion, the Step 3 runs in timeO(km). The space requirement
to store all FM sketch sets isO(zm) that equalsO(m) in
our execution. Therefore, we reduce the space requirement
O(mn) to store{D({s}) : s ∈ SP } to O(m) to store all
FM sketch sets with respect to the skyline points.

Next, we present an efficient algorithm to conduct Step
1 and Step 2 by one-scan of dataset by extending BBS algo-
rithm. For this purpose, we first augment R-tree to include
FM sketches.
5.3.1. RFM -tree
At each intermediate entrye of an RFM -tree, besides the
required information in a conventionalR-tree (e.g., MBB),
we maintain a setfm of z FM sketches for estimating the
number data points in the subtree ofe. Lemma 1 in sec-
tion 3.2 implies that the sketch sete.fm at entrye can be
equivalently obtained by using the bitwise-or operator

∨

to
merge the sets of FM sketches at alle’s child entries. Fig-
ure 5 shows an RFM -tree whenz = 1 andL = 4.

p7

p10
s4

s5

e1 e2

e3

e4
e5

e6

e7

s1

p1 p3

s2

p6

y

x

p2

s3

p8

p5
p4

p9

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

s1 s2 p1

p5 p6 p7

p2 p3 p4 p10

s3 s4 p8

s5 p9

e6 e7

e1 e2 e3 e4 e5

1110

1110

1100 1010 1100

01001000

1100

Figure 5. RFM -tree
Note that the FM-based aggregate information practi-

cally requires small space only. Our experiments show that
if each page has size4Kbytes, the fanout of an RFM -tree is
only 1 less than that of a conventional R-tree when each FM
sketch set consists of8 bitmaps with32 bits each, and about
3% less when each FM sketch set consists of32 bitmaps
with 32 bits each. It is immediate that such an RFM -tree
can be updated in a similar way as a conventional R-tree.
5.3.2. Computing Skyline and FM Sketches
Given that a datasetP is indexed by an RFM -tree, in this
subsection we present an efficient algorithm, OnePass, to
compute the set of skyline points and their FM sketches (to
estimate every|D({s})|) simultaneously, so that each entry
in RFM -tree is read at most once by disk I/O.
I/O-efficiency. The algorithm BBS computes the skyline
points with the minimum I/O costs; nevertheless, it is not
immediately applicable to compute FM sketches simultane-
ously; see the following example.
Example 2. In the example of Figure 5, BBS outputs the
skyline points in the order ofs2, s1, s3, s4, ands5 if mindist

is x + y. After s2 is returned as the skyline point,e7 is
expanded toe4 ande5. Then,e2 is the next to be processed.
Sincee2 is dominated bys2, e2 is discarded from the heap
H1 in BBS. Ass3 is not yet returned as the skyline point,
removinge2 means that we have to start from the root of the
RFM -tree to compute the FM sketches ats3.

To resolve the problem in Example 2, in our algorithm
OnePass we use another heapH2 to keep the entries dis-
carded fromH1 by BBS.
Minimizing the size of H2. Clearly, there will be a huge
memory requirement if we keep every thing inH2 until all
skyline points are calculated. We need to minimize the size
of H2 so that our algorithm is scalable while pursuing I/O
efficiency. It seems difficult to find a necessary and suf-
ficient condition to determine the time to discard an entry
e ∈ H2 so that the progressively returned skyline points af-
terwards do not dominate any point ine. In our algorithm,
we use a sufficient condition below for this purpose.

Suppose that in BBS, themindist is the summation of
the coordinate values. For each entrye ∈ H2, we define
e.maxdist as the summation of the coordinate values of
e’s upper-right corner (e is represented geometrically by
MBB); H2 is a min-heap maintained againste.maxdist.
Note that BBS has the property that the minimum value of
mindistamong the entries in the currentH1 is not greater
than that in the next iteration. Therefore, it can be im-
mediately verified that ifeH2 .maxdist ≤ eH1 .mindist
then any skyline points progressively returned afterwardsdo
not dominate any point ineH2 . Consequently,eH2 should
be used to update the FM sketches for the current skyline
points; then,eH2 can be discarded fromH2.

Example 3. Continuing the example in Figure 5,e2 will
be popped up (then discarded) fromH2 to update the FM
sketches ats1, s2, ands3 when BBS encounterss4 in H1.

Algorithm description. Our algorithm to compute the sky-
line points and their FM sketches is based on the framework
of BBS. It is presented below in Algorithm 3.

Algorithm 3 OnePass (P)
Input: P is a dataset indexed by an RFM -treeR.
Output: SP : the skyline point set; FM sketches ats (∀s ∈ SP)
Description:

1: S := ∅; H1 := ∅; H2 := ∅;
2: insert all entries of the root of R intoH1;
3: while H1 6= ∅ or H2 6= ∅ do
4: while H2 6= ∅ do
5: if H1 = ∅ or eH2 .maxdist ≤ eH1 .mindist then
6: UpdateSketch(eH2 , S); removeeH2 from H2;
7: elsebreak the whileloop;
8: if eH1 is dominated by ans ∈ S then
9: if eH1 is a pointthen

10: UpdateSketch(eH1 , S); removeeH1 from H1;
11: elseremoveeH1 from H1 to H2;
12: else
13: if eH1 is a pointthen
14: addeH1 into S; to H2 and others toH1;
15: elseadd child entries dominated by ans ∈ S to H2 and

others toH1;
16: return S and FM sketches at eachs ∈ S;

Note that in Algorithm 3,H1 is a heap maintained in the

same way as that in BBS, whileH2 is a heap discussed
above. When the heap topeH1 in H1 is a point that is
dominated by an already obtained skyline points, instead
of putting eH1 into H2 we can immediately use it to up-
date the FM sketches (then discardeH1). This is because
thateH1 will not be dominated by any skyline point output
afterwards due to the following two reasons:
• An entry’smindist equals itsmaxdist if it is a point.
• Any skyline point output afterwards has itsmindist not

smaller than the currentmindist.
In fact, it can be immediately verified that Algorithm 3 is
correct, based on our discussions in the part – Minimizing
the size ofH2; that is, once an entrye removes fromH2,
none of the data points included ine is dominated by the
skyline points output afterwards. Algorithm 3 also follows
exactly BBS for computing the skyline pointsSP ; thus, all
the skyline points can be obtained correctly.

In Algorithm 3, there is a key operation, UpdateSketch(),
to update FM sketch sets at the current skyline points, re-
spectively. Next, we present algorithm for UpdateSketch().

Update FM sketches.Regarding the example in Figure 5,
s2 dominates the entrye2. Therefore, the update to the FM
sketch set ats2 is already materialized in RFM -tree; that is,
we only need to use bitwise-or operator

∨

on the bitmap
(1, 0, 0, 0) and the existings2.fm, instead of hashing the
pointsp5, p6, andp7. Moreover, if we had a skyline point
s∗ allocated at(0.5, 0.5), then an update to the FM sketch
set ats∗ would be done by only reading the FM sketch set
at the “root” in this example. These are the reasons why an
RFM -tree is maintained.

As with the algorithm BBS, in Algorithm 3 the progres-
sively generated skyline points are also indexed by an in-
memory index. Different than BBS, we use an in-memory
RFM -tree instead ofR-tree to speed-up the computation
(update) of FM sketches as well. Such an in-memory RFM -
tree has the same data structure as that to index the dataset
except that we also attach FM sketches at each data point in
an in-memory RFM -tree. In an in-memory RFM -tree, the
FM sketch set at a tree node is used to estimate the num-
ber of data points that are “captured” by our algorithm to be
commonly dominated by all points in its subtree.

Example 4. In the example of Figure 5, the points ine3 are
dominated bys1 ands2. Consequently, if one entrye1,2 of
the in-memory RFM -tree consists ofs1 ands2, then we can
immediately use the FM sketch set ate3 to update the FM
sketch set ate1,2 by the bitwise-or operator

∨

.

Based on Lemma 1, we can use the bitwise-or operator
iteratively on the FM sketch sets along the path in the in-
memory RFM -tree from the root to a skyline points to ob-
tain the “global” FM sketch set ats to estimate the number
of distinct points dominated bys.

We need the following notation in our algorithm descrip-
tion. An entrye (bounding box)fully dominatesanother en-
try e′ if the upper-right corner ofe dominates the lower-left
corner ofe′. An entrye partially dominatesanother entrye′

if the lower-left corner ofe dominates the upper-right corner
of e′ but e does not fully dominatee′. An entrye does not
dominateanother entrye′ if e does not fully nor partially

e4 fully dominated

y

x

e1
e2

e3

partially dominated

not dominated

Figure 6. Dominance Relation

s4

s5

e1,2

e3

e3,4,5

s1

p3

s2

y

x

p2

s3

p4

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Figure 7. Updatefm

dominatee′. For example, in Figure 6e4 fully dominates
e1, partially dominatese2, and does not dominatee3.

We treat UpdateSketch (eH2 , S) as one kind of spatial
join [5, 17]. We apply theR-tree traversal paradigms from
[5, 17, 28]. To avoid reading a data entrye from disk more
than once, we group the entries, at which FM sketch sets
may need to be updated by the points or child entries ofe, of
in-memory RFM -tree for skyline together into a groupEe.
We iteratively andsynchronouslytraversee andEe, while
always group the new expanded entries of the in-memory
RFM -tree (for skyline points) together for each new ex-
panded data entry for the next iteration. We outline our
algorithm in Algorithm 4 and present the details of the pro-
cedure Traversal (e,E) in Algorithm 5.

Algorithm 4 UpdateSketch (eH2 , S)
Input: eH2 : an entry of RFM -tree of a dataset;

S: skyline points indexed by an in-memory RFM -tree;
Output: updated FM sketches at the skyline points inS;
Description:

1: if eS fully dominateseH2 then
2: eS .fm := eS .fm

W

eH2 .fm;
3: elseTraversal(eH2 , {eS});

In Algorithm 4, eS is the root entry (MBB) of the in-
memory RFM -tree onS; according to Algorithm 3,eS ei-
ther fully or partially dominateseH2 . It reads in the node
in RFM -tree corresponding toeH2 to get its FM sketches
eH2 .fm. If eH2 is a data point, it has to be hashed by FM
algorithm to geteH2 .fm.
Example 5. Regarding the example in Figure 5, suppose in
the in-memory RFM -tree of skyline pointss1, s2, . . . , s5,
s1 ands2 form one entrye1,2 and the entrye3,4,5 consists
of 3 pointss3, s4, ands5 (see Figure 7). Whene3 is pop-up
from H2 to be processed against the in-memory RFM -tree,
it enters Algorithm 5. In Algorithm 5,e3 is subsequently
decomposed intop2, p3, andp4, while the root of in-memory
RFM -tree is decomposed intoe1,2 ande3,4,5.

Whenp2 is processed againste1,2 and e3,4,5, e1,2.fm
is updated; nevertheless,(p2, {s3, s4, s5}) has been sent to
Algorithm 5 for a further processing.

We can immediately verify that in Algorithm 4, a data
point p dominated by ans ∈ SP must be captured by one
entry from the root tos in the in-memory RFM -tree. Con-
sequently, as discussed earlier, computing FM sketch set at
each skyline points by performing bitwise-or operator iter-
atively on the FM sketch sets along the path from the root of
in-memory RFM -tree to the skyline points ensures the cor-
rectness of Algorithm 4; that is, it is equivalent to creating

Algorithm 5 Traversal (e, E)
Input: e: an entry of RFM -tree of a dataset;

E: a set of entries of RFM -tree of skyline points;
Output: updated FM sketches at the skyline points inE;
Description:

1: if e is a data pointthen ED := {e};
2: elseload in the child entries ofe to ED;
3: for each entrye′ ∈ ED do
4: Ee′ := ∅;
5: for each entryei ∈ E do
6: if ei fully dominatese′ then
7: GetFM(e′); ei.fm := ei.fm

W

e′.fm;
8: else ifei partially dominatese′ then
9: if ei is a data point entrythen

10: Ee′ := Ee′ ∪ {ei};
11: else
12: for each child entryec of ei do
13: if ec fully dominatese′ then
14: GetFM(e′); ec.fm = ec.fm

W

e′.fm;
15: else ifec partially dominatese′ then
16: Ee′ := Ee′ ∪ {ec};
17: if Ee′ 6= ∅ then Traversal(e′, Ee′);
Procedure GetFM (e)
if e is a data point, then hashe by FM algorithm to gete.fm;
otherwise, read ine.fm by disk I/O if not already in memory.

the FM sketch set ats by hashing each data point domi-
nated bys by FM algorithm. Thus, Theorem 3 still holds.
Note that if an entry of RFM -tree of the dataset is no longer
needed in Algorithm 4, then it immediately removes from
memory.

6. Performance Evaluation
We evaluate our algorithms only. Specifically, we fo-

cus on evaluating our FM-based algorithm in section 5.3.
As there is no existing work, we use the dynamic program-
ming based algorithm in section 4 and the greedy heuristic
in section 5.2 as bench-marking algorithms. The following
algorithms have been implemented.
1. EXACT : the dynamic programming based algorithm

proposed in section 4.
2. GDY : the greedy algorithm, Algorithm 1, in section 5.2.
3. FMG : the FM based greedy algorithm, Algorithm 2. in

section 5.3.
Following the common methodology in the literature,

two synthetic datasets, Anti-correlated and Independent
(random), have been employed in our performance evalua-
tion, which are produced by the data generator in [4]. Their
dimensionality varies from2 to 5 and the number of data
points varies from200K to 3M . A real data set, Stock,
from NYSE (New York Stock Exchange) is also used in our
performance study. It contains3M stock transaction records
of NT (Nortel Networks Corporation,USA) from Dec 1st
2000 to May 22nd 2001. The average price per volume,
volume, and time are recorded for each transaction; conse-
quently it is used as a dataset in a3d-space.

All of the datasets are indexed by an RFM -tree with node
page size4Kbytes. In our implementation, each bitmap
(FM sketch) has32 bits (i.e.,4 bytes); a bitmap with32 bits
should be large enough to guarantee the FM accuracy while
counting a massive number of distinct elements. As illus-

trated in our experiment, FMG is highly accurate (with rel-
ative errors less than5%) when32 bitmaps (FM sketches)
are used; in this case, the fanout (number of children en-
tries) of RFM -tree is about97% of that by a conventional
R-tree.

All algorithms are implemented by C++. The exper-
iments are conducted on the PCs with Intel P4 2.8GHz
CPU and 1G memory under the operating system – Debian
Linux. Table 2 below lists the parameters which may po-
tentially have an impact on our performance study. In our
experiments, all parameters use default values unless other-
wise specified.

Notation Definition (Default Values)
n Number of points in the dataset (1M)
k Number of representative skyline points (30)
d Dimensionality of the dataset (3)
z Number of sketches in FMG (32)

Table 2. System Parameters

6.1. Evaluating Accuracy
In this subsection, we experimentally evaluate the accu-

racy of FMG against different settings; that is, the number
of points dominated by one of thek skyline points (com-
paring with that by EXACT in a2d-space and that by GDY
whend is between3 to 5, respectively). Note that we did
not do the accuracy evaluation against the exact solution for
d ≥ 3 because the problem is NP-hard and it is too slow to
produce exact solution for top-k RSP.

The first set of experiment is conducted against4
datasets, Anti-correlated datasets (Anti) (in2d and 5d
spaces, respectively), Independent (Indep) (in a5d space),
and Stock. The experiment results are reported in Figure 8.
It demonstrates that FMG is quite accurate whenz = 32,
while GDY generates exact solution for Anti in2d.

EXACT GDY FMG� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

1M

0.8M

0.6M

0.4M

5d Anti5d IndepStock2d Anti

of

 P
oin

ts
Do

m
ina

te
d

Figure 8. Number of Points Dominated
In the rest of this subsection, we evaluate the accuracy

FMG by relative errors– |NF MG−N ′|
N ′

. N ′ is the number of
data points dominated by at least one of thek skyline points
in the exact solution in a2d-space,N ′ is such a number by
GDY whend ≥ 3, NFMG is such a number by FMG.

0.05

0.04

0.03

0.02

0.01

5040302010

R
el

at
iv

e
E

rr
or

2d Anti
Stock

3d Indep

Figure 9. Variousk

0.05

0.04

0.03

0.02

0.01

1M800K600K400K200K

R
el

at
iv

e
E

rr
or

2d Anti
Stock

3d Indep

Figure 10. Variousn

The second experiment evaluates possible impacts by
different k values. It is conducted against three datasets,
Anti in 2d space, Indep in3d space, and the real datasets,
Stock. The experiment results are depicted in Figure 9.

Again, it shows FMG is highly accurate. As anticipated,
the accuracy improves whenk increases.

The third experiment examines an impact of the cardi-
nality of datasets. The results depicted in Figure 10 indicate
that the accuracy is not quite relevant to a dataset size. The
last experiment examines an impact of the numberz of FM
sketches. The results reported in Figure 11 confirm Theo-
rem 3; that is, the accuracy improves whenz increases.

 0

 0.05

 0.1

 0.15

 0.2

643216842

R
el

at
iv

e
E

rr
or

2d Anti

(a)2d Anti

 0

 0.01

 0.02

 0.03

 0.04

 0.05

643216842

R
el

at
iv

e
E

rr
or

Stock
3d Indep

(b) 3d Indep & Stock
Figure 11. Relative Error vsz

6.2. Evaluating Efficiency
The first experiment, as depicted in Figure 12 where the

numbers on these bar figure tops give the actual running
time, is conducted against the4 datasets and the3 algo-
rithms EXACT, GDY, and FMG. It shows that GDY is very
slow whend = 5; this is because{D({s}) : s ∈ SP } is too
large to fit in memory. Thus, additional I/O costs in Step 2
and Step 3 are required as stated in section 5.2. This makes
Step 3 very slow. The results in Figure 12 demonstrate that
FMG is most efficient.

EXACT GDY FMG� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �

100

101

102

103

104

5d Anti5d IndepStock2d Anti

Pr
oc

es
sin

g
Ti

m
e

(s
)

6

39

4

104

22

15693

267

16858

1207

Figure 12. Processing Time
The second experiment tests an effect ofk. The exper-

iment results are depicted in Figure 13. They also demon-
strate that FMG is most efficient. While FMG and EXACT
are not very sensitive to differentk values, the time costs
of GDY increase whenk increases. This is mainly because
that Step 3 in GDY involves a sort-merge process.

 0

 20

 40

 60

5040302010

P
ro

ce
ss

in
g

T
im

e
(s

) GDY
EXACT

FMG

(a)2d Anti

 0

 50

 100

 150

 200

5040302010

P
ro

ce
ss

in
g

T
im

e
(s

) GDY (Stock)
GDY (Indep)
FMG (Stock)
FMG (Indep)

(b) 3d Indep & Stock
Figure 13. Time Efficiency vsk

The results of our third experiment are reported in Figure
14. They show that EXACT, GDY, FMG are all sensitive
to different data sizes. Note that GDY is very sensitive to
data sizes due to the same reason as mentioned in the last
experiment – computation in Step 3.

The final experiment in this part is to evaluate an impact
of z in FMG. As depicted in Figure 15, the time costs of
FMG increase whenz increases; this is simply because that
a data element needs to be hashed more times and more FM

sketches are involved in a bitwise-or operator
∨

whenz

gets increased.

 0

 20

 40

 60

1M800K600K400K200K

P
ro

ce
ss

in
g

T
im

e
(s

) GDY
EXACT

FMG

(a)2d Anti

 0

 50

 100

 150

1M800K600K400K200K

P
ro

ce
ss

in
g

T
im

e
(s

) GDY (Stock)
GDY (Indep)
FMG (Stock)
FMG (Indep)

(b) 3d Indep & Stock
Figure 14. Time Efficiency vs Cardinality

 0

 2

 4

 6

 8

 10

643216842

P
ro

ce
ss

in
g

T
im

e
(s

) 2d Anti

(a)2d Anti

 0

 10

 20

 30

 40

643216842

P
ro

ce
ss

in
g

T
im

e
(s

) Stock
3d Indep

(b) 3d Indep & Stock
Figure 15. Time Efficiency vsz

6.3. Space and I/O Efficiency
We first evaluate the space efficiency. We illustrate the

results for FMG only, since EXACT only works for2d-
space and GDY requires very large memory space – at least
(but could be much larger than) the size of whole dataset.
In our experiment, we record the maximum space usage in
the whole computation, including storingH1, H2, the space
required to execute Algorithm 4. InH1 andH2, we store
ID and its MBB (or data point) for each entry.

The first set of experiments, conducted against Anti-
correlated and Independent datasets withd in [2, 5], evalu-
ate effects ofd. The results are reported in Figure 16 where
linear scale is used iny-coordinate and we show some im-
portant marks only ony-coordinate. It demonstrates that the
memory space required is significantly less than the dataset
size. Note that we also examined the space requirements
of EXACT in a 2d-space and storing{D({s}) : s ∈ SP }
in GDY, respectively. Our experiment demonstrates that 1)
EXACT requires space about10 times more than that of
FMG even the numberm of skyline points is less than67,
and 2) GDY requires space about3.63 times (d = 2) to 82.5
times (d = 5) of the corresponding dataset sizes.

23,437

11,718

8000

2000

 2 3 4 5

S
pa

ce
 (

K
by

te
)

Dataset
Anti

Indep

(a)n = 1M

70,312

35,156

15000

2000
 2 3 4 5

S
pa

ce
 (

K
by

te
)

Dataset
Anti

Indep

(b) n = 3M
Figure 16. Space vs Dimensionalityd

The second experiment investigates impacts from differ-
ent data sizes andz. The results are depicted in Figure 17.
They demonstrate that the memory space is not sensitive to
z because we do not keep FM sketches in heaps and we
get FM sketches only when update them. It is also interest-
ing to note that the memory space requirement is not very
sensitive to a data size. This implies that FMG is scalable.

We then evaluate the I/O efficiency of FMG. For a2d in-
dependent dataset with size1M, only 60% of the nodes are

15,625

50
25

0
643216842

S
pa

ce
 (

K
by

te
)

Dataset
3d Indep

Stock

(a)Variousz

46,875

7,812

50

10

3M2M1M500K

S
pa

ce
 (

K
by

te
)

Dataset
3d Indep

Stock

(b) Variousn

Figure 17. Space vsz and Cardinalityn
accessed by FMG, while one-scan of the whole RFM -tree is
required by FMG whend ≥ 3. In our experiment, we also
consider an alternative to implement FMG by “two-scans”:
first, the skyline points are computed by BBS and main-
tained by the in-memory RFM -tree; second, the data pages
are read in one by one to perform Algorithm 4. Our experi-
ment indicates the I/O cost ratio of FMG to this alternative
decreases significantly asd increases. For instance, the ra-
tio is around99% on Anti-correlated data set withd = 2
andn = 1M, while it drops to63% whend = 5.

Moreover, our experiment also shows that I/O costs of
GDY are much more expensive than FMG regarding1G
fixed memory. The I/O costs of GDY vary from1.4 (d = 2)
to 1772 (d = 5) times of those of FMG.

6.4. Summary
As a short summary, our performance evaluation indi-

cates that FMG is quite accurate, efficient, and scalable re-
garding data size. When the number of skyline points is
small, EXACT is a good choice in2d-space. Although
GDY is slightly more accurate than FMG, it requires huge
memory space; thus, it is not scalable.

7. Conclusion
In this paper, we investigate the problem of computing

the top-k representative skyline points. This is among the
first attempts to develop efficient and scalable algorithms to
solve the problem. After introducing the novel skyline oper-
ator: top-k representative skyline points, we present an effi-
cient dynamic programming based algorithm for a2d-space
in which an exact solution can be achieved. As shown in the
paper, this problem is NP hard for space with dimensional-
ity d ≥ 3 and the greedy heuristic for set cover problem can
be immediately applied to provide the approximation ratio
1 − 1

e . We then develop an efficient, scalable randomised
algorithm with a theoretical accuracy guarantee. As our per-
formance study indicated, our randomized algorithm is both
time and space efficient, as well as highly accurate.
Acknowledgement. The work was partially supported by
ARC-DP(DP0666428) and UNSW FRG(FRGP, PS08709).

References
[1] W.-T. Balke, U. G̈untzer, and J. X. Zheng. Efficient dis-

tributed skylining for web information systems. InEDBT
2004.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: An efficient and robust access method for
points and rectangles. InSIGMOD 1990.

[3] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thomp-
son. On the average number of maxima in a set of vectors
and applications.JACM, 25(4):536–543, 1978.

[4] S. Börzs̈onyi, D. Kossmann, and K. Stocker. The skyline
operator. InICDE 2001.

[5] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient process-
ing of spatial joins using r-trees. InSIGMOD 1993.

[6] C. Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified computa-
tion of skylines with partially-ordered domains. InSIGMOD
2005.

[7] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. Tung, and
Z. Zhang. Finding k-dominant skylines in high dimensional
space. InSIGMOD 2006.

[8] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. Tung, and
Z. Zhang. On high dimensional skylines. InEDBT 2006.

[9] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. InICDE 2003.

[10] K. Deng, X. Zhou, and H. T. Shen. Multi-source skyline
query processing in road networks. InICDE 2007.

[11] W. Feller.An Introduction to Probability Theory and Its Ap-
plications. John Wiley & Sons, Inc., 1966.

[12] P. Flajolet and G. N. Martin. Probabilistic counting algo-
rithms for data base applications.Journal of Computer and
System Sciences, 31(2):182–209, 1985.

[13] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector compu-
tation in large data sets. InVLDB 2005.

[14] A. Guttman. R-trees: A dynamic index structure for spatial
searching. InSIGMOD 1984.

[15] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases.TODS, 24(2):265–318, 1999.

[16] D. S. Hochbaum. Approximation algorithms for the set cov-
ering and vertex cover problems.SIAM Journal on Comput-
ing, 11(3):555–556, 1982.

[17] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. Spatial joins
using R-trees: Breadth-first traversal with global optimiza-
tions. InVLDB 1997.

[18] Z. Huang, C. S. Jensen, H. Li, and B. C. Ooi. Skyline queries
against mobile lightweight devices in MANETs. InICDE
2006.

[19] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala,
K. C. Sevcik, and T. Suel. Optimal histograms with quality
guarantees. InVLDB 1998.

[20] S. Kapoor. Dynamic maintenance of maxima of 2-d point
sets.SIAM Journal on Computing, 29(6):1858–1877, 2000.

[21] V. Koltun and C. H. Papadimitriou. Approximately dominat-
ing representatives. InICDT 2005.

[22] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the
sky: An online algorithm for skyline queries. InVLDB 2002.

[23] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the
maxima of a set of vectors.JACM, 22(4):469–476, 1975.

[24] C. Li, B. C. Ooi, A. K. Tung, and S. Wang. DATA: A data
cube for dominant relationship analysis. InSIGMOD 2006.

[25] X. Lin, Q. Liu, Y. Yuan, X. Zhou, and H. Lu. Summariz-
ing level-two topological relations in large spatial datasets.
TODS, 31(2):584–630, 2006.

[26] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky: Ef-
ficient skyline computation over sliding windows. InICDE
2005.

[27] Massive Data Analysis Lab. http://www.cs.
rutgers.edu/˜muthu/massdal.html .

[28] D. Papadias, N. Mamoulis, and Y. Theodoridis. Processing
and optimization of multiway spatial joins using R-trees. In
PODS 1999.

[29] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. InSIGMOD 2003.

[30] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best
views of skyline: A semantic approach based on decisive
subspaces. InVLDB 2005.

[31] P. Rigaux, M. Scholl, and A. Voisard.Introduction to Spatial
Databases: Applications to GIS. 2000.

[32] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neigh-
bor queries. InSIGMOD 1995.

[33] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. InVLDB 2001.

[34] Y. Tao and D. Papadias. Maintaining sliding window sky-
lines on data streams.TKDE, 18(2):377–391, 2006.

[35] Y. Tao, X. Xiao, and J. Pei. SUBSKY: Efficient computation
of skylines in subspaces. InICDE 2006.

[36] T. Xia and D. Zhang. Refreshing the sky: The compressed
skycube with efficient support for frequent updates. InSIG-
MOD 2006.

[37] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang.
Efficient computation of the skyline cube. InVLDB 2005.

