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Abstract

Skyline has been proposed as an impor-
tant operator for multi-criteria decision mak-
ing, data mining and visualization, and user-
preference queries. In this paper, we con-
sider the problem of efficiently computing a
Skycube, which consists of skylines of all
possible non-empty subsets of a given set of
dimensions. While existing skyline computa-
tion algorithms can be immediately extended
to computing each skyline query indepen-
dently, such “shared-nothing” algorithms are
inefficient. We develop several computation
sharing strategies based on effectively iden-
tifying the computation dependencies among
multiple related skyline queries. Based on
these sharing strategies, two novel algorithms,
Bottom-Up and Top-Down algorithms, are
proposed to compute Skycube efficiently. Fi-
nally, our extensive performance evaluations
confirm the effectiveness of the sharing strate-
gies. It is shown that new algorithms signifi-
cantly outperform the näıve ones.

1 Introduction

The skyline operator and its computation have at-
tracted much attention recently. This is mainly due to
the importance of skyline results in many applications,
such as multi-criteria decision making [6], data mining
and visualization [13], and user-preference queries [12].
A skyline query over d dimensions selects the points
that are not dominated by any other points restricted
to those dimensions. Consider a typical skyline query
example as follows: a real estate company has a list
of properties online, each with price, dist (distance to
city), age, and bedroom number attributes. Assume
there are five properties as listed in Figure 1(a). A
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user, who is sensitive to price and dist, issues a skyline
query on price and dist attributes. The result will be
{P3, P5, P2} as shown in Figure 1(b). P4, for example,
is not in the skyline result because it is farther away
from city compared with P3 and its price is higher
than P3 too; that is, P4 is dominated by P3. The
skyline query can greatly help user to narrow down
the search range. Given the importance of skyline
queries, many efficient skyline computation algorithms
have been proposed recently [6, 21, 14, 8, 17, 16].

price dist age bedroom num

P1 4 3 2 2

P2 5 1 1 2

P3 1 4 4 1

P4 3 5 5 1

P5 2 2 3 1
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Figure 1: A Running Example

However, it is not uncommon that different users
have different preferences. For example, another
user might choose to use a combination of price and
age to issue a skyline query. The result will be
{P3, P5, P1, P2}, as shown in Figure 1(c). In such
a client-server environment, multiple skyline queries
with different dimension subsets could be issued simul-
taneously. In general, there could be 2d − 1 different
skyline queries (i.e., skyline queries over any of the
non-empty subsets of a d-dimensional set) for a rela-
tion with d dimensions; each of the queries will return
different results.

Although previous skyline computation algorithms
can be used to compute each of the skyline queries
individually, it is likely that the response time and the
throughput of such a system might not be satisfactory.
Therefore, it is beneficial to share the computation of
multiple related skyline queries.

These observations motivate us to study the multi-
ple skyline query processing problem. In particular, we
propose to use a complete precomputation-based ap-



proach for answering multiple related skyline queries,
in order to achieve minimal response time. The basic
idea is to precompute the results of all possible skyline
queries for a given dataset; as a result, no computa-
tion is needed to answer any of the queries. Such an
approach is reminiscent of the precomputed data cube
approach in data warehouse environment. Therefore,
we propose a novel concept named Skycube, which is
a union of skyline results of all the non-empty subsets
of d-dimensional set. The problem of efficient comput-
ing the Skycube will be the focus of this paper.

Both the concept of Skycube and its efficient con-
struction algorithms have many applications. By phys-
ically materializing the entire or a selected part of
the Skycube according to the query workload, we
can achieve minimal query response time and maxi-
mal system throughput. On the other hand, even if
no precomputation is done, algorithms to efficiently
construct the Skycube can be easily extended to com-
pute multiple related skyline queries on-the-fly. In ad-
dition, materializing the whole or part of the Skycube

enables novel analytical queries, such as “drill down”
and “roll up”. For example, users primarily concerning
with bedroom number will get result {P3, P4, P5}; they
can “drill down” to a superset of the current skyline
dimensions to find more interesting features of those
properties, such as, P3 will be the best choice if their
secondary concern is price, while P5 will be the choice
if they in turn concern dist. Such additional informa-
tion is helpful for the users to make the final decisions.

We note that computing a Skycube over d dimen-
sions is obviously more challenging than computing
the skyline over the same or any subset of the dimen-
sions, as the Skycube consists of 2d − 1 skyline re-
sults. Näıvely computing the 2d − 1 skyline results
independently can be extremely inefficient. Our exper-
iments have shown that such a näıve algorithm can be
two orders of magnitudes slower than our proposed al-
gorithms for the 500k, 10-dimensional anti-correlated
dataset. An immediate intuition is to share computa-
tion among the computing of individual skyline results,
which is the case for most data cube computation al-
gorithms [20]. However, we note that computing a
Skycube is more challenging than computing a data
cube in that:
• In data cube computation, the group-by of a set

of dimensions (e.g., AB) can be computed by the
group-by of a superset of dimensions (e.g., ABC).
However, this does not hold for Skycube compu-
tation in general. For example, for the running
example dataset, the skyline result on price and
bedroom number is {P3}; however, the skyline re-
sult of bedroom number will be {P3, P4, P5}. This
illustrates that non-skyline points (e.g., P4, P5) shar-
ing the same values with a skyline point (e.g., P3)
on a subspace can appear as skyline points in that
subspace.

• Skyline computation is more computationally ex-
pensive than performing a group-by (which is essen-
tially a sorting); the time complexity of the former is

O(n logd−2 n) (for d ≥ 4)) while that of the latter is

of O(n log n) only. Besides, existing skyline compu-
tation algorithms are intrinsically more complicated
than sorting algorithms. Therefore, it is both im-
portant and non-trivial to find good computation
sharing strategies.
In this paper, we propose two algorithms to effi-

ciently compute a Skycube, or in general, multiple re-
lated skyline results, by sharing as much computation
as possible. The first algorithm works in a breadth-
first and bottom-up manner, while the other works in a
depth-first and top-down manner. In both algorithms,
we also propose several important optimizations and
special measures to deal with the special cases of du-
plicate values. We show in the experiments that the
newly proposed algorithms outperform näıve ones sig-
nificantly.

Our contributions can be summarized as follows:
• We propose the concept of the Skycube, which is a

union of skyline results over all non-empty subsets of
the d dimensions. We also propose to extend SQL
with a SKYCUBE BY keyword. Answering multiple
skyline queries using precomputed Skycube can be
thought of as a complementary approach to existing
approaches where each skyline query is computed
individually and on-the-fly.

• We investigate efficient implementation of the
Skycube computation. Two algorithms of different
styles are developed. They make use of several im-
portant computation sharing principles, which are
unique in the context of skyline cube computation.
We also use several useful optimizations to deal with
the hard case where there are points with duplicate
values on some dimensions.

• Although the maximization of sharing computation
among skyline calculation is a hard problem, we ef-
fectively identify several sharing strategies, as listed
in Table 1. They are useful to other potential
Skycube computation algorithms too.

• We perform extensive experimental evaluation of the
proposed algorithms. The new algorithms outper-
form the näıve ones by orders of magnitude.

Table 1: Sharing Strategies for Skycube Computation

Algorithm Sharing Strategy Section

BUS share-results, share-sorting 4
TDS share-partition-and-merging,

share-parent
5

The rest of the paper is organized as follows: Section
2 gives the problem definition and background infor-
mation of skyline and data cube computation. Sec-
tion 3 presents the related work. Section 4 describes
a breath-first and bottom-up algorithm to compute a
Skycube, while Section 5 introduces a depth-first and
top-down algorithm. We present experimental study
in Section 6. Section 7 concludes the paper.

2 Preliminaries

Skyline Query

Given a d-dimensional dataset S, we use ai (1 ≤ i ≤ d)
to represent each dimension. D is the dimension set



consisting of all the d dimensions, D = {a1, ..., ad}.
Let p and q be two data points in S, we denote the
values of p and q on dimension ai as p(ai) and q(ai).
For any dimension set U , where U ⊆ D, p dominates
q if ∀ai ∈ U , p(ai) ≤ q(ai) and ∃aj ∈ U , p(aj) < q(aj)
(1 ≤ i, j ≤ d), denoted as (p ≺ q)U . The skyline
query on U returns all data points that are not domi-
nated by any other points on U . The result is denoted
as SKYU(S). The data point in the skyline result is
called skyline point. See the running example in Fig-
ure 2, SKYAB(S) = {P2, P3, P5}.

A B C E

P1 4 3 2 2

P2 5 1 1 2

P3 1 4 4 1

P4 3 5 5 1

P5 2 2 3 1

Cuboid Skyline

ABCE {P1, P2, P3, P5}

ABC {P1, P2, P3, P5}

ABE {P2, P3, P5}

ACE {P1, P2, P3, P5}

BCE {P2, P5}

AB {P2, P3, P5}

AC {P1, P2, P3, P5}

AE {P3}

BC {P2}

BE {P2, P5}

CE {P2, P5}

A {P3}

B {P2}

C {P2}

E {P3, P4, P5}
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Figure 2: The Skycube of the Running Example

[6] extended SQL’s SELECT statement by an optional
SKYLINE OF clause, such that users can specify the
skyline dimensions as well as the criteria used to find
extreme points on each such dimension (i.e., using one
of MIN, MAX and DIFF keywords). For example, the
example query expressed in Figure 1(b) can be written
as:
SELECT * FROM Property

SKYLINE OF price MIN, dist MIN

Skycube

Over a set S of d-dimensional points (on dimension
set D), there are 2d − 1 possible skyline queries on
different dimension sets. We term the set of all possible
skyline query results as Skycube. In the Skycube,
each SKYU(S) is called cuboid U .

The structure of the Skycube can be visualized in a
lattice structure, similar to that of the data cube in the
data warehouse (see the sample in Figure 2(b)). From
the bottom to the top of the Skycube, we number
each level of the cuboid increasingly. For two cuboids
U and V in the Skycube, if U ⊂ V , we call V (U)
ancestor (descendant) cuboid. If their levels differ by
one, we also call V (U) parent (child) cuboid.

We proposed to further extend SQL by incorporat-
ing the SKYCUBE BY keyword, in a similar spirit of the
original CUBE BY keyword proposal in [11]. For ex-
ample, the Skycube of the example property dataset
shown in Figure 1(a) can be written as:

SELECT * FROM Property

SKYCUBE BY price MIN, distance_to_city MIN,

age MIN, bedroom_number MAX

This query will compute the example Skycube as
shown in Figure 2(c).

There are several advantages of the proposed
SKYCUBE BY keyword and the Skycube operator.
First, users can calculate the whole Skycube in one
concise and semantic-clear query, instead of issuing
2d − 1 skyline queries. Second, they provide more
optimization opportunities. As will be discussed in
the rest of this paper, there are much more efficient
algorithms to compute the Skycube (or, in general,
multiple related skyline results) than computing each
skyline individually.

Therefore, the rest of the paper focus on how to
compute multiple skyline queries efficiently. The focus
is on how to share computation of related cuboids as
much as possible.

Distinct Value Condition

We observe that, in general, over a set S of data points
on dimension set D, for two dimension sets U and V
(U , V ⊆ D), where U ⊂ V , there is no containment re-
lationship between SKYU(S) and SKYV(S). Consider
the example in Figure 2, SKYE(S) is {P3, P4, P5};
however, SKYAE(S) is {P3}. This challenges us to
develop the algorithms to compute multiple skyline
queries efficiently. Specifically, Theorem 1 shows the
relation between SKYU(S) and SKYV(S).

Theorem 1 Given a set S of data points on dimen-
sion set D, U and V are two sub dimension sets (U ,
V ⊆ D), where U ⊂ V. On dimension set V, each
skyline point q in SKYU(S) is

• either dominated by another skyline point p in
SKYU(S);

• or a skyline point in SKYV(S);

Proof : For each skyline point q in SKYU(S), if there is
another data point p such that p(ai) = q(ai) (∀ai ∈ U),
p may dominate q on dimension set V if p dominates
q on the dimension set V − U . Obviously, p is a sky-
line point in SKYU(S) as well. Otherwise, if such a
skyline point p does not exist, q is a skyline point in
SKYV(S) because no other data points can dominate
it on dimension set V . �

Nonetheless, we identify there is a special condi-
tion, termed as distinct value condition, such that
the containment relationship between parent and child
cuboids holds, as stated in the following Corollary 1.

Corollary 1 (Distinct Value Condition) Given a
set S of data points on dimension set D. For any two
data points p and q, if p(ai) 6= q(ai) (∀ai ∈ D), then
for two sub dimension sets U and V, (U , V ⊆ D),
where U ⊂ V, SKYU(S) ⊆ SKYV(S).

In the rest of paper, we assume that user’s prefer-
ence on each dimension is fixed and we use MIN for all
dimensions in the skyline computation. The following
table summarizes the notations used in this paper.



Notation Definition

S the dataset
n the number of data points in S

p, q data point
D the dimension set
d the number of dimensions in D
ai one dimension (1 ≤ i ≤ d)
p(ai) value of p on dimension ai

U ,V dimension set, U , V ⊆ D
(p ≺ q)U p dominates q on U
SKYU (S) skyline of U in S

3 Related Work

3.1 Data Cube

The concept of data cube was first proposed in [11].
Efficiently computing data cubes has been an active
research topic. A number of techniques have been
reported in the literature [11, 1, 19, 23, 5, 22, 9].
Specifically, several heuristics for computing multiple
group-bys (i.e., cuboids) efficiently have been identi-
fied, such as smallest-parent, cache-results, amortized-
scans, share-sorts, and share-partitions [20].

3.2 Skyline Computation

The problem of finding skyline is a typical type of the
multi-objective query processing [2]. It is first inves-

tigated in [15] where an O(n logd−2 n) time algorithm
for d > 4 and an O(n log n) time algorithm for d = 2, 3
are proposed. An expected linear running time algo-
rithm is presented in [4] if the data distribution on
each dimension is independent. [4] also estimates that
the expected number of skyline points under the inde-
pendent distribution assumption is O(lnd−1 n). In [7],

the estimation is improved to Θ((lnd−1 n)/(d − 1)!).
Research in skyline computation in the context of

database can be classified into three categories: nested-
loop-based, divide-and-conquer-based, and index-based.

Block-nested-loop (BNL) algorithm [6] and Sort-
filter-skyline (SFS) [8] belong to the first category. [6]
also presents an algorithm based on the divide-and-
conquer technique (DC). As our techniques are devel-
oped based on these three algorithms, we dedicate sep-
arate parts below to illustrate the details of them.

Index-based techniques are proposed in several work
[6, 21, 14, 17]. Index scanning method is proposed
in [6]. [21] presents the first progressive algorithms,
namely Bitmap and Index method, which can output
the skyline without having to scan the whole dataset.
A skyline computation algorithm based on the indexed
dataset is first developed in [14]. It is based on the
nearest neighbour query, which adopts the divide-and-
conquer paradigm on the R-tree index. Then [17] pro-
poses a branch and bound algorithm to progressively
output skyline points on dataset indexed by R-tree.
One of the most important properties of this technique
is that it guarantees the minimum I/O costs.

There are some other skyline algorithms studied re-
cently. [3] shows how to make efficient computation
through the distributed database system and an ap-
proximate computation algorithm is presented in [13].

We note that one of the latest work is from [10],
which surveyed the runtime complexities of existing
“generic” skyline algorithms and introduced a new
generic skyline algorithm (LESS) that has O(n) av-
erage case running time.

BNL and SFS Algorithms

To compute the skyline, BNL scans the dataset and
compares each data point p with a list of candidate
skyline points. Initially, the candidate list is empty.
If p is dominated by any data point in the list, it is
discarded. If p dominates some of data points in the
list, it is inserted into the list and all dominated data
points are deleted from the list. If p is neither domi-
nated, nor dominates, any data points in the list, it is
inserted into the list as a new candidate. After examin-
ing all the data points, BNL outputs all the candidates
in the list as the skyline result.

In order to reduce the number of pairwise compar-
isons between data points in BNL, SFS introduces en-
tropy value [8]. The entropy value of a data point p
on dimension set U is EU (p) =

∑

∀ai∈U (ln p′(ai) + 1),

where p′(ai) is the normalized value of p(ai). Intu-
itively, the less an entropy value is, the less likely the
data point is dominated by others. Based on this ob-
servation, SFS presorts the dataset in non-decreasing
order of the entropy value of each data point. Then,
SFS examines the data points by this order in the simi-
lar way as that of BNL. As the data point with smaller
entropy value is examined first, the skyline point could
be found earlier. Therefore, the number of compar-
isons between data points and the non-skyline points
in the candidate list, which is unnecessary, is reduced.

DC Algorithm

To compute the skyline for a set of data points, DC
first divides them into several parts and computes the
skyline over each part. Then DC merges these sky-
lines to obtain the final one. Consider the example to
compute the skyline of cuboid AB on the dataset in
Figure 2(a).

(a) Divide Step (b) Merge Step
mA

A

B

P1

P2

P3

P5

P4

A

B

P1

P2

P3

P5

P4
s12 s22

mA

mB

s11 s21

s1 s2

s1 s2

Figure 3: Divide and Conquer Algorithm

• First, DC calculates the median mA of all data
points on dimension A and divides the dataset into
two parts, l1 and l2 (divide step). l1 contains the
data points whose values on dimension A are less
than mA. l2 contains all others.

• Then skyline of l1 (l2) is computed. This is done
by recursively applying divide step until one point
left. In that case, to compute skyline is trivial. The
skyline result s1 (s2) is shown in Figure 3(a).



• To obtain the overall skyline, DC eliminates the data
points in s2 which are dominated by the ones in
s1 (merge step). In merge step, the median mB of
data points in s1 on dimension B is calculated. s1

and s2 are further divided into s11, s12, s21, and
s22 with mB , shown in Figure 3(b). Clearly, the
data points in s21 have smaller value on dimension
B than that of data points in s12. Therefore, the
data points in s21 are not dominated by any one in
s12. As a result, after further partition, DC only
needs to merge s11 and s21, s12 and s22, s11 and
s22, respectively (shown as arrows in Figure 3(b)).
Each merge applies merge step recursively until one
data point is remained in either part, then to merge
them is trivial. In this example, P1 and P4 are elim-
inated from s2 after merge. The final skyline of AB
is {P3, P5, P2}.

3.3 The Difficulties of Generalizing Existing
Algorithms for Skycube Computation

In this subsection, we briefly outline why näıve gen-
eralizations of these algorithms are not likely to be
efficient for the Skycube computation problem. For
the ease of illustration, we consider computing sky-
lines of a child cuboid A and a parent cuboid AB on a
dataset S. Our focuses are on the possibility of “shar-
ing” among multiple skyline computation as well as
the ability to scale with the number of dimensions d.

Firstly, note that, in general, a child cuboid
(SKYA(S)) cannot be calculated from a parent cuboid
(SKYAB(S)). Therefore, näıve generalization of all
the existing algorithms have to calculate each cuboid
individually from the source dataset, which leads to
huge amount of redundant computation especially
when the number of dimension, d, is large. In short,
the näıve algorithms are not efficient because they can-
not share results of related computation.

Secondly, all the existing algorithms were designed
to compute a single skyline query while having certain
pre-conditions, e.g., input is sorted or indexed. Sub-
stantial additional preprocessing need to be done to
ensure such pre-conditions while computing multiple
skylines.
• For example, SFS, the best of the nested-loop-based

skyline algorithms, need to sort the source dataset
according to the entropy values on the skyline di-
mensions. It is easy to see that, to compute the
skyline of a child cuboid (A), a sorting of the whole
dataset is still compulsory to obtain the required in-
put even if we sorted the input while computing the
skyline on the parent cuboid (AB). In general, to
compute a Skycube for d dimensions, näıve gener-
alization of SFS algorithm will at least require 2d−1
sorting of the whole dataset S.

• For another example, most index-based skyline al-
gorithms require appropriate indexes built on the
skyline dimensions. When computing a child cuboid
(A), the index of the parent cuboid (AB) either can-
not be used (B+-tree index) or might not be opti-
mal (R-tree index). This requires building 2d − 1
indexes beforehand or on-the-fly. In addition, some

index-based algorithms do not scale with number of
dimensions, either for performance reasons (R-tree
index) or space overhead (bitmap index).

In short, the näıve algorithms are not efficient not only
because they cannot share computation, but also be-
cause they incur additional overhead among related
computation.

The above analysis also motivates us to find as much
data and computation sharing opportunities as pos-
sible to efficiently compute multiple skyline queries,
which is one of the contributions of this paper.

We note that a similar work is independently de-
veloped in [18], where a Skyey algorithm is proposed
to compute skylines (as well as their signatures) of
all subspaces of a set of dimensions. Skyey algorithm
works in top-down manner and takes advantage of
sharing sorting among different subspaces.

4 Bottom-Up Skycube Computation

In this section, we present our Bottom-Up Skycube al-
gorithm (BUS ). For the ease of illustration, we first as-
sume that the distinct value condition holds. BUS al-
gorithm takes advantages of two computation sharing
strategies: sharing result and sharing sorting. To save
unnecessary pairwise comparisons between points, a
filter based heuristic is developed. This heuristic
greatly improves the performance of BUS, which is
confirmed by our extensive experiment evaluations.
Finally we discuss the modifications on BUS when
dealing with the case that the distinct value condition
does not hold in the dataset.

4.1 Bottom-Up Skycube Algorithm (BUS)

The basic idea of BUS algorithm is to compute each
cuboid in the Skycube in a level-wise and bottom-up
manner. Each cuboid is computed by a nested-loop-
based algorithm similar to SFS [8]. Recall that näıve
generalization of SFS algorithm for the Skycube com-
putation does not have good performance for two rea-
sons: (1) each cuboid is computed individually; (2) it
requires 2d−1 sorting of the original dataset according
to the entropy value defined on the dimension set of
the cuboids.

In our BUS algorithm, we identify two computation
sharing strategies which address the first issue; to han-
dle the second issue, we propose a sorting-and-filtering
technique that effectively reduces the number of sort-
ing from 2d − 1 to d while being able to avoid many
dominance tests via the filtering function.

Sharing Result

According to Corollary 1, we can easily derive that
the union of the child cuboids belongs to the parent
cuboid. Therefore, during computing a cuboid, the
data points, which are in one of its child cuboid, are
guaranteed to be skyline points. The advantage of this
“result sharing” is two-fold: on one hand, it reduces
the size of input to the individual skyline computation
process; on the other hand, fewer number of domi-
nance tests are performed because those points do not



need to be examined again. We call this strategy shar-
ing result.

In addition, since we compute the Skycube in a
level-wise and bottom-up fashion, we can exploit this
result sharing on all the child cuboids of the cuboid
in question. In other words, we can unite all the child
cuboids as the starting point of the computation of
the parent cuboid. In terms of implementation, we
use efficient bitmap operations so that the union can
be done in linear time.

Sharing Sorting

To avoid the explosion of the number of sorting re-
quired by Skycube computation based on the SFS
algorithm, we propose to change the sorting criteria
as follows: when computing the cuboid V , we accept
input sorted on any dimension ai (ai ∈ V) (or in gen-
eral, any U ⊆ V). Because of the nested loop nature of
the skyline computation algorithms used in our BUS
algorithm, changing input sorting order only affects
the performance not the correctness. We make such
change for two reasons:
• It enables us to reduce the number of sorting re-

quired to compute the Skycube from 2d − 1 to d.
We only need to sort the source dataset d times,
each on a distinct dimension. It is obvious that such
scheme requires the minimum number of sorting to
compute all the cuboids in the Skycube.

• Such input ordering is optimal in the sense that ev-
ery data point added to the candidate list is guar-
anteed to be a skyline point. As a result, the length
of the candidate list is kept minimum, which saves
both memory and computation.

Furthermore, we complement this sorting scheme by a
filtering process during the skyline computation, which
further reduces the cost of dominance test. We will
cover this part shortly in Section 4.2.

In terms of implementation, we use the heuristic
such that when computing cuboid V , we always pick
the input sorted on the dimension ai ∈ V and the do-
main of ai is the largest among all aj ∈ V . We note
that a similar heuristic is used in the bottom-up data
cube computation algorithm too [5].

BUS Algorithm

Based on the above two sharing strategies, we develop
our BUS, which computes the Skycube level by level
from bottom to top. The algorithm is listed in Algo-
rithm 1. To compute every cuboid V , BUS examines
each data point in the order against the skyline points
computed so far. If this data point is a skyline point of
child cuboid, it will be inserted into the skyline directly
(line 6 – 7 in Algorithm 1). Otherwise it is compared
with the current skyline to determine whether it is a
new skyline point by calling the function Evaluate,
i.e., doing a dominance test by comparing the d at-
tribute values of two points (line 9).

4.2 Optimizing Dominance Test via Filtering

The simplest implementation of the Evaluate func-
tion (line 9) in Algorithm 1 is to do a dominance test.

Algorithm 1 BUS (S)

Input:
S: a set of d-dimensional data points

Output:
every cuboid V, SKYV (S)

Description:
1: sort S on every dimension ai (in non-decreasing order)

to form d sorted lists lai
(1 ≤ i ≤ d)

2: for each level from bottom to top of the skycube and
each cuboid V in this level do

3: SKY = the union of all the child cuboids
4: choose a sorted list lai

(ai ∈ V)
5: for each data point q in lai

do
6: if q ∈ SKY then
7: insert q into SKYV (S)
8: else
9: Evaluate(q, SKYV(S))

However, the complexity of this operation is O(d),
which might be expensive when d is large. In addi-
tion, such operation is called frequently within loops.
Therefore, to further optimize the performance of BUS
algorithm, we adopt a filtering procedure which can
drastically reduce the number of such dominance test.
The key idea is we do not need to do the relative ex-
pensive dominance test (with complexity O(d)) if the
two points do not pass an efficient filtering test (with
complexity O(1)).

We define a filter function as a multivariate mono-
tonic non-decreasing function that takes a data point
as the parameter; the function value is called the fil-
ter value of the data point. In BUS algorithm, we use
the following filter function defined on dimension set
U , because it outperforms other filter functions in our
experiments with various parameters.

fU (p) =
∑

∀ai∈U

p(ai)

For example in Figure 2, fABCE(P1) = 11 and
fABCE(P4) = 14. From the property of the multivari-
ate monotonic non-decreasing function, it is easy to de-
rive that for two data points p and q, if fU(p) ≤ fU(q),
then q does not dominate p on dimension set U . In
the above example, based on their filter values, with-
out detailed comparison on each dimension, we know
that P4 cannot dominate P1 on ABCE because the
filter value of P1 is smaller.

Algorithm 2 presents the implementation of Eval-
uate function using the filter based heuristic. The
algorithm requires to maintain the candidate list SP
such that points inside are in a non-decreasing order
of their filter values. When evaluating data point q
against skyline point p, we first compare their filter
values. If q’s filter value is smaller than p’s, p and all
the skyline points after p in the candidate list cannot
dominate q. Therefore, it is known immediately that q
is a new skyline point. Otherwise, p and q are further
compared on each dimension to determine whether q
is a new skyline point.

Here is an example to illustrate the filter based
heuristic. Suppose to compute SKYAB(S) of the
dataset in Figure 2(a). The data points are already



Algorithm 2 Evaluate (q, SP )

Input:
q: a data point to be evaluated
SP : the cuboid U computed so far

Output:
insert q into SP if it is a skyline point of U

Description:
1: for each data point p in SP do
2: if fU (q) < fU (p) then
3: insert q into SP ; return
4: else if (p ≺ q)U then
5: discard q; return
6: insert q into SP

sorted on dimension B. The access order and filter
value of each data point are given in Figure 4(a). As
P2 is skyline point of the child cuboid B, it is directly
inserted into the skyline. Figure 4(b) shows the case
when P5 is evaluated. Because fAB(P5) < fAB(P2),
P5 is inserted into the skyline immediately without
compared with P2 on dimensions AB. Then, P1 is
evaluated (Figure 4(c)). P1 is first compared with P5.
Since fAB(P5) < fAB(P1) and P5 dominates P1, P1

is discarded. Similarly, P3 and P4 are evaluated. The
skyline of AB is {P5, P3, P2}.

Sort on  B P2 P5 P1 P3 P4

6 4 7 5 8

(b) Evaluate P5

P2

q = P5 ABf

SP:

ABf

(a) Access Order and Filter Values

(c) Evaluate P1

P2P5

q = P1 ABf

SP:

Figure 4: Example of Filter Based Heuristic

4.3 BUS in the General Case

If the dataset does not conform to the distinct value
condition, we extend BUS as follows.

As stated in Section 2, generally, only part of child
cuboid U belong to parent cuboid V . So, in order
to share child cuboid U , now BUS has to examine
whether they are still skyline points on dimension set
V . According to Theorem 1, to examine data point q
in SKYU(S), we only need to compare q with another
data point p in SKYU(S) which is identical to q on di-
mension set U . If such a data point p does not exist, q
is a skyline point of cuboid V . Otherwise, q and p are
compared on dimension set V −U to determine which
is the skyline point of V . Note that the above exami-
nation is trivial because the skyline points are always
maintained in non-decreasing order of their filter val-
ues. As two skyline points with different filter values
are not identical, we examine the skyline points, which
have same filter values, with each other only.

When the distinct value condition does not hold,
BUS cannot guarantee that only the skyline points are
inserted into the candidate list. Consider the example
of computing cuboid CE in Figure 2. Assume we have
already sorted data points on dimension E and the
evaluation order is P3 → P4 → P5 → P1 → P2. P3,
which is not a skyline point of cuboid CE, is inserted

into the candidate list as no data point in the list dom-
inates it. To eliminate such false hit, every time BUS
reads a group of data points, which have same val-
ues on the sorted dimension, into buffer. Obviously,
these data points are not dominated by the ones after
them because the former have smaller values on this
sorted dimension. Then, the skyline points of these
data points are computed as candidates. Since the size
of such group of data points is small, to compute the
skyline is inexpensive. After that, BUS evaluates these
candidates against the skyline computed so far. It is
clear that with such extension in BUS, the property
that only skyline points are inserted into the candi-
date list still holds.

5 Top-Down Skycube Computation

In this section, we present our Top-Down Skycube
algorithm (TDS ). TDS relies on a novel Shared-
Divide-and-Conquer skyline algorithm (SDC ), which
adopts the basic idea of Divide-and-Conquer skyline
algorithm (DC ) [6] while it computes multiple re-
lated skyline queries simultaneously with little ad-
ditional overhead. In TDS, two new computation-
sharing strategies: sharing-partition-and-merging and
sharing-parent are developed.

In the following parts, we first introduce SDC algo-
rithm. Then, the detailed TDS algorithm under the
distinct value condition is presented. Finally we dis-
cuss the necessary modifications on TDS in general
case.

5.1 Computation Sharing Opportunities for
the DC Algorithm

Although DC is one of the most efficient skyline
computation algorithms, it computes skyline for one
cuboid only. However, we observe that both divide
step and merge step can be shared between a parent
cuboid and its child cuboid. We call such sharing prin-
ciples as sharing-partition-and-merging collectively.

As described in details in Section 3.2, the DC algo-
rithm always chooses the median point with respect
to the same dimension to divide the input set in the
divide phase. We call such a dimension partitioning di-
mension (e.g., A is the example shown in Figure 3(a)).
Obviously, to compute skyline for child cuboid U and
parent cuboid V , if we divide the dataset using the
same partitioning dimension, the partition results in
both computations are the same. Hence, if we compute
SKYU(S) and SKYV(S) simultaneously using the DC
algorithm, the divide step can be shared.

In merge step, DC merges the skylines of each part
to obtain the final skyline. We observe that in this
step the computation for the parent cuboid V can be
shared by its child cuboid U . Therefore, the merge
step for U is saved. We use the example illustrated
in Figure 5 to give an intuition of such sharing. We
consider computing two cuboids: ABC and AB. Af-
ter the divide step with the partitioning dimension A,
the dataset is divided into two parts l1 and l2. Then
for cuboid ABC (AB), the skyline of each part is cal-
culated as SKYABC(l1) and SKYABC(l2) (SKYAB(l1)



and SKYAB(l2)). After that, DC eliminates the points
in SKYABC(l2) (SKYAB(l2)) which are dominated by
the ones of SKYABC(l1) (SKYAB(l1)) on dimension
set BC (B), as shown in Figure 5(a) ((b)). Accord-
ing to Corollary 1, it is easy to derive that the skyline
of l1 (l2) computed for the parent cuboid ABC con-
tains that for the child cuboid AB. So, we decompose
the skylines of li (i = 1, 2) on ABC, SKYABC(li), into
two parts as SKYAB(li) and SKYABC(li)−SKYAB(li)
(Figure 5(c)). Now we use the two parts on the
left side to merge those on the right side separately
which brings us to Figure 5(d). The first part in Fig-
ure 5(d) can be further decomposed into two steps
(Figure 5(e)). In step 1, SKYAB(l1) and SKYAB(l2)
are merged on dimension set B only. Then, we merge
SKYAB(l1) and the result of step 1 on dimension set
C. Note that here the step 1 is just the merge step
for AB (Figure 5(b)). As a result, it is clear that the
merge step for the parent cuboid is shared by its child
cuboid.

(c) Decompose Merge Step  for ABC in (a)

BC
SKYABC(l1) - SKYAB(l1)SKYAB(l1)

(d) Decompose Merge Step for ABC in (c)

(a) Merge Step  for ABC

BC
SKYABC(l1) SKYABC(l2)

(b) Merge Step  for AB

B
SKYAB(l1) SKYAB(l2)

SKYABC(l2) - SKYAB(l2)SKYAB(l2)

SKYABC(l2) - SKYAB(l2)
BC

SKYAB(l1)

BC
SKYAB(l1) SKYAB(l2)

SKYABC(l1) - SKYAB(l1)
BC

SKYABC(l2) - SKYAB(l2)

SKYABC(l1) - SKYAB(l1)
BC

SKYAB(l2)

(e) Further Decompose

C
SKYAB(l1)

Result of
Step 1

Step 1

Step 2

B
SKYAB(l1) SKYAB(l2)

Figure 5: Share Merging

From the above observation, it is clear that divide
step and merge step in DC can be shared by the two
cuboids as long as the dimension sets of one cuboid
contains that of another (i.e., ancestor/descendant or
parent/child relationship in the cube lattice). This
motivates our SDC algorithm.

5.2 Shared-Divide-and-Conquer Algorithm
(SDC)

The basic idea of Shared-Divide-and-Conquer Algo-
rithm (SDC) is to compute a number of “related”
cuboids at a time based on the aforementioned sharing
principles. More specifically, SDC can compute a set
of cuboids on a path in the cube lattice at a time. We
call the set of dimensions associated with the cuboids
path of dimension sets, or simply path when there is no
ambiguity. Without loss of generality, we can always
represent a path in a canonical form by (1) arrang-
ing the dimension sets in ascending order of their level
values; and (2) two adjacent dimension sets share the
common prefix. For instance, the canonical form of
the path {ABCE, ABE, AB} is 〈AB, ABE, ABEC〉.

Skylist

The key of SDC algorithm is a novel data structure,
skylist, that concisely represents skylines for cuboids
belonging to a path. Given a path c, a skylist con-
sists of a number of elements, each of which stores

the skyline points for the corresponding cuboid in
c. Recall Corollary 1, for two cuboids U and V ,
SKYU(S) ⊆ SKYV(S) if U ⊂ V . A skylist organizes
the skyline points of each cuboid in c in the following
accumulative way: the first element stores the skyline
points of the first cuboid; and the i-th element stores
the difference between the skyline points of the i-th
cuboid and the (i−1)-th one. For example, for a path
c = 〈A, AB, ABC〉 on the dataset in Figure 2, the
skylist is 〈{P3}, {P2, P5}, {P1}〉.

The skylist data structure can benefit our SDC al-
gorithm in the following ways. First, skylist stores the
skyline points for a path in a compact way which saves
much storage space. Second, as storing the data points
accumulatively, skylist enables our SDC algorithm to
decompose divide step and merge step during the com-
putation such that they can be shared by all cuboids
in the path.

Here are some basic operations on the skylist data
structure, which are used in the SDC algorithm.
split(l, v, ai): Given a skylist l and a value v on
dimension ai, split operation divides l into two skylists
s1 and s2. For each data point p in l, if p(ai) < v, it is
moved to the corresponding element in s1. Otherwise,
p is moved to the corresponding element in s2.
union(s1, s2): Unite the data points in the corre-
sponding elements of the two skylists s1 and s2 to build
a new skylist.
filter(c, s1, s2): Given a path c and two skylists s1

and s2, filter operation updates s2 such that the re-
maining points in s2 is still skyline points on the cor-
responding dimension set even if s1 and s2 are united.
Implementation-wise, for each data point in every (the
i-th) element of s2, if it is dominated by any data
points in s1 on the dimension set corresponding to that
element, it is moved to the next element of s2.

For example, consider the skylists of the path
〈A, AB〉 on the top left ({P3}) and the top right
({P1, P4}) datasets in Figure 3(b). Two skylists are
constructed, s12 = 〈{P3}, {}〉 and s22 = 〈{P4}, {P1}〉.
To filter s22 by s12, we first examine P4 against P3 on
dimension set A. As P4 is dominated by P3 on A, it is
moved to next element. Then the second element of s22

is examined. Because P3 dominates P4 but not P1 on
AB, P4 is discarded. So after filter, s22 = 〈{}, {P1}〉.

SDC Algorithm

To answer skyline queries on a path, SDC processes the
data points in the divide-and-conquer manner similar
to DC. The detailed SDC is presented in Algorithm 3.
To compute skylines on a path c, an initial skylist l
corresponding to c is constructed, where all data points
are stored in the first element of l.

We use the following example to further illustrate
SDC. Consider the skyline queries on a path c =
〈A, AB, ABC〉, over the dataset in Figure 2. Initially,
a skylist l is constructed according to c and all data
points are stored in the first element of l as shown in
Figure 6(a). After recursive split on dimension A, l is
split into 5 skylists, each of which contains one data
point only (Figure 6(b)). Then we merge the skylist l3



Algorithm 3 SDC (c, l)

Input:
c: a path, the last dimension set in this path is V
l: a skylist corresponding to c stores the data points

Output:
a skylist corresponding to c stores the skyline result

Description:
1: if |l| = 1 then /* |l|: the number of points in l */
2: return l
3: else
4: a1 = the first dimension of V
5: ma1

= the median of l on dimension a1

6: (l1, l2) = split(l, ma1
, a1)

7: s1 = SDC(c, l1)
8: s2 = SDC(c, l2)
9: s3 = SDC Merge(c, s1, s2, 2)

10: return union(s1, s3)

and l4 first. As both of them contain one data point
only, in this merge we directly call filter operation on
them. In the filter process, P5 is compared against P3.
Since P3 dominates P5 on dimension set A and does
not on dimension set AB, P5 is moved to the second
element. Then, we union them and the merge result
s1 is shown in Figure 6(c). Similarly, l6, l7, and l8 are
merged and the result is s2. In order to merge s1 and
s2 to obtain the final skylines, we split s1 and s2 with
the median of data points in s1 on dimension B. Fig-
ure 6(d) shows the split results. After that, three filter
operations are processed. The filter results r1 and r3

are shown in Figure 6(e). Finally, we union s1 and the
merge results to the final skylist. To retrieve the sky-
line of the i-th cuboid in c, we output all data points
in all the j-th (j ≤ i) elements in the final skylist. For
example, SKYAB(S) = {P3, P2, P5}.

(a) Initial Skylist l (b) split on Dimension A

(c) filter & union

s f = s1 U r1 U r3

l6

P3 P5
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P1 P4
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Figure 6: An Example of SDC Algorithm

5.3 Top-Down Skyline Algorithm (TDS)

In this subsection, we present our TDS algorithm
which employs SDC algorithm to compute Skycube

in top-down manner. As analyzed in Section 5.2, SDC
can compute skyline queries on a path simultaneously.
Thus, in order to compute Skycube using SDC effi-
ciently, we need to find a minimal set of paths such
that every node in the cube lattice is covered by one
path while the total number of such paths is mini-

Algorithm 4 SDC Merge (c, s1, s2, i)

Input:
c: a path, the last dimension set in this path is V
s1, s2: two skylists
i: the i-th dimension of V is used to split s1 and s2

Output:
the revised s2 that eliminates the data point in each
element which is dominated by ones in s1 on the cor-
responding cuboid in c

Description:
1: if |s1| = 1 or |s2| = 1 or i = |V| then /* |V|: the

number of dimensions in V */
2: return filter(c, s1, s2)
3: else
4: ai = the i-th dimension of V
5: v = the median on dimension ai

6: (s11, s12) = split(s1, v, ai)
7: (s21, s22) = split(s2, v, ai)
8: r1 = SDC Merge(c, s11, s21, i)
9: r2 = SDC Merge(c, s12, s22, i)

10: r3 = SDC Merge(c, s11, r2, i + 1)
11: return union(r1, r3)

mized. In TDS, we apply the path finding algorithm
in [19] to find such minimal set of paths. In [19], it is
proved that on d-dimensional data space the size of the
minimal set of such paths is

(

d
dd/2e

)

. Figure 7(a) shows

the minimal set of paths for 4-dimensional dataset.
After finding the minimal set of paths, TDS calls

SDC to compute cuboids on each of the paths. Note
that here only a few SDC calls need to compute the
top cuboid of the path from the whole dataset. Ac-
cording to Corollary 1, for the path in which the last
dimension set is U , the SDC procedure may compute
the cuboid U from the cuboid V , if U ⊆ V and cuboid
V has been computed. This leads to an important
saving of computation because (1) the whole dataset
might be much larger than the cuboid V ; and (2) DC
algorithm is more sensitive to the size of the input,
as its time complexity is O(n logd−2 n). We call this
sharing strategy sharing parent.
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Figure 7: An Example of TDS Algorithm

Now we describe the detailed TDS algorithm. To
compute the Skycube, TDS first finds the minimal
set of paths that cover all the cuboids. Then SDC
algorithm is applied to compute the cuboids for each
path. To take advantages of the sharing parent strat-
egy, among the un-computed paths, we always pick
from the remaining paths the one whose last dimen-
sion set has the highest level value. If there does not
exist a suitable ancestor cuboid to start the compu-
tation of the current path, SDC will choose to start



from the whole dataset. Finally, we retrieve the sky-
lines for each cuboid from the skylist returned by SDC
algorithm. Figure 7(b) presents an example. We com-
pute skylines for the paths in the left to right order
in the figure. For each path, the dataset from which
SDC starts the computation is shown in the rounded
rectangle. Take the path 〈E, EA, EAB〉 for example,
SDC computes the skylines from the result of cuboid
ABCE, SKYABCE(S).

5.4 TDS in the General Case

Now we address some necessary modifications in TDS
to support the general case in which the distinct value
condition does not hold.

In the general case, there is no containment rela-
tion between a parent cuboid and its child cuboid.
Therefore, due to the sharing parent strategy, some
skyline points may be missed in the result. For ex-
ample, in Figure 2 if we compute skylines for the
path 〈E, EA, EAB〉 from the skyline of cuboid ABCE,
which is {P1, P2, P3, P5}, we can never get P4. How-
ever, P4 is a skyline point of cuboid E. Based on The-
orem 1, these “missing” data points (e.g., P4) should
have same values on some dimensions as some sky-
line points of the parent cuboid. Now for the skyline
queries on a path, SDC computes from the dataset con-
tains not only the parent cuboid but also the above
missing data points. To find out the missing data
points, for each skyline point p in the parent cuboid on
each dimension ai, we collect all the data point q such
that q(ai) = p(ai). In order to speed up such collec-
tion, we presort the whole dataset on each dimension.

Recall that under the distinct value condition, for
the skyline queries on a path c, SDC returns a skylist.
To retrieve skyline for the i-th cuboid in c, the data
points in all the j-th (j ≤ i) elements in the skylist
are output. However, according to Theorem 1, in the
general case, the data points in the j-th (j < i) element
may not be the skyline points of the i-th cuboid in c.
As a result, we cannot output them directly. In order
to determine whether these data points are still the
skyline points of the i-th cuboid in c efficiently, we take
advantages of their filter values, which is the same as
the ones in BUS algorithm. That is, the data points in
each element are maintained in non-decreasing order of
their filter values. Then, the same method of sharing
result in the general case of BUS algorithm is adopted
to retrieve the skyline result.

6 Experimental Evaluation

In this section, we present the comprehensive perfor-
mance evaluations of our techniques. As mentioned
earlier, there is no existing technique specifically de-
signed to support efficient Skycube computation. In
our performance study, we implement some skyline al-
gorithms (e.g., BNL, SFS, and DC) to compute each
skyline query independently and use them as bench-
mark algorithms to evaluate our techniques. Below are
the algorithms that have been evaluated.

BUS Our Bottom-Up Skyline algorithm.

BNLS The algorithm computes each skyline query by
BNL algorithm [6].

SFSS The algorithm computes each skyline query by
SFS algorithm [8].

TDS Our Top-Down Skyline algorithm.

DCS The algorithm computes each skyline query by
DC algorithm [6].

Similar to BUS, BNLS and SFSS compute the
Skycube in the bottom-up manner. We also apply
the sharing result strategy to both of them to share
the child cuboid for computing the parent cuboid.
DCS computes the Skycube in the top-down man-
ner. The sharing parent strategy is applied to DCS as
well, which enables DCS to compute each cuboid from
one of its parent cuboids instead of the whole dataset.

In the following parts, we first study the overall per-
formance of BUS and TDS algorithms, which includes
the sensitivity and scalability against the data distri-
bution, dimensionality, and cardinality. Then, we eval-
uate efficiency of the filter based heuristic to BUS and
the sharing parent strategy to TDS, respectively. Fi-
nally, the effect of the number of duplicate values per
dimension on our techniques is studied.

As we do not have the real datasets, we employ the
three most popular synthetic benchmark datasets, cor-
related, independent, and anti-correlated [6], with di-
mensionality d in the range [4, 10] and cardinality n
in the range [100k, 500k] in our experiment study. For
each experiment, we evaluate the query times of dif-
ferent algorithms for Skycube computation on these
datasets. All the experiments have been carried out
on a Pentium 4 PC with a 2.8GHz processor and 1GB
main memory.

6.1 Effect of Dimensionality

We first study the effect of dimensionality on our tech-
niques. Correlated, independent, and anti-correlated
datasets with dimensionality d between 4 to 10 and
cardinality n = 500k are used in this experiment. Fig-
ure 8 shows the query times of all the algorithms.

From the results, it is clear that although SFSS and
BNLS adopt the sharing result strategy, their perfor-
mances are worse than that of BUS in all datasets.
This is because both SFSS and BNLS insert some non-
skyline points into the candidate list, which leads to
more unnecessary pairwise comparison. Due to O(2d)
presorting overhead, SFSS has the worst performance
among all algorithms. We do not plot the results
of SFSS and BNLS in high dimensional datasets be-
cause their query times are too large. For instance,
in anti-correlated dataset with d = 10, BNLS takes
265, 000 seconds while TDS consumes 2, 500 seconds
only, which outperforms the former by 2 orders of mag-
nitude. Due to their bad performance, we do not eval-
uate SFSS and BNLS in the following experiments.

In lower dimensional datasets, BUS is faster than
DCS and TDS. However, with the growth of sky-
line size (e.g., in high dimensional dataset or in anti-
correlated dataset), more pairwise comparison be-
tween data points and skyline points are performed
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Figure 8: Effect of Dimensionality (n = 500k)

in BUS. Therefore, BUS performs badly in these
datasets. As TDS employs SDC algorithm, which can
compute cuboids of a path with the same cost as that
of DC to compute the last cuboid in the path, TDS
outperforms DCS in all datasets. The difference be-
tween their query times increases in high dimensional
dataset. TDS is always at least 1.5 times faster than
DCS in the dataset with dimensionality d = 10.

6.2 Effect of Cardinality

In order to evaluate the effect of cardinality on our
techniques, we use the datasets with the dimensional-
ity d = 8 and vary the cardinality n from 100k to 500k.
As the skyline in correlated dataset contains few data
points, we evaluate the performance of BUS, DCS, and
TDS in independent and anti-correlated datasets only.
Their query times are shown in Figure 9.

Although both DCS and TDS take advantages of
the sharing parent strategy, DCS is slower than BUS
in independent datasets while TDS outperforms BUS.
It indicates that simply adopting the sharing parent
strategy only in DCS can not improve it significantly
as DCS computes each skyline independently.

It is shown that TDS is the winner among these
algorithms. In the low cardinality datasets (d ≤ 2),
TDS is 2 times faster than others. Furthermore, with
the growth of cardinality, TDS query time increases
slightly while others increase rapidly. For example, in
anti-correlated datasets, the ratio of TDS query time
with the dataset n = 500k to that with n = 100k is 4.8,
while BUS’s and DCS’s are 10.7 and 6.6, respectively.
Compared with other algorithms, it is seen that TDS
not only has better performance but also has better
scalability.
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Figure 9: Effect of Cardinality (d = 8)

6.3 Efficiency of Filter Based Heuristic

Now we study the efficiency of filter based heuristic to
our BUS algorithm. We implement our BUS in two
ways. One (with-filter) adopts filter based heuristic,
the other (non-filter) does not, which evaluates data

points in the same way as that of BNL. We evaluate
them in the datasets with dimensionality d = 6 and
vary cardinality n from 100k to 500k. Figure 10 shows
the query time in each dataset.

From the results, it is seen that with-filter outper-
forms non-filter in all datasets. As analyzed in sec-
tion 4.2, filter based heuristic can reduce the pair-
wise comparison between data points and the skyline
points, which is the most expensive computation in
BUS. Thus, filter based heuristic improves BUS. In in-
dependent datasets with-filter is 40% faster than non-
filter. With the growth of cardinality, the query time of
with-filter remains fairly consistent while that of non-
filter increases significantly. In anti-correlated dataset
with cardinality n = 500k, non-filter is 27 times slower
than with-filter.
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Figure 10: Efficiency of Filter Based Heuristic (n = 6)

6.4 Efficiency of Sharing Parent Strategy

In this subsection, we evaluate the efficiency of shar-
ing parent strategy to TDS algorithm. For two imple-
mentations (sharing-parent and non-sharing-parent)
of TDS, we study their performance in correlated, in-
dependent, and anti-correlated datasets with dimen-
sionality d = 6 and cardinality n = 200k, 400k. Fig-
ure 11 reports the query times on these datasets. The
number above the bars inside of the figure is the ratio
of non-sharing-parent query time to that of sharing-
parent.

It is clear that sharing parent strategy improves
TDS in all datasets. Sharing parent strategy enable
TDS to compute the cuboids of one path from its par-
ent cuboid while non-sharing-parent does this from the
whole dataset. Generally, the parent cuboid is much
smaller than the whole dataset. Furthermore by the
query time ratios, it is seen that sharing-parent be-
comes more efficient in the larger dataset.

6.5 Effect of Duplicate Values

In the final experiment, we study the effect of num-
ber of duplicate values per dimension on our tech-
niques. We define the duplicate ratio α as on each
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dimension ai for every data point p there are α − 1
number of other data points with the same coordi-
nate as p’s. In this experiment, independent and
anti-correlated datasets with dimensionality d = 8,
cardinality n = 100k, 300k, 500k, and duplicate ratio
α = 5, 10 are generated. Note that compared with the
datasets used in the above experiments, these datasets
contain more duplicate values on each dimension. Fig-
ure 12 shows the query times in these datasets.

In independent dataset, all algorithms take more
query time in higher duplicate ratio datasets, because
the size of each cuboid is larger. Among these algo-
rithms, the effect of duplicate values on BUS is the
least. Although larger size of cuboid in higher dupli-
cate ratio dataset causes more pairwise comparison in
BUS, it also makes sharing result strategy, which is
adopted in BUS, more efficient. As a result, BUS has
similar performance in these two datasets with differ-
ent duplicate ratios. On the contrary, in higher du-
plicate ratio dataset, larger size of cuboid decreases
the efficiency of sharing parent strategy because the
difference between the size of whole dataset and that
of parent cuboid is smaller. Therefore, DCS, which
employs sharing parent strategy only, is affected by
duplicate values most.

In anti-correlated datasets, it is interesting that BUS
is a little bit faster in higher duplicate ratio dataset
than that in lower one. It confirms that sharing result
strategy is more efficient when each cuboid’s size is
larger. However, with the growth of the dataset, the
number of pairwise comparison between data points
and skyline points in BUS increases rapidly, which
slows BUS down. Similar to the trends in the above
experiments (Figure 8, 9), TDS performs best among
these algorithms. In the datasets with cardinality
n = 500k and duplicate ratio α = 10, TDS takes 690
seconds which is 4 times faster than DCS. Moreover, it
is clear that the difference between TDS query times
on two duplicate ratio databases is smaller than that
of DCS.
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7 Conclusions

In this paper, we consider the application where mul-
tiple related skyline queries need to be frequently pro-

cessed. We propose to adapt the data cube concept
into the skyline computation problem and propose the
concept of the Skycube. Intuitively, a Skycube is
the union of skyline results of all non-empty combi-
nation of d dimensions on a dataset. We focus on the
issue of efficient computation of the Skycube and pro-
pose two novel algorithms: the bottom-up algorithm
(BUS) and the top-down algorithm (TDS). Their effi-
ciencies mainly come from a set of computation shar-
ing strategies we identified for multiple skyline com-
putation. We demonstrated the effectiveness of the
computation sharing strategies and the superior per-
formance of the proposed algorithms in our extensive
experimental evaluation under various settings.

As one of our future work, we plan to explore the is-
sue of disk-based Skycube computation for very large
datasets. We are looking at techniques to convert in-
memory skyline computation algorithms to be disk-
based [6]. Another possible direction for future work
is to investigate the materialized view selection prob-
lem for the Skycube under various constraints.
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