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Abstract 
In this paper, we study a synchronous execution s- 

trategy f o r  parallel j o i n  computation in multiproces- 
sor systems. Through a fur ther  comprehensive inves- 
tigation of  the  processor allocation problem and inter- 
operator parallelization problem, we present a new al- 
gorithm for producing an  effective parallelization plan 
f o r  processing multijoins. Besides theoretical analysis, 
the  e f ic iency  and effectiveness of  our new  algorithm 
are supported by our  experiments. 
Key Words: Databases, Multijoins, Parallel Process- 
ing, Processor Allocation, Response Time. 

1 Introduction 
A relational multijoin is the most expensive opera- 

tion to be processed in distributed database systems. 
There are two paradigms for processing a distributed 
multijoin: 

1. distributed computation approach, or 

2. parallel execution approach. 

The former aims to  minimize data transmission cost 
among remote sites, while the later aims to speed up 
query response time. 

In this paper, we restrict our interests in parallel 
execution of multijoins in a multiprocessor system (ei- 
ther share disks or share everything). The interested 
readers may refer to [1,11,12,24] for a detailed discus- 
sion of a distributed processing approach. 

To efficiently compute a multijoin in parallel, two 
factors should be considered [3,9,22]: 1) intra-operator 
parallelism where several processors may be designat- 
ed for processing one binary join in parallel, 2) inter- 
operator parallelism where several binary joins may be 
executed concurrently. Nevertheless, an investigation 
of these two problems should be based on a good pro- 
cessor allocation strategy. In the light of these three 
aspects, the problem of finding an optimal parallel ex- 
ecution plan is computationally intractable [18,19]. 

In recent developments for support of non-standard 
applications, the use of complex data models and the 
availability of high-level interfaces lead to the genera- 
tion of complex queries that may contain larger num- 
bers of joins between relations. Consequently, the 

development of execution strategies for parallel pro- 
cessing multijoins has attracted a great deal of at- 
tention. A number of parallel execution heuristics 
[2,3,5,6,9,15,17,20,2 1,221 have been recently proposed. 

These currently proposed heuristics can be classi- 
fied into four kinds of strategies: a) Sequential Parallel 
Execution [22], b) Segmented Right-Deep Execution 
[2,15,17], c) Synchronous Execution [3,9], d) Full Par- 
allel Execution [20,21,22]. A discussion about advan- 
tages and disadvantages for using those four strategies 
is outside of the coverage of this paper. The interest- 
ed readers are recommended to  read [22] for a detailed 
discussion. In this paper, we will restrict our interests 
in the synchronous parallel execution strategy. 

Consider that the problem of finding an optimal 
synchronous parallel execution plan for multijoins is 
computationally intractable. [9] provided the first 
heuristic in synchronous parallel execution, which re- 
fines a sequential execution plan produced by system 
R algorithm [14] in combining with a horizontally syn- 
chronous execution technique in processor allocation 
and an exploration of inter-operator parallelism. 

Simulation results in [3] suggested a severe problem 
in the optimally sequential execution tree produced 
by system R algorithm: the minimum total execution 
cost of an optimally sequential execution tree is, on av- 
erage, much larger than the minimum total cost of an 
optimal execution tree. This will potentially degrade 
the performance of the algorithm in [9], because of the 
importance (stated in [3,5,22]) of having an execution 
tree with small total cost. Further, [3] proposed a two- 
phase optimization strategy for multi-joins. The first 
phase determines an execution tree that has the low- 
est total execution cost and the second phase finds a 
suitable parallelization for this tree. Particularly, in 
the first phase a greedy heuristic has been applied to 
obtaining an execution tree with small total cost; and 
in the second phase, a hierarchically synchronous ex- 
ecution strategy is applied to  processor allocation to 
find a suitable parallelization. 

In our investigation, we find that in an execution 
plan for a multijoin, both of inter-operator parallelis- 
m and total execution cost have a great impact on 
minimizing query response time. Further, the maxi- 
mization of inter-operator parallelization degree and 
the minimization of total execution cost are conflict- 
ing for minimizing response time: an example will be 
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shown in Section 4. Therefore, a good trade-off be- 
tween inter-operator parallelism and total execution 
cost must be carried out in building an  execution plan. 

Consider that  the the algorithm in [3] is to first 
provide an execution tree with the lowest total ex- 
ecution cost, and then to explore a suitable inter- 
operator parallelization for the tree through develop- 
ing a good processor allocation algorithm. This may 
limit an achievement of a good trade-off between inter- 
operator parallelism and total execution cost. 

In this paper, we will propose a new hierarchically 
synchronous execution algorithm. The proposed algo- 
rithm can be divided into two phases as follows. The 
first phase is the same as that in [3] to  obtain an ex- 
ecution tree. In the second phase, we will allow mod- 
ifications to the execution tree in order to  provide a 
good trade-off between inter-operator parallelism and 
total execution cost, rather than retaining the execu- 
tion tree structure in the second phase [3]. Our ex- 
periment results suggest that the proposed algorithm 
reatly improve the performance of the algorithm in 

The second phase of our algorithm follows the same 
refinement schedule as that in [9]. However, new opti- 
mization techniques and a better processor allocation 
algorithm are proposed in our algorithm to be tailored 
to the inputs which have a different nature to that in 
[9]. This differs our work with that in [9]. 

The rest of the paper is organized as follows. In sec- 
tion 2, we introduce the necessary background knowl- 
edge. In section 3, our processor allocation algorithm 
is presented, and then a comparison with the existing 
allocation algorithms will be made through simulation 
experiments. Section 4 presents a new hierarchically 
synchronous execution algorithm, as well as our ex- 
periment results. In our experiments, we simulate the 
performances of both our algorithm and the algorithm 
in [3]. This is followed by a conclusion. 

2 Multijoin Execution and Costs 
In this paper, we study only natural multijoins [14]. 

For each relation Ri, I Ri I denotes the cardinality of Ri 
i.e, the number of tuples in Ri). IAl denotes the car- i inality of the domain of a set A of attributes. A 

j o i n  graph (V, E ,  w ,  c )  is used to specify the relation- 
ship among relations in a multijoin, where V is the 
set of nodes and E is the set of edges. Each node 
represents a referenced relation in the multijoin. Two 
nodes are connected by an edge if there exists a set 
of join attributes between the two relations. w defines 
the cardinality of each referenced relation, such that 
w(Ri) = IRil. c defines the cardinality of a join at- 
tribute set between two relations, such that for each 
edge e = (R; ,Rj ) ,  e(.) is the cardinality of the join 
attribute set between R; and Rj,. 

Developing a precise estimation of the result size 
for a join is a difficult task. In this paper, we use the 
following simple formula [3,14] to evaluate the cardi- 
nality of a multijoin Myzl R; result. 

b I  . 

Figure 1: A join execution sequence 

Here, { e i  : 1 5 i 5 k} is the set of join attribute sets 
for all pairs of referenced relations. 

An execution plan of a multijoin consists of a j o i n  
execution sequence and a processor allocation for the 
join execution sequence. A join execution sequence of 
a multijoin specifies a partial ordering for processing 
several binary joins to deliver the final multijoin re- 
sult, and can be represented as a tree (similar to a 
relational algebra tree in [14]). In this paper, a join 
execution sequence is called an  execution tree. For in- 
stance, according to the execution tree in Figure 1, we 
should: 

compute R = Rl w R 3  after ill = R~ w R~ 
and R3 = R3 W R4, and compute R W R 5  

after R5 = R5 W R6 and R = RI  W R 3 .  

Using either sort-merge join approach or hash join ap- 
proach, the cost (time) for computing a join Ri W Rj 
can be approximately represented as [3,18]: 

+ blRj I + clRi W Rj 1, (2) 

for a single processor. Here, a ,  b ,  and c are determined 
by the path length of the system in processing and 
joining tuples [23,3,18]. In a multiprocessor system, 
the cost (time) for computing Ri W Rj by N proces- 
sors can be also approximately represented [3,18] as 

+ d N ,  (3) 
alR;l+ blRj I + clRi W Rj I 

N 

where d is determined by the inter-processing commu- 
nication protocol. Note that in the presence of data 
skew [23] in parallel execution of a binary join, (3) 
may have to be modified. However, in case that either 
there is no data skew, or data skew problem has been 
solved, (3) is still valid (we apply this assumption in 
the rest of the paper). 

3 A New Processor Allocation Algo- 
rithm 

Algorithm design of processor allocation to a giv- 
en execution tree aims to minimize response time. 
This problem is well-known for its NP-hardness in dis- 
tributed jobs scheduling [13]. 

Consider that in most real applications, the num- 
ber of processors in a multiprocessor system is usually 
larger than half the number of referenced relations in a 
multijoin. This assumption was adopted in the previ- 
ous research [3,9]. We also use this assumption in the 
paper. Further, to avoid a complex search space, two 
synchronization standards, horizontal synchronization 
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[9] and hierarchical synchronization [3], have been pro- 
posed. In horizontal synchronization, we 

iteratively compute in parallel all currently 
executable joins from the bottom of an ex- 
ecution tree, such that at each level, each 
join computation can be finished a t  the same 
time. 

On the other hand, in hierarchical synchronization: 

with respect to  each node t in an execution 
tree T ,  say that t l  and t 2  are two sub-trees 
of T with t as their parents, try to  finish in 
parallel the computation of the operations in 
tl at the same time as that in t 2 .  

In these two synchronization standards, an assump- 
tion is made that within the same synchronization lev- 
el each processor can belong only to  one binary join, 
and processors can be released for use in the next syn- 
chronization level only after the computation in the 
current level has been completely finished. 

Further, in hierarchical synchronization, synchro- 
nization levels are assigned such that in an execution 
tree, only siblings are in the same synchronization lev- 
el. The processors owned by a node can be used only 
by its children, and then by its desecendants. 

A bottom-up processor allocation heuristic is pre- 
sented in [9] according to  horizontal synchronization. 
Later, a top-down processor allocation heuristic is giv- 
en in [3] using hierarchical synchronization. In the 
following, we propose another processor allocation al- 
gorithm regarding hierarchical synchronization. 

Note that with respect to (3), it is not always true 
that the response time for parallel computation of a 
join Ra W Rj can be reduced along with the incre- 
ment of the number of processors. In fact, the re- 
lationship between the number of processors and the 
response time can be illustrated in Figure 2. Figure 

RESP-time 

I> #processors 
I 

P M  

Figure 2: Response time VS processor number 

2 shows that the response time is decreasing as the 
number of processors increases before the point PM. 
After the point PM, the response time is increasing as 
the number of processors increases. This is caused by 
inter-processor communication overhead. We call PM 
the minimum time point Pm to compute Ri W Rj in 
parallel. The minimum time point is the number of 
processors which leads to the minimum value of (3). 

It can be immediately obtained, using basic calculus, 
that PM will be an integer in the following interval 

Our processor allocation algorithm, HPAA (stands 
for hierarchical processor allocation algorithm), con- 
sists of two steps for a given execution tree: 

Step 1: Initialization. 

0 Assign one processor to  each internal node w 
with two children that are both leaves. 

0 Then, for each other internal node v ,  add 
up the processors which are assigned to the 
subtree with v as its root. Assign these pro- 
cessors to w. (Note that the number of the 
processors assigned to v may be, sometimes, 
larger than its minimum time point: in this 
case the parallel computation of the join in v 
needs only to use the minimum time point.) 

Go to Step 2.  

Step 2: Refinement of the initialization. We assign 
the remaining processors one by one to  reduce 
the response time: 

0 With respect to the current processor allo- 
cation and (3), find a path lp  from the top 
to a leaf, such that 

each node w on lp  chooses its child 
with the longer computation time 
to be included in l P .  

0 If all nodes on lP have already reached their 
minimum time points, the algorithm stops 
and return the current processor allocation. 
Otherwise, propagationally assign a proces- 
sor to all nodes on lP.  

The algorithm runs in time O(N1+ n)  where N is 
the number of processors, n is the number of refer- 
enced relations in a multijoin, and 1 is the length of 
an execution tree (logn 5 1 5 n) .  

We have simulated the performances of the proces- 
sor allocation algorithms BU [9], TD [3], and our H- 
PAA. Our experiment results suggest that HPAA out- 
performs the algorithms BU and T D  the detailed ex- 
periment reports may be found in [ lo  I ). Especially as 
both of numbers of the processors and the referenced 
relations are increasing the performance of HPAA is 
getting better and better than those of BU and TD. 

4 Generating Parallel Execution Plan 
As mentioned in Section 2, an execution plan for 

processing a multijoin consists of an execution tree 
and a processor allocation for the tree. The processor 
allocation problem has been discussed in last section. 
Consequently, we concluded that the algorithm HPAA 
is the best choice. In this section, we will discuss how 
to produce a good execution tree. 
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The total cost of an execution tree is defined as 
the total computation cost by a single processor for 
the tree. It can be immediately calculated according 
to (2). As noted by several researchers [22], an exe- 
cution tree with the lowest total execution cost may 
favour the minimization of response time for parallel 
execution. Although finding an  execution tree with 
the lowest total cost is known NP-hard [18], a greedy 
heuristic in [3] has been shown working well. 

We believe that both the minimization of total cost 
and the maximization of the inter-operator paralleliza- 
tion degree are very important in evaluation of the 
goodness of an execution tree. However, sometimes 
they are conflicting. For instance, two execution trees 

R4 A 
R1 R2 R 3  R 4  

R 1  R 2  
(a) (b) 

Figure 3: Total cost vs parallelism 

for processing a multijoin W:=’=l Ri are illustrated in 
Figure 3. Suppose that in W!==l Ri, the following pa- 
rameters are applied. 
Example 1. A;  js 
the join attribute between RI and Rz, A:, is the join 
attribute between R:, and Rs, and A3 is the join at- 
tribute between R3 and Rq. lAll = A21 = /A31 = 200. 
There are 8 processors. Regarding 1 3) , a = b = c = 1 
d = 20. 0 

One can immediately verify that the execution tree 
in Figure 3(a) has the minimum total cost, while the 
execution tree in Figure 3(b) has the maximal inter- 
operator parallelization degree, but a larger total cost. 
In this case, the three processor allocation algorithms 
BU, TD and HPAA yield the same result: the response 
time for the execution tree in Figure 3(b) is smaller 
than that in Figure 3(a). However, if we change some 
of the parameters in Example 1 into: 
Example 2. lRil = 8000 for 1 5 i 5 4, and [Ail = 
16000 for 1 5 i 5 3.  0 
In Example 2, the execution tree in Figure 3(a) leads 
to a smaller total cost than that in Figure 3(b), as well 
as a smaller response time. 

Unlike the greedy heuristic in [3] concentrating only 
on reducing total cost, our algorithm for finding an ex- 
ecution tree will be based on a trade-off of minimizing 
total cost and maximizing inter-operator paralleliza- 
tion degree. Further, it should be clear that such a 
trade-off must be made according to a good processor 
allocation algorithm. Thus, we will apply HPAA. Fur- 
thermore, our algorithm will use the greedy algorithm 
GD in [3] as one component. Next, we will present 
our algorithm. First, let us review the greedy heuris- 
tic GD. 
4.1 A Greedy Heuristic 

The greedy heuristic GD suggests to build an exe- 
cution tree by iteratively selecting a binary join with 
the minimum cost according to  some measurement. 

lRil = 100 for 1 5 i 5 4. 

Each time after choosing a binary join, two referenced 
relations will be merged into the intermediate relation 
- the join result. 

A number of cost measurements may be used in 
algorithm GD when choosing a join: 1 computation 
cost of the join, 2 )  join result size, 3 1 total size of 
the referenced relations of the join, and 4) difference 
between the join result size and its referenced relation 
sizes. 

A performance study in [3] suggested that the mea- 
surement 2 )  is the best choice. In this paper, we will 
use this measurement when applying the algorithm 
GD. Hence, the algorithm GD can be precisely de- 
scribed as follows. 

Algorithm GD: 
Input: a join graph G. 
Output: an execution tree T .  

T := 0; 
while G has more than one vertex do 

{ find a pair of Ri and Rj with 
the minimal I Ri W Rj I in G; 
T := T U  {Ri W Rj};  
Merge Ri and Rj into R i  in G; } 

In the Examples 1 and 2,  the execution tree in Figure 
3(a) is an output of the algorithm GD. Note the algo- 
rithm GD runs in time O(nm) where n is the number 
of referenced relations, and m is the number of edges 
in a join graph. 
4.2  A New Algorithm for Effective Exe- 

cution Parallelization 
From a given join graph G = (VI E ,  w ,  e ) ,  we can 

derive a j o i n  cardinality graph GCA = (VI E ,  r )  where 
for each edge (Ri,  Rj), .r(Ri,Rj) = IRi W RiI. 

The algorithm GD can be viewed as iteratively 
choosing an edge e (a join) from a GCA with the mini- 
mum value of r ( e ) .  Thus, it does not necessarily guar- 
antee a good inter-operator parallelization degree; for 
instance, Figure 3(a). However, this drawback can be 
overcome if we allow a choice of several disjoint edges 
(joins) each time whenever it is necessary. This is the 
basic idea of our algorithm NEW. Note that a set of 
disjoint edges in a graph is a matching [SI in the graph. 

The algorithm NEW suggests to iteratively choose 
the “best” matching instead of the best edge from 
GCA. Particularly, the algorithm NEW works as 
flows in each iteration, for choosing a suitable match- 
ing from the current GCA: 

Step 1: For 1 5 k 5 1 where 1 is the maximal cardi- 
nality of a matching in GCA, we choose a match- 
ing with the minimum sum of edge weights from 
all matchings in GCA with IC edges. Go to Step 
2. 

Step 2: For each k ,  once such k edges are chosen, we 
merge these k pairs of nodes into IC intermediate 
results in the join graph. Then, run the algorithm 
GD on the resulted join graph Gk to produce an 
execution tree T k .  Using the processor allocation 
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algorithm HPAA, we can calculate the response 
time t k  of each T k  for 1 5 k 5 1. Go to Step 3. 

Step 3: Comparing those t k  for 1 5 k 5 1, we choose 
a j such that t j  is minimized. Then, we replace G 
by Gj ; and GCA is the derived cardinality graph 
of Gj.  We enter into next iteration until GCA has 
only one node. (Note that if in the next iterations 
j is always chosen to  1, Tj will be the final output. 
Otherwise, T j  may be refined in the next several 
iterations ,) 

It is clear that if in each iteration j is always chosen as 
1 then the algorithm NEW is equivalent to the algo- 
rithm GD. For instance, applying the algorithm NEW 
to Example 2, the output is Figure 3(a). However, the 
output of the algorithm NEW will be Figure 3(b) for 
Example 1. 

A precise description of the algorithm NEW is as 
follows. 

Algorithm NEW 
Input: G (a join graph) and GCA (the derived cardi- 
nality graph). 
Output: an execution tree T A  with a processor allo- 
cation. 

T := 8 (an execution tree); T A  := 8; n := [VI; 
Initialization: 
for k = 1 to 151 do { T k  := 8; TAk := 8; t k  := W} 
while n > 1 do 
{ for k = 1 to [;J do 

{ Run Initialization; 
choose the minimal weighted matching TI, with 
k edges; 
if such matching exists then 
{ Tk,1 := {Ri W Rj : (Ri,Fj) E ~ k } ;  

merge Ri and Rj into Ri in G for 
each (Ri , Rj) E ?rk; 
w(&) is assinged to  IRi W RjI; 
(the resulted graph by the above modification of 

Run greedy algorithm GD on GI, to  output T k , 2 ;  

Run HPAA on Tk: obtain TAk and t k  

G is denoted by Gk.) 

T k  := T U  T k , l  U T k , 2 ;  

} 
1 
choose a TAI, with the minimum t k ;  
T := TU {Ri W Rj : (Ri,  Rj) E T L } ;  
T A  := TAk; 
G := GI,; 
derive GCA from G using (2); 
n := n - 2k 

1 
In algorithm NEW, it is clear that every step run- 

s in polynomial time, except that the computational 
complexity of the step for finding a minimum weighted 
matching with IC edges is unclear. In the next subsec- 
tion, we will show that it can also be done in polyno- 
mial time. 

4.3 Minimum Weighted Matching with a 
Given Cardinality Solvable in Cubic 
Time 

In this section, we show the following problem can 
be solved in polynomial time. 

Minimum &Matching Problem (MKMP): 
Given a weighted graph G ’= (VI E ,  tu), find a match- 
ing with k edges such that the sum of the weights over 
all matchings with k edges is minimized. 

Here we suppose that k is smaller than the maxi- 
mal cardinality of a matching in G. In the literature 
[8] , the following Weighted Matching Problem can be 
solved in polynomial time. 

Weighted Matching Problem (WMP): 
Given a weighted graph G = (V, E ,  w), find a match- 
ing such that the sum of the weights of the edges in 
the matching is maximized. 

Particularly, the WMP problem can be solved in 
O(lV13) [8]. Next we show that MKMP problem can 
be translated to WMP, and then solved by the algo- 
rithm for WMP. 

For each instance G = (V, E ,  w) and k in MKMP, 
we can construct an instance G’ = (VI, E’w’) in WMP 
as follows: 

0 Add IVI - 2 k  new vertices {ui : 1 5 i 5 IVI - 2 k } ,  
that is, V’ = V U  {ui : 1 5 i 5 IVI - 2 k } .  

0 For each pair of vertices vi and vj which are both- 
er in V ,  (vi,vj) E E’ if and only if (vi,vj) E E .  
Also, w’((vi, v j ) )  = N - w((vi, vj ) )  where 

N = W((Vi,Vj>) + 1. 

0 For each new vertex ui E {ui : 1 5 i 5 IVI - 
2 k }  and old vertex v j  E E ,  ( u i , v j )  E E’ and 
w’(ui, v j )  = MI where M = ( /El  + 1)N. 

The following two theorems can be obtained [lo]. 

Theorem 1 Suppose that an instance G and k in  
M K M P  is  given where G has n vertices. G’ is de -  
rived f r o m  G as above. Then ,  an any solution t o  
WMP for GI: I )  there mus t  be n - 2 k  edges from 
{ (u i ,  vj) : 1 5 i 5 n - 2 k ,  1 5 j 5 ]VI}, and 2) the 
other edges are f r o m  E .  

Theorem 2 Suppose that a weighted graph G = 
(V,E,w) and k 5 are given, and [VI = n. G‘ 
is  derived f r o m  G as above. Then ,  there exists a solu- 
t ion  to  M K M P  i f  and only if there exists a solution S‘ 
to  W M P  with respect t o  G’ such that IS’/ = n - k. 

As consequences of Theorems 1 and 2, 

0 if the cardinality of the solution S’ to WMP with 
respect to G‘ is not equal to n - k ,  there is no 
matching in G with k edges; 
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H1.6 R.8 m.io 

(a): N = 16 (b): N = 32 

e otherwise we need only to choose those IC edges 
from S’ which are in G as the solution to MKMP; 

e MKMP can also be solved in time O(lV13). 

4,4 Complexity and Experiment Results 
Suppose that there are N processors, a multijoin 

has n referenced relations, and the join graph has m 
edges. The algorithm NEW has O ( n )  iterations. In 
each iteration, we need to  consider O ( n )  cases. In each 
case, the algorithm HPAA runs in time O ( N n ) ,  the 
MKMP is solvable in time O(n3),  and the algorithm 
GD runs in time O(nm). Thus, the algorithm NEW 
runs in time O(n3N + n3m + n’). Note that m 5 
n(n - 1). Hence, the algorithm NEW runs in time 

The algorithm CYW in [3] suggests to use the al- 
gorithm GD first to produce an execution plan, and 
then apply the algorithm T D  to the resulted execu- 
tion plan. We have simulated the performances of our 
algorithm NEW and the algorithm CYW. In our ex- 
periments, for each pair of number of referenced rela- 
tions and number of processors we randomly generate 
1000 examples (multijoins). Then, for each multijoin 
we record the ratio of the response time using the al- 
gorithm NEW to  that using the algorithm CYW. For 
each given number (16,24,48) of processors, we out- 
put the average ratio over 1000 random multijoins on 
a given number of referenced relations. In our imple- 
mentation, 

0 ( ~ 5  + n 3 ~ ) .  

e we choose a = b = c = 1 and d = 20 for simplicity; 

e each relation cardinality is randomly chosen from 
500 tuples to 4000 tuples; 

e the edge set in a join graph is also randomly cho- 

e the cardinality of a join attribute set (c (e) )  be- 
tween Ri and Rj is also randomly chosen from 50 

sen; 

to max{IRI, IRjl}. 

Figure 4: Response times of the algorithm NEW relative to CYW 

The experiment results are reported in Figure 4(a)- 
(c). They showed that our algorithm NEW greatly 
out-performs the algorithm CYW. 

5 Conclusion 
In this paper, we study the synchronous strategy for 

processing multijoins in mutiprocessor systems. We 
first proposed a new processor allocation algorithm 
HPAA. Our experiments showed that the algorithm 
HPAA out-perms the existing processor allocation al- 
gorithms. Then, by exploring a suitable inter-operator 
parallelization in multijoins, we present a new syn- 
chronous algorithm NEW for parallel computation of 
multijoins in multiprocessor systems. The algorithm 
NEW makes the use of the algorithm HPAA as one 
component. Our experiments also showed that the 
algorithm NEW out-performs the latest synchronous 
algorithm CYW. 

Although in this paper we consider only the case 
that either there is no data skew or the data skew prob- 
lem has been solved, the results in this paper could be 
easily modified to  cover a general case. 
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