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ABSTRACT
With the increasing amount of text data stored in relational
databases, there is a demand for RDBMS to support key-
word queries over text data. As a search result is often as-
sembled from multiple relational tables, traditional IR-style
ranking and query evaluation methods cannot be applied
directly.

In this paper, we study the effectiveness and the effi-
ciency issues of answering top-k keyword query in relational
database systems. We propose a new ranking formula by
adapting existing IR techniques based on a natural notion of
virtual document. Compared with previous approaches, our
new ranking method is simple yet effective, and agrees with
human perceptions. We also study efficient query process-
ing methods for the new ranking method, and propose algo-
rithms that have minimal accesses to the database. We have
conducted extensive experiments on large-scale real data-
bases using two popular RDBMSs. The experimental results
demonstrate significant improvement to the alternative ap-
proaches in terms of retrieval effectiveness and efficiency.

Categories and Subject Descriptors
H.2.4 [Database Management]: Query Processing; H.3.3
[Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Experimentaion, Performance

Keywords
top-k, keyword search, relational database, information re-
trieval

1. INTRODUCTION
Integration of DB and IR technologies has been an active

research topic recently [6]. One fundamental driving force
is the fact that more and more text data are now stored
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in relational databases. Examples include commercial ap-
plications such as customer relation management systems
(CRM), and personal or social applications such as Web
blogs and wiki sites. Since the dominant form of query-
ing free text is through keyword search, there is a natural
demand for relational databases to support effective and ef-
ficient IR-style keyword queries.

In this paper, we focus on the problem of supporting ef-
fective and efficient top-k keyword search in relational data-
bases. While many RDBMSs support full-text search, they
only allow retrieving relevant tuples from within the same re-
lation. A unique feature of keyword search over RDBMSs is
that search results are often assembled from relevant tuples
in several relations such that they are inter-connected and
collectively be relevant to the keyword query [1, 3]. Support-
ing such feature has a number of advantages. Firstly, data
may have to be split and stored in different relations due to
database normalization requirement. Such data will not be
returned if keyword search is limited to only single relations.
Secondly, it lowers the barrier for casual users to search data-
bases, as it does not require users to have knowledge about
query languages and database schema. Thirdly, it helps to
reveal interesting or unexpected relationships among enti-
ties [19]. Lastly, for websites with database back-ends, it
provides a more flexible search method than the existing
solution that uses a fixed set of pre-built template queries.
For example, we issued a search of “2001 hanks” using the
search interface on imdb.com, and failed to find relevant an-
swers (Figure 1). In contrast, the same search on our system
(on a database populated with imdb.com’s data) will return
results shown in Table 1, where relevant tuples from mul-
tiple relations (marked in bold font) are joined together to
form a meaningful answer to the query.

Figure 1: Searching “2001 hanks” on imdb.com

There has been many related work dedicated to keyword
search in databases recently [12, 1, 16, 15, 3, 18, 19, 20,
22]. Among them, [15] first incorporates state-of-the-art IR
ranking formula to address the retrieval effectiveness issue.
It also presents several efficient query execution algorithms
optimized for returning top-k relevant answers. The rank-
ing formula is subsequently improved by Liu, et al. [22]
by using several refined weighting schemes. BANKS [3]
and BANKS2 [18] took another approach by modelling the



Table 1: Top-3 Search Results on Our System

1 Movies: “Primetime Glick” (
:::

2001) Tom
:::::

Hanks/Ben Stiller

(#2.1)
2 Movies: “Primetime Glick” (

:::

2001) Tom
:::::

Hanks/Ben Stiller

(#2.1) ← ActorPlay: Character = Himself → Actors:

:::::

Hanks, Tom
3 Actors: John

:::::

Hanks ← ActorPlay: Character = Alexander

Kerst → Movies: Rosamunde Pilcher - Wind über dem Fluss
(

:::

2001)

database content as a graph and proposed sophisticated
ranking and query execution algorithms. Recently, [19, 20]
studied theoretical aspects of efficient query processing for
top-k keyword queries.

Despite the previous studies, there are still several issues
with existing ranking methods, some of which may even
lead to search results contradictory to human perception. In
this paper, we analyze shortcomings of previous approaches
and propose a new ranking method by adapting existing IR
ranking methods and principles to our problem based on
a virtual document model. Our ranking method also takes
into consideration other factors (e.g., completeness and size
of a result). Another feature is the use of a single tuning
parameter to inject AND or OR semantics into the rank-
ing formula. The technical challenge with the new rank-
ing method is that the final score of an answer is aggre-
gated from multiple scores of each constituent tuples, yet
the final score is not monotonic with respect to any of its
sub-components. Existing work on top-k query optimization
cannot be immediately applied as they all rely on the mono-
tonicity of the rank aggregation function. Therefore, we
also study efficient query processing methods optimized for
our non-monotonic ranking function. We propose a skyline
sweeping algorithm that achieves minimal database prob-
ing by using a monotonic score upper bounding function for
our ranking formula. We also explore the idea of employ-
ing another non-monotonic upper bounding function to fur-
ther reduce unnecessary database accesses, which results in
the block pipeline algorithm. We have conducted extensive
experiments on large-scale real databases on two popular
RDBMSs. The experimental results demonstrate that our
proposed approach is superior to the previous methods in
terms of effectiveness and efficiency.

We summarize our contributions as:

• We propose a novel and nontrivial ranking method that
adapts the state-of-the-art IR ranking methods to rank-
ing heterogeneous joined results of database tuples. The
new method addresses an important deficiency in the pre-
vious methods and results in substantial improvement of
the quality of search results.
• We propose two algorithms, skyline sweeping and block

pipeline, to provide efficient query processing mechanism
based on our new ranking method. The key challenge is
that the non-monotonic nature of our ranking function
renders existing top-k query processing techniques inap-
plicable. Our new algorithms are based on several novel
score upper bounding functions. They also have the desir-
able feature of interacting minimally with the databases.
• We conduct comprehensive experiments on large-scale real

databases containing up to ten million tuples. Our exper-
iment results demonstrated that the new ranking method
outperformed alternative approaches, and that our query
processing algorithms delivered superior performance to
previous ones.

Similar to previous work [1, 15, 22], our system is designed
to work on top of a relational DBMS that supports full-text
query and inverted indexes. Our current implementation
supports both Oracle and MySQL. The rationale for choos-
ing this architecture over other alternatives (such as graph-

based method [3, 18, 9]) is that (a) Relational databases
are widely used in enterprises and over the Internet, and
a sizeable percentage of information stored inside RDBMSs
is text; (b) it is easier to exploit many features offered by
RDBMSs, e.g., data storage and recovery, index building
and maintenance, and sophisticated query processing and
optimization capabilities. Nonetheless, we believe our re-
search into the RDBMS-based approach is complementary
to alternative approaches.

The rest of the paper is organized as follows: Section 2
provides an overview of the problem and existing solutions.
Section 3 presents our new ranking method and Section 4
introduces two query processing algorithms optimized for
efficient top-k retrieval. Experimental results are reported
in Section 5. We introduce related work in Section 6 and
Section 7 concludes the paper. A full version of the paper
can be found in [23].

2. PRELIMINARIES

2.1 Problem Overview and Problem Definition
We consider a relational schema R as a set of relations

{R1, R2, . . . , R|R|}. These relations are interconnected at
the schema level via foreign key to primary key references.
We denote Ri → Rj if Ri has a set of foreign key attribute(s)
referencing Rj ’s primary key attribute(s), following the con-
vention in drawing relational schema graphs. For simplicity,
we assume all primary key and foreign key attributes are
made of single attribute, and there is at most one foreign
key to primary key relationship between any two relations.
We do not impose such limitations in our implementation.
A query Q consists of (1) a set of distinct keywords, i.e.,
Q = {w1, w2, . . . , w|Q|}; and (2) a parameter k indicating
that a user is only interested in top-k results ranked by rele-
vance scores associated with each result. Ties can be broken
arbitrarily. A user can also specify AND or OR semantics
for the query, which mandates that a result must or may not
match all the keywords, respectively. The default mode is
the OR semantics to allow more flexible result ranking [15].

A result of a top-k keyword query is a tree, T , of tuples,
such that each leaf node of T contains at least one of the
query keyword, and each pair of adjacent tuples in T is con-
nected via a foreign key to primary key relationship. We
call such an answer tree a joined tuple tree (JTT). The size
of a JTT is the number of tuples (i.e., nodes) in the tree.
Note that we allow two tuples in a JTT to belong to the
same relation. Each JTT belongs to the results produced
by a relational algebra expression — we just replace each
tuple with its relation name and impose a full-text selection
condition on the relation if the tuple is a leaf node. Such
relational algebra expression (or its SQL equivalent) is also
termed as Candidate Network (CN) [16]. Relations in the
CN are also called tuple sets. There are two kinds of tuple
sets: those that are constrained by keyword selection con-
ditions are called non-free tuple sets (denoted as RQ) and
others are called free tuple sets (denoted as R). Every JTT
as an answer to a query has its relevance score, which, in-
tuitively, indicates how relevant the JTT is to the query.
Conceptually, all JTTs of a query will be sorted according
to the descending order of their scores and only those with
top-k highest scores will be returned.

Example 1. In this paper, we use the same running ex-
ample as the previous work [15] (shown in Figure 2).

In the example, R = {P, C, U}.1 Foreign key to primary
key relationships are: C → P and C → U . A user wants to
retrieve top-3 answer to the query “maxtor netvista”.

1Initials of relation names are used as shorthands (except that
we use U to denote Customers).



Complaints

rid prodId custID date comments

c1 p121 c3232 6-30-2002 disk crashed after just one week of moderate use on
an IBM

:::::::

Netvista X41

c2 p131 c3131 7-3-2002 lower-end IBM
:::::::

Netvista caught fire, starting appar-

ently with disk
c3 p131 c3143 8-3-2002 IBM

::::::

Netvista unstable with
::::::

Maxtor HD

Products

rid prodId manufacturer model

p1 p121
::::::

Maxtor D540X

p2 p131 IBM
:::::::

Netvista

p3 p141 Tripplite Smart 700VA

Customers

rid custId name occupation

u1 c3232 John Smith Software Engineer
u2 c3131 Jack Lucas Architect
u3 c3143 John Mayer Student

Figure 2: A Running Example from [15] (Query is “maxtor netvista”; Matches are Underlined)

Some example JTTs include: c3, c3 → p2, c1 → p1,
c2 → p2, and c2 → p2 ← c3. The first JTT belongs to
CN CQ; the next three JTTs belong to CN CQ → P Q; and
the last JTT belongs to CN CQ → P Q ← CQ. Note that
c3 → u3 is not a valid JTT to the query, as the leaf node u3

does not contribute to a match to the query.
A possible answer for this top-3 query may be: c3, c3 →

p2, and c1 → p1. We believe that most users will prefer
c1 → p1 to c2 → p2, because the former complaint is really
about a IBM Netvista equipped with a Maxtor disk, and
that it is not certain whether Product p2 mentioned in the
latter JTT is equipped with a Maxtor hard disk or not.

2.2 Overview of Existing Solutions
We will use the running example to briefly introduce the

basic ideas of existing query processing and ranking meth-
ods.

Given the query keywords, it is easy to find relations that
contain at least one tuple that matches at least one search
keyword, if the system supports full-text query and inverted
index. The matched tuples from those relations forms the
non-free tuple sets, and are usually ordered in descending
order by their IR-style relevance scores. The challenge is
to find inter-connected tuples that collectively form valid
JTTs. Given the schema of the database, we can enumerate
all possible relational algebra expressions (i.e., CNs) such
that each of them might generate an answer to the query.

Example 2. For the query “maxtor netvista”, only P
and C have tuples matching at least one keyword of the
query. The non-free tuple set of C is CQ = [c3, c2, c1], and
the non-free tuple set of P Q is [p1, p2]. The free tuple set of
U is U itself. While CQ → P Q might produce an answer,
CQ → U cannot produce any valid answer (i.e., JTT), as
the joining U tuple won’t contribute any keyword match to
the query. However, note that other larger CNs whose query
expressions contain that of CQ → U (e.g., CQ → U ← CQ)
may still produce an answer.

DISCOVER [16] has proposed a breadth-first CN enu-
meration algorithm that is both sound and complete. The
algorithm is essentially enumerating all subgraphs of size
k that does not violate any pruning rules. The algorithm
varies k from 1 to some search range threshold M . Three
pruning rules are used and they are listed below. We also
show the traces of the CN generation algorithm running on
our example (Table 2).

Rule 1 Prune duplicate CNs.
Rule 2 Prune non-minimal CNs, i.e., CNs containing at

least one leave node which does not contain a query key-
word.

Rule 3 Prune CNs of type: RQ ← S∗ → RQ. The ratio-
nale is that any tuple s ∈ S∗ (S∗ may be a free or non-free

tuple set) which has a foreign key pointing to a tuple in
RQ must point to the same tuple in RQ.

Table 2: Enumerating CNs. P and C Both Match
the Two Query Keywords. We Mark Invalid CNs
in Gray. (We Omit CNs Pruned by Rule 1)

Schema: P Q CQ U

Size CN ID CN Valid? Violates

1 CN1 P Q Y

1 CN2 CQ Y

2 CN3 P Q
← CQ Y

2 CQ
→ U n Rule (2)

3 P Q
← CQ

→ U n Rule (2)

3 P Q
← CQ

→ P Q n Rule (3)

3 CN4 CQ
→ P Q

← CQ Y

3 U ← CQ
→ U n Rules (2, 3)

4
.
.
.

.

.

.
.
.
.

Four valid CNs (CN1 to CN4) are found in the above ex-
ample. Each CN naturally corresponds to a database query.
E.g., CN3 corresponds to the following SQL statement in
Oracle’s syntax:

SELECT *
FROM Products P, Complaints C
WHERE P.prodId = C.prodId

AND (CONTAINS(P.manufacturer , ’maxtor ,netvista ’)>0
OR CONTAINS(P.model , ’maxtor ,netvista ’)>0)

AND CONTAINS(C.comments , ’maxtor ,netvista ’)>0

To find top-k answers to the query, a näıve solution is to
issue an SQL query for each CN and union them to find the
top-k results by their relevance scores. DISCOVER2 [15] in-
troduce two alternative query evaluation strategies: sparse
and global pipeline algorithms, both optimized for stopping
the query execution immediately after the true top-k-th re-
sult can be determined.2 The basic idea is to use an upper
bounding function to bound the scores of potential answers
from each CN (either before execution or in the middle of
its execution). The upper bound score ensures that any po-
tential result from future execution of a CN will not have
a higher score. Thus the algorithm can stop earlier if the
current top-k-th result has a score no smaller than the up-
per bound scores of all CNs. We note that this is the main
optimization technique for other variants of top-k queries
too [11, 25, 5].

2In this paper, we name the system in [15] as DISCOVER2.
A hybrid algorithm that selects either sparse or global pipeline
algorithm for a query based on selectivity estimation is also
proposed in [15]. It is discussed and compared with in Section 5.



The sparse algorithm executes one CN at a time and up-
dates the current top-k results; it uses the above-mentioned
criterion to stop query execution earlier. The global pipeline
algorithm adopts a more aggressive optimization: it does not
execute a CN to its full; instead, at each iteration, it (a) first
selects the most promising CN, i.e., the CN with the highest
upper bound score; (b) admits the next unseen tuple from
one of the CN’s non-free tuple sets and join the new tuple
with all the already seen tuples in all the other non-free tu-
ple sets. As such, the query processing strategy (of a single
CN) is similar to that of ripple join [14].

2.3 Overview of Our Solution
In this paper, we assume that the DBMS can efficiently

locate the matching tuples for each search keyword and form
the non-free tuple sets. We will focus on the following two
sub-problems: (a) how to score a JTT, and (b) how to gen-
erate and order the SQL queries for the CNs of a query,
such that minimal database accesses (also called probes) are
required before top-k results are returned.

The first problem is studied in the next section. The sec-
ond problem is addressed in Section 4.

3. RANKING FUNCTION
Due to the fuzzy nature of keyword queries, retrieval ef-

fectiveness is vital to keyword search on RDBMSs. The
initial attempt was a simple ranking by the size of CNs [1,
16]. DISCOVER2 later proposed a ranking formula based
on the state-of-the-art IR scoring function [15]. More re-
cently, several sophisticated improvements to the ranking
formula in [15] have been suggested [22].

In this section, we first motivate our work by present-
ing observations that reveal several problems in the existing
schemes. We then discuss our solutions to address them.

3.1 Problems with Existing Ranking Functions
The basic idea of the ranking method used in DISCOVER2

[15] (and its variant [22]) is to

1. assign each tuple in the JTT a score using a standard
IR-ranking formula (or its variants); and

2. combine the individual scores together using a score ag-
gregation function, comb(·), to obtain the final score.
Only monotonic aggregation functions, e.g., SUM, have
been considered.3

For example, the IR-style ranking function used in DIS-
COVER2 is adapted from the TF-IDF ranking formula as:4

score(T, Q) =
∑

t∈T

score(t, Q)

score(t, Q) =
∑

w∈t∩Q

1 + ln(1 + ln(tfw(t)))

(1− s) + s · dlt
avdlt

· ln(idfw) ,

where idfw =
NRel(t) + 1

dfw(Rel(t))
,

tfw(t) denotes the number of times a keyword w appears
in a database tuple t, dlt denotes the length of the text
attribute of a tuple t, and avdlt is the average length of
the text attribute in the relation which t belongs to (i.e.,
Rel(t)), NRel(t) denotes the number of tuples in Rel(t), and
dfw(Rel(t)) denotes the number of tuples in Rel(t) that con-
tain keyword w. The score of a JTT is the sum of the local
scores of every tuple in the JTT.

3The aggregation function used in [22] is not monotonic.
However, query processing issues with this non-monotonic
aggregation function are not discussed.
4To obtain the final score of a JTT, score(T, Q) needs to be

further normalized by T ’s size, i.e., multiple another 1
size(T )

.

Table 3: Different Scoring Functions Produces
Different Rankings (ln(idfmaxtor) = ln(idfnetvista) = 1.0
and dlt = avdlt)

CN t ∈ CN tfmaxtor tfnetvista Scoret ScoreT Our Score

c3 → p2
c3 1 1 2.0

}

3.0 1.13
p2 0 1 1.0

c1 → p1
c1 0 1 1.0

}

2.0 0.98
p1 1 0 1.0

c2 → p2
c2 0 1 1.0

}

2.0 0.44
p2 0 1 1.0

We illustrate an inherent problem in the above frame-
work by using the running example in Figure 2. The query
is “maxtor netvista”. Let us consider the CN: CQ → P Q.
If the CN is executed completely, it will produce 3 results.
In Table 3, we list the detailed steps to obtain the scores
(ScoreT ) according to the above-mentioned method. For
example, c3 → p2 consists of two tuples c3 and p2 belong-
ing to C and P , respectively. c3 contains one maxtor and
one netvista, while p2 contains one netvista only. For
simplicity, we do not consider length normalization in the
example (i.e., setting dlt = avdlt for all t), and assume that
the ln(idf) values of both keywords are 1. Therefore, we
can calculate score(c3, Q) as 1 + ln(1 + ln(tfmaxtor(c3)) + 1 +
ln(1 + ln(tfnetvista(c3)) = 2.0, and score(p2, Q) = 1 + ln(1 +
ln(tfnetvista(p2)) = 1.0. The final score for the joined tuple,
score(c3 → p2), is 2.0 + 1.0 = 3.0. Similarly, c1 → p1 and
c2 → p2 both have the same score 2.0 and thus are both
ranked as the second.

However, a careful inspection of the latter two results re-
veals that c1 → p2 in fact matches both search keywords
while c2 → p2 matches only one keyword (netvista) al-
beit twice. We believe that most users will find the former
answer more relevant to the query than the latter one. In
fact, it is not hard to construct an extreme example where
the DISCOVER2’s ranking contradicts human perception
by ranking results that contain a large amount of one search
keyword over results that contain all or most search key-
words but only once.

There are two reasons for the above-mentioned ranking
problem. Firstly, when a user inputs short queries, there
is a strong implicit tendency for the user to prefer answers
matching queries completely to those matching queries par-
tially. We propose a completeness factor in Section 3.3 to
quantify this factor. Secondly, the framework of combining
local IR ranking scores has an inherent side effect of overly
rewarding contributions of the same keyword in different
tuples in the same JTT.

We note that a similar observation and remedy about the
need of non-linear term frequency attenuation was also made
by IR researchers [26]. The difference is that the same ap-
proach is motivated by the semantics of our search problem;
in addition, our problem is more general and a number of
other modifications to the IR ranking function are made
(e.g., inverse document frequencies and document length
normalization for each CN).

3.2 Modelling a Joined Tuple Tree as a Vir-
tual Document

We propose a solution based on the idea of modelling a
JTT as a virtual document. Consequently, the entire results
produced by a CN will be modelled as a document collec-
tion. The rationale is that most of the CNs carry certain
distinct semantics. E.g., CQ → P Q gives all details about
complaints and their related products that are collectively
relevant to the query Q and form integral logical informa-
tion units. In fact, the actual lodgment of a complaint would
contain both product information and the detailed comment



— it was split into multiple tables due to the normalization
requirement imposed by the physical implementation of the
RDBMSs.

A very similar notion of virtual document was proposed
in [30]. Our definition differs from [30] in that ours is query-
specific and dynamic. For example, a customer tuple is only
joined with complains matching the query to form a virtual
document on the run-time, rather than joining with all the
complaints as [30] does.

By adopting such a model, we could naturally compute
the IR-style relevance score without using an esoteric score
aggregation function. More specifically, we assign an IR
ranking score to a JTT T as

scorea(T, Q) =
∑

w∈T∩Q

1 + ln(1 + ln(tfw(T )))

(1− s) + s · dlT
avdlCN∗(T )

· ln(idfw), (1)

where tfw(T ) =
∑

t∈T

tfw(t), idfw =
NCN∗(T ) + 1

dfw(CN∗(T ))
,

CN(T ) denotes the CN which the JTT T belongs to, CN∗(T )
is identical to CN(T ) except that all full-text selection con-
ditions are removed. CN∗(T ) is also written as CN∗ if there
is no ambiguity.

Example 3. Consider the CN CQ → P Q, CN∗ is C → P
(i.e., C 1 P ) in Table 3. NCN∗ = 3. dfmaxtor = 2 and
dfnetvista = 3.

In our proposed method, the contributions of the same
keyword in different relations are first combined and then
attenuated by the term frequency normalization. There-
fore, tfmaxtor(c2 → p2) = 0, tfnetvista(c2 → p2) = 2, while
tfmaxtor(c1 → p1) = 1, tfnetvista(c1 → p1) = 1. Accord-
ing to Equation (1) and omitting the size normalization,
scorea(c2 → p2) = 0.44, while scorea(c1 → p1) = 0.98.
Thus, c1 → p1 is ranked higher than c2 → p2, which agrees
with human judgments.5

There are still two technical issues remaining: how to ob-
tain dfw(CN∗) and NCN∗ and how to obtain avdlCN∗ . No
doubt that computing dfw(CN∗) and NCN∗ exactly will in-
cur prohibitive cost. Therefore, we resort to an approximate

solution: we estimate p = dfw(CN∗)
NCN∗

, such that the idf value

of the term in CN∗ can be approximated as 1
p
. Consider a

CN∗ = R1 1 R2 1 . . . 1 Rl, and denote the percentage of
tuples in Rj that matches at least a keyword w as pw(Rj).
We can derive

dfw(CN∗)

NCN∗ + 1
≈

dfw(CN∗)

NCN∗

= p ≈ 1−Πj(1− pw(Rj))

by assuming that (a) NCN∗ is a large number, and (b) tu-
ples matching keyword w are uniformly and independently
distributed in each relation Rj . In a similar fashion, we
estimate avdlCN∗ as

∑

j
avdlRj . From our preliminary ex-

perimental study [23], these approximations usually have
acceptable accuracy (within 30% relative error) for small
CNs of size up to 3. It is our future work to study more
robust estimation techniques or alternative approaches.

3.3 Other Ranking Factors

Completeness Factor. As motivated in Section 3.1, we
believe that users usually prefer documents matching many
query keywords to those matching only few keywords. To
quantify this factor, we propose to multiply a completeness
factor to the raw IR ranking score. We note that the same

5c3 ← p2 will have score 1.13, which still makes it ranked
as the first result.

intuition has been recognized by IR researchers when study-
ing ranking for short queries [31, 27].

Our proposed completeness factor is derived from the ex-
tended Boolean model [28]. The central idea of the extended
Boolean model is to map each document into a point in a
m-dimensional space [0, 1]m, if there are m keywords in the
query Q. A document d will have a large coordinate value
on a dimension, if it has high relevance to the corresponding
keyword. As we prefer documents containing all the key-
words, the ideal answer should be located at the position
Pideal = [1, . . . , 1

︸ ︷︷ ︸

m

]. In our virtual document model, a JTT is

a document and can be projected into this m-dimensional
space just as a normal document. We thus use the distance
of a document to the ideal position, Pideal, as the complete-
ness value of the JTT. More specifically, we use the Lp dis-
tance and normalize the value into [0, 1]. The completeness
factor, scoreb, is then defined as:

scoreb(T, Q) = 1−

(∑

1≤i≤m(1− T.i)p

m

) 1
p

, (2)

where T.i denotes the normalized term frequency of a JTT
T with respect to keyword wi, i.e.,

T.i =
tfwi (T )

max1≤j≤m tfwj (T )
·

idfwi

max1≤j≤m idfwj

.

In Equation (2), p is a tuning parameter. p can smoothly
switch the completeness factor biased towards the OR se-
mantics to the AND semantics, when p increases from 1.0
to ∞. To see that, consider p → ∞, the completeness fac-
tor will essentially become min1≤i≤m T.i, which essentially
gives 0 score to a result failing to match all the search key-
words. In our experiment, we observed that a p value of 2.0
is already good enough to enforce the AND-semantics for
almost all the queries tested.

Apart from the nice theoretical properties, the ability to
switch between AND and OR semantics is a salient feature
to query processing. It enables a unified framework opti-
mized for top-k query processing for both AND and OR
semantics. In contrast, previous approaches are either op-
timized for the AND semantics [1] or for the OR seman-
tics [15].

Size Normalization Factor. The size of the CN or JTT
is also an important factor. A larger JTT tends to have
more occurrences of keywords. A straightforward normal-
ization by 1

size(CN)
[15] usually penalizes too much for even

moderate-sized CNs.We experimentally found that the fol-
lowing size normalization factor works well in the experi-
ment:

scorec = (1 + s1 − s1 · size(CN)) · (1 + s2 − s2 · size(CNnf ))
(3)

where size(CNnf ) is the number of non-free tuple sets for
the CN. In our experiments, we found that s1 = 0.15 and
s2 = 1

|Q|+1
yielded good retrieval results for most of the

queries.

3.4 The Final Scoring Function
In summary, our ranking method can be conceptually

thought as first merging all the tuples in a JTT into a virtual
document, and then obtaining its IR ranking score (Equa-
tion (1)), the completeness factor score (Equation (2), and
the size normalization factor score (Equation (3)). The final
score of the JTT, score(T, Q), is the product of all the three
scores:

score(T, Q) = scorea(T, Q) · scoreb(T, Q) · scorec(T, Q)



4. Top-k JOIN ALGORITHM
While effectiveness of keyword search is certainly the most

important factor, we believe that the efficiency of query pro-
cessing is also a critical issue. Query execution time will
become prohibitively large for large databases, if the query
processing algorithm is not fully optimized for the ranking
function and top-k queries. In this section, we propose two
efficient query processing algorithms for our newly proposed
ranking function.

4.1 Dealing with Non-monotonic Scoring Func-
tion

The technical challenge of query processing mainly lies
with the non-monotonic scoring function (mainly the scorea(·)
and scoreb(·) functions) used in our ranking method. To the
best of our knowledge, none of the existing top-k query pro-
cessing methods deals with non-monotonic scoring function.
We use the single pipeline algorithm [15] to illustrate the
challenge and motivate our algorithms.
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Figure 3: Query Evaluation Strategies
Example 4. Figure 3(a) illustrates a snapshot of running

the single pipeline algorithm on the CN C → P . Assume
that we have processed the light gray area marked with “I”
(i.e., the rectangle up to (c[i], p[j])). We use the notation
c[i] to denote the i-th tuple in the non-free tuple set CQ in
descending order of their scores.

In the figure, hollow circles denote candidates that we
have examined but did not produce any result, filled circles
denote joined results, and hollow triangles denote candidates
that have not been examined.

Assume that a user asks for top-2 results, and we have
already found two results x and y. The single pipeline algo-
rithm needs to decide whether to continue the query execut-
ing (and check more candidates) or stop and return {x, y}
as the query result. DISCOVER2 needs to bound the max-
imum score that any unseen candidate can achieve. If the
last seen candidate is c[i] → p[j], then the upper bound is
max(score(p[1], c[i + 1], score(p[j + 1], c[1]). This is true be-
cause DISCOVER2 uses a monotonic scoring function (SUM)
and therefore score(p[1], c[i + 1]) ≥ score(p[u], c[v]) (u ≥
1, v ≥ i + 1) and score(p[j + 1], c[1]) ≥ score(p[u], c[v])
(u ≥ j+1, v ≥ 1); the combination of the right-hand sides in
the above two inequalities covers all the unseen candidates
(i.e., those marked as triangles).

We note that, with our new ranking method, the score
of a JTT is not monotonic with respect to the score of
its constituent tuples. For example, consider the last two
JTTs in Table 3. If we assume idfnetvista > idfmaxtor, then
score(c2) = score(c1) but score(p2) > score(p1). However,
we have score(c2 → p2) < score(c1 → p1), even if we do not
impose the penalty from the completeness factor. Conse-
quently, previous algorithms on top-k query processing can-
not be immediately applied, and a näıve approach would
have to produce all the results to find the top-k results.

Our solution, which underlies both of our proposed al-
gorithms, is based on the observation that if we can find
a (preferably tight) monotonic, upper bounding function to
the actual scoring function, we can stop the query process-
ing earlier too. We derive such an upper bounding function
for our ranking function in the following.

Let us denote the a JTT as T , which consists of tuples
t1, . . . , tm. Without loss of generality, we assume every ti is
from a non-free tuple set; otherwise, we just ignore it from
the subsequent formulas. Let sumidf =

∑

w∈CN(T )∩Q
idfw

and watf(ti) =

∑

w∈ti∩Q
(tfw(ti) · idfw)

sumidf
(i.e., pseudo weighted

average tf of tuple ti). Then we have the following lemma.

Lemma 1. scorea(T, Q) (Equation (1)) can be bounded
by a function uscorea(T, Q) = 1

1−s
·min(A, B), where

A = sumidf ·

(

1 + ln

(

1 + ln

(
∑

ti∈T∩Q
watf(ti)

)))

B = sumidf ·
∑

ti∈T∩Q
watf(ti) .

In addition, the bound is tight.

A tight upper bound for the completeness factor (denoted
as uscoreb) can be determined given the keywords matched
in each non-free tuple sets of a CN. The size normalization
factor is also a constant for a given CN. Therefore, we have
the following theorem to upper bound the score of a JTT.

Theorem 1.

score(T, Q) ≤uscore(T, Q), where (4)

uscore(T, Q) =uscorea(T, Q) · uscoreb(CN(T ), Q)

· scorec(CN(T ), Q)

and for a given CN , the upper bound score is monotonic
with respect to watf(ti) (ti ∈ T ).

This result immediately suggests that we should sort all
the tuples (ti) in the non-free tuple set of a CN by the de-
creasing order of their watf(ti) values (rather than their
local IR scores as used in previous work), such that we can
obtain an upper bound score of all the unseen candidates.

Example 5. Continuing the previous example, assume that
we have ordered all tuples t in CQ and P Q according to the
descending order of their watf(t) values. Then the score
of the unseen candidates in the CN: X = CQ → P Q is
bounded by M · uscoreb(X, Q) · scorec(X, Q), where M =
max(uscorea(c[i + 1], p[1]), uscorea(c[1], p[j + 1])).

4.2 Skyline Sweeping Algorithm
Based on Theorem 1, we could modify the existing sin-

gle or global pipeline algorithm such that it will correctly
compute the top-k answers for our new ranking function.
However, single/global pipeline algorithm may incur many
unnecessary join checking. Therefore, we design a new algo-
rithm, skyline sweeping, that is guaranteed not to incur any
unnecessary checking and thus has the minimal number of
accesses to the database.

Example 6. Consider the single pipeline algorithm run-
ning on the example in Figure 3(a). Assume that the algo-
rithm has processed c[1] . . . c[i] on non-free tuple set CQ and
p[1] . . . p[j] on P Q. If the algorithm cannot stop, it will pick
up either c[i + 1] or p[j + 1]. If it picks c[i + 1], j probing
queries will be sent to verify whether c[i+1] joins with p[k],
where 1 ≤ k ≤ j.

It is obvious that some of these j queries might be unnec-
essary, if, e.g., if c[i + 1] joins with p[1] and its real score
is higher than the upper bound scores of the rest of the
candidates, then the other j− 1 probes will be unnecessary.



We propose an algorithm designed to minimize the num-
ber of join checking operations, which typically dominates
the cost of the algorithm. Our intuition is that if there are
two candidates x and y and the upper bound score of x is
higher than that of y, y should not be checked unless x has
been checked. Therefore, we should arrange all the candi-
dates to be checked according to their upper bound scores.
A näıve strategy is to calculate the upper bound scores for
all the candidates, sort them according to the upper bound
scores, and check them one by one according to this opti-
mal order. This will incur excessive amount of unnecessary
work, since not all the candidates need to be checked.

We take the following approach. We define a dominate
relationship among candidates. Denote x.di as the order
(i.e., according to their watf values) of candidate x on the
non-free tuple set di. If x.di ≤ y.di for all non-free tuple set
di, then uscore(x) ≤ uscore(y). This enables us to compute
the upper bound score and check candidates in a lazy fash-
ion: immediately after we check a candidate x, we push all
the other candidates directly dominated by x into a priority
queue by the descending order of their upper bound scores.
It can be shown that the candidates in the queue form a sky-
line [4] and the skyline sweeps across the Cartesian space of
the CN as the algorithm progresses, hence the name of the
algorithm.

Algorithm 1 Skyline Sweeping Algorithm

1: Q.push((

m
︷ ︸︸ ︷

1, 1, . . . , 1), calc uscore((

m
︷ ︸︸ ︷

1, 1, . . . , 1)))
2: top-k ← ∅
3: while top-k[k].score < Q.head().uscore do
4: head← Q.pop max()
5: r ← executeSQL(formQuery(head))
6: if r 6= nil then
7: top-k.insert(r, score(r))
8: for i← 1 to m do
9: t← head.dup()
10: t.i← t.i + 1
11: Q.push(t, calc uscore(t)) {According to Equation (4)}
12: if t.i > 1 then
13: break
14: return top-k

The algorithm is shown in Algorithm 1. A result list,
top-k, contains no more than k results ordered by the de-
scending real scores. The main data structure is a priority
queue, Q, containing all the candidates (which are mapped
to multi-dimensional points) according to the descending or-
der of their upper bound scores. The algorithm also main-
tains the invariant that the candidate at the head of the
priority queue has the highest upper bound score among
all candidates in the CN. The invariant is maintained by
(a) pushing the candidate formed by the top tuple from
all dimensions into the queue (Line 1), and (b) whenever a
candidate is popped from the queue, its adjacent candidates
are pushed into the queue together with their upper bounds
(Lines 8–13). The algorithm stops when the real score of the
current top-k-th result is no smaller than the upper bound
score of the head element of the priority queue; the latter is
exactly the upper bound score of all the unprocessed candi-
dates.

A technical point is that we should avoid inserting the
same candidate multiple times into the queue. Doing dupli-
cate checking is inefficient in terms of time and space. We
adopt a space partitioning method to totally avoid gener-
ating duplicate candidates. This is implemented in Lines
12–13 using the same ideas as [25]. For example, in Fig-
ure 3(b), assume the order of the dimensions is P , C. Both
z′ and z′′ are the adjacent candidates to z, but only z′ will
be pushed into Q when z is examined by the algorithm.

Theorem 2. The skyline sweeping algorithm has the min-
imal number of probing to the database.

4.2.1 Generalizing to Multiple CNs
The skyline sweeping algorithm can be easily generalized

to support more than one CN. The only modification is to
change the initialization step: we just push the top candi-
date of each CN to the priority queue Q.

4.3 Block Pipeline Algorithm
We present another algorithm to further improve the per-

formance of the skyline sweeping algorithm. We observe
that the aggregation function we used is non-monotonic, yet,
in order to stop execution earlier, we have to use a mono-
tonic upper bounding function to bound it. As such, the
upper bounding may be rather loose at places. We illus-
trate this observation using a one dimensional example in
Figure 4. Since the upper bounding function, uscore, must
be monotonic, even if we use more complex functions, it
won’t be able to approximate the concave part of the real
scoring function (score) well for x between 3 to 7.
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Figure 4: Deficiency of Bounding a Non-monotonic
Function Using a Monotonic Function

Large gaps between the upper bound scores and the cor-
responding real scores cause two problems in the skyline
sweeping algorithm: (a) it is harder to stop the execution,
as the upper bound of un-processed candidates may be much
higher than their real score, and consequently higher than
the real score of the top-k-th result, and (b) the order of the
probes is not optimal, as the algorithm will perform large
number of probes and only obtain candidates with rather low
real score, which cannot contribute to the final top-k answer.

In order to address the above problems, we propose a
novel block pipeline algorithm. The central idea of the al-
gorithm is to employ another local non-monotonic upper
bounding function that bounds the real score of JTTs more
accurately. As such, we will check the most promising can-
didates first and thus further reduce the number of probes
to the database.

To illustrate the idea, we define several concepts first.
Consider a non-free tuple set RQ and a query Q = {w1, . . . ,

wm}. We define the signature of a tuple t in RQ as an
ordered sequence of term frequencies for all the query key-
words, i.e., 〈tfw1(t), . . . , tfwm(t)〉. Then, we can partition
each RQ into a number of strata such that all tuples within
the same stratum have the same signature (also called the
signature of the stratum). For a given CN, the partition-
ing of its non-free tuple sets naturally induces a partitioning
of all the join candidates. We call each partition of the
join candidates a block. The signatures of the strata that
forms a block b can be summed up as 〈

∑

ti∈T
tfw1(ti), . . . ,

∑

ti∈T
tfwm(ti)〉, to form the signature of the block (denoted

as sig(b)).
If two candidates in the same block both pass the join

test, they should have similar real scores, as they agree on
the term frequencies of all the query keywords (and thus the
completeness wrt. the query), and the size of the result. This
observation helps to derive a much tighter upper bounding



function, bscore, for any candidate T within the same block
via the block signature:

bscore(b, Q) =
∑

w∈Q∩b

1 + ln(1 + ln(sigw(b))

1− s
· ln(idfw)

· scoreb(b, Q) · scorec(CN(T ), Q) (5)

We note that this new bounding function, albeit being tighter
(as it is no larger than uscore(T, Q) defined in Lemma 1),
cannot be directly used to derive the stopping condition for
top-k query processing algorithms, as it is not monotonic
with respect to any single computable measure of its non-
free tuple sets.

Algorithm 2 Block Pipeline Algorithm

Input:
CN is the set of CNs.

Description:
1: Q← ∅
2: for all cn ∈ CN do
3: b← the first block of cn
4: b.status← USCORE
5: Q.push(b, calc uscore(b)) {According to Equation (4)}
6: while top-k[k].score < Q.head().getScore() do
7: head← Q.pop max()
8: if head.status = USCORE then
9: head.status← BSCORE
10: Q.push(head, calc bscore(head)) {based on Eq. (5)}
11: for all the adjacent blocks b′ to head enumerated in a

non-redundant way do
12: b′.status← USCORE
13: Q.push(b′, calc uscore(b′))
14: else if head.status = BSCORE then
15: R← executeSQL(formQuery(b))
16: for all result t ∈ R do
17: t.status← SCORE
18: Q.push(r, calc score(head)) {compute the real score}
19: else
20: Insert head into top-k
21: return top-k

We introduce a solution using lazy block calculation and
integrate it with the monotonic upper bounding score func-
tion (Equation (4)) seamlessly. Algorithm 2 describes the
pseudo-code of the block pipeline algorithm. Intuitively,
the algorithm is “unwilling” to issue a database probing
query if the current top-ranked item in the priority queue
is only associated with its upper bound score (uscore), as
the score might not be close enough to its real score. Our
non-monotonic bounding function plays its role here by re-
inserting the item back to the priority queue, but with its
bscore (Lines 9–10).

Theorem 3. The block pipeline algorithm will never be
worse than the skyline sweeping algorithm in terms of num-
ber of probes to the database. When the score aggregation
function is non-monotonic, there exists a database instance
such that the block pipeline algorithm will check fewer can-
didates than the skyline sweeping algorithm.

Example 7. Consider the example in Figure 3(a) and as-
sume that we have only i + 1 tuples in the non-free tuple
set CQ and j + 1 tuples in P Q. Further assume that both
c[1], . . . , c[i] and p[1] . . . , p[j] are tuples matching the same
keyword, w1, once (and thus form two strata), and both
c[i + 1] and p[j + 1] match w2 once (and form another two
strata). Assume the idf values of w1 is higher than that of
w2, and hence the strata containing matches of w1 is ranked
above those matching w2. This gives us four blocks. E.g.,
block I is [c[1] . . . c[i]]× [p[1] . . . p[j]], and its block signature
is 〈2, 0〉. Similarly, block II and III have the same block
signature as 〈1, 1〉.

We assume ln(idfw1) = 1.1, ln(idfw2) = 1.0, the com-
pleteness factor, scoreb, is 0.5, the size normalization fac-
tor, scorec, is 1.0, and s is 0.2. We calculate the bscores
and uscores for each block in the following table:

Block bscore uscore

I 1.05 2.74
II 2.63 2.63
III 2.63 2.63
IV 0.95 2.50

The skyline sweeping algorithm will inspect tuples in Block
I first, then Block II and III, as tuples in Block I all have
higher uscores than those in Block II or III. However, all an-
swers in Block I, if any, will have rather low scores (no higher
than 1.05), and are not likely to become top-k results.

In contrast, in the block pipeline algorithm, even though
Block I is pushed into the queue first (Lines 3–5), it is re-
inserted with its bscore (calculated by calc bscore) as 1.05.
Blocks II and III will go through the same process, but they
will both be associated with a bscore of 2.63. Thus they
will both be checked against the database before any can-
didate in Block I. Furthermore, if k results are found after
evaluating candidates in Blocks II and III and the real score
of the top-k-th result is higher than 1.05, the block pipeline
algorithm can terminate immediately.

4.4 Optimizations and Discussions

4.4.1 Using Range Parametric Queries
Since our system is external to the RDBMS kernel, exe-

cuting an SQL query and fetching its results require inter-
process communications, and suffer from DBMS internal
overheads. If the database is large and the query is com-
plex, a large number of probing queries will be sent to the
DBMS. In addition, join selectivity is usually very low and
most of such probing queries will return empty result set.
Therefore, there will be substantial overhead if we issue a
parametric query to check each candidate.

In our implementation, we adopt the optimization of group-
ing candidates into ranges and issue a single parametric
query to the database. The selection condition can be rewrit-
ten as either a collection of primary key selections obtained
from the inverted index combined using or or creating a
temporary table and using a range selection condition on
the row number. Both global pipeline and block pipeline
algorithm can benefit from this optimization.

Another benefit of this optimization is that RDBMS might
answer such query more efficiently (e.g., by using indexes or
avoiding re-accessing/scanning tables multiple times)

4.4.2 Instance Optimality
Instance optimality is a notion proposed by Fagin et al. [11]

to assert that the cost of an algorithm is bounded by a con-
stant factor of any other correct algorithms on all database
instances. This notation is widely studied and adopted in
most top-k query processing work.

We note that although the skyline sweeping algorithm can
be shown to be instance-optimal, this notion of optimality
is not helpful in our problem setting. Consider a single CN.
If the skyline sweeping algorithm accesses di tuples from the
each of the m non-free tuple sets, and let d = max1≤i≤m di,
we can show that any other algorithm must at least access at
least d tuples. Therefore, the total cost in terms of tuple ac-
cesses of the skyline sweep algorithm can be bounded by an
m-factor of other algorithms. However, the dominant cost in
our problem setting is the cost of probing the database. For
a large CN with a number of free and non-free tuple sets,
each probe is a complex query involving joins of multiple
relations. In contrast, sequentially accessing tuples in the



non-free tuple sets is practically an inexpensive in-memory
operation. Consider the sketch of proof of the instance-
optimality above, it is possible that the skyline sweeping
algorithm has to probe the database O(dm) times, while an-
other algorithm only needs to probe the database for O(d)
times. As a result, the cost ratio cannot be bounded by a
constant factor.

It is our future work to consider an appropriate notion
of optimality using a cost model based on the number of
database probes.

5. EXPERIMENTS
In order to evaluate the effectiveness and the efficiency

of proposed methods, we have conducted extensive experi-
ments on large-scale real datasets under a number of config-
urations.

The datasets we used include: the Internet Movie Database
(IMDB) 6, DBLP data (DBLP) [7], and Mondial 7. All
are real datasets. IMDB and DBLP are much larger than
Mondial and results on the Mondial dataset are similar to
those on IMDB and DBLP, so we will omit Mondial in the
rest of the discussion8. For the IMDB dataset, we converted
a subset of its raw text files into relational tables. Schema
and statistics of the two datasets can be found in Tables 4(a)
and 4(b).

We manually picked a large number of queries for each
dataset. We tried to include a wide variety of keywords and
their combinations in the query sets, e.g., selectivity of key-
words, size of the most relevant answers, number of potential
relevant answers, etc. We focus on a subset of the queries
here. There are 22 queries for the IMDB dataset (IQ1 to
IQ22) with query length ranging from 2 to 3. There are 18
queries for the DBLP dataset (DQ1 to DQ18) with query
length ranging from 2 to 4.

Table 4: Dataset Statistics (Text Attributes Are
Underlined)

(a) IMDB Dataset

Relation Schema # Tuples

movies(mID, name) 833,512
direct(mID, dID) 561,173
directors(dID, name) 121,928
actressplay(asID, charactor, mID) 2,262,149
actresses(asID, name) 445,020
actorplay(atID, charactor, mID) 4,244,600
actors(atID, name) 741,449
genres(mID, genre) 629,195

Total Number of Tuples 9,839,026

(b) DBLP Dataset

Relation Schema # Tuples

InProceeding(InProceedingId, Title,

Pages, URL, ProceedingId)

212,273

Person(PersonId, Name) 174,709
RelationPersonInProceeding(InProceedingId,

PersonId)
491,777

Proceeding(ProceedingId, Title, EditorId,
PublisherId, SeriesId, Year, Url)

3,007

Publisher(PublisherId, Name) 86
Series(SeriesId, Title, Url) 24

Total Number of Tuples 881,867

6
http://www.imdb.com/interfaces

7
http://www.dbis.informatik.uni-goettingen.de/Mondial/

8Results on Mondial dataset can be found in the full paper [23].

The databases used are the Linux version of Oracle 10g
Express and MySQL v5.0.18, both with their default config-
urations. Indexes were built on all primary key and foreign
key attributes. For most of the queries, similar results were
obtained on the two systems and thus we focus on the results
on Oracle. We implemented the Sparse and global pipeline
(GP) algorithms, and our skyline sweep (SS) and block
pipeline algorithms (BP). Note that we can lower bound the
execution time of the Hybrid algorithm [15] as the mini-
mum of the running times of Sparse and GP. We improved
the original GP algorithm by using the range parametric
query optimization (Section 4.4.1). Without this optimiza-
tion, the original GP algorithm would have sent an excessive
number of queries to the database and incurred significant
overhead. Unless specified explicitly, all algorithms ran us-
ing OR semantics.

All algorithms were implemented using JDK 1.5 and JDBC.
All experiments were run on a PC with a 1.8GHz CPU
and 512M memory running Debian GNU/Linux 3.1. The
database server and the client were run on the same PC. All
algorithms were run in warm buffer mode and Java JIT was
enabled.

To measure the effectiveness, we adopt two metrics used
in the previous study [22]: (a) number of top-1 answers that
are relevant (#Rel), and (b) reciprocal rank (R-Rank).
In order to select the relevant answer, we ran all the al-
gorithms for the same query and merged their top-20 re-
sults. Then we manually judged and picked the relevant
answer(s) for each query. The relevant answer(s) must sat-
isfy two conditions: it must match all the search keyword
and its size must be the smallest. For example, the manually
marked relevant answer for the query “nikos clique” is a
paper named “Constraint-Based Algorithms for Computing
Clique Intersection Joins” written by “Nikos Mamoulis”.
When measuring the reciprocal rank, we search for the first
relevant answer in the top-20 results. In case none of the top-
20 answers is relevant, we upper bound its R-Rank value by

1
#uniq score+1

, where #uniq score is the number of unique

scores in its top-20 results. We did not use the recall and
subsequent MAP measures as we found the recall values are
not comparable across different top-k queries.9 To measure
efficiency, we measure the average elapsed times of the al-
gorithms over several runs.

5.1 Effectiveness
We show the reciprocal ranks of [15], [22], and our pro-

posed method on the DBLP dataset in Table 5. For [22], we
used all four normalizations, but not the phrase-based rank-
ing. For our ranking method, we vary the tuning parameter
p from 1.0 to 2.0, thus representing the change of preference
from the OR-semantics to the AND-semantics. The results
show that our R-Rank is higher than other methods, as our
method returns the relevant result as the top-1 result for
16 out of the 18 DBLP queries when p = 1.0. While [15]
and [22] methods have a tie in #Rel measure, [22] actually
performs better than [15], because it often returns relevant
answer(s) within the top-5 results, while [15] method often
fails to find any relevant answer in the top-20 results. This
is reflected in their R-Rank measures. Similar results were
obtained on the IMDB dataset too.

Manual inspection of the top-20 answers returned by the
algorithms reveals some interesting “features” of the ranking
methods. Due to the inherent bias in [15]’s ranking aggrega-
tion method and extremely harsh penalty on the CN sizes,
it tends to return results that have only partial matches to

9For example, it is not hard to construct a query that will return
a large number (N) of papers written by a particular author and
published in a particular conference. Even the ideal algorithm
can only achieve a recall of k

N
, which could be arbitrarily small.



the query or small-sized results. [22] proposed using a soft
CN size normalization and a non-linear rank aggregation
method. Consequently, it tends to return large-sized re-
sults that match most of the keywords. Our method seems
to strike a good balance between the completeness of the
matches and size of the results. For instance, we show the
top-1 results returned by all ranking methods for DQ1 on
DBLP in Table 6.

Table 5: Effectiveness on the DBLP Dataset Based
on Top-20 Results

[15] [22] p = 1.0 p = 1.4 p = 2.0

#Rel 2 2 16 16 18
R-Rank ≤ 0.243 ≤ 0.333 0.926 0.935 1

Table 7: p’s Impact on R-Rank

Dataset QueryID p = 1 p = 1.4 p = 2.0

DBLP DQ9 1/3 1/2 1
DBLP DQ17 1/3 1/3 1
IMDB IQ10 1 1 1
IMDB IQ17 1/3 1/3 1
IMDB IQ19 1/2 1 1
IMDB IQ21 1/2 1/2 1/2

We also conducted experiments by varying p from 1.0 to
2.0. This should inject more AND semantics into our rank-
ing method. As the default p = 1.0 already returns relevant
results for most queries, we only list queries whose result
qualities (R-Rank values) are affected by the varying p in
Table 7. With an increasing value of p, the R-Rank values
for most such queries increase. This is because we start to
penalize more on results that does not match all the key-
words. For example, when p = 1.0, the relevant answer for
DQ9 is only ranked as the third. The top-1 answer matches
all but one keyword. When p increases to 1.4, the relevant
answer moves up to the second. Finally, when p reaches 2.0,
it is successfully ranked as the top answer.

5.2 Efficiency
We show running time for all queries on the DBLP and

IMDB datasets in Figures 5(a) to 5(d) for k = 10 and k = 1.
Note that the y-axis is in logarithm scale. We can make the
following observations:

• BP is usually the fastest algorithm on both DBLP and
IMDB datasets. The speedup is most substantial on hard
queries, e.g., DQ7, DQ13, and DQ17. BP can achieve up
to two orders of magnitude speedup against the better
algorithm of Sparse and GP (thus the lower bound of Hy-
brid algorithm). BP can return top-10 answers within 2
seconds for 89% of the queries on the DBLP dataset and
77% queries on the IMDB dataset which is 10 times larger.
• SS usually outperforms Sparse and GP, with only a few

losses to Sparse, even for k = 20. When k is small, SS
shows more performance advantages. SS can achieve up
to one order of magnitude speedup against the better al-
gorithm of Sparse and GP.
• There is no sure winner between Sparse and GP. In gen-

eral, while Sparse might lose for small k values or easy
queries, its performance does not deteriorate too much
for large k or hard queries.
• All algorithms are more responsive for smaller k values.

We note that since our ranking function usually returns
the relevant answer as the top-1 answer, the execution
time for top-1 answer is an important indicator of system
performance from the user’s perspective.

We plotted the execution times with different k values for
all queries. We selected three representative figures from
the DBLP query set and show the results in Figures 5(e)

to 5(g). In general, the costs of all algorithms increase with
the increasing k value, as more candidate answers need to
be found and compared. Some of the queries are amenable
to top-k optimized algorithms (e.g., DQ11), where GP, SS
and BP all perform significantly better than Sparse. There
are also queries where GP performs pretty well for small
k values but jumps to a large running cost afterwards (e.g.,
DQ15). In contrast, although both SS and BP also exhibit a
similar increase in query time, they still outperform Sparse.
There are also hard queries where neither Sparse nor GP
runs well (e.g., DQ13). SS still delivers an acceptable per-
formance for some small to medium k values, and BP can
still maintain outstanding performance.

We also run all the algorithm using the AND semantics
for top-1 results on DBLP. All algorithms can find the rele-
vant results as the top-1 results, so we focus on the execution
time, which is plot in Figure 5(h). It is obvious that similar
conclusions can be drawn about the relative performance of
the algorithms.

The fundamental reason of superior performances of SS
and BP algorithms is that they avoid many unnecessary
database probes. To verify this, we recorded the number of
candidates each algorithm has checked against the database
(QSize) and the number of queries sent to the database
(QNum) and plot them in Figures 5(i) and 5(j), respectively.
Specifically, we choose SS as the baseline algorithm (since
it has the minimal QSize without utilizing a second upper
bounding function) and calculate the ratio of probes of other
algorithms over this baseline number. We can observe from
Figure 5(i) that Sparse usually has to examine many can-
didates, as it cannot stop earlier until the complete query
of a CN has been executed. GP is only slightly better than
Sparse, partly because we specify a rather large k value,
hence GP’s performance drops quickly. BP algorithm makes
use of additional upper bounding functions and delays prob-
ing the database as much as possible. As a result, it usually
examines fewer candidates than SS. In terms of query num-
bers, as expected, Sparse always sends a small number of
queries. Interestingly, SS sends the largest number of queries
in all the cases compared to GP and BP. The reason is that
both GP and BP can examine a number of candidates to-
gether in one single query using our range parametric query
optimization; in contrast, SS exams candidates in an ad-hoc
manner and such optimization cannot be applied.

We broke down the elapsed time for all the four algo-
rithms. We summed up time used by the RDBMS to pro-
cess queries and divided them over the total elapsed times
of the queries. The result for the DBLP dataset is shown
in Figure 5(k). Overall speaking, the dominant cost for all
algorithms is the DBMS query processing time. GP’s cost
is mostly dominated by DBMS query processing time, as
GP only needs to keep a few data structures (the current
tuple in each of the non-free tuple set of the CNs) and does
not have expensive calculation and data structure mainte-
nance overhead. The DBMS query time ratios of Sparse and
SS come as second for different reasons. Sparse’s overhead
mainly comes from the need to calculate the IR scores for all
results returned by its large-sized queries. SS needs to spend
time on maintaining the priority queue. Overall speaking,
the BP algorithm is still dominated by DBMS query process-
ing time (averaged about 71%), but to the least extent. This
is because, intuitively, BP spends more time in its internal
calculation (of upper bounding scores) to avoid expensive
database probes.

6. RELATED WORKS

Keyword Search Systems. There has been several exist-
ing work supporting free-style keyword search on database



Table 6: Top-1 Result for DQ1 (nikos clique) on DBLP

Method Size Top-1 Result

[15] 1 InProceeding:
:::::

Clique-to-
:::::

Clique Distance Computation Using a Specific Architecture

[22] 6 Person:
::::

Nikos Karatzas←Proceeding→ Series←Proceeding
InProceeding: Maximum

:::::

Clique Transversals

InProceeding: On . . .
:::::

Clique-Width and . . .
Ours 3 Person:

::::

Nikos
::::::::

Mamoulis ← RPI → InProceeding: Constraint-Based Algorithms for Computing
:::::

Clique Intersection Joins

contents. Early work includes [12, 13] where entities “near”
the occurrence of search keywords are ranked and returned.
The idea has been extended to find virtual entities consist-
ing of inter-connected tuples that collectively contain all the
keywords [1, 16, 3, 18]. Recent work focuses on brining more
effective ranking from IR literatures and its related query
processing methods [15, 22]. Specifically, [22] improves the
ranking method in [15] by the following normalizations: tu-
ple tree size normalization, refined document length nor-
malization, document frequency normalization, and inter-
document weight normalization. Some advanced features,
such as schema term awareness and phrase-based ranking,
are also proposed. Our work can be viewed as a further
improvement along the line of enhancing the retrieval effec-
tiveness. [30] is the first to propose a materialization-based
approach to answer keyword queries on top of RDBMSs.
Most recently, keyword search has been studied under a few
generalized contexts too [29, 21].

Top-k Query Processing. Top-k query processing has
also been extensively studied in the literature. Fagin et
al.. [10, 11] introduced a set of novel algorithms, assum-
ing sorted access and/or random access of the objects is
available on each attribute. A number of improvements
have been suggested after Fagin’s seminal work, for example,
minimizing computational cost [24], and minimizing the IO
cost [2]. Some other approaches to attack the problem in-
clude building indexes [32] or building materialized views [8].

A generalized version of Fagin’s top-K problem is to con-
sider complex relationships among objects. [25] studied find-
ing top-K joined objects and proposed a J∗ algorithm. A
number of improvements were suggested by Iiyas et al. [17].
Chang et al. considered more general predicates, and an op-
timal algorithm, MPro, was proposed based on the necessary
probing principle [5]. However, all the above work assumes
a monotonic aggregation function to rank the objects, while
our ranking function is non-monotonic and existing methods
cannot be immediately applied.

7. CONCLUSIONS
In this paper, we studied supporting effective and efficient

top-k keyword queries over relational databases. We pro-
posed a new ranking method that adapts the state-of-the-
art IR ranking function and principles into ranking trees of
joined database tuples. Our ranking method also has several
salient features over existing ones. We also studied query
processing method tailored for our non-monotonic ranking
functions. Two algorithms were proposed that aggressively
minimize database probes. We have conducted extensive
experiments on large-scale real databases. The experimen-
tal results confirmed that our ranking method could achieve
high precision with high efficiency to scale to databases with
tens of millions of tuples.
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