
An Effective Parallelization of Execution of Multijoins in
Multiprocessor Systems

Xuemin Lin and Simon Fox
Department of Computer Science

The University of Western Australia, Nedlands, WA 6010, Australia
e-mail: { lxue, sfox} @cs.uwa.oz. au

Abstract
In this paper, we study a synchronous execution s-

trategy f o r parallel j o i n computation in multiproces-
sor systems. Through a fur ther comprehensive inves-
tigation of the processor allocation problem and inter-
operator parallelization problem, we present a new al-
gorithm for producing an effective parallelization plan
f o r processing multijoins. Besides theoretical analysis,
the e f ic iency and effectiveness of our new algorithm
are supported by our experiments.
Key Words: Databases, Multijoins, Parallel Process-
ing, Processor Allocation, Response Time.

1 Introduction
A relational multijoin is the most expensive opera-

tion to be processed in distributed database systems.
There are two paradigms for processing a distributed
multijoin:

1. distributed computation approach, or

2. parallel execution approach.

The former aims to minimize data transmission cost
among remote sites, while the later aims to speed up
query response time.

In this paper, we restrict our interests in parallel
execution of multijoins in a multiprocessor system (ei-
ther share disks or share everything). The interested
readers may refer to [1,11,12,24] for a detailed discus-
sion of a distributed processing approach.

To efficiently compute a multijoin in parallel, two
factors should be considered [3,9,22]: 1) intra-operator
parallelism where several processors may be designat-
ed for processing one binary join in parallel, 2) inter-
operator parallelism where several binary joins may be
executed concurrently. Nevertheless, an investigation
of these two problems should be based on a good pro-
cessor allocation strategy. In the light of these three
aspects, the problem of finding an optimal parallel ex-
ecution plan is computationally intractable [18,19].

In recent developments for support of non-standard
applications, the use of complex data models and the
availability of high-level interfaces lead to the genera-
tion of complex queries that may contain larger num-
bers of joins between relations. Consequently, the

development of execution strategies for parallel pro-
cessing multijoins has attracted a great deal of at-
tention. A number of parallel execution heuristics
[2,3,5,6,9,15,17,20,2 1,221 have been recently proposed.

These currently proposed heuristics can be classi-
fied into four kinds of strategies: a) Sequential Parallel
Execution [22], b) Segmented Right-Deep Execution
[2,15,17], c) Synchronous Execution [3,9], d) Full Par-
allel Execution [20,21,22]. A discussion about advan-
tages and disadvantages for using those four strategies
is outside of the coverage of this paper. The interest-
ed readers are recommended to read [22] for a detailed
discussion. In this paper, we will restrict our interests
in the synchronous parallel execution strategy.

Consider that the problem of finding an optimal
synchronous parallel execution plan for multijoins is
computationally intractable. [9] provided the first
heuristic in synchronous parallel execution, which re-
fines a sequential execution plan produced by system
R algorithm [14] in combining with a horizontally syn-
chronous execution technique in processor allocation
and an exploration of inter-operator parallelism.

Simulation results in [3] suggested a severe problem
in the optimally sequential execution tree produced
by system R algorithm: the minimum total execution
cost of an optimally sequential execution tree is, on av-
erage, much larger than the minimum total cost of an
optimal execution tree. This will potentially degrade
the performance of the algorithm in [9], because of the
importance (stated in [3,5,22]) of having an execution
tree with small total cost. Further, [3] proposed a two-
phase optimization strategy for multi-joins. The first
phase determines an execution tree that has the low-
est total execution cost and the second phase finds a
suitable parallelization for this tree. Particularly, in
the first phase a greedy heuristic has been applied to
obtaining an execution tree with small total cost; and
in the second phase, a hierarchically synchronous ex-
ecution strategy is applied to processor allocation to
find a suitable parallelization.

In our investigation, we find that in an execution
plan for a multijoin, both of inter-operator parallelis-
m and total execution cost have a great impact on
minimizing query response time. Further, the maxi-
mization of inter-operator parallelization degree and
the minimization of total execution cost are conflict-
ing for minimizing response time: an example will be

1087-4089196 $5.00 0 1996 IEEE
63

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:20 from IEEE Xplore. Restrictions apply.

shown in Section 4. Therefore, a good trade-off be-
tween inter-operator parallelism and total execution
cost must be carried out in building an execution plan.

Consider that the the algorithm in [3] is to first
provide an execution tree with the lowest total ex-
ecution cost, and then to explore a suitable inter-
operator parallelization for the tree through develop-
ing a good processor allocation algorithm. This may
limit an achievement of a good trade-off between inter-
operator parallelism and total execution cost.

In this paper, we will propose a new hierarchically
synchronous execution algorithm. The proposed algo-
rithm can be divided into two phases as follows. The
first phase is the same as that in [3] to obtain an ex-
ecution tree. In the second phase, we will allow mod-
ifications to the execution tree in order to provide a
good trade-off between inter-operator parallelism and
total execution cost, rather than retaining the execu-
tion tree structure in the second phase [3]. Our ex-
periment results suggest that the proposed algorithm
reatly improve the performance of the algorithm in

The second phase of our algorithm follows the same
refinement schedule as that in [9]. However, new opti-
mization techniques and a better processor allocation
algorithm are proposed in our algorithm to be tailored
to the inputs which have a different nature to that in
[9]. This differs our work with that in [9].

The rest of the paper is organized as follows. In sec-
tion 2, we introduce the necessary background knowl-
edge. In section 3, our processor allocation algorithm
is presented, and then a comparison with the existing
allocation algorithms will be made through simulation
experiments. Section 4 presents a new hierarchically
synchronous execution algorithm, as well as our ex-
periment results. In our experiments, we simulate the
performances of both our algorithm and the algorithm
in [3]. This is followed by a conclusion.

2 Multijoin Execution and Costs
In this paper, we study only natural multijoins [14].

For each relation Ri, I Ri I denotes the cardinality of Ri
i.e, the number of tuples in Ri). IAl denotes the car- i inality of the domain of a set A of attributes. A

j o i n graph (V, E , w , c) is used to specify the relation-
ship among relations in a multijoin, where V is the
set of nodes and E is the set of edges. Each node
represents a referenced relation in the multijoin. Two
nodes are connected by an edge if there exists a set
of join attributes between the two relations. w defines
the cardinality of each referenced relation, such that
w(Ri) = IRil. c defines the cardinality of a join at-
tribute set between two relations, such that for each
edge e = (R; ,Rj) , e(.) is the cardinality of the join
attribute set between R; and Rj,.

Developing a precise estimation of the result size
for a join is a difficult task. In this paper, we use the
following simple formula [3,14] to evaluate the cardi-
nality of a multijoin Myzl R; result.

b I .

Figure 1: A join execution sequence

Here, { e i : 1 5 i 5 k} is the set of join attribute sets
for all pairs of referenced relations.

An execution plan of a multijoin consists of a j o i n
execution sequence and a processor allocation for the
join execution sequence. A join execution sequence of
a multijoin specifies a partial ordering for processing
several binary joins to deliver the final multijoin re-
sult, and can be represented as a tree (similar to a
relational algebra tree in [14]). In this paper, a join
execution sequence is called an execution tree. For in-
stance, according to the execution tree in Figure 1, we
should:

compute R = Rl w R 3 after ill = R~ w R~
and R3 = R3 W R4, and compute R W R 5

after R5 = R5 W R6 and R = RI W R 3 .

Using either sort-merge join approach or hash join ap-
proach, the cost (time) for computing a join Ri W Rj
can be approximately represented as [3,18]:

+ blRj I + clRi W Rj 1, (2)

for a single processor. Here, a , b , and c are determined
by the path length of the system in processing and
joining tuples [23,3,18]. In a multiprocessor system,
the cost (time) for computing Ri W Rj by N proces-
sors can be also approximately represented [3,18] as

+ d N , (3)
alR;l+ blRj I + clRi W Rj I

N

where d is determined by the inter-processing commu-
nication protocol. Note that in the presence of data
skew [23] in parallel execution of a binary join, (3)
may have to be modified. However, in case that either
there is no data skew, or data skew problem has been
solved, (3) is still valid (we apply this assumption in
the rest of the paper).

3 A New Processor Allocation Algo-
rithm

Algorithm design of processor allocation to a giv-
en execution tree aims to minimize response time.
This problem is well-known for its NP-hardness in dis-
tributed jobs scheduling [13].

Consider that in most real applications, the num-
ber of processors in a multiprocessor system is usually
larger than half the number of referenced relations in a
multijoin. This assumption was adopted in the previ-
ous research [3,9]. We also use this assumption in the
paper. Further, to avoid a complex search space, two
synchronization standards, horizontal synchronization

64

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:20 from IEEE Xplore. Restrictions apply.

[9] and hierarchical synchronization [3], have been pro-
posed. In horizontal synchronization, we

iteratively compute in parallel all currently
executable joins from the bottom of an ex-
ecution tree, such that at each level, each
join computation can be finished a t the same
time.

On the other hand, in hierarchical synchronization:

with respect to each node t in an execution
tree T , say that t l and t 2 are two sub-trees
of T with t as their parents, try to finish in
parallel the computation of the operations in
tl at the same time as that in t 2 .

In these two synchronization standards, an assump-
tion is made that within the same synchronization lev-
el each processor can belong only to one binary join,
and processors can be released for use in the next syn-
chronization level only after the computation in the
current level has been completely finished.

Further, in hierarchical synchronization, synchro-
nization levels are assigned such that in an execution
tree, only siblings are in the same synchronization lev-
el. The processors owned by a node can be used only
by its children, and then by its desecendants.

A bottom-up processor allocation heuristic is pre-
sented in [9] according to horizontal synchronization.
Later, a top-down processor allocation heuristic is giv-
en in [3] using hierarchical synchronization. In the
following, we propose another processor allocation al-
gorithm regarding hierarchical synchronization.

Note that with respect to (3), it is not always true
that the response time for parallel computation of a
join Ra W Rj can be reduced along with the incre-
ment of the number of processors. In fact, the re-
lationship between the number of processors and the
response time can be illustrated in Figure 2. Figure

RESP-time

I> #processors
I

P M

Figure 2: Response time VS processor number

2 shows that the response time is decreasing as the
number of processors increases before the point PM.
After the point PM, the response time is increasing as
the number of processors increases. This is caused by
inter-processor communication overhead. We call PM
the minimum time point Pm to compute Ri W Rj in
parallel. The minimum time point is the number of
processors which leads to the minimum value of (3).

It can be immediately obtained, using basic calculus,
that PM will be an integer in the following interval

Our processor allocation algorithm, HPAA (stands
for hierarchical processor allocation algorithm), con-
sists of two steps for a given execution tree:

Step 1: Initialization.

0 Assign one processor to each internal node w
with two children that are both leaves.

0 Then, for each other internal node v , add
up the processors which are assigned to the
subtree with v as its root. Assign these pro-
cessors to w. (Note that the number of the
processors assigned to v may be, sometimes,
larger than its minimum time point: in this
case the parallel computation of the join in v
needs only to use the minimum time point.)

Go to Step 2.

Step 2: Refinement of the initialization. We assign
the remaining processors one by one to reduce
the response time:

0 With respect to the current processor allo-
cation and (3), find a path lp from the top
to a leaf, such that

each node w on lp chooses its child
with the longer computation time
to be included in l P .

0 If all nodes on lP have already reached their
minimum time points, the algorithm stops
and return the current processor allocation.
Otherwise, propagationally assign a proces-
sor to all nodes on lP.

The algorithm runs in time O(N1+ n) where N is
the number of processors, n is the number of refer-
enced relations in a multijoin, and 1 is the length of
an execution tree (logn 5 1 5 n) .

We have simulated the performances of the proces-
sor allocation algorithms BU [9], TD [3], and our H-
PAA. Our experiment results suggest that HPAA out-
performs the algorithms BU and T D the detailed ex-
periment reports may be found in [lo I). Especially as
both of numbers of the processors and the referenced
relations are increasing the performance of HPAA is
getting better and better than those of BU and TD.

4 Generating Parallel Execution Plan
As mentioned in Section 2, an execution plan for

processing a multijoin consists of an execution tree
and a processor allocation for the tree. The processor
allocation problem has been discussed in last section.
Consequently, we concluded that the algorithm HPAA
is the best choice. In this section, we will discuss how
to produce a good execution tree.

65

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:20 from IEEE Xplore. Restrictions apply.

The total cost of an execution tree is defined as
the total computation cost by a single processor for
the tree. It can be immediately calculated according
to (2). As noted by several researchers [22], an exe-
cution tree with the lowest total execution cost may
favour the minimization of response time for parallel
execution. Although finding an execution tree with
the lowest total cost is known NP-hard [18], a greedy
heuristic in [3] has been shown working well.

We believe that both the minimization of total cost
and the maximization of the inter-operator paralleliza-
tion degree are very important in evaluation of the
goodness of an execution tree. However, sometimes
they are conflicting. For instance, two execution trees

R4 A
R1 R2 R 3 R 4

R 1 R 2
(a) (b)

Figure 3: Total cost vs parallelism

for processing a multijoin W:=’=l Ri are illustrated in
Figure 3. Suppose that in W!==l Ri, the following pa-
rameters are applied.
Example 1. A; js
the join attribute between RI and Rz, A:, is the join
attribute between R:, and Rs, and A3 is the join at-
tribute between R3 and Rq. lAll = A21 = /A31 = 200.
There are 8 processors. Regarding 1 3) , a = b = c = 1
d = 20. 0

One can immediately verify that the execution tree
in Figure 3(a) has the minimum total cost, while the
execution tree in Figure 3(b) has the maximal inter-
operator parallelization degree, but a larger total cost.
In this case, the three processor allocation algorithms
BU, TD and HPAA yield the same result: the response
time for the execution tree in Figure 3(b) is smaller
than that in Figure 3(a). However, if we change some
of the parameters in Example 1 into:
Example 2. lRil = 8000 for 1 5 i 5 4, and [Ail =
16000 for 1 5 i 5 3. 0
In Example 2, the execution tree in Figure 3(a) leads
to a smaller total cost than that in Figure 3(b), as well
as a smaller response time.

Unlike the greedy heuristic in [3] concentrating only
on reducing total cost, our algorithm for finding an ex-
ecution tree will be based on a trade-off of minimizing
total cost and maximizing inter-operator paralleliza-
tion degree. Further, it should be clear that such a
trade-off must be made according to a good processor
allocation algorithm. Thus, we will apply HPAA. Fur-
thermore, our algorithm will use the greedy algorithm
GD in [3] as one component. Next, we will present
our algorithm. First, let us review the greedy heuris-
tic GD.
4.1 A Greedy Heuristic

The greedy heuristic GD suggests to build an exe-
cution tree by iteratively selecting a binary join with
the minimum cost according to some measurement.

lRil = 100 for 1 5 i 5 4.

Each time after choosing a binary join, two referenced
relations will be merged into the intermediate relation
- the join result.

A number of cost measurements may be used in
algorithm GD when choosing a join: 1 computation
cost of the join, 2) join result size, 3 1 total size of
the referenced relations of the join, and 4) difference
between the join result size and its referenced relation
sizes.

A performance study in [3] suggested that the mea-
surement 2) is the best choice. In this paper, we will
use this measurement when applying the algorithm
GD. Hence, the algorithm GD can be precisely de-
scribed as follows.

Algorithm GD:
Input: a join graph G.
Output: an execution tree T .

T := 0;
while G has more than one vertex do

{ find a pair of Ri and Rj with
the minimal I Ri W Rj I in G;
T := T U {Ri W Rj};
Merge Ri and Rj into R i in G; }

In the Examples 1 and 2, the execution tree in Figure
3(a) is an output of the algorithm GD. Note the algo-
rithm GD runs in time O(nm) where n is the number
of referenced relations, and m is the number of edges
in a join graph.
4.2 A New Algorithm for Effective Exe-

cution Parallelization
From a given join graph G = (VI E , w , e) , we can

derive a j o i n cardinality graph GCA = (VI E , r) where
for each edge (Ri, Rj), .r(Ri,Rj) = IRi W RiI.

The algorithm GD can be viewed as iteratively
choosing an edge e (a join) from a GCA with the mini-
mum value of r (e) . Thus, it does not necessarily guar-
antee a good inter-operator parallelization degree; for
instance, Figure 3(a). However, this drawback can be
overcome if we allow a choice of several disjoint edges
(joins) each time whenever it is necessary. This is the
basic idea of our algorithm NEW. Note that a set of
disjoint edges in a graph is a matching [SI in the graph.

The algorithm NEW suggests to iteratively choose
the “best” matching instead of the best edge from
GCA. Particularly, the algorithm NEW works as
flows in each iteration, for choosing a suitable match-
ing from the current GCA:

Step 1: For 1 5 k 5 1 where 1 is the maximal cardi-
nality of a matching in GCA, we choose a match-
ing with the minimum sum of edge weights from
all matchings in GCA with IC edges. Go to Step
2.

Step 2: For each k , once such k edges are chosen, we
merge these k pairs of nodes into IC intermediate
results in the join graph. Then, run the algorithm
GD on the resulted join graph Gk to produce an
execution tree T k . Using the processor allocation

66

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:20 from IEEE Xplore. Restrictions apply.

algorithm HPAA, we can calculate the response
time t k of each T k for 1 5 k 5 1. Go to Step 3.

Step 3: Comparing those t k for 1 5 k 5 1, we choose
a j such that t j is minimized. Then, we replace G
by Gj ; and GCA is the derived cardinality graph
of Gj. We enter into next iteration until GCA has
only one node. (Note that if in the next iterations
j is always chosen to 1, Tj will be the final output.
Otherwise, T j may be refined in the next several
iterations ,)

It is clear that if in each iteration j is always chosen as
1 then the algorithm NEW is equivalent to the algo-
rithm GD. For instance, applying the algorithm NEW
to Example 2, the output is Figure 3(a). However, the
output of the algorithm NEW will be Figure 3(b) for
Example 1.

A precise description of the algorithm NEW is as
follows.

Algorithm NEW
Input: G (a join graph) and GCA (the derived cardi-
nality graph).
Output: an execution tree T A with a processor allo-
cation.

T := 8 (an execution tree); T A := 8; n := [VI;
Initialization:
for k = 1 to 151 do { T k := 8; TAk := 8; t k := W}
while n > 1 do
{ for k = 1 to [;J do

{ Run Initialization;
choose the minimal weighted matching TI, with
k edges;
if such matching exists then
{ Tk,1 := {Ri W Rj : (Ri,Fj) E ~ k } ;

merge Ri and Rj into Ri in G for
each (Ri , Rj) E ?rk;
w(&) is assinged to IRi W RjI;
(the resulted graph by the above modification of

Run greedy algorithm GD on GI, to output T k , 2 ;

Run HPAA on Tk: obtain TAk and t k

G is denoted by Gk.)

T k := T U T k , l U T k , 2 ;

}
1
choose a TAI, with the minimum t k ;
T := TU {Ri W Rj : (Ri, Rj) E T L } ;
T A := TAk;
G := GI,;
derive GCA from G using (2);
n := n - 2k

1
In algorithm NEW, it is clear that every step run-

s in polynomial time, except that the computational
complexity of the step for finding a minimum weighted
matching with IC edges is unclear. In the next subsec-
tion, we will show that it can also be done in polyno-
mial time.

4.3 Minimum Weighted Matching with a
Given Cardinality Solvable in Cubic
Time

In this section, we show the following problem can
be solved in polynomial time.

Minimum &Matching Problem (MKMP):
Given a weighted graph G ’= (VI E , tu), find a match-
ing with k edges such that the sum of the weights over
all matchings with k edges is minimized.

Here we suppose that k is smaller than the maxi-
mal cardinality of a matching in G. In the literature
[8] , the following Weighted Matching Problem can be
solved in polynomial time.

Weighted Matching Problem (WMP):
Given a weighted graph G = (V, E , w), find a match-
ing such that the sum of the weights of the edges in
the matching is maximized.

Particularly, the WMP problem can be solved in
O(lV13) [8]. Next we show that MKMP problem can
be translated to WMP, and then solved by the algo-
rithm for WMP.

For each instance G = (V, E , w) and k in MKMP,
we can construct an instance G’ = (VI, E’w’) in WMP
as follows:

0 Add IVI - 2 k new vertices {ui : 1 5 i 5 IVI - 2 k } ,
that is, V’ = V U {ui : 1 5 i 5 IVI - 2 k } .

0 For each pair of vertices vi and vj which are both-
er in V , (vi,vj) E E’ if and only if (vi,vj) E E .
Also, w’((vi, v j)) = N - w((vi, vj)) where

N = W((Vi,Vj>) + 1.

0 For each new vertex ui E {ui : 1 5 i 5 IVI -
2 k } and old vertex v j E E , (u i , v j) E E’ and
w’(ui, v j) = MI where M = (/El + 1)N.

The following two theorems can be obtained [lo].

Theorem 1 Suppose that an instance G and k in
M K M P is given where G has n vertices. G’ is de -
rived f r o m G as above. Then , an any solution t o
WMP for GI: I) there mus t be n - 2 k edges from
{ (u i , vj) : 1 5 i 5 n - 2 k , 1 5 j 5]VI}, and 2) the
other edges are f r o m E .

Theorem 2 Suppose that a weighted graph G =
(V,E,w) and k 5 are given, and [VI = n. G‘
is derived f r o m G as above. Then , there exists a solu-
t ion to M K M P i f and only if there exists a solution S‘
to W M P with respect t o G’ such that IS’/ = n - k.

As consequences of Theorems 1 and 2,

0 if the cardinality of the solution S’ to WMP with
respect to G‘ is not equal to n - k , there is no
matching in G with k edges;

67

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:20 from IEEE Xplore. Restrictions apply.

H1.6 R.8 m.io

(a): N = 16 (b): N = 32

e otherwise we need only to choose those IC edges
from S’ which are in G as the solution to MKMP;

e MKMP can also be solved in time O(lV13).

4,4 Complexity and Experiment Results
Suppose that there are N processors, a multijoin

has n referenced relations, and the join graph has m
edges. The algorithm NEW has O (n) iterations. In
each iteration, we need to consider O (n) cases. In each
case, the algorithm HPAA runs in time O (N n) , the
MKMP is solvable in time O(n3), and the algorithm
GD runs in time O(nm). Thus, the algorithm NEW
runs in time O(n3N + n3m + n’). Note that m 5
n(n - 1). Hence, the algorithm NEW runs in time

The algorithm CYW in [3] suggests to use the al-
gorithm GD first to produce an execution plan, and
then apply the algorithm T D to the resulted execu-
tion plan. We have simulated the performances of our
algorithm NEW and the algorithm CYW. In our ex-
periments, for each pair of number of referenced rela-
tions and number of processors we randomly generate
1000 examples (multijoins). Then, for each multijoin
we record the ratio of the response time using the al-
gorithm NEW to that using the algorithm CYW. For
each given number (16,24,48) of processors, we out-
put the average ratio over 1000 random multijoins on
a given number of referenced relations. In our imple-
mentation,

0 (~ 5 + n 3 ~) .

e we choose a = b = c = 1 and d = 20 for simplicity;

e each relation cardinality is randomly chosen from
500 tuples to 4000 tuples;

e the edge set in a join graph is also randomly cho-

e the cardinality of a join attribute set (c (e)) be-
tween Ri and Rj is also randomly chosen from 50

sen;

to max{IRI, IRjl}.

Figure 4: Response times of the algorithm NEW relative to CYW

The experiment results are reported in Figure 4(a)-
(c). They showed that our algorithm NEW greatly
out-performs the algorithm CYW.

5 Conclusion
In this paper, we study the synchronous strategy for

processing multijoins in mutiprocessor systems. We
first proposed a new processor allocation algorithm
HPAA. Our experiments showed that the algorithm
HPAA out-perms the existing processor allocation al-
gorithms. Then, by exploring a suitable inter-operator
parallelization in multijoins, we present a new syn-
chronous algorithm NEW for parallel computation of
multijoins in multiprocessor systems. The algorithm
NEW makes the use of the algorithm HPAA as one
component. Our experiments also showed that the
algorithm NEW out-performs the latest synchronous
algorithm CYW.

Although in this paper we consider only the case
that either there is no data skew or the data skew prob-
lem has been solved, the results in this paper could be
easily modified to cover a general case.
Acknowledgement

This project was partially supported by IRG at
UWA. The authors would like to thank DR. C. Mc-
Donard and DR. C. P. Tsang for many helps in setting
up a pragramming environment.

References
[l] M.-S. Chen and P. S. Yu, Interleaving a Join Se-

quence with Semijoins in Distributed Query Pro-
cessing, IEEE Transactions on Parallel and Dis-
tributed Systems, 3(5), 611-621, 1992.

[a] M . 3 . Chen, M. L. Lo, P. S. Yu, and H. C. Young,
Using Segmented Right-Deep Trees for the Exe-
cution of Pipelined Hashjoins, 18th VLDB, 15-26,
1992.

Schedul-
ing and Processor Allocation for Parallel Execu-
tion of Multi-Join Queries, IEEE Conference on
Data Engineering, 58-67, 1992.

[3] M.-S. Chen, P. S. Yu, and K.-L. Wu,

68

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:20 from IEEE Xplore. Restrictions apply.

[4] D. J . DeWitt and R. Gerber, Multiprocessor Hash-
based Join Algorithms, VLDB, 151-162, 1985.

[5] W. Hong and M. Stonebraker, Optimization of
Parallel Query Execution Plans in XPRS, 1st
PDIS Conference, 1991.

[6] H. I. Hsaio, M. S. Chen, and P. S. Yu, On Par-
allel Execution of Multiple Pipelined Hash-Joins,
ACM-SIGMOD, 185-196, 1994.

[7] S. Ganguly, W. Hasan and R. Krishnamurthy,
Query Optimization for Parallel Execution, SIG-
MOD Record, 21(2), 9-18, 1992.

Combinatorial Optimization Net-
works and Matroids, Holt, Rinehart and Winston,
1976.

[9] H. Lu, M. C. Shan, and K. L. Tan, Optimization
of Multi-Way Join Queries for Parallel Execution,
Proceedings of VLDB 91, 549-560, 1991.

[lo] X. Lin and S. Fox, An Effective Parallelization
Scheme for Multijoin Computation, Research Re-
port, CS, University of Western Australia, 1996.

[ll] X. Lin and M. Orlowska, An Efficient Processing
of a Chain Join with the Minimum Communica-
tion Cost in Distributed Database Systems, Jour-
nal of Distributed and Parallel Databases, 3(1), 69-
84, 1995.

[12] X. Lin, M. Orlowska, and X. Zhou, Using Paral-
lel Semi-Join Reduction to Minimize Distributed
Query Response Time, IEEE International Con-
ference on Algorithms and Architectures for Par-
allel Processing, IEEE CS Press, 517-526, 1995.

[13] S. Lam and R. Seth, Worst Case Analysis of Two
Scheduling Algorithms, SIAM Journal on Com-
puling, 6(3), 518-537, 1977.

[14] M. T. Ozsu and P. Valduriez, Principles of Dis-
tributed Database Systems, Prentice Hall, 1991.

[15] D. A. Schneider, Complex Query Processing in
Multiprocessor Database Machines, PHD Thesis,
Computer Science Technical Report 965, Univer-
sity of Wisconsin, Madison, 1990.

[16] D. A. Schneider and D. J . DeWitt, A Perfor-
mance Evaluation of Four Parallel Join Algorithms
in a Shared-Nothing Multiprocessor Environment,

[17] D. A. Schneider and D. J . DeWitt, Tradeoffs in
processing complex join queries via hashing in mul-
tiprocessor database machines, 16th VLDB, 469-
480, 1990.

[18] D. Shasha and T. L. Wang, Optimizing Equi-
join Queries in Distributed Databases Where Re-
lations are Hash Partitioned, AGM Transactions
on Database Systems, 16(2), 279-308, 1991.

[8] E. L. Lawler,

SIGMOD, 110-121, 1989.

[19] A. Swami, Optimization of Large Join Queries:
Combining Heuristics and Combinatorial Tech-
niques, Proceedings of SIGMOD 89, 367-376,
1989.

[20] A. N . Wilschut and P. M. G. Apers, Dataflow
Query Execution in a Parallel, Main-Memory En-
vironment, PDIS Conference, 68-77, 1991.

[21] A. N. Wilschut, P. M. G. Apers, and J. Flok-
stra, Parallel Query Execution in PRISMA/DB,
PRISMA Workshop on Parallel Database System-
s, 1991.

[22] A. N. Wilschut, J. Flokstra, and P. M. G. Apers,
Parallel Evaluation of Multi-Join Queries, ACM-

[23] J . L. Wolf, D. M. Dias, and P. S. Yu, An Effec-
tive Algorithm for Parallelizing Sort Merge Joins
in the Presence of Data Skew, Second Internation-
al Symp. on Databases in Parallel and Distributed
Systems, 1990.

E241 C. T. Yu and C. C. Chang, Distributed Query
Processing, ACM Computing Surveys, 16(4),
1984.

[25] P. S. Yu, M.-S. Chen, H. Heiss, and S. H. Lee, On
Workload Characterization of Relational Database
Environments, IEEE Transactions on Software En-
gineering, 18(1), 1992.

SIGMOD, 115-126, 1995.

69

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:20 from IEEE Xplore. Restrictions apply.

