
Stabbing the Sky: Efficient Skyline Computation over Sliding Windows

Xuemin Lin Yidong Yuan Wei Wang
NICTA & University of New South Wales

Sydney, Australia
{lxue, yyidong, weiw}@cse.unsw.edu.au

Hongjun Lu
Hong Kong University of Sci. & Tech.

Hong Kong, China
luhj@cs.ust.hk

Abstract

We consider the problem of efficiently computing the sky-
line against the most recent N elements in a data stream
seen so far. Specifically, we study the n-of-N skyline
queries; that is, computing the skyline for the most recent
n (∀n ≤ N) elements. Firstly, we developed an effec-
tive pruning technique to minimize the number of elements
to be kept. It can be shown that on average storing only
O(logd N) elements from the most recent N elements is
sufficient to support the precise computation of all n-of-N
skyline queries in a d-dimension space if the data distri-
bution on each dimension is independent. Then, a novel
encoding scheme is proposed, together with efficient up-
date techniques, for the stored elements, so that comput-
ing an n-of-N skyline query in a d-dimension space takes
O(log N + s) time that is reduced to O(d log log N + s) if
the data distribution is independent, where s is the number
of skyline points. Thirdly, a novel trigger based technique
is provided to process continuous n-of-N skyline queries
with O(δ) time to update the current result per new data
element and O(log s) time to update the trigger list per re-
sult change, where δ is the number of element changes from
the current result to the new result. Finally, we extend our
techniques to computing the skyline against an arbitrary
window in the most recent N elements. Besides theoretical
performance guarantees, our extensive experiments demon-
strated that the new techniques can support on-line skyline
query computation over very rapid data streams.

1 Introduction
For two points x = (x1, x2, ..., xd) and y =

(y1, y2, ..., yd) in the d-dimensional space, x dominates y
if xi ≤ yi for 1 ≤ i ≤ d. Given a set P of points, the
skyline comprises the points in P , which are not dominated
by another point in P (see Figure 1 for example). Skyline
computation roots in many applications [26] that involve a
multi-criteria decision making. For instance, in the stock
market buyers may want to know the top deals so far, as one
of many kinds of statistic information, before making trade
decisions; consequently, a query “what are the top buy deals
(transactions) of a given stock” may be issued. Here, each

deal (transaction) is recorded by the price (per share) and
the volume (number of shares). This is a typical example of
ranking the data items (deals) by more than one criterion;
that is, price and volume in this case. Obviously, in such an
application a deal a is better than another deal b if a involves
a higher volume and is cheaper (per share) than those of b,
respectively. The top deals, thus, are the set of deals which
are not worse than another deal; they form the skyline of all
the deals (Figure 1 shows such an example).

"Top" deals

priceOrigin

Y

X

1/
vo

lu
m

e

Figure 1. Skyline of Buy Deals of a Stock
Skyline query processing and its variants [3, 17, 20, 26]

have been extensively studied, and a number of algorithms
have been developed. The main memory algorithms may be
found in [3, 17, 14], while the techniques related to database
applications may be found in [4, 6, 15, 23, 27]. Without
pre-processing, the best known bounds of time complexity
among the existing algorithms for computing the skyline
of n points in a d-dimensional space are O(n logd−2 n) for
d ≥ 4 and O(n log n) for d = 2, 3 [17]. The skyline com-
putation problem is also related to several other well-known
problems, such as convex hulls, top-K queries, and nearest
neighbour search. The techniques can be found in the liter-
ature [12, 13, 22, 24].

None of the algorithms referenced above was originally
designed to support on-line computation in the presence of
rapid updates of data elements. On the other hand, in many
applications data updates may rapidly happen. For instance,
in the sliding window computation model (i.e., the most re-
cent N elements) against data streams a deletion (expiring
the oldest element) and an insertion (inserting a new ele-
ment) are always associated with the new arriving element.

The existing techniques are not able to efficiently support
on-line computation against sliding windows over a rapid
data stream.

Sliding window computation is very important in data
stream applications [1] with the aim to provide the most re-
cent on-line information. Regarding the above example of
identifying the skyline of buy deals, some clients may want
to know the top deals among the most recent N deals; that
is, the skyline of the most recent N data elements. More-
over, different users may have different favourite thresholds
of N . Therefore, it is important for an information provider
(system) to organise the most recent N elements in an ef-
fective way, so that any “n-of-N skyline” queries (the com-
putation of the skyline of the most recent n (∀n ≤ N) el-
ements) can be processed efficiently. In this paper, we fo-
cus on the problem of on-line processing n-of-N skyline
queries over a data stream seen so far.

Very recently, approximation techniques for computing
convex hulls and nearest neighbours have been developed
against data streams [11, 16]. However, these techniques are
not applicable to the skyline computation over data streams
due to the inherent difference between those problems and
the skyline problem. Moreover, we focus on a precise
computation in this paper. The algorithm in [14] can ef-
ficiently support an on-line skyline computation regarding
deletion/insertion of data elements. Since the algorithm fo-
cuses on the skyline computation for a whole data set, the
data structures maintained are only applicable to the com-
putation over the most recent N elements, while an n-of-N
(for n < N) skyline query still has to be processed as if
there were no pre-processing. Further, this technique only
supports element deletions in the 2-dimensional space.

These are the motivations of our research in the paper.
To the best of our knowledge, there is no similar work ex-
isting in the literature in the context of skyline computation
over data streams. Our contribution can be summarized as
follows.
• A novel pruning technique has been developed to min-

imize the number N of elements to be kept in the most
recent N elements for processing all n-of-N queries.
Note that N ≤ N as N is the number of elements in a
subset of the most recent N elements. We also showed
that in a d-dimensional space N = O(logd N) if the
data distribution on each dimension is independent.

• A novel encoding scheme with linear size O(N) on
the stored elements is developed, together with the ef-
ficient update algorithms based R-tree and interval tree
techniques. This encoding scheme effectively reduces
the time complexity for processing an n-of-N skyline
query (∀n ≤ N) to O(logN + s) from O(n log n) for
d = 2, 3 and O(n logd−2 n) for d ≥ 4, where s is the
number of skyline points. In fact, the time complex-
ity of our query algorithm may be further reduced to
O(min{logN , d log log N} + s) when the data distri-
bution is independent.

• A new trigger based technique for continuously pro-
cessing an n-of-N skyline query is developed. Upon
the arrival of a new data element, it guarantees
O(log δ) time to update the current query result where
δ is the number of element changes from the current
result to the new result. It takes O(log s) time to up-
date the triggers list per result change.

• We extend our techniques to the applications where an
arbitrary window query in the most recent N elements
is involved.

Besides theoretical guarantees, our extensive experi-
ments indicated that the new techniques can accommodate
on-line computation against very rapid data streams. As
shown later, the techniques can be immediately applied to
the applications where the most recent information is spec-
ified on a time period.

The rest of the paper is organized as follows. In section
2, we present background information in skyline and stream
computation. Sections 3 and 4 provide our techniques for
processing n-of-N and arbitrary window skyline queries,
respectively. Results of comprehensive performance studies
are discussed in section 5. Section 6 concludes the paper.

2 Preliminaries
In this section, we briefly introduce the related work in

the skyline computation, followed by different stream com-
putation models. Then, we present our framework for on-
line computing the skyline of the most recent n (∀n ≤ N)
data elements in a data stream.

Table 1 summarises the notation used throughout the pa-
per.

Table 1. Notation
Notation Definition
N , n number of the most recent elements
M number of the elements seen so far
PN the most recent N elements
RN non-redundant elements in PN

SN skyline points in PN

N |RN |
e an element in a data stream
κ(e) position (integer) of e in a data stream
s number of skyline points
d space dimension

2.1 Skyline Query Processing
A skyline query is to compute the skyline of a set P

of n points; every point (data element) in the skyline is
called skyline point. An efficient computation of sky-
line query was first investigated by Kung et al. in [17]
where an O(n(log n)d−2) time algorithm for d ≥ 4 and
an O(n log n) time algorithm for d = 2, 3 were developed.
Bentley et al. [3] provided an efficient algorithm with an
expected linear running time if the data distribution on each
dimension is independent.

Kapoor [14] studied the problem of dynamically main-
taining an effective data structure for an incremental skyline

computation in the 2-dimensional space. The data structure
adopts the red-black tree [7] to organise the n elements in
P in order of increasing values in one dimension. Then,
the skyline of the elements in each subtree is implicitly
maintained. The data structure takes O(n) space with the
O(log n) update time for an insertion/deletion. The data
structure also takes O(γ log n+s) time to compute the sky-
line of P where s is the number of skyline points and γ is the
number of changes of the data structure since last computa-
tion. The technique has been extended to the d-dimensional
space (for any d ≥ 3), where only insertions can be in-
volved, with O(logd−1 n) updated time per insertion and
O(γ logd−1 n + s) time to compute the skyline.

Börzsönyi et al. [4] studied the skyline computa-
tion problem in the context of databases and proposed an
SQL syntax for the skyline query. They also developed
the skyline computation techniques based on block-nested-
loop [25] and divide-conquer [7] paradigms, respectively.
Chomicki et al. [6] proposed another block-nested-loop
based computation technique to take the advantages of a
pre-sorting. Tan et al. [27] proposed the first progressive
technique that can output skyline points without having to
scan the whole data set. Two auxiliary data structures are
proposed, bitmap and search tree. Kossmann et al. [15]
presented another progressive technique based on the near-
est neighbour search technique on R-tree [22, 12], which
adopts a divide-and-conquer paradigm on the dataset in-
dexed by R-tree. Papadias et al. [23] proposed a branch
and bound search technique to progressively output skyline
points on datasets indexed by R-tree. One of the most im-
portant properties of the technique in [23] is that it guaran-
tees the minimum I/O costs.

2.2 Skyline and Data Streams
In many applications, a data stream may be append-only

[1, 9]; that is, there is no deletion of data element involved.
In this paper, we studied the skyline computation problem
restricted to the append-only data stream model. In a data
stream, elements are positioned according to their relative
arrival ordering and labelled by integers. Note that the po-
sition/label κ(e) means that the element e arrives κ(e)th in
the data stream.

Consider that precisely computing skyline in an on-line
fashion naturally requires main memory based processing
algorithms. On the other hand, it may not be physically fea-
sible to store a whole data stream in main memory since
the volume of a whole stream is theoretically unbounded.
In this paper, we studied the problem of skyline computa-
tion restricted to the most recent N elements, seen so far,
that can fit in the main memory. Specifically, we investigate
the on-line computation of skyline restricted to the stream
computation models below.

1. n-of-N model [18]. We will investigate the problem
of effectively organising the most recent N elements in a
data stream seen so far, so that the computation of skyline

against any most recent n (n ≤ N) elements can be pro-
cessed efficiently. Note that a sliding window model [1] is a
special case of the n-of-N model where n = N . !
2. (n1, n2)-of-N model. This is a generalization of the
n-of-N model. Here, we want to compute the skyline of
the elements between the most n2th recent element and the
most n1th recent element (for any n1 ≤ n2 ≤ N). !

Note that the n-of-N model gives the skyline based on
the most recent information, while the (n1, n2)-of-N model
provides recent “historic” information. Combining the re-
sults from the two models may indicate a trend change from
the most recent n2 elements to the most recent n1 elements.

The skyline queries against the n-of-N model and
(n1, n2)-of-N model are, thereafter, abbreviated to “n-of-
N query” and “(n1, n2)-of-N query”, respectively.

a

c

bY

X
a b c e gf h

a data stream

e

g
h

f

Figure 2. A Data Stream

2.3 On-line Computation
Consider the example in Figure 2 where elements arrive

according to the alphabetic ordering. Suppose that the data
stream so far consists of 6 elements a, b, c, e, f , and g. The
skyline S6 against these most recent 6 elements consists of a
and c, while the skyline S4 against the most recent 4 points
(i.e., c, e, f , and g) consists of c and g. Further, when the
new element h arrives, S6 and S4 are updated to {c, h} and
{e, h}, respectively.

This example shows that the skyline Sn of the most re-
cent n elements Pn is not a subset of the skyline SN of the
most recent N elements PN when n < N , though Pn is a
subset of PN . Therefore, the problem of efficiently process-
ing any n-of-N query (∀n ≤ N) is more challenging than
the computation of skyline on the most recent N elements
only for a given N . Moreover, Sn (SN) may be changed
along the update of the most recent n (N) elements upon the
arrival of a new element. Consequently, in an on-line envi-
ronment efficient techniques are required to compute the up
to date skyline. Furthermore, although in this paper the data
streams interested are append-only, our techniques have to
deal with the deletion of data elements; this is because the
deletion of the oldest element due to its expiration from the
most recent N elements happens every time when a new el-
ement arrives. Below we outline our on-line techniques for
processing n-of-N queries.

• We effectively characterize the “critical” dominance
relationships among the data elements in the most re-
cent N elements PN and model them by a graph that is

a forest. This leads to the minimization of the number
of data elements to be kept from PN .

• We encode such a graph by a set of intervals in the
1-dimensional space, and map an n-of-N query into
a “stabbing” query on the intervals. Then, an n-of-
N query is processed by computing the corresponding
stabbing query.

• The graph and its encoding scheme are dynamically
maintained to reflect an on-line change of the most re-
cent N elements in a data stream.

• A novel trigger based algorithm is developed to pro-
cess a continuous n-of-N query.

The techniques are also extended to cover (n1, n2)-of-N
queries. Below, we briefly introduce the “stabbing” queries
and the processing time complexity. The stabbing query
processing techniques will be used as a black-box in our
algorithms.
Stabbing queries

Give a set of m intervals and a stabbing point p in the 1-
dimensional space, the stabbing query is to find all intervals
which contain p. By the interval tree techniques in [21, 24],
a stabbing query can be processed in O(log m + l) where l
is the number of intervals in the result. By storing an inter-
val only in the tree node that is the lowest common ancestor
(LCA) of the two end points of the interval, the space com-
plexity of the interval tree is O(m). It has been also shown
that the time complexity of an update (insertion or deletion)
to an interval tree is amortised to O(log m) per deletion or
insertion. Note that the intervals here can be closed, half
closed, or open at both ends.

3 Processing n-of-N Queries
In this section, we present our techniques for efficiently

processing n-of-N queries. We first minimize the num-
ber of data elements to be kept for processing all n-of-N
queries. Then, we present an effective encoding scheme
on the stored elements to support n-of-N query processing.
Thirdly, we present our techniques to efficiently update the
data structures involved. This is followed by our novel tech-
niques for processing continuous queries.

3.1 Minimizing the Number of Elements
Suppose that in the most recent N data elements (points)

PN , there are 2 elements e and e′ such that e′ dominates e
and e′ arrives later than e. It is immediate that in any most
recent n (n ≤ N) elements containing e′, e is not a skyline
point. A data element e is redundant with respect to the
most recent N elements if e is expired (i.e. outside the most
recent N elements) or is dominated by a younger element
e′ (later issued than e).

Theorem 1. Suppose that PN is the set of the most recent
N data items. Then,

1. a skyline point (data element) in the most recent n (for
any n ≤ N) elements must be a non-redundant ele-
ment in the current PN ;

2. any non-redundant element in PN is a skyline point in
the most recent n (for some n ≤ N) elements;

3. once an element e becomes redundant, e will be no
longer qualified as a skyline point over any most recent
n elements (∀n ≤ N).

Proof. The theorem can be immediately verified from the
definition of a redundant element.

a

c

bY

X

e
f

g

h

Figure 3. Redundant Points

Consider the data stream in Figure 2 with 7 elements and
N = 6. The non-redundant elements are shown in Figure 3
as the black points. Note that the element a is not included
since it is already expired.

Let RN be the set of non-redundant elements in PN . Ac-
cording to Theorem 1, we need only to keep RN instead of
PN to exactly answer all n-of-N queries; that is, the redun-
dant elements should be removed. Moreover, Theorem 1
also implies that |RN | gives the minimum number of ele-
ments we should keep to support the precise computation
of all n-of-N queries. We can show the following theorem.

Theorem 2. In a data stream on a d-dimensional space,
suppose that the data distribution on each dimension, in-
cluding the arrival order, is independent. Restricted to any
dimension, data values are always distinct. Then, the aver-
age value of N is O(logd N) where N = |RN |.

Proof. Assume that we currently have M elements. We
map each element e = (x1, x2, ..., xd) in PN into a point
pe = (x1, x2, ..., xd, M − κ(e)) in the (d + 1)-dimensional
space.

According to the definition of RN , RN corresponds to
the set of skyline points, by the above mapping, of {p e :
e ∈ PN} in the (d + 1)-dimensional space. From Theorem
2 in [3], this theorem immediately follows.

Note that when d is small, N is much smaller than N if
data follow the distribution in Theorem 2. Moreover, our
initial experiment results also demonstrated that for low di-
mensionality |RN | is small even data do not follow the dis-
tribution assumptionsi in Theorem 2. The table in Figure 4
reports our experiment results for evaluating the size of RN

regarding different data distributions, N values (N = 105

or 106), and space dimensions (dim). In our experiment, we
make the distribution of elements’ arrival order independent
to the data distribution, while the data distribution are either
independent, or correlated, or anti-correlated [4].

3.2 Encoding RN for n-of-N Queries
An element e in RN may be dominated by many other

elements in RN that arrive earlier than e. Clearly, the num-
ber of the dominance relations among the elements in RN

Inde- Cor- AntiCor-
Dim pendent related related

N = 105 106 105 106 105 106

2 65 120 16 38 179 287
3 226 411 40 55 1.3K 2.6K
4 894 1.9K 64 120 5.5K 14K
5 2.6K 5.6K 126 209 14K 47K

Figure 4. |RN |
may be O(N 2) even with transitive reduced. One can imag-
ine such an example where the dominance relations induce
a full bipartite graph. Therefore, storing all the dominance
relations is not only expensive in storage space but also too
expensive to be maintained.

The example below shows that we do not have to keep
all the dominance relations.

Example 1. Suppose that the 3 data elements a, b, and c arrive
according to their alphabetic ordering, and c is dominated by both
a and b.

Clearly, in this example if the dominance relation b → c
is released due to the expiration of b then the dominance
relations a → c has already been released, since a is expired
earlier than b. Therefore, we only need to keep b → c to
hold a “lock” on c.

In RN , a dominance relation e′ → e is critical if and
only if e′ is the youngest one (but older than e) in RN ,
which dominates e; that is, κ(e′) is maximized among all
the elements (other than e), in RN , dominating e. Note that
κ(e′) < κ(e) since RN does not contain any redundant el-
ements in PN . In the example 1, b → c is critical. A graph
on RN is a dominance graph if the edge set consists of the
critical dominance relations; it is denoted by GRN . We use
e′

c→ e to denote “e′ critically dominates e”.
It should be clear that the dominance graph is a forest as

each element (as a vertex) has at most one incoming arc.

b

c

(a) Stream S (b) Dominance Graph

c

h h

e

g

e

g

a

f f

Figure 5. Dominance Graph

Example 2. Assume that a data stream consists of data elements
a, b, c, e, f , g, and h as depicted in Figure 5(a), which arrive
according to their alphabetic order. Figure 5(b) illustrates the
corresponding dominance graph after removing the redundant el-
ements. Note that N = 7 in this example.

The theorem below is fundamental to encoding the dom-
inance graph to process n-of-N queries. It can be immedi-
ately verified according the definition of a dominance graph.

Theorem 3. For a given n (n ≤ N), an element e ∈ Pn is
skyline point for the n-of-N query if and only if either

• e is a root of the current dominance graphGRN , or
• there is an edge e′

c→ e in GRN such that e′ ar-
rives earlier than the nth most recent element; that is,
κ(e′) < M − n + 1 ≤ κ(e).

Here, M is the number of the total elements seen so far.

Our encoding scheme on GRN is quite straightforward:
GRN is represented by its edges. That is, 1) every edge
e′ → e in GRN is represented by the interval (κ(e′), κ(e)],
and 2) each root e in GRN is represented by the interval
(0, κ(e)].

According to Theorem 3 an element e in GRN is in the
answer of an n-of-N query (n ≤ N) if and only if κ(e)
is the right end of an interval (a, κ(e)] that contains M −
n + 1. Based on the encoding scheme above, the problem
of computing an n-of-N query is converted to the stabbing
query problem with the stabbing point M − n + 1 that is
discussed in section 2.3.

Let IRN denote the interval tree on the intervals obtained
by the encoding scheme on GRN . We can process an n-of-
N query as follows.

Stab the intervals in IRN by M −n + 1, and then
return the data elements e such that each κ(e) is
the right end of a stabbed interval.

Example 3. Regarding the example in Figure 5, a, b, ..., and h ar-
rived at time 1, 2, 3, ... 7, respectively. The dominant graph can be
encoded by the following intervals: (0, 3], (0, 4], (3, 7], (4, 5], and
(4, 6]. When n = 6,M −n+1 = 2 asM = 7. Clearly, the intervals
(0, 3] and (0, 4] are the results of stabbing query; consequently, c

and e are the skyline points for the most recent 6 elements among
the 7 already arrived elements.

Since GRN is a forest, it is immediate that the num-
ber of intervals in IRN is O(|RN |). Consequently, our
query processing algorithm runs in O(logN + s) where
N = |RN |. Clearly, the query processing time becomes
O(min{logN , d log log N} + s), when the data distribu-
tion on each dimension is independent, based on Theorem
2.
3.3 Maintaining RN & the Encoding Scheme

Upon the arrival of a new element enew in the data
stream, enew is added to RN and the oldest element eold

in RN should be removed if it is expired. Therefore, RN

may have to be updated, as well as the interval tree IRN .
Our algorithm is described in Algorithm 1.

The lines 3-8 in Algorithm 1 describe the updates if eold

in RN is expired. Although the oldest element in PN is al-
ways expired once a new element arrives, the oldest element
eold in RN is not necessarily always expired. For example,
regarding the stream in Figure 5 the oldest element c in RN

(N = 6) should not be expired if the next new element ar-
rives. Note that eold is always a root in GRN .

The lines 9-16 describe the updates of RN and the in-
terval trees by inserting enew. Updating the interval trees

Algorithm 1 : Maintaining RN & its Encoding Scheme
Description:

1: while new element enew do
2: if the oldest eold in RN is expired then
3: RN := RN − {eold};
4: remove (0, κ(eold)] from IRN ;
5: for ∀eold

c→ e do
6: update (κ(eold), κ(e)] in IRN to (0, κ(e)]
7: end for
8: end if
9: find Denew ⊆ RN dominated by enew;

10: for ∀ e ∈ Denew do
11: remove the intervals in IRN with κ(e) as an end
12: end for
13: RN := RN − Denew + {enew}
14: determine the critical relation e

c→ enew;
15: add (κ(e), κ(enew)] (or (0, κ(enew)]) to IRN

16: end while

can be done in O(logN) time per update, as discussed in
section 2.3. The critical issues are to computeDenew and
determine the critical dominance relation for enew if it ex-
ists.

The problem of computing Denew is the well-known
dominance reporting [5, 19] problem. The research in this
area has been focused on queries. The most efficient query
algorithms are presented in [5, 19]; however no update
techniques of their supporting data structures are reported.
Therefore, these data structures are not quite applicable to
our problem where updates are invoked by new data ele-
ment arrivals.

As pointed out by [8], the most in-memory data struc-
tures for points are difficult to be balanced when data
are updated. We propose to use the in-memory R-tree
[2, 10, 8, 28] to organize RN to support the two kinds of
computation above. The data structures adopted in our al-
gorithms are depicted in Figure 6.

old(eκElements Labels: )

Interval TreeR Tree

Figure 6. Data Structures Maintained
The label set {κ(e)} for the elements in RN are stored

according to an increasing ordering. There is a 1-1 mapping
to link the elements stored in the R-tree and the label set; the
links between right (left) ends of intervals and the label set
are also maintained. The label set and these links are main-
tained for constant time computing the relation between an
interval end and the corresponding element, as well for de-
termining if eold is expired.

We propose to use depth-first search paradigm [22]
on R-tree in Algorithm 1 to computing Denew . A node
in R-tree is further expanded if enew falls to the “candi-
date region” of its bounding box. For instance, in the 2-
dimensional space, the shade region of Figure 7 (a) is the
candidate region of the bounding box. If enew falls in the
shade region then the node corresponding to the bound-

ing box will be further investigated; otherwise the subtree
rooted at bounding box will be discarded in our search.
Moreover, the whole subtree can also be discarded in our
search if enew falls in the l-corner as depicted; in this case
all the elements in the subtree will be included in Denew .
Similar situations can be identified in a d-dimensional space
(for d > 2).

(a)

Bounding
Box

l−corner

(b)

Bounding
Box

r−corner

Figure 7. Dominance Testing
In our depth-first search, we immediately remove a new

discovered element in Denew from the R-tree but do not im-
mediately balance the R-tree for every deletion. The R-tree
is balanced after deleting every element in Denew . To effec-
tively balancing of the R-tree after deletion of Denew , we
adopt the B+-tree update strategy (bottom-up) combining
with the technique in [2]. Moreover, to make the depth-
first search effective we modify the bounding box of a node
when the depth-first search backwardly returns to the node.
For example, regarding the example in Figure 8 we modify
the bounding box B1 to the bounding box B4 after delet-
ing the subtrees rooted at B5 and B6, and then returning
to B1 in the depth first search. This will prevent us from
unnecessarily investigating any remaining children of B1.

2
3

6
5

7
8
9

4

x

y

O

10

1

1 2 3 4 5 9876 10 11

B3
a

b

u

B7

B8

B9

c

f
g

h

i

n

l m

k

p

gf

B8B7

lk m p q

B4 B6B5

B4
B5

B6

B10

B2

E0

B3

B0
e

B1

j

B9 B11B10

sr tih j on

B1 B2
o

q

cbar B11

B3B1

B4 B6 B8 B10

B2

New
s t

eu
B5 B7 B9 B11

Figure 8. Example
We propose to use the best first search paradigm [12]

on R-tree in Algorithm 1 to determining the critical domi-
nance relation on enew. At each node v in the R-tree, we
propose to maintain the maximal value mv of κ(w) among
all the data elements w in the subtree rooted at v. To ef-
ficiently do the best first search, the max-heap [7] on mv

among the nodes to be expanded is maintained, and then
the heap top node is chosen to be expanded. The criteria
of expanding the heap top node v are similar to those in
the dominance reporting. As depicted in Figure 7(b), we
expand v if and only if enew falls in the shade area sur-
rounding the bounding box; if enew falls in the r-corner as
depicted then the algorithm terminates and outputs the el-
ement e′ with κ(e′) = mv in the subtree rooted at v. We
terminate the algorithm if the heap is empty or the current
node v under investigation is an element e ′ that dominates
enew. Consequently, (κ(e′), κ(enew)] is added to IRN if e′

exists; otherwise (0, κ(enew)] is added.
We use the standard R-tree insertion technique [2] to in-

sert enew to the R-tree. As discussed in [28], the R-tree cost
models are generally quite sophisticated. We are unable
to analyse the time complexity of our search on a R-tree.
However, our experiment results indicated that our R-tree
based update technique is practically quite efficient when
d is small; it is sufficient enough to support the real time
updates against high speed stream. We have done the ex-
periments up to d = 5.

3.4 Continuous n-of-N Queries
Continuous queries are issued once and run continuously

to generate results along with the updates of the underlying
datasets. With the arrival of a new element, the result Sn

of an n-of-N query might be changed. A simple way is
to re-run our query processing algorithm (stabbing query)
in section 3.2 per arrival of a new data element; this re-
quires O(logN + s) per new element. In this subsection,
we present a novel trigger based incremental algorithm with
O(δ) time to update the current result and O(log s) time to
update the trigger list per result change. Here, δ is the num-
ber of element changes from the current result to the new
result. The correctness of our algorithm is based on the fol-
lowing proposition.

Proposition 1. Once a new element enew arrives, the cur-
rent result Sn of an n-of-N query may have the following
changes:

• Deletion: a data element e ∈ Sn is removed if enew

dominates e or e is expired.
• Insertion: a data element e ∈ RN is added to Sn

if in the updated GRN after applying Algorithm 1 for
inserting enew, either 1) e is enew and !e′ such that
κ(e′) ≥ M −n+1 and e′

c→ enew, or 2) e is critically
dominated by the just expired element e ′′ in Sn and e′′

is not dominated by enew.
Here, M is the total number of elements.

Below is our algorithm - Algorithm 2.
In our algorithm we maintain a min-heap [7] on {κ(e) :

e ∈ Sn} for processing efficiency; that is, the heap top
always has the smallest value. Here, etop in the algo-
rithm is the element in Sn corresponding to the heap top
of the min-heap; it is expired from the most recent n el-
ements if κ(etop) < M − n + 1. Thus, every time we
need only to check the heap top in the current solution to
see if the trigger should be fired. If the trigger fires (i.e.
κ(etop) < M − n + 1), then the element on the heap top
should be processed by Algorithm 2.

Note that Denew is the set of new redundant elements
dominated by enew which are discovered by Algorithm 1.
We assume the deletion of elements in Denew in Algorithm
1 will notify the processing of a continuous query q. This
can be efficiently done by linking an element e to the con-
tinuous queries which are using e as part of the result.

Algorithm 2 : Processing Continuous n-of-N Queries
Description:

1: while new element enew do
2: M := M + 1;
3: for e ∈ Sn ∩ Dnew do
4: Removal (e, Sn)
5: end for
6: if !e′ c→ enew with κ(e′) ≥ M − n + 1 then
7: Add (enew, Sn)
8: end if
9: while κ(etop) < M − n + 1 do

10: Removal (etop, Sn)
11: for ∀e with etop

c→ e in GRN do
12: Add (e, Sn)
13: end for
14: end while
15: end while

In Algorithm 2, Removal (e, Sn) is to remove e from
Sn and also remove κ(e) from the min-heap - the trigger
list; Add (e, Sn) is to add e to Sn and insert κ(e) into the
min-heap.

e

c c

g

e

g

e

c

h

(b) b c e f g(a) a b c e f (c) c e f g h

f f f

Figure 9. An Example
Example 4. Regarding the stream in Example 2 as depicted in
Figure 5 (a), suppose that N = 5 and n = 4. The stream ini-
tially has 5 elements {a, b, c, e, f}. As new elements arrive, the
n-of-N query results are updated as follows according to Algo-
rithm 2. The result comprises {c, e} for the n-of-N query and re-
mains unchanged when the most recent N elements change from
{a, b, c, e, f} to {b, c, e, f, g}; Figures 9(a) and 9(b) showed the
corresponding dominance graphs, respectively. Once the element
h arrives, the new (updated) dominant graph is showed in Figure
9(c). Since κ(c) = 3 < 7 − 4 + 1, c is expired and thus h is added
to the solution. Consequently, e and h form the answer once h
arrives.

The computation of the elements critically dominated by
etop (line 11) in Algorithm 2 can be done in O(l) time by
just following the links between R-tree to label set and the
label set to interval trees, respectively. Here, l is the number
of children of etop. Consequently, it takes O(δ) time to up-
date the current result and takes O(log s) [7] to update the
min-heap per element change in Sn.

4 (n1, n2)-of-N Queries
In this section, we investigate the problem of process-

ing (n1, n2)-of-N queries; that is, compute the skyline of
the elements arriving between the most n2th recent element
and the most n1th recent element in a data stream, where
n1 ≤ n2 ≤ N . Unlike processing n-of-N queries, all el-
ements in PN need to be kept for processing all (n1, n2)-
of-N queries; the reason is straightforward: n1 could equal
n2. However, similarly to processing n-of-N queries the

data structures to be maintained are the R-tree on RN (the
non-redundant elements in PN), and interval trees. Below,
we first characterize the property for a data element to be a
skyline point for an (n1, n2)-of-N query.

An element e in the most recent N elements PN may be
dominated by many other elements in PN . We use ae to
denote the youngest element e ′ that dominates e and arrives
before e; that is,
κ(ae) = max{κ(e′) : e′ dominates e & κ(e′) < κ(e)}. (1)

Similarly, we use be to denote the oldest element e′ that
dominates e and arrives after e; that is,
κ(be) = min{κ(e′) : e′ dominates e & κ(e′) > κ(e)}. (2)

In case that ae (be) does not exist, a dummy data ele-
ment e0 (e∞) is used to represent ae (be) with κ(e0) = 0
(κ(e∞) = ∞). Note that ae → e has been defined as
the critical dominance relation in the last section. We call
be → e backward critical dominance relation, ae the criti-
cal ancestor of e, and be the backward critical ancestor of
e. It can be immediately shown that e is a skyline point
of an (n1, n2)-of-N query if and only if its critical ances-
tor arrives earlier than the most n2th recent element and
backward ancestor arrives later than the most n1th recent
element.
Theorem 4. An element e in PN is a skyline point for an
(n1, n2)-of-N query if and only if
κ(ae) < M − n2 + 1 ≤ κ(e) ≤ M − n1 + 1 < κ(be), (3)
where M is the number of elements seen so far.

A graph, with the vertex set PN∪{e0, e∞} and with edge
set consisting of the critical and backward critical relations,
is called the CBC dominance graph of PN ; it is denoted
by CGPN . Clearly, the number of edges is O(|PN |) since
every data element (vertex) has only two incoming arcs.

Regarding the data stream in Figure 2, Figure 10 illus-
trates the CBC dominance graph if N = 7 after omitting
the dummy vertices e0 and e∞ and the edges attached to
them.

a

c

b

e f

Y

X

g

h

backward critical dominance critical dominance

Figure 10. A CBC Dominance Graph
Theorem 4 is fundamental to our algorithms for process-

ing an (n1, n2)-of-N query. As with section 3.2, CGPN

can be represented by the edges that are encoded by inter-
val trees.

A CGPN is encoded as follows. For each element e in
PN , use ((κ(ae), κ(e)], κ(be)) to represent its two incom-
ing arcs ae → e and be → e. Then, we build the interval

tree on the intervals {(κ(ae), κ(e)] : e ∈ PN}. To process
(n1, n2)-of-N query, we apply the stabbing query algorithm
by using M − n2 + 1 to stab the intervals while checking
the condition κ(e) ≤ M − n1 + 1 < κ(be). Below is a
description of our algorithm.
Algorithm 3 : Processing (n1, n2)-of-N Query
Description:

1: Stab the intervals by M − n2 + 1;
2: for each element e in stabbing result do
3: if κ(e) ≤ M − n1 + 1 < κ(be) then
4: return e;
5: end if
6: end for

Note that in line 2 of the algorithm, “element e in the
stabbing result” means the interval (κ(ae), κ(e)] is stabbed.
It is immediate that Algorithm 3 runs in O(log N + l)
where l is the number of intervals stabbed. Consider that
an n-of-N query is a special case of a (n1, n2)-of-N query.
To retain the same time complexity of processing n-of-N
queries, we split the interval tree on CGPN into two inter-
val trees as follows.

IRN : Intervals with the right end corresponding to an ele-
ment in RN .

RRN−: Intervals with the right end corresponding to an
element in PN − RN .

It can be immediately shown that IRN consists of the in-
tervals encoded from the dominant graph defined in section
3.2; thus, we use the same notation. The data structures
used are depicted in Figure 11

R Tree on
RN

NP RN

Interval Tree
RN

I
Interval Tree

IRN−

Elements Labels

......M−N+1 M

Interval Tree

Figure 11. Data Structure Maintained
It is immediate that the backward critical dominance

relations and the critical dominance relations may be de-
termined iteratively against the current non-redundant ele-
ments RN as follows. Once a new element e arrives, if an
element e′ in the current RN is dominated by e then e is
the backward critical ancestor of e ′. If an element e′′ in
RN critically dominates e then e′′ is the critical ancestor of
e. Consequently, the maintenance algorithm of CGPN via
IRN and IRN− are similar to Algorithm 1. Below, in Algo-
rithm 4 we present the maintenance algorithm by describing
its similarity and difference with Algorithm 1.

It is immediate that the update costs of the R-tree on RN

are exactly the same as those in Algorithm 1. While up-
date costs of the interval trees per new element is amortised
to O(log N) since every data element moves at most once

Algorithm 4 : Data Structures Maintenance
• It always expires the oldest element in PN ; the subsequent

deletion in R-trees and update of interval trees are the same
as that in Algorithm 1. Inserting the new element enew to
RN is also the same as Algorithm 1.

• The search paradigms on the R-tree of RN are the same as
those in Algorithm 1. That is, the depth-first search is used
to determine the new redundant elements of which enew is
the backward critical ancestor, while the best-first search is
used to determine the critical ancestor of enew.

• The interval corresponding to the critical dominance will be
added to IRN in the same way as in Algorithm 1. For a new
redundant element e′ caused by e, remove e′ from the R-tree
and place it in PN − RN . Then, remove ((κ(ae′), κ(e′)],∞)

from IRN and insert ((κ(ae′), κ(e′)], κ(e)) to IRN−.

from IRN to IRN−.
Note that unlike an n-of-N query, to process a continu-

ous (n1, n2)-of-N query it is necessary to keep some data
elements that are not the current skyline elements. A space-
efficient algorithm has been developed by us to minimize
the number of candidate result elements to be kept. Due to
the space limit, we are unable to present it in this paper.

5 Performance Evaluation
As mentioned earlier, there is no existing technique

designed to support efficient computation of n-of-N
and (n1, n2)-of-N queries with an effective on-line pre-
processing. In our performance study, we implement the
most efficient main-memory algorithm [17] for computing
the skyline of a set of points and use it as a benchmark algo-
rithm to evaluate our techniques. Below are the algorithms
that have been implemented and evaluated.
KLP: The skyline computation algorithm [17].
nN: Our query processing algorithm for n-of-N queries;

that is, the stabbing query processing algorithm.
mnN: Our algorithm (Algorithm 1) for continuously main-

taining the data structures for supporting n-of-N
queries.

cnN: Our algorithm (Algorithm 2) for processing continu-
ous n-of-N queries.

n12N: Our query processing algorithm (Algorithm 3) for
(n1, n2)-of-N queries.

mn12N: Our algorithm (Algorithm 4) for continuously
maintaining the data structures for (n1, n2)-of-N
queries.

All the experiments have been carried out on a Pentium 4
PC with a 2.8GHz processor and 1GB of main memory. As
we do not have real data, we evaluate our techniques against
the 3 most popular synthetic benchmark data, correlated,
independent, and anti-correlated [4].

In our experiments, we evaluate the efficiencies of our
algorithms, as well as the sensitivity and scalability against
the data distributions, dimensionality, and window sizes.
Our performance evaluation is conducted against the space
dimensions from 2 to 5. This is because that in this paper
our techniques focused on a lower dimensional space.

anti−correlated independent correlated

 0.5

 1

 1.5

 2

 2.5

5d4d3d2d

qu
er

y
tim

e
(s

)

dimension

KLP

10-6

10-5

10-4

10-3

10-2

5d4d3d2d

qu
er

y
tim

e
(s

)

dimension

nN

Figure 12. KLP vs nN

anti−correlated independent correlated
 8x10-6

 6x10-6

 2x10-6

 1x10-6

1M500K100K1K

qu
er

y
tim

e
(s

)

(a) 2d

 1x10-6

 1x10-5

 1x10-4

 1x10-3

 1x10-2

1M500K100K1K

qu
er

y
tim

e
(s

)

(b) 5d

Figure 13. Performance against Different n

5.1 Evaluating n-of-N query algorithm
Note that the time complexity of nN is O(logN + s)

where N ≤ N . In most sliding window applications, we
may expect that N ≤ 106. A variation of N from 1K to 1M
will not change the time complexities dramatically; the time
complexity is mainly decided by s - the number of skyline
points. Clearly, s should be determined by n (n ≤ N) in an
n-of-N query, data distributions, and the space dimension-
ality. In this subsection, we evaluate the efficiencies of nN
against the space dimensions from 2 to 5, different data dis-
tributions, and different n values. In the experiments con-
ducted in this subsection, we fix N = 106.

In this set of experiments, we randomly choose 1000 dif-
ferent n values varying from 1000 to 106. Each n is thus
mapped to an n-of-N query with N = 106 to evaluate nN.
The application of KLP to processing an n-of-N query is
very straightforward - applying KLP to computing the sky-
line of the most recent n elements.

For each d (2 ≤ d ≤ 5), we generate 3 synthetic data sets
with the distributions, correlated, independent, and anti-
correlated, respectively. Each data set has 2 × 106 data ele-
ments. To simulate a data stream by a data set, we assign the
relative arriving ordering of data elements according to their
generation ordering in the synthetic data; by doing this we
may expect that the data distribution of any most recent N
elements can approximately retain the original data distri-
bution of the whole data set. For each data stream, we ran-
domly take 1000 snapshots of the most recent N elements
PN . For each PN , the interval tree IRN is generated and
then nN is executed against IRN . Meanwhile, in each PN

we take the most recent n elements and then apply KLP on
the most recent n elements to compute the skyline. The ex-
periment results are reported in Figure 12, where we calcu-
late the average query processing costs of these 1K queries
for each pair of data set and space dimension.

5d max. delay
5d avg. delay
2d max. delay
2d avg. delay

 7x10-5

 6x10-5

 4x10-5

 3x10-5

10987654321

m
ai

nt
en

an
ce

 ti
m

e
(s

)

unit: 100K
(a) correlated

 5x10-4

 2x10-4

 4x10-5

10987654321

m
ai

nt
en

an
ce

 ti
m

e
(s

)

unit: 100K
(b) independent

 2x10-3

 8x10-4

 4x10-4

 5x10-5

10987654321

m
ai

nt
en

an
ce

 ti
m

e
(s

)

unit: 100K
(c) anti-correlated

Figure 14. mnN Performance

The results showed that the average processing time by
KLP is more than 1 second. This indicates that KLP will
cause a significant processing delay even against a data
stream with a very low arrival speed - 1 element per second.
Thus, it is not efficient enough to support on-line computa-
tion of n-of-N queries. Therefore, we no longer evaluate
the performance of KLP in our performance study.

In the experiment, we also report the impact of n. We fix
the space dimensionality by 2 and 5, respectively, then we
report the query processing time against different n. Since
the time of each execution of nN is too short to be recorded,
we divided these 1K queries into 33 disjoint sets queries
such that each set consists of about 33 queries with the con-
secutive values of n; then we record the average processing
time for each set as one query processing time. The results
are reported in Figure 13. The results showed that our query
processing techniques are not very sensitive to the changes
of n. However the dimensionality and data distribution have
a great impact on the efficiency of our techniques; this is be-
cause they have a great impact on the value of s.

5.2 Efficiency of Maintenance Techniques: mnN
In this subsection, we study the performance of mnN -

the algorithm for continuously maintaining the data struc-
tures for processing n-of-N queries. In this set of experi-
ments, we choose two space dimensions d = 2, 5. For each
of these two space dimensions, we generate 3 data streams
in the same way as those in the last subsection, correlated,
independent, and anti-correlated. Then we record the aver-
age cost and maximum cost, respectively, of processing one
data item against different N values. Ten different N val-
ues are chosen; that is, N = i × 105 for 1 ≤ i ≤ 10. The
experiment results are reported in Figure 14.

As illustrated, the correlated data has the best perfor-
mance and the anti-corrected data has the worst perfor-
mance. This is because correlated data leads to the smallest
size of RN on average, while anti-correlated data generates
the largest size of RN on average. The experiment results
demonstrated that our maintenance techniques can support
on-line update of data structures against a very rapid data
stream. Even for 5d anti-correlated data streams, mnN can
handle the element arrival rate about 500 elements per sec-
ond in the worst case in real time. The experiment results
also suggest that the update costs (average and maximum)
per data item follow a logarithmic function regarding N .

5.3 System Scalability

In this subsection, we evaluate the scalability for system
to handle a number of n-of-N queries against rapid streams.
Since our techniques are based on sliding windows (i.e. one
element in and one element out), it is not necessarily to eval-
uate a data stream with a very massive volume as long as
there are enough sliding times. Moreover, in most sliding
window applications it is quite rare to have N > 106. Fur-
thermore, the performance study in the last subsection in-
dicated that the data structure maintenance costs are more
expensive when N gets larger, and anti-correlated data and
independent data lead to more expensive maintenance costs
than the correlated data.

 7x10-4

 3x10-4

 1x10-4

 5x10-5

21.81.61.41.21

pr
oc

es
si

ng
 ti

m
e

(s
)

number of points (M)

5d

4d

3d

2d

(a) independent

 1x10-2

 1x10-3

 1x10-4

21.81.61.41.21

pr
oc

es
si

ng
 ti

m
e

(s
)

number of points (M)

5d

4d

3d

2d

(b) anti-correlated

Figure 15. Overall Performance
By the above observations, in this set of experiments we

choose N = 106, limit the data set size to 2 × 106, and
do the experiment against two kinds of data streams, inde-
pendent and anti-correlated. For each d (1 ≤ d ≤ 5), we
generate two data streams (independent and anti-correlated)
with 2× 106 data elements in the same way as those in sec-
tion 5.1. We also randomly generate 2×106 n-of-N queries
and randomly assign them among the most recent 1M ele-
ments. Then, we run the algorithms, mnN to continuously
maintain the data structures and run nN for processing n-
of-N queries. We record the processing time between two
consecutive data elements a and b, including the time of
processing the queries between the two data elements and
the time to maintain the data structures due to the former el-
ement a. Since such time is too short to be recorded, we use
average time for processing 1000 elements as the process-
ing time of one element; that is, the total processing time of
1000 elements divided by 1000.

The experiment results are reported in Figure 15. Note
that we report only the performance from the 10 6 + 1th el-
ements. This is because the window starts sliding for data
structures maintenance when the window is full - having

106 elements. In fact, the initial costs are lower. In order to
avoid a misleading, we cut the initial costs part.

The experiment results showed that for d = 2, 3, the sys-
tem can support such a load on-line against a very rapid data
stream with the arrival speed higher than 1K elements per
second. The performance degenerates for anti-correlated
data when d = 4, 5. However, for anti-correlated data, our
techniques can still handle a rapid data stream on-line with
the element arrival speed about 300 elements per second for
d = 4 but can handle only a data stream with a medium
arrival speed for d = 5 - about 80 elements per second.

5.4 Continuous n-of-N queries
Now we evaluate the performance of our continuous

query processing techniques - cnN. To make a comparison,
we also run our nN algorithm once per new data item arrival
to continuously process an n-of-N query.

cnN avg. delay cnN max. delay nN avg. delay nN max. delay

4x10-3

10-3

10-4

10-5

5d
anti

5d
inde

5d
corr

2d
anti

2d
inde

2d
corr

pr
oc

es
si

ng
 ti

m
e

(s
)

(a) N=10K

10-5

10-4

10-3

10-2

5d
anti

5d
inde

5d
corr

2d
anti

2d
inde

2d
corr

pr
oc

es
si

ng
 ti

m
e

(s
)

(b) N=1M

Figure 16. Performance Evaluation of cnN
We use 2d and 5d data to do the evaluation. The 6 data

streams are generated in the same way as those in section
5.2. We choose N = 10K and 1M. In the system, 20 n-of-
N queries are generated such that 10 for N = 1M and 10
for N = 10K. For N = 10K (N = 1M), these 10 queries
are with n = i × N

10 (for 1 ≤ i ≤ 10), respectively. We
record the average delay (processing time) and maximum
delay of an element, respectively. Note that a delay of an
element e means the processing time involving processing e
before processing next element; this includes the data struc-
ture maintenance costs and query processing costs. Again
to record precisely such a delay per element, we use the av-
erage delay per 1000 elements instead.

Figure 16 reports the experiment results. It is interesting
to note that running nN per new data element also has a very
reasonable performance especially in a lower dimensional
space, while our cnN technique can support such a system
work-load against very rapid stream with an arrival speed
higher than 1000 elements per second.

3x10−2

10−2

10−3

10−4

2x10−5

5d

anti

4d3d2d

inde

qu
er

y
tim

e
(s

)

dimension

corr

(a) average query time

 6x10-2

 2x10-2

 3x10-3

 4x10-4

21.81.61.41.21

pr
oc

es
si

ng
 ti

m
e

(s
)

number of points (M)

5d

4d

3d

2d

(b) anti-correlated

Figure 17. Performance of n12N

5.5 (n1, n2)-of-N Processing Techniques
In this subsection, we conduct experiments to evalu-

ate the performance of our techniques, n12N, mn12N, and
cn12N for processing (n1, n2)-of-N queries.

The settings of the first experiment are the same as
those in section 5.1 except that we randomly generate 1K
(n1, n2)-of-queries with the constraint that n2 − n1 ≥ 500.
We record the average query processing time of these 1K
queries for a d (space dimension) and a data stream (via its
snapshots). The results are reported in Figure 17(a). The
performance of n12N follows a very similar pattern to that
of nN; however it is slightly slower due to the fact that n12N
has to stab the elements more than required by a query.

In the second set of experiments, we evaluate the sys-
tem scalability by applying n12N and m12N. The settings
and the experiments are the same as those in section 5.3
except the randomly generated 2 × 106 queries are now
(n1, n2)-of-N queries. Figure 17(b) reports the experiment
results against anti-correlated data for d = 2, 3, 4, 5, re-
spectively. The experiment results indicated that our tech-
niques can support the system workload of on-line process-
ing 2M queries (though not always simultaneously) against
very rapid stream with arrival speed higher than 1K ele-
ments/second for d = 2, 3. The performance significantly
drops when d is increasing. For d = 4, we may still be
able to handle a stream with a medium arrival speed - about
70 elements/second, while for d = 5 we can only handle a
slow data stream with the arrival speed about 22 elements
per second.

5d max. delay 5d avg. delay 2d max. delay 2d avg. delay

 8x10-4

 4x10-4

 2x10-4

 6x10-5

10987654321

m
ai

nt
en

an
ce

 ti
m

e
(s

)

unit: 100K
(a) independent

 2x10-3

 5x10-4

 2x10-4

 6x10-5

10987654321
m

ai
nt

en
an

ce
 ti

m
e

(s
)

unit: 100K
(b) anti-correlated

Figure 18. Performance Evaluation of mn12N
We repeat the experiments in section 5.2, except the al-

gorithm mn12N is employed this time, for the performance
evaluation of our continuous maintenance techniques of the
data structures to support (n1, n2)-of-N queries. The re-
sults are reported in Figure 18 for independent data and
anti-correlated data. These experiment results confirmed
our theoretical analysis that mn12N and mnN should have
about the same efficiency.

5.6 Summary of the Performance Study
As a short summary, our experiment results clearly

demonstrated that our on-line skyline computation algo-
rithms are very efficient in practice besides the theoret-
ical complexity guarantees. They also showed that the
techniques for continuously maintaining the proposed data
structure can on-line support very rapid data streams. Our

processing techniques for ad-hoc queries combining with
our data structure maintenance algorithms can process a
massive number of queries on-line against very rapid data
streams in a lower-dimensional space (d = 2, 3, 4), and but
are only able to handle streams with medium or low arrival
speed for d = 5.

Note that our continuous query processing techniques in
the paper may not be able to support the processing of mas-
sive continuous queries by a single CPU resource against
data streams, though they perform greatly for a small num-
ber of continuous queries. This is partially due to the in-
herent difficulty of continuously processing skyline queries
- there could be many skyline points involved; thus it could
be expensive to materialize many query results.

6 Conclusions
In this paper, we presented novel techniques for on-line

skyline computation over the most recent n elements (for
any n ≤ N) in a rapid data stream. While many researchers
are working on the optimal off-line processing of skyline
queries, this work is among the first attempts to develop
efficient incremental techniques to on-line support skyline
computation. Our algorithms are not only efficient and
scalable in practice but also have theoretically guaranteed
performance. Moreover, we also extend the techniques to
cover an arbitrary window query in the most recent N ele-
ments. Our experiment results demonstrated that the tech-
niques can be used to process rapid data streams in lower
dimensional spaces with the space dimension not greater
than 5.

Note that if we replace the element position labels by el-
ement arriving time then our techniques can be immediately
applied to the most recent elements specified by a time pe-
riod. As a possible future work, we will investigate if the
maintenance of our data structures may be carried out by
algorithms with theoretical guarantees. We will also inves-
tigate the problem of approximate skyline computation over
data streams.

Acknowledgement. The research of the first and the second
authors was partially supported by the ARC Discovery grant
- DP0346004.
References

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In POS, 2002.

[2] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The
r*-tree: An efficient and robust access method for points and
rectangles. SIGMOD, 1990.

[3] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thomp-
son. On the average number of maxima in a set of vectors.
JACM, 1978.

[4] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline
operator. ICDE, 2001.

[5] B. Chazelle and H. Edelsbrunner. Linear space data struc-
tures for two types of range search. Discrete & Computa-
tional Geometry, 1987.

[6] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. ICDE, 2003.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 2001.

[8] V. Gaede and O. Gunther. Multidimentional access methods.
Computing Surveys, 30(2):170–231, 1998.

[9] S. Guha, N. Koudas, and K. Shim. Data-streams and his-
tograms. In STOC, pages 471–475, 2001.

[10] A. Guttman. R-trees: A dynamic index structure for spatial
searching. SIGMOD, 1984.

[11] J. Hershberger and S. Suri. Convex hulls and related prob-
lems in data streams. MPDS, 2003.

[12] G. Hjaltason and H. Samet. Distance browsing in spatial
databases. TODS, 24(2):265–318, 1999.

[13] V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer: A
system for the efficient execution of multi-parametric ranked
queries. SIGMOD, 2001.

[14] S. Kapoor. Dynamic maintenance of maxima of 2-d point
sets. SIAM J. Comput., 2000.

[15] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the
sky: An online algorithm for skyline queries. VLDB, 2002.

[16] N. Koudas, B. C. Ooi, K. L. Tan, and R. Zhang. Ap-
proximate nn queries on streams with guaranteed er-
ror/performance bounds. VLDB, 2004.

[17] H. Kung, F. Luccio, and F. Preparata. On finding the maxi-
mum of a set of vectors. JACM, 22(4):469–476, 1975.

[18] X. Lin, H. Lu, J. Xu, and J. X. Yu. Continuously maintaining
quantile summaries of the most recent n elements over a data
stream. In ICDE, 2004.

[19] C. Makris and A. Tsakalids. Algorithms for three-
dimensional dominance searching in linear space. IPL,
1998.

[20] D. Mclain. Drawing contours from arbitrary data points.
Computer Journal, 1974.

[21] K. Mehlhorn. Data Structures and Algorithms: 3.
Multidimensional Searching and Computational Geometry.
Springer, Berlin, 1984.

[22] F. V. N. Roussopoulos, S. Kelly. Nearest neighbor queries.
SIGMOD, 1995.

[23] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal pro-
gressive alogrithm for skyline queries. SIGMOD, 2003.

[24] F. Preparata and M. Shamos. Computational Geometry: An
Introduction. Springer-Verlag, 1985.

[25] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill, 2003.

[26] R. Steuer. Multiple Criteria Optimization. Wiley New York,
1986.

[27] K. Tan, P. Eng, and B. Ooi. Efficient progressive skyline
computation. VLDB, 2001.

[28] Y. Theodoridis, E. Stefanakis, and T. Sellis. Efficient cost
models for spatial queries using r-trees. IEEE TKDE, 2000.

