Selecting Stars: Thek Most Representative Skyline Operator

Xuemin Lint Yidong Yuart

1 School of Computer Science and Engineering
The University of New South Wale & NICTA, Australia
{Ixue, yyidong, yingz t@cse.unsw.edu.au

Qing Zhang Ying Zhang

2 E-Health Research Center
CSIRO I@enter, Australia
ging.zhang@csiro.au

Abstract have been reported in the literature [4, 9, 13, 22, 29, 33]. It

Skyline computation has many applications including as been shown " [:13’ 13] that the expected number of sky-
multi-criteria decision making. In this paper, we study the line points is©(In“"" n/(d — 1)!) for a random dataset.
problem of selecting: skyline points so that the number of With the presence of a possibly large number of skyline
points, which are dominated by at least one of thesiy- points, the_ full skyline may be less informative. In the a_da)ov
line points, is maximized. We first present an efficient dy- €xample, it may be hard for users to make a good, quick se-
namic programming based exact algorithm ir2éspace. lection by referencing the full skyline that consists of too
Then, we show that the problem is NP-hard when the dimen-many hotels. _ .
sionality is3 or more and it can be approximately solved by ~ To resolve this, a system may be required to provide
a polynomial time algorithm with the guaranteed approxi- Skyline points. Suclt skyline points should be most repre-
mation ratiol — % To speed-up the computation, an effi- sentative. Consuder that the full s_kylme represents a whol
cient, scalable, index-based randomized algorithm iskdeve dataset. In this paper, we quantify the concept of “repre-
oped by applying the FM probabilistic counting technique. sentative” by the population. Specifically, we investigate
A comprehensive performance evaluation demonstrates thathe problem (called “top representative skyline points”)
our randomized technique is very efficient, highly accyrate 0f computingk skyline points such that the total number

and scalable.

1. Introduction

Given a set ofl-dimensional points, the skyline consists
of the points, called “skyline points”, which are not dom-
inated by another point. A point = (p[1], p[2], ..., p[d])
dominatesanother poing = (¢[1], ¢[2], ..., ¢[d]) iff p[i] <
q[i] (for 1 < ¢ < d) and there is at least one dimension
j such thatp[j] < ¢[j]. The skyline computation (or the
skyline operator) is crucial to many multi-criteria deoisi
making applications. A typical example is a list of hotels,
each of which contains two numerical attributtistance
(say, to the beach) angrice, for on-line booking. Fig-
ure 1(a) shows a sample list. In this application, the best
choice to a client, who wants to spend holiday in the beach,
may be as close as possible to the beach while also cost e
fective. Consequently, the “best” choices form the skyline
(see Figure 1(b)).

id || dist(km) | price($) dist

P1 4 150 o

P2 3 110 [b1

P3 25 240 P2 /4 5

pa 2 180 R

D5 1.7 270 skyline °p;

D6 1 195 P

p7 1.2 210 price
(a) Hotels (b) Skyline

Figure 1. A Skyline Example

N

of (distinct) data points dominated by one of thekyline
points is maximized. In the above examplg,is returned
if k=1, while p; andpg are returned it = 2.

The computation of top- representative skyline points
(top-k RSP) may facilitate many applications including top-
k queries when multi-criteria are involved. With respect to
the above example, if users only want to ge@otels to
make a selection based on the price and the distance, then
a solution to the tog: RSP can provide users with the con-
fidence that thesg hotels are already representing (better
than) the maximum possible number of available options
(hotels). Moreover, the top-RSP also provides a novel
ranking mechanism for top-queries.

Selecting data points with certain designated dominance
properties has been recently investigated in [7, 8, 21, 29].
evertheless, to the best of our knowledge our A.dRSP
problem is novel and it is inherently different than the prob
lems in [7, 8, 21, 29]; consequently these existing tech-
niques are not applicable to the tépgRSP problem. Mo-
tivated by this, in this paper we develop efficient, novel al-
gorithms to compute the toprepresentative skyline points.
This is the first work regarding the problem of t&pRSP.
Our contributions can be summarized as follows.

e We propose a hovel skyline operator, thpepresentative
skyline, so that thé skyline points with the maximal
number of dominated points can be produced to facilitate
on-line user queries.

In a2d-space, we develop an efficient dynamic program-
ming based algorithm to solve the problem.

Skyline computation has recently received a great deal ofe We show that the problem is NP-hard ia-@imensional

attention in the database community. A number of efficient
algorithms for computing all skyline points (i.kull skyling

space whenl is 3 or more. Then, we show that by an
immediate transformation to the set cover problem, the

problem can be solved by a greedy heuristic with the ap- Borzsnyi et al. [4] first investigate the skyline compu-

proximation ratiol — é tation problem in the context of databases and propose an
e Observe such a greedy heuristic may not be scalable noiSQL syntax for the skyline query. They also develop the

efficient. We develop a novel, efficient, scalable, index- skyline computation techniques basedxocknestedoop

based randomized algorithm, with a theoretical accuracy and divide-conquerparadigms, respectively. Chomicét

guarantee, by using a probabilistic counting technique —al. [9] propose another block-nested-loop based computa-

FM algorithm [12]. tion technique, SFSsprt-filter-skyling, to take the advan-

Besides theoretical analysis, an extensive experimentatages of a pre-sorting. The SFS paradigm is significantly
evaluation demonstrates that our randomized algorithm isimproved by Godfreyet al. in [13]. Tanet al. [33] pro-
both time- and space- efficient, as well as highly accurate. pose the firsprogressiveechnique that can output skyline

The rest of the paper is organized as follows. Section 2 points without having to scan the whole dataset. Two aux-
gives the problem definition and presents the related work.iliary data structures are proposditmapandsearch tree
Section 3 reviews two existing techniques that will be em- Kossmanret al. [22] present anothesrogressiveechnique
ployed in our algorithms. Section 4 presents the exact al-based on the nearest neighbour search technigue-tnee
gorithm in2-dimensional space and our results for a multi- [32, 15], which adopts a divide-and-conquer paradigm on
dimensional space are presented in section 5. Our extensivéhe dataset indexed by-tree. Papadiast al. [29] propose a
experimental evaluation is reported in section 6. Section 7branch and bound search technique (BBS) to progressively
concludes the paper. output skyline points on datasets indexed Rytree. One

; of the most important properties of BBS in [29] is that it

2. Background Information guarantees the minimum I/O costs.

We first state the problem. Then, we present the related Kapoor [20] studies the problem of dynamically main-
work. Below in Table 1 we summarise the math notation taining an effective data structure for an incremental sky-

used throughout the paper. line computation in 2-dimensional space. Chat al. [6]
Notation Definition investigate the skyline computation problem for partially
P a set of data points ordered value domains.

d dimensionality of a space Data points with designated dominance propertiesOb-

n 1P| _ serve that the number of skyline points may be large; thus
D, q a data point i the full skyline is not always very informative. The problem
Sp the set of skyline points aP of selecting data points with some designated dominance
m B i : : properties has been recently investigated in [8, 7, 21, 29].
SD((‘?) %Sgggg&%ﬁ?ﬁgg&;ﬁggg oRES Koltun and Papadimitriou [21] aim to find a minimum set

c an entry in ani-tree pf points to approxmately dorr_unate all data pomts..Spemf
S Fm (s.fm) | FM sketch set af (s) |cally, for a givene (e > Q), f!nd a subset) of a given

oH the heap top of a heall P, with the minimum cardinality, such that evesye P is

dominated by 41 — €)q whereg € Q. In [21], the maximal
Table 1. Math Notation vector problem is investigated. Here, we state their proble
with our setting. It has been shown that the problem can be
2.1. Problem Stgtement) _) solved by a greedy heuristic ird-space, and it is NP-hard
Suppose thaP is a set ofi-dimensional data points. For tor ¢ — 3 or more. Then, it shows the problem can be ap-
a data poinyy € P, D({¢}) denotes the set of points i proximately solved with a poly-logarithmic cardinalityo(f
that are dominated by; for a set@ of data points,D(Q) ¢ > () of Q regarding the values’ domain. This problem
denotes the set of points each of which is dominated by ajg inherently different than our problem — t@pRSP. First,

q € Q. Clearly,D(Q) = Uy,eq D(14})- it does not guarantee that the data pointgjirare skyline
Example 1. Regarding Figure 1(b),.D({ps}) = {ps}, points unless = 0; whene = 0, all skyline points are
D({pe}) = {p3,ps,p7}, andD({ps, ps }) = {p3, s, P} returned. Second, the size @fis poly-logarithmic regard-

The problem otop-k representative skyline poinftop- ing the values’ domain. Consequently, the results and the
k RSP) is formally defined as follows. techniques in [21] are not applicable to tbrRSP.

Top-k RSP.Given a sef” of points and an integek, com- Chanet al.[8] investigate the problem of computing top-

pute a setS of k skyline points such thdD(S)| is maxi- k frequent skyline points based on a new metskyline
mized. Note that wheli§»| < &, Sp is the solution. frequency Skylme. frequer}cy of a point is the number of
. . subspaces whegeis a skyline point. In [7], Chaet al. de-
In this paper, we study the problem of efficiently com- e\ efficient algorithms to compute skyline points each of
puting top% RSP. which is a skyline point in all subspaces with dimensional-
2.2. Related work ity k for a givenk.

Computing full skyline. Efficiently computing skyline is The most related problem to our tdpRSP has been
first investigated by Kungt al. in [23]. Bentleyet al. [3] investigated in [29]. Papadiast al. [29] propose ak-
provide an efficient algorithm with an expected linear run- dominating query It aims to compute a s&p of £ points
ning time if the data distribution on each dimension is inde- such thad_ ., |[D({p})| is maximized. The problem df-
pendent. dominating query is also inherently different than our top-

k RSP. First, &-dominating query does not always return Prob{h(p) = i} = 5Ar. In our implementation, we use
skyline points; for instanceys andp~ are returned regard- the public code from Massive Data Analysis Lab [27] to
ing Figure 1 wherk = 2 (p; is not a skyline point). Sec- randomly generate such hash functions. An FM sketch on
ond, in the problem of-dominating query we only needto P is a bitmap with lengthL which is defined as:

record the number of dominated points for each data point b . g .

and there is no need to consider the situation that a data}—m*{B ’ VO_SJ <L -1, B[j]=1iff Hpep’h@*]}'
point may be dominated by many other points. The algo- In order to improve the accuracy of FM algorithm, mul-
rithms for processing &-dominating query cannot be used tiple copies (say) of FM sketches are constructed; each is

to our topk RSP. c_onstructed against an independently generated hash func-
Other Related Work. There also have been a number of tion. Let fm(P) represent the set ¢f FM sketches gener-
research results in the literature regarding variatiorskpf ~ ated overP. Thatis, fm(P) = {Fmi, Fmo, ..., Fmy },

line computation. These include computing skyline in a dis- Where each element € P is hashed into these FM
tributed environment [1, 18], continuously processing-sky Sketches, respectively, as described above.

line queries in data streams [26, 34], skyline cube computa- Letmin(B) denote the least bit (from left) of a bitmap
tion [30, 37] and its dynamic maintenance [36], computing B with value0; if no such bit exists themin(B) = L. The
skyline efficiently in a subspace [35], effectively matéia ~ numbern of distinct elements ifP is estimated by:

ing dominance relationships [24], and multi-source skylin 1 —f , v dqof 2B (min(Fma))
query processing [10]. A= ;22:1 min(Fmi)/F wherep = —
3. Preliminaries Note that in formula (1) (min(Fm;)) cannot be ex-

We present briefly the skyline computation algorithm, Plicitly represented and is not known. In our implemen-
BBS [29], as well as a probabilistic algorithm, FM [12], tation we approximately choose as0.775351 according

for counting distinct data elements. They will be employed t0 the approximate results in [12]. Eaghin(Fm;) related

. B. As shown in [12],E(min(Fm;)) = E(min(Fm;))
3.1. BBS Algorithm o (1 <1i < j<F);this, together with Theorem 2 in [12j] and
Suppose that a datasgtis indexed by ank-tree. To the Central Limit Theoren{pp 229 in [11]), immediately

compute skyline, BBS traverses tRetree in the order, such |eads the following theorem by the independence assump-
that it always evaluates and expands the tree node closest tggn.

the origin among all un-visited nodes. To do thammn-
heapis built against a designatenindist(say, the summa-
tion of all coordinate values) of the lower-left corner oéth X .
minimum bounding box (MBB) of every entry (node). Foragivend < § <landFr,if L = O(logn +logF +
Initially, BBS inserts all the child entries of the root logd™"), then|A — n| < en holds with probability at least
of the R-tree into the heap. lteratively, the heap topf 1 — 6, wheree = O(, /%)_
the heap is examined against the already computed skyline Two sets of fm sketches (sayfm(P) and fm(Q))
points. If e is dominated by an already computed skyline ted by th me and th yim t of hm hi
point! thene is just simply discarded from the heap. Oth- ?enerae y the same and tné same se ashing
unctions may be merged by thmtwise-or operator(de-

erwise, ife is a data point, then the data point is output as
; L . . noted by\/) as follows. Letfm(P) = {Fm; : 1 <
a skyline point; ife is not a data point, then discaecand i< FLofm(Q) = {Fml : 1 << F} Wede

insert the child entries af, which are not dominated by any fine fm(P)\ fm(Q) as{Fm;\/ Fm! : 1< i < [}

current skyline point, into the heap. BBS terminates when where eachm; \/ Fm! is also a bitmap with subindexes
the heap is empty. In order to efficiently examine the dom- (0, — 1], such that forl <i<PVO<j<L-1,

inance relationship, an in-memoRrtree is maintained on
the current skyline points. . (Fm; \/]—'mg)[j] = 1iff Fmy[j] =1o0r Fmi[j] = 1.

BBS has the properties that 1) any progressively gener- important feature of FM algorithm is that the bitwise-
ated skyline point is guaranteed to be a skyline point agains or gperator provides an equivalent way to generate a set of
P, 2) itis I/0 optimal, 3) a node entry is read by disk /0 g\ sketches oveP U Q. The following lemma can be
only once. immediately verified.

3.2. FM Algorithm Lemma 1. Given a set off hash functions and two col-

FM algorithm proposed by Flajolet and Martin [12] is |ections,P and Q, of data points, we havém(P U Q) =
a bitmap based algorithm that can efficiently estimate the fm(P)\ fm(Q)

number of distinct elements (data points). LBtbe a

bitm_ap_olf_ IeggthL(yvith s[u]bindefxeéfo, L-1], and)aIISbits 4. Two-dimensional Space

are initialized a9 (i.e. B|j] =0for0 < 5 < L —1). Sup- . . .

pose thati() is a randomly generated hash function which __ e investigate the problem of the t@pRSP in a2d-

hashes each elementlD into an integefnZ — 1] such SPace. We first show the problem can be solved by a dy-

that for each data point in a collection® of data points, ~ @Mic programming algorithm. Then, we develop a sweep-

line technique [31] to efficiently compute the parameters

LA point s dominates entry iff s dominates the lower-left corner ef needed in the dynamic programming algorithm.

Theorem 1. Letn be the number of distinct elementsin
and A be the estimation of FM algorithm as shown in (1).

4.1. Dynamic Programming Based Algorithm
Suppose thafsi, s, ..., sm | is a collection of skyline

points in &d-space, which are sorted in the ascending order
of z-coordinate values; consequently, they are also sorted

in the descending order gfcoordinate values. Each is
represented bys;[x], s;[y]). As depicted in Figure 2, for
each pair{s;, s;} of skyline points,A(s;, s;) denotes the
set of data points that are dominatedsbyput not dominated
by s; (see Figure 2 for an example).

i

BN WS OO N ®© O
L S S e e AL

A(S4,51) are the
points in the
shadowed region,
i.e., Po, P10

T8 9 10
Skyline andA(s;, s;)

Let opt(s;, k) denote the number of data points domi-
nated by at least one of theskyline points in an exact so-
lution of the topk RSP restricted tsy, .. ., s; }, where the
exact solution contains;,. We have

opt(si, k) = max {|A(s, s;)| + opt(s;, k — 1)} (2)
1<5<i

Note thatopt(s;, 1) is the number of points dominated by
the skyline points;. Let OPT'(k) denote the the number of
points dominated by at least one of thekyline points in
the exact solution of to-RSP with respect to the whole
set of skyline points. Clearly,

OPT (k) max {opt(si, k)} 3)

1
1

Based on formulae (2) and (3), the V-optimal dynamic |
programming technique [19] can be immediately used to

solve our topk RSP. The algorithm runs i@ (km?) time if
each|A(s;, s;)| (for 1 < j <4 < m)is pre-computed and
the skyline points are also pre-computed. In the following

subsection, we present an efficient technique to compute thdatively computed from

skyline points andA]|.
4.2. Computing Skyline and|A|

As an immediate approach, the skyline ddd can be
computed separately. First, all skyline points are congute

over a given dataset by an existing algorithm. Then, com-

pute the corresponding\| values (initially,0) for each data

point. This ndve approach is not efficient because a data

point may be counted multiple times if it is contained by
severalA(s;,s;). Below, we present a sweep-line [31]
based algorithm to efficiently computé| values and sky-
line points simultaneously by sorting data points first.

As depicted in Figures 3, the region dominated by the

skyline points can be partitioned into a number caflls
{Cep : 1 < a < b < m} where the lower-left corner
and the upper-right corner af, ; are (sp[z], sq[y]) and
(sp+1]x], sa—1]y]), respectively. Whei = 1 (or b = m),
soly] (Or s;m41]x]) is defined as the maximum value @f
coordinates (og-coordinates) in the data space.
Let |C, | denote the number of data points that are

contained byC|, ; but not on thetop horizontal line(i.e.,

Yy = Sq—1[y]) excepta = 1 nor on the right vertical line

(i.e., z = spp1[z]) of Cyp eXcepth = m. Immediately,

wheni > j,
A(si,si)l= > [Capl @)
j<a<i,i<b<m
Consequently, wheih> j,
[A(si,)| = |A(si sje)| + Y [Ciarpl (B)

i<b<m
For example|A(sy, s1)| = [A(s4, 52)| +[Co4| +[Co5| =
2, as depicted in Figure 3.
10 yb=‘1 2 . 3 4 5

IA(S4,51) are the|
points in the
shadowed cells

S2

S A(S4,8,) are the
sweep-line

points in the
5 bold border cells

6
5
4
3
2

(|
3456 7 8910

1 2
Figure 3. Cells andA(s;, s;)

Our sweep-line algorithm uses a horizontal line to sweep
alongy-dimension from the bottom to the top to iteratively
compute the skyline points and’, ;|s. Specifically, for
data points encountered by the sweep-line, we process those
data points from left to right as follows. If a data pojmt
is dominated by a current skyline point, then increase the
number of points of the cell, containing by 1; otherwise,
it is a new skyline point. lIteratively, once a new skyline
point s; is found, the computation of evefy’; ;| (for
b > j) has been completed; consequently(s;, s,)| (for
i > j) now can be calculated by using formula (5). Then,
all |Cj+1,| (for b > j) can be discarded. Clearly, the total
space required i©(m?), which is dominated by maintain-
ing all |A(s;, s;)| values { < j <i<m).

To facilitate such a sweep-line technique, we first sort the
data pointsp lexicographically on(p[y], p[z]). To speed-
up the computation, alf ., .. |Cj+1,5| can be accumu-

- mtoi = j+ 1. Note that
{Cjt1 : j+1 < b < m} are already sorted according
to thex-coordinates of their lower-left corners. Therefore,
the computation of the skyline points and [all| values can

be done inO(m? + nlogm) wheren is the number of to-

tal data points. Consequently, the total time of our dynamic
programming algorithm runs i@ (km? + nlog m).

5. Multi-dimensional Space

The dynamic programming algorithm provides an exact
solution to topk RSP in a2d-space; nevertheless, there are
two issues to be addressed.

Issue 1: The dynamic programming algorithm cannot be
extended to computing the tdp-RSP in a multi-
dimensional space whehis 3 or more. Consequently,
the problem of topk RSP is left open generally.

Issue 2: The space requirement in our dynamic program-
ming algorithm is quadrati©(m?). Therefore, it is not
scalable whenmn is large since additional /0 costs may
be required if the space requirement is too large to fit in
memory. Moreover, if the dataset is indexed (say, by an
R-tree), this algorithm does not make the use of such in-
dex to reduce the I/O costs.

This section is organized as follows. We first address Is- Step 1. Then, for eaghe P we compute{D({s}) : Vs €
sue 1 by sections 5.1 and 5.2. Then, we develop an efficient,Sp} by a window query per data poipte P — Sp against
scalable, index-base®ftree based) randomized algorithm Sp, where the window uses the origin as the lower-left cor-

to address Issue 2.
5.1. Complexity

We show that tope RSP is NP-hard in a multi-
dimensional space when the dimensionalitg.is

\

(b) Grid
Figure 4. A Transformation

Theorem 2. Given a set of points in 8d-space, the prob-
lem of computing top- RSP is NP-hard.

(a)Planex+y+z=1

ner andp as the upper-right corner, as suggested in [29]. We
apply the sort-merge paradigm in Step 3.

The space required to compute and storelH|{s}) is
O(mn) and may not fit in the memory. In fact, we found
that whend = 5, 45% of D({s})s have to be written to
the disk with1G memory. This not only requires additional
disk I/O in Step 2 but also in Step 3 (1/O costs could be very
expensive). We address the issue by our algorithm in the
next subsection.

5.3. FM-based Algorithm

We modify Algorithm 1 by removing the requirement of
computing and storing eve® ({s}) (Vs € Sp). As with in
2d-space we may divide the space dominated by the skyline

Proof. As depicted in Figure 4, we can divide one part (see points into grid cells and compute the number of points con-

the shaded area in Figure 4(a)) of the plane y + z = 1

tained by each cell. Unliked-space, in a multidimensional

into grid cells (se_e Figure 4(b_)) such that each grid cell hasspace withd > 3 an “arbitrary” combination of skyline
at most3 data points. According to the proofs of Theorem points may be probed in Step 3. Consequently, the count of

3.3 and Theorem 4.1 in [25], the problem of findihgrid

each cell should be stored and the space requiréqsis?)

cells to contain the maximum number of points is NP-hard that may be too larger to fit in memory whenis large and

regarding this setting.

For a cell containing at least one data point, we choose

d > 3. Thus, this is not a good alternative.
On the other hand, keeping onlP({s})| (Vs € Sp)

3 grid points including all data points in the cell; in case if does not provide enough information to accurately estimate

the number of data points in the cell is less tl3athen we
randomly choose non-data grid points to mak®. ifThen,

|D(S)| for a setS of skyline points since there could be
many data points dominated by more than one skyline point

we create a new point by using the minimums, among thesein §.” For instance, in the example of Figure 2, paiptis

3 grid points, in each coordinate, respectively, as3ito-

dominated bysq, s2, andss.

ordinate values. It can be immediately verified those new 19 gvercome the over-counting issue, we apply a
created data points are the skyline points which only dom- qpjicate-insensitive counting technique, FM algorithian,
inate the data points in its corresponding cells. Therefore gpnroximately counting the number of points dominated by

the problem of computing top-RSP is also NP-hard. [
5.2. Greedy Algorithm

a skyline points; that is, we maintain a st fm of F FM
sketches (bitmaps) at, each of which had. bits and is

In fact, top4 RSP can be immediately transformed into generated by hashing the data pointi{s}). Then, to
themaximum coverageroblem [16]; consequently it can be compute|D(S)| we only need to apply the bitwise-or op-

solved approximately by a greedy heuristic. Below in Al- €rator\/, as described in section 3.2, 8. fm :

gorithm 1, we present the greedy heuristic. Note fhaf)

s €S}
to get a FM sketch set (and then use formula (1)). Accord-

is the set of points each of which is dominated by at leasting to Lemma 1, this is the same as if we use FM algorithm

one point inS andSp is the skyline of datase®.
Algorithm 1 Greedy (&k, P)

Input: k: an integer;P: a set of data points.
Output: & skyline points.
Description:

Step 1: computeSp;

Step 2:Vs € Sp: computeD({s});

Step 3:

1. S:= g,

2: while |S| < kandSp — S # @ do

3: chooses € Sp — S such tha{D({s} U S)| is maximized;
4. S:={s}UsS,

5: return S,

Lemma 2. [16]: Algorithm 1 returns an approximate solu-
tion to top-k RSP with the approximate rafio- 1. 2

In our implementation, we assume that the dat#set
indexed byR-tree [2, 14]. We use BBS to comput® in

?Here, e is Euler’s constant rather than an entry inRsree.

to approximately computingD(.S)|. This is the basic idea
of our algorithm. Below, we outline our FM-based algo-
rithm in Algorithm 2. Note that in our algorithm, all FM
sketch sets are created by the same s¢t bash functions
randomly generated.

Algorithm 2 FMGreedy (&, F, L, P)

Input: k, F, L: integers;P: a dataset.
Output: & skyline points.
Description:

Step 1: computeSp;

Step 2:Vs € S, compute FM sketch sat fm;

Step 3:

1: S := @, initialize theF bitmaps inS. fm;

2: while |S| < kandSp — S # @ do

3: chooses € Sp — S such thatEst(s.fm\/ S.fm) is max-

imized;
4. S:={s}US;S.fm:=s.fm\ S.fm;
5: return S,

Note thatEst(s.fm\/ S.fm) is calculated by the for-

mula (1) in section 3.2. The following Theorem immedi- is x + y. After s is returned as the skyline poing; is
ately follows from Theorem 1 and Lemma 2. expanded te, andes. Then.e, is the next to be processed.

H, in BBS. Asss is not yet returned as the skyline point,

—1
L)1+ O(y/™82—)) with confidenca — ¢ if each bitmap removinge,> means that we have to start from the root of the
has the lengti. = O(logn + log F +log 6~ 1). REM tree to compute the FM sketchessat

Our experiments in section 6 demonstrate that when To resolve the problem in Example 2, in our algorithm
F = 32andL = 32, Algorithm 2 has very similar accuracy OnePass we use another hddp to keep the entries dis-
to Algorithm 1. The Step 3 of Algorithm 2 can be executed carded fromH; by BBS.
in time O(kF m). Sincef is up-to32 in our implementa- Minimizing the size of H,. Clearly, there will be a huge
tion, the Step 3 runsin tim@(km). The space requirement memory requirement if we keep every thing#fy until all

to store all FM sketch sets @(Fm) that equalsD(m) in skyline points are calculated. We need to minimize the size
our execution. Therefore, we reduce the space requiremenof H, so that our algorithm is scalable while pursuing I/O

O(mn) to store{D({s}) : s € Sp} to O(m) to store all efficiency. It seems difficult to find a necessary and suf-
FM sketch sets with respect to the skyline points. ficient condition to determine the time to discard an entry

Next, we present an efficient algorithm to conduct Step e € H, so that the progressively returned skyline points af-
1 and Step 2 by one-scan of dataset by extending BBS algoterwards do not dominate any pointdn In our algorithm,
rithm. For this purpose, we first augment R-tree to include we use a sufficient condition below for this purpose.
FM sketches. Suppose that in BBS, thenindistis the summation of
5.3.1. R"'M _tree the coordinate values. For each entne H,, we define
At each intermediate entry of an RFM -tree, besides the ¢-maxdist as the summation of the coordinate values of

required information in a convention&-tree (e.g., MBB), €S upper-right corner(is represented geometrically by
we maintain a sefm of f FM sketches for estimating the MBB); H; is a min-heap maintained againsinazdist.
number data points in the subtreeof Lemma 1 in sec- Note that BBS has the property that the minimum value of
tion 3.2 implies that the sketch setfm at entrye can be ~ Mindistamong the entries in the currefl is not greater
equivalently obtained by using the bitwise-or operajoio than that in the next iteration. - Therefore, it can be im-
merge the sets of FM sketches ated child entries. Fig- ~ mediately verified that ife™>.maxdist < e™.mindist

ure 5 shows an R -tree whery = 1 and = 4. then any skyline points progressively returned afterwemds
not dominate any point ia’’2. Consequentlye”2 should

y
13' i o be used to update the FM sketches for the current skyline
ol [P z Ps points; theng2 can be discarded frorf,.
;-Sle ps P Example 3. Continuing the example in Figure &, will
st |} ps P be popped up (then discarded) fraffy to update the FM
: A 'gjo sketches atq, so, andss when BBS encounteks in H;.
2 = > . To00] 5150 Algorithm description. Our algorithm to compute the sky-
T X ps[pe[ps| [sa[s:[ps] line points and their FM sketches is based on the framework
123456783910 of BBS. Itis presented below in Algorithm 3.

Figure 5. RfM-tree .
Note that the FM-based aggregate information practi- Algorithm 3 OnePass (P)
cally requires small space only. Our experiments show thatinput: P is a dataset indexed by af'R -tree R.
if each page has siz&Kbytes, the fanout of an R -tree is ~ Output: ~ Sp: the skyline point set; FM sketchesafvs € Sp)
only 1 less than that of a conventional R-tree when each FM Description:
sketch set consists 8fbitmaps with32 bits each, and about L' S =2 1 =2 Ho =2,
3% less when each FM sketch set consist$®bitmaps 2 '”ﬁ?rtz” entries c};the roc:jt Of Rintdy;
with 32 bits each. It is immediate that such afi’‘R-tree 3 Wvlvﬁile IH# i gd; 7 @ do
can be updateq ina similar way as a conventional R-tree. . it I, 2 @ or "2 mazdist < e mindist then
5.3.2. Computing Skyline and FM Sketches 6: UpdateSketch(?2, S); removee®? from Hy;
Given that a datase® is indexed by an R -tree, in this 7 elsebreak the whileloop;
subsection we present an efficient algorithm, OnePass, to 8: if ¢/ is dominated by as € S then
compute the set of skyline points and their FM sketches (to ®: if "1 is a pointthen .
estimate everyD({s})]) simultaneously, so that each entry 1% UpdateSketch(™, 5); removee™ from Hy;

A

. H .
in RFM -tree is read at most once by disk 1/0. E else;seremovee ' from Hy to Hy;
I/O-efficiency. The algorithm BBS computes the skyline 5. if ¢'1 is a pointthen
points with the minimum 1/O costs; nevertheless, it is not 14 adde”" into S; to H, and others tdd;:
immediately applicable to compute FM sketches simultane- 1s: elseadd child entries dominated by ane S to H and
ously; see the following example. others toH1;

Example 2. In the example of Figure 5, BBS outputs the 16: retumn Sand FM sketches at eashc S
skyline points in the order o, s1, s3, s4, andss if mindist Note that in Algorithm 3/, is a heap maintained in the

same way as that in BBS, whil#, is a heap discussed
above. When the heap tag’* in H; is a point that is
dominated by an already obtained skyline paintnstead
of putting et into H, we can immediately use it to up-
date the FM sketches (then discard). This is because
thate* will not be dominated by any skyline point output
afterwards due to the following two reasons:

e An entry'smindist equals itsnaxdist if it is a point.
e Any skyline point output afterwards has itsindist not
smaller than the curremtindist.

In fact, it can be immediately verified that Algorithm 3 is

y partially dominated

|

' 0
.]
e o
| 2 e 7ks o
ol
' sk e1.2
--------------- 4k 83‘4'5
€4 fully dominated ;| s2 Ss .
- - - - 2 Sa
1

e, |«— notdominated 1t
3 X 1 1 1 1 1 1 1 1 1 IX

1'2345678910
Figure 7. updatefm

Figure 6. bominance Relation

correct, based on our discussions in the part — Minimizing dominatee’. For example, in Figure 6, fully dominates

the size ofH,; that is, once an entry removes fromHs,
none of the data points included énis dominated by the
skyline points output afterwards. Algorithm 3 also follows
exactly BBS for computing the skyline points>; thus, all
the skyline points can be obtained correctly.

In Algorithm 3, there is a key operation, UpdateSketch(),

to update FM sketch sets at the current skyline points, re-

spectively. Next, we present algorithm for UpdateSketch()

Update FM sketches.Regarding the example in Figure 5,
s dominates the entry,. Therefore, the update to the FM
sketch set at, is already materialized in'R" -tree; that is,
we only need to use bitwise-or operatgron the bitmap
(1,0,0,0) and the existings..fm, instead of hashing the
pointsps, pg, andp;. Moreover, if we had a skyline point
s* allocated af0.5,0.5), then an update to the FM sketch
set atsx would be done by only reading the FM sketch set

at the “root” in this example. These are the reasons why anoutput:

REM tree is maintained.
As with the algorithm BBS, in Algorithm 3 the progres-

sively generated skyline points are also indexed by an in- 2:

memory index. Different than BBS, we use an in-memory
RFM_tree instead ofR-tree to speed-up the computation
(update) of FM sketches as well. Such an in-memofy’R

e1, partially dominateg,, and does not dominatg.

We treat UpdateSketche/(2, S) as one kind of spatial
join [5, 17]. We apply theR-tree traversal paradigms from
[5, 17, 28]. To avoid reading a data entryrom disk more
than once, we group the entries, at which FM sketch sets
may need to be updated by the points or child entries of
in-memory R™M -tree for skyline together into a groug..

We iteratively andsynchronouslyraversee and E., while
always group the new expanded entries of the in-memory
RFM._tree (for skyline points) together for each new ex-
panded data entry for the next iteration. We outline our
algorithm in Algorithm 4 and present the details of the pro-
cedure Traversak(E) in Algorithm 5.

Algorithm 4 UpdateSketch (e2, S)

ef2: an entry of B'M -tree of a dataset;
S: skyline points indexed by an in-memory & -tree;
updated FM sketches at the skyline pointsin
Description:
1: if eg fully dominatese™2 then
es.fm = es.fm\ e2. fm;
3: elseTraversal¢’’2, {es});

In Algorithm 4, eg is the root entry (MBB) of the in-
memory R -tree onS; according to Algorithm 3¢g ei-

nput:

tree has the same data structure as that to index the datasgier fully or partially dominates2. It reads in the node
except that we also attach FM sketches at each data point iy RFM tree corresponding tefz to get its FM sketches

an in-memory R™-tree. In an in-memory RM -tree, the

ef2 fm. If e’2 is a data point, it has to be hashed by FM

FM sketch set at a tree node is used to estimate the UMy gorithm to get?z. fm.

ber of data points that are “captured” by our algorithm to be
commonly dominated by all points in its subtree.

Example 4. In the example of Figure 5, the pointsdp are
dominated by, ands,. Consequently, if one ente}-? of
the in-memory RM -tree consists of; ands,, then we can
immediately use the FM sketch setegtto update the FM
sketch set at':? by the bitwise-or operatoy/ .

Example 5. Regarding the example in Figure 5, suppose in
the in-memory R -tree of skyline pointsy, so, ..., ss,

s, and s, form one entrye!>2 and the entrye®#5 consists
of 3 pointsss, s4, andss (see Figure 7). Wheeg is pop-up
from H, to be processed against the in-memofi/Rtree,

it enters Algorithm 5. In Algorithm 53 is subsequently
decomposed int,, p3, andpy,, while the root of in-memory

Based on Lemma 1, we can use the bitwise-or operatorR” " -tree is decomposed intd * ande®*?.

iteratively on the FM sketch sets along the path in the in-
memory R™M -tree from the root to a skyline poiatto ob-
tain the “global” FM sketch set atto estimate the number
of distinct points dominated hy.

We need the following notation in our algorithm descrip-
tion. An entrye (bounding box¥ully dominatesnother en-
try €’ if the upper-right corner of dominates the lower-left
corner ofe’. An entrye partially dominategnother entry’
if the lower-left corner ok dominates the upper-right corner
of ¢’ bute does not fully dominate’. An entrye does not
dominateanother entry’ if e does not fully nor partially

Whenp, is processed against'? and e*#5, eb'2. fm
is updated; nevertheles§., {ss, s4, s5}) has been sent to
Algorithm 5 for a further processing.

We can immediately verify that in Algorithm 4, a data
point p dominated by as € Sp must be captured by one
entry from the root ta in the in-memory R -tree. Con-
sequently, as discussed earlier, computing FM sketch set at
each skyline point by performing bitwise-or operator iter-
atively on the FM sketch sets along the path from the root of
in-memory R -tree to the skyline point ensures the cor-
rectness of Algorithm 4; that is, it is equivalent to cregtin

Algorithm 5 Traversal (e, E')
Input:

e: an entry of B -tree of a dataset;
E: a set of entries of R -tree of skyline points;
Output: updated FM sketches at the skyline point&in
Description:

1: if eis a data pointhen Ep := {e};

2: elseload in the child entries of to Ep;

3: for each entry’ € Ep do

4: E. =&,
5. for each entry; € E do
6: if e; fully dominatese’ then
7: GetFME'); e;.fm :=e;.fm\/ €. fm;
8: else ife; partially dominateg’ then
9: if e; is a data point entrthen
10: Eo :=FE. U {61‘};
11: else
12: for each child entre. of e; do
13: if e. fully dominatese’ then
14: GetFME'); ec.fm = ec.fm\/ e'.fm;
15: else ife. partially dominateg’ then
16: E., =FE, U {ec};
17: if B, # o then Traversal¢’, E./);

Procedure GetFM (e)
if e is a data point, then hashby FM algorithm to gete. fm;
otherwise, read ia. fm by disk I/O if not already in memory.

the FM sketch set at by hashing each data point domi-

nated bys by FM algorithm. Thus, Theorem 3 still holds.

Note that if an entry of R -tree of the dataset is no longer
needed in Algorithm 4, then it immediately removes from
memory.

6. Performance Evaluation

We evaluate our algorithms only. Specifically, we fo-
cus on evaluating our FM-based algorithm in section 5.3.
As there is no existing work, we use the dynamic program-
ming based algorithm in section 4 and the greedy heuristic
in section 5.2 as bench-marking algorithms. The following
algorithms have been implemented.

1. EXACT : the dynamic programming based algorithm
proposed in section 4.

GDY : the greedy algorithm, Algorithm 1, in section 5.2.
FMG : the FM based greedy algorithm, Algorithm 2. in
section 5.3.

Following the common methodology in the literature,

2.
3.

two synthetic datasets, Anti-correlated and Independent

(random), have been employed in our performance evalua
tion, which are produced by the data generator in [4]. Their
dimensionality varies fron2 to 5 and the number of data
points varies fromR200K to 3M. A real data set, Stock,
from NYSE (New York Stock Exchange) is also used in our
performance study. It contai$/ stock transaction records
of NT (Nortel Networks Corporation,USA) from Dec 1st
2000 to May 22nd 2001. The average price per volume,
volume, and time are recorded for each transaction; conse
guently it is used as a dataset iB&space.

All of the datasets are indexed by afi B-tree with node
page sizediKbytes. In our implementation, each bitmap
(FM sketch) has2 bits (i.e.,4 bytes); a bitmap witl32 bits

trated in our experiment, FMG is highly accurate (with rel-
ative errors less thab%) when32 bitmaps (FM sketches)
are used; in this case, the fanout (number of children en-
tries) of R'M -tree is aboud7% of that by a conventional
R-tree.

All algorithms are implemented by C++. The exper-
iments are conducted on the PCs with Intel P4 2.8GHz
CPU and 1G memory under the operating system — Debian
Linux. Table 2 below lists the parameters which may po-
tentially have an impact on our performance study. In our
experiments, all parameters use default values unleses othe
wise specified.

Notation | Definition (Default Values)

n Number of points in the dataset (1M)

k Number of representative skyline points (3D)
d Dimensionality of the dataset (3)

F Number of sketches in FMG (32)

Table 2. System Parameters
6.1. Evaluating Accuracy

In this subsection, we experimentally evaluate the accu-
racy of FMG against different settings; that is, the number
of points dominated by one of the skyline points (com-
paring with that by EXACT in &d-space and that by GDY
whend is betweer8 to 5, respectively). Note that we did
not do the accuracy evaluation against the exact solution fo
d > 3 because the problem is NP-hard and it is too slow to
produce exact solution for top-RSP.

The first set of experiment is conducted agaidst
datasets, Anti-correlated datasets (Anti) @d and 5d
spaces, respectively), Independent (Indep) (il space),
and Stock. The experiment results are reported in Figure 8.
It demonstrates that FMG is quite accurate whers= 32,
while GDY generates exact solution for Anti 2a.

EXACT Il GDY FMG 1

of Points Dominated

2d Anti

Stock 5d Indep 5d Anti
Figure 8. Number of Points Dominated
In the rest of this subsection, we evaluate the accuracy

FMG by relative errors— Neme=N'l - N7 is the number of
data points dominated by at {éast one of ktekyline points

in the exact solution in &d-space N’ is such a number by
GDY whend > 3, Ngj¢ is such a number by FMG.

2d Anti —=—

Stock —e—
3d Indep ——

—

10 20 30 40 200K 400K 600K 800K
Figure 9. Variousk Figure 10. Variousn
The second experiment evaluates possible impacts by
different k£ values. It is conducted against three datasets,

2d Anti —<—
Stock —e—
3d Indep ——

S~

0.05 0.05

50 1M

should be large enough to guarantee the FM accuracy whileAnti in 2d space, Indep i8d space, and the real datasets,

counting a massive number of distinct elements. As illus-

Stock. The experiment results are depicted in Figure 9.

Again, it shows FMG is highly accurate. As anticipated, sketches are involved in a bitwise-or operatpwhen /-
the accuracy improves whénincreases. gets increased.
The third experiment examines an impact of the cardi- geo [by ——

nality of datasets. The results depicted in Figure 10 irtdica v —

GDY (Stock) —+—
GDY (Indep) ——
FMG —*— FMG (Stock) —<—

that the accuracy is not quite relevant to a dataset size. Th&*° FMG (Indep) ——
last experiment examines an impact of the nunibef FM '
sketches. The results reported in Figure 11 confirm Theo-

rem 3; that is, the accuracy improves wherncreases. 0 0

Prime
i
3

Processing Time (s)
=
u o
o o

Processin
N
o

200K 400K 600K 800K 1M 200K 400K 600K 800K im
02 2d Anti —— 0.05 a %535 — (a)2d Anti (b) 3d Indep & Stock
2015 £ 0.04 Figure 14. Time Efficiency vs Cardinality
w w
2 01 g 008 Z 10 2dAnti —— B 40 Stock —e—
% % 0.02 o o 3d Indep ——
& 0.05 “o01 % E 2 E . Me/
0 0 2 220
2 4 8 16 32 64 2 4 8 16 32 64 840 . 1
(a) 2d Anti (b) 3d Indep & Stock g 2 gy .
Figure 11. Relative Error vg- * o ® o
i L. 2 4 8 '16 32 64 2 4 8 16 32 64
6.2. Evaluating Efficiency (2)2d Anti (b) 3d Indep & Stock
The first experiment, as depicted in Figure 12 where the Figure 15. Time Efficiency vs-

numbers on these bar figure tops give the actual runningg 3. Space and I/0 Efficiency
time, is conducted against thedatasets and th& algo-

: ; We first evaluate the space efficiency. We illustrate the
rithms EXACT, GDY, and FMG. It shows that GDY is ver ;
slow whend = 5; this is becauséD({s}) : s € Sp1 istoo y results for FMG only, since EXACT only works fdd-

large to fit in memory. Thus, additional 1/O costs in Step 2 space and GDY requires very large memory space — at least
and Step 3 are required as stated in section 5.2. This make]‘sbUt could be much larger than) the size of whole dataset.
Step 3 very slow. The results in Figure 12 demonstrate that!! OUr experiment, we record the maximum space usage in
EMG is most efficient. the vyhole computation, mgludlng storitgy , Hs, the space
EXACT EEEE GDY =1 FMG —— required to execute Algorithm 4. |, and Hs, we store
. 15693 ID and its MBB (or data point) for each entry.
10
The first set of experiments, conducted against Anti-
10° correlated and Independent datasets with [2, 5], evalu-
102} 5o Dhos ate effects ofl. The results are reported in Figure 16 where
0l 6 4 linear scale is used igp-coordinate and we show some im-
10° . portant marks only op-coordinate. It demonstrates that the
2d Anti Stock 5d Indep 5d Anti memory space required is significantly less than the dataset
Figure 12. Processing Time size. Note that we also examined the space requirements
The second experiment tests an effeckofThe exper- of EXACT in a2d-space and storingD({s}) : s € Sp}
iment results are depicted in Figure 13. They also demon-in GDY, respectively. Our experiment demonstrates that 1)
strate that FMG is most efficient. While FMG and EXACT EXACT requires space aboub times more than that of
are not very sensitive to differeft values, the time costs FMG even the number of skyline points is less thaf,
of GDY increase whe#k increases. This is mainly because and 2) GDY requires space ab@u3 times ¢ = 2) t082.5

Processing Time (s)

that Step 3 in GDY involves a sort-merge process. times ¢ = 5) of the corresponding dataset sizes.
560 GDY —e— & 200 F GDY (Stock) —— 23,437 70,312
o EXACT —+— o GDY (Indep) —e— — —
e FMG —=— £ 150 | FMG (Stock) —x— g g
£ 40 B/Q/Q/M IS FMG (Indep) —s— g Dat'isi; — | & Dataset —e—
g g 100 ///*/ $ 11718 IndQ;:; M 35,156 |nﬁ23 -
g 20 8 o S 8000 g
g g so & / @ 15000
& & ole . . . : 2000 2000 ———x
10 20 30 . 40 50 10 20 30 40 50 2 3 4 5 2 3 4 5
(a)2d Anti (b) 3d Indep & Stock (@n=1M (b)n = 3M
Figure 13. Time Efficiency vsk Figure 16. Space vs Dimensionality

The results of our third experiment are reported in Figure The second experiment investigates impacts from differ-
14. They show that EXACT, GDY, FMG are all sensitive ent data sizes andl. The results are depicted in Figure 17.
to different data sizes. Note that GDY is very sensitive to They demonstrate that the memory space is not sensitive to
data sizes due to the same reason as mentioned in the lagt because we do not keep FM sketches in heaps and we
experiment — computation in Step 3. get FM sketches only when update them. It is also interest-

The final experiment in this part is to evaluate an impact ing to note that the memory space requirement is not very
of F in FMG. As depicted in Figure 15, the time costs of Sensitive to a data size. This implies that FMG is scalable.
FMG increase when increases; this is simply because that ~ We then evaluate the I/O efficiency of FMG. Fo2ain-

a data element needs to be hashed more times and more FMependent dataset with sizbl, only 60% of the nodes are

15625 Sl By [6] C. Y. Chan, P-K. Eng, and K.-L. Tan. Stratified computa-
) g 7812 tion of skylines with partially-ordered domains. $85GMOD
< 3271"’(‘1581 e < Dataset —e— 2005 .
8 Stock —— | B 3d Indep —e— [7] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A, K. Tung, and
a & sof, T, Z. Zhang. Flndlng k-dominant skylines in high dimensional
e o o 10 space. [rSIGMOD 2006
0 e [8] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. Tung, and
2 4 8 16 32 64 S00K M 2M 3M Z. Zhang. On high dimensional skylines. BDBT 200
(a) Various/- (b) Variousn [9] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
Figure 17. Space vg and Cardinalityn presorting. INCDE 2003

: _ : [10] K. Deng, X. Zhou, and H. T. Shen. Multi-source skyline
accessed by FMG, while one-scan of the wholéRtree is query Processing in Toad networks. IBDE 2007

required by FMG wherl > 3. In our experiment, we also [11] W. Feller. An Introduction to Probability Theory and Its Ap-
consider an alternative to implement FMG by “two-scans”: plications John Wiley & Sons, Inc., 1966.

; ; ; in_ [12] P. Flajolet and G. N. Martin. Probabilistic counting algo-
first, the skyline points are computed by BBS and main rithms for data base applicationdournal of Computer and

tained by the in-memory R -tree; second, the data pages System Science31(2):182—209, 1985.

are read in one by one to perform Algorithm 4. Our experi- [13] P. Godfrey, R. Shipﬁey, and J. Gr2yz. Maximal vector compu-
ment indicates the 1/O cost ratio of FMG to this alternative 14] ft'gr& t't”n{gggeg_?rtgess?ti c'{%%%icoi?%ex structure for spatil
decreases significantly dsincreases. For instance, the ra- searching. IrSIGMOD 1984

tio is around99% on Anti-correlated data set with = 2 [15] G. R. Hjaltason and H. Samet. Distance browsing in spatial
andn = 1M, while it drops to63% whend = 5. databasesTODS 24(2):265-318, 1999.

Moreover, our experiment also shows that 1/O costs of [16] D.S.Hochbaum. Approximation algorithms for the set cov-

. ering and vertex cover problemSIAM Journal on Comput-
GDY are much more expensive than FMG regardirtg ing,%1(3);555—556, 1952, P
fixed memory. The I/O costs of GDY vary froind (d = 2) [17] Y.-W. I-g{u?ng, N. é]ingdﬁqng Ef ,tA. Rundflans{ﬁimlarbslpatigl joins
_) ti using R-trees: Breadth-first traversal with global optimiza-
to 1772 (d = 5) times of those of FMG. tions. INVLDB 1997
6.4. Summary [18] Z.Huang, C.S. Jensen, H. Li, and B. C. Ooi. Skyline queries

L against mobile lightweight devices in MANETSs. IGDE
As a short summary, our performance evaluation indi- 2806

cates that FMG is quite accurate, efficient, and scalable re{19] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala,

i i i i i K. C. Sevcik, and T. Suel. Optimal histograms with quality
garding data size. When the number of skyline points is guarantees. INLDB 1998

small, EXACT is a good choice i2d-space. Although [20] . Kapoor. Dynamic maintenance of maxima of 2-d point

GDY is slightly more accurate than FMG, it requires huge sets.SIAM Journal on Computing?9(6):1858—1877, 2000.
memory space; thus. it is not scalable. [21] V Koltun and C_. H. Papadlmltrlou. Approxmately dominat-

' ! ing representatives. ICDT 2005
7. Conclusion [22] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the

sky: An online algorithm for skyline queries. WLDB 2002
In this paper, we investigate the problem of computing [23] H. T. Kun?, F. Luccio, and F. P. PrciBarata. On finding the
a

; ; ; o maxima of a set of vectordACM, 22(4):469-476, 1975.
t_he topk representative skyl[ne points. This is among the [24] C.Li, B. C. O0i, A. K. Tung, and S. Wang. DATA: A data
first attempts to develop efficient and scalable algorithons t cube for dominant relationship analysis. SitGMOD 2006
solve the problem. After introducing the novel skyline eper [25] X. Llin, (lg Liu, Y. IYua_m,lx. th_ou, a_moll H. Lu. SUImdmariz-
. I 1 I 1= Ing level-two tOpO ogical re ations Iin arge spatla atasets.
ator: top# representative skyline points, we present an effi T(%DS 31(2)584-630, 2006

cient dynamic programming based algorithm f@daspace 2] x_Lin, Y. Yuan, W. Wang, and H. Lu, Stabbing the sky: Ef-
in which an exact solution can be achieved. As shown in the ficient skyline computation over sliding windows. IBDE
05

paper, this problem is NP hard for space with dimensional- [27] Massive Data Analysis Lab. http:/www.cs
ity d > 3 and the greedy heuristic for set cover problem can rutgers.edu/muthu/massdal.html . e

be immediately applied to provide the approximation ratio [28] D. Papadias, N. Mamoulis, and Y. Theodoridis. Processing

1 — 1. We then develop an efficient, scalable randomised and osptimization of multiway spatial joins using R-trees. In
algorithm with a theoretical accuracy guarantee. As our per PODS 1999 .

g . " . [29] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
formance study indicated, our randomized algorithm is both progressive algorithm for skyline queries.3iGMOD 2003
time and space efficient, as well as highly accurate. [30] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best
Acknowledgement. The work was partially supported by \é{ft\,’ésp:éeﬂ%“ébeAzB%?am'C approach based on decisive
ARC-DP(DP0666428) and UNSW FRG(FRGP, PS08709). [31] P. Rigaux, M. Scholl, and A. Voisardhtroduction to Spatial
References 32] Databases: Applications to GI2000.

) . . N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neigh-
[1] W.-T. Balke, U. Qintzer, and J. X. Zheng. Efficient dis- bor queries. IIBIGMOD 1955
tributed skylining for web information systems. EDBT [33] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive
2004 _ _ skyline computation. 1VLDB 2001
[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. See%er. [34] Y. Tao and D. Papadias. Maintaining sliding window sky-
The R*-tree: An efficient and robust access method for lines on data stream3KDE, 18(2):377—391, 2006.
points and rectangles. BIGMOD 1990 [35] Y. Tao, X. Xiao, and J. Pei. SUBSKY:: Efficient computation
[3] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thomp- of skylines in subspaces. IGDE 2006
son. On the average numbeTr of maxima in a set of vectors [36] T. Xia and D. Zhang. Refreshing the sky: The compressed
and applicationsJACM, 25(4):536-543, 1978.) skycube with efficient support for frequent updatesSI-
[4] S. Borzgnyi, D. Kossmann, and K. Stocker. The skyline MOD 2006
operator. INCDE 2001 37] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang.

¢ - - [
[5] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient process Efficient computation of the skyline cube. Y{LDB 2005
ing of spatial joins using r-trees. BIGMOD 1993

