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Abstract. Most existing text classification methods (and text mining
methods at large) are based on representing the documents using the tra-
ditional vector space model. We argue that important information, such
as the relationship among words, is lost. We propose a term graph model
to represent not only the content of a document but also the relation-
ship among the keywords. We demonstrate that the new model enables
us to define new similarity functions, such as considering rank correlation
based on PageRank-style algorithms, for the classification purpose. Our
preliminary results show promising results of our new model.

1 Introduction

In recent years, text mining has become one of the most popular research areas
in data mining, due to the rapid growth and evolution of digital text documents,
such as Web pages, office documents, and E-mails. As the demand to organize
these documents automatically is constantly rising, text classification (or text
categorization) become one active subfields for data mining researchers. Text
classification deals with the problem of automatically assigning single or multiple
category (or class) labels to a new text document based after learning from a
set of training documents with correct category labels.

Most existing text classification methods (and text mining methods at large)
adopt the approach of transforming the text mining problem into traditional
machine learning problem, where a large number of mature techniques can be
applied [7, 14, 17, 18, 8]. Usually, the conversion of a text document into a rela-
tional tuple is performed using the popular vector-space model model. Intuitively,
the document is parsed, cleaned and stemmed, in order to obtain a list of terms
with corresponding frequencies. Then a corresponding vector can be constructed
to represent the document. Therefore, a collection of documents can be repre-
sented by a term-by-frequency matrix, which can be subsequently interpreted as
a relational table.

However, the vector space model only allow preserving fundamental features
of the document. Although a few alternative weighting scheme other than term
frequency have been proposed, one common weakness is that they don’t take
into consideration the associations among terms. Recent studies have revealed
that association among terms could provide rich semantics of the documents and
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serve as the basis of a number of text mining tasks [9]. However, the approach
proposed in [9] discards the vector space model and uses frequently co-occurring
terms only.

In this paper, we propose a novel model for text document by combining the
strengths of vector space model and frequently co-occurring terms together. The
result is called the term graph model. The basic idea is to mine the associations
among terms, and then capture all these information in a graph. We use text
classification to illustrate the potential application of the new model. To that
end, we design two novel similarity functions. One is based on Google’s page-rank
style algorithm [3] to discover the weights of each terms. The other is based on
the distances of all pairs of terms. Our preliminary experimental results shows
our new model is promising.

The rest of the paper is organized as follows. Section 2 introduces related
works in text classification. Section 3 presents the proposed term graph model
which is capable of capturing more information than the vector space model for
text documents. In Section 4, we propose methods to classify text documents
represented in the term graph model. Experimental results based on the Reuters-
21578 text collection is described in section 5. We conclude the paper in Section 6.

2 Related Work

An immense amount of work has been done in the area of text classification in
the past decade. We refer readers to [15] for a recent survey. In the rest of this
section, we will only focus on several work that is most related to our approach
in this section.

The support vector machine (SVM) technique — a popular and highly accu-
rate machine learning method for classification problems — was first in intro-
duced in the early 1990s [5]. In 1998, the study proposed by Joachims explored
the benefits of using SVM for text categorization [8]. SVM-based approaches
can handle large feature spaces with excellent classification accuracy. As a re-
sult, SVM-based system has ability to work well for the standard text corpus.
The results in [8] shows that SVM-based method is more accurate than alter-
native approaches. SVM has also been suggested in [14, 18] as one of the most
outperforming classifiers in comparison with a set of alternative text categoriza-
tion methods. One weakness of SVM-based text categorization system is that it
cannot scale well with the number of documents in the text collections.

Text categorization based on association rule mining is also another promising
approach. [1] proposed two different methods for generating text classifier based
on associating the words of a document and its pre-defined categories. These
methods are called the Association Rule-based Categorizer By Category (ARC-
BC) and the Association Rule-based Categorizer for All Categories (ARC-AC).
The main ideas in both approaches are:

1. Present each training document as a transactions of terms.
2. Use a special association rule mining algorithm that is guided by constraints

to produce the expected rules in the form of T ⇒ ci where T is set of terms.
The results then will be used directly for classification.
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The difference between the two method lies in the granularity when forming
the text collection. In the ARC-AC algorithm, all the categories form a text
collection and the only set of rules generated form the classifier. Meanwhile,
ARC-BC algorithm considers each category as a separate text collection and a
distinct set of association rules is generated for each category.

More recently, document level frequent itemsets is explored more for other
problems like text clustering and learning from the web. Liu et al. [9] introduced
a novel system to mine topic-specific knowledge on the Web. The intuition is
that the frequent word phrases in a collection of web pages of the same topic are
most likely to be the sub-topics or the salient concepts. We can find out several
different methods and system for clustering transactions [16] and documents
[2, 6]. These are all based on the intuition that there should be many frequent
itemsets within a cluster and different clusters have little overlapping of such
frequent itemsets.

3 Term Graph Model

3.1 Overview of the Term Graph Model

The term graph model is an improved version of the vector space model [13]
by weighting each term according to its relative “importance” with regard to
term associations. Specifically, for a text document Di, it is represented as a
vector of term weights Di =< w1i, . . . , w|T |i >, where T is the ordered set
of terms that occur at least once in at least one document in the collection.
Each weight wji represents how much the corresponding term tj contribute to
the semantics of document di. Although a number of weighting schemes have
been proposed (e.g., boolean weighting, frequency weighting, tf-idf weighting,
etc.), those schemes determine the weight of each term individually. As a result,
important yet rich information regarding the relationships among the terms are
not captured in those weighting schemes.

We propose to determine the weight of each term in a document collection
by constructing a term graph. The basic steps are as follows:

1. Prepocessing Step: For a collection of document, extract all the terms.
2. Graph Building Step:

(a) For each document, we view it as a transaction: the document ID is
the corresponding transaction ID; the terms contained in the document
are the items contained in the corresponding transaction. Association
rule mining algorithms can thus be applied to mine the frequently co-
occurring terms that occur more than minsup times in the collection.

(b) The frequent co-occurring terms are mapped to a weighted and directed
graph, i.e., the term graph.

We will introduce the details of each step as follows.

3.2 Preprocessing

In our term graph model, we will capture the relationships among terms using the
frequent itemset mining method. To do so, we consider each text document in the
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training collections as a transaction in which each word is an item. However, not
all words in the document are important enough to be retained in the transaction.
To reduce the processing space as well as increase the accuracy of our model,
the text documents need to be preprocessed by (1) remove stopwords, i.e., words
that appear frequently in the document but have no essential meanings; and (2)
retaining only the root form of words by stemming their affixes as well as prefixes.
We use Lancaster algorithm for stemming [11].

3.3 Graph Building

As mentioned above, we will capture the relationships among terms using the
frequent itemset mining method. While this idea has been explored by pre-
vious research [9], our approach distinguish from previous approaches in that
we maintain all such important associations in a graph. The graph not only
reveals the important semantics of the document, but also provide a basis to
extract novel features about the document, as we will shown in the next
section.

Frequent Itemset Mining. After the preprocessing step, each document in the
text collection will be stored as a transaction (list of items) in which each item
(term) is represented by a unique non-negative integer. Then frequent itemset
mining algorithms can be used to find all the subset of items that appeared more
than a threshold amount of times (controlled by minsup) in the collection. In
our implementation, we use the AFOPT algorithm [10].

Graph Builder. In our system, our goal is to explore the relationships among the
important terms of the text in a category and try to define a strategy to make
use of these relationships in the classifier and other text mining tasks. Vector
space model cannot express such rich relationship among terms. Graph is thus
the most suitable data structure in our context, as, in general, each term may
be associated with more than one terms.

We propose to use the following simple method to construct the graph from
the set of frequent itemsets mined from the text collections. First, we construct
a node for each unique term that appear at least once in the frequent itemsets.

Itemset Support

{therapy, discuss} 91
{therapy, discuss, patient} 66
{therapy, discuss, patient, disease} 34
{casualty, discuss} 16

(a) Frequent Itemsets

discuss

patient

disease

therapycasualty

16
91

66

34

3466

34

(b) The Corresponding Graph

Fig. 1. An Example Term Graph
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Then we create edges between two node u and v if and only if they are both
contained in one frequent itemset. Furthermore, we assign weights to the edges in
the following way: the weight of the edge between u and v is the largest support
value among all the frequent itemsets that contains both of them.

Example 1. Consider the frequent itemsets and their absolute support shown in
Figure 1(a). Its corresponding graph is shown in Figure 1(b).

4 Text Classification

Our term graph model encapsulates richer information than the traditional vec-
tor space model. As we preserve and extract the hidden relationships among
terms in the document collection, we argue that many text mining applications
can benefit from this model. Specifically, we consider the classic text classifica-
tion problem with our new model.

One central notion to the classification is the similarity (or distanct) function
of a document and a category. We consider two different approaches based on
the term graph model. In the first approach, we borrow the idea of PageRank
ranking of the web pages [3] to assign weights to the nodes (i.e., terms) in the
term graph; we can then measure the similarity of a document and a category
using a rank correlation coefficient [12] based on the ranks of the terms. In the
second approach, we define a similarity formula based on the distance matrix of
the term graph. More details about those two approaches are described in the
following sub-sections.

4.1 Classification Based on the Term Ranks

Ranking Terms. PageRank is a well-known method for measuring the relative
importance of the web pages based on their linking information. According to
[3], the basic intuition of the PageRank is that a page will have a high rank if
there are many pages in the web point to it, or if there are some pages with
high ranks pointing to it. By following the same idea, we can determine the
“PageRank” scores for the nodes in the term graph (or a document or a category)
too. Intuitively, if a word that appears frequently with many other words in the
text collections, it is an important word; words that appear together with some
important words may also be important.

Since the original Pagerank computation algorithm accept as input a directed,
unweighted graph, we need to use the following transformation on our term
graph:

– treat each node in the term graph as a web page.
– treat each edge between node u and v with weight w in the graph as 2w

links; w of them are u → v and the other w links as v → u.

The output can be directly feed into the PageRank computation algorithm. An
example of the term graph with PageRank scores computed for each node can
be found in Figure 4.
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Rank Correlation Coefficient. After calculating the rank of the nodes in
the graph using the idea of PageRank, each term a the document is assigned
a PageRank value. One simple method to calculate the similarity between a
document and a category is as follows: we directly use the PageRank values
of the terms as their weights and existing document similarity functions (for
instance, the cosine similarity) can be directly applied. In this sense, we can
view the process of constructing the term graph and calculating the PageRank
for each term as an preprocessing step to obtain yet another weighting scheme.

However, we argue that the relative order rather than the absolute values of
the PageRank scores are meaningful. Therefore, we propose another similarity
metric based on the concept of rank correlation. The basic idea is that if a
document belongs to a category, the relative order of terms appearing in the
document and the documents belonging to the category should be consistent.

To compute the rank correlation coefficient, we need to obtain the rank of
each term. This can be computed by sorting the terms by their PageRank scores
in the descending order. We can do this for a (testing) document as well as a
category, where we treat all the documents belonging to the category in question
as a single document.

It is well-known that a robust statistics to measure the correlation of two
arrays of size N is the non-parametric correlation scores, for example, the Spear-
man Rank-Order Correlation Coefficient [12]. Specifically, let Ri be the rank of
xi among the other x’s, Si be the rank of yi among the other y’s. Then the rank-
order correlation coefficient is defined to be the linear correlation coefficient of
the ranks, namely,

rs =
∑N

i (Ri − R)(Si − S)√∑N
i (Ri − R)2

√∑N
i (Si − S)2

(1)

However, there ordered terms of a document and a category are usually of
different length. Therefore, Equation 1 cannot be directly applied. We propose
the following heuristics to solve this problem, as shown in Figure .

category

document

category

document

category

document

category

document

(a) Union Set (b) Bigger Set

(c) Smaller Set (d) Intersection

Fig. 2. Four Heuristics to Generate the Rank Correlation Cofficient
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1. Union Set. In this heuristic, we consider all the terms from the document
and the category. In order to calculate the rank correlation, we need to assign
rank values to terms that do not appear in the document (or the category).
We simply assign the same rank to all the terms that are unique to one
input For example, suppose there are p + n terms for the document and
p + m terms for the category (that is, there are p terms that appear in both
the document and the category). We will find all the term that appear only
in the document and assign a rank which is the average rank from p + n + 1
to p + m + n, i.e., p + n + m/2. For all the terms that appear only in the
category, they are assign a rank which is the average rank from p + m + 1
to p + m + n, i.e., p + m + n/2.

2. Bigger Set. In this heuristic, we only consider all the terms from the bigger
term collection, which is usually the category. Similarly, for the same exam-
ple, we assign a rank which is the average rank from p+m+1 to p+m+n,
i.e., p + m + n/2.

3. Smaller Set. In this heuristic, we only consider all the terms from the
smaller term collection, which is usually the document. Similarly, for the
same example, we assign a rank which is the average rank from p + n + 1 to
p + m + n, i.e., p + n + m/2.

4. Intersection. In this heuristic, we only consider all the terms that appear
in both the document and the category. Therefore, we do not need to adjust
the rank of any terms.
Two vectors of ranks of the same size will be generated after using any of the

above heuristics. The vectors will be directly used as the inputs for the Spearman
Rank-Order Correlation Coefficient algorithm. The result measures how similar
the document and the category is, and will be used in our k-NN classifier.

Classification. We adopt the following simple classifier to perform the text
classification. We first build a set of vectors of rank values, {V1, V2, . . . , Vn}, rep-
resenting the categories {C1, C2, . . . , Cn} from the training set. For each testing
document, a vector of rank values, F , representing the testing document D is
calculated. We search for the category C such that it has the highest rank corre-
lation coefficients with the testing document D. Then the document is assigned
to the category C.

4.2 Classification Based on the Term Distances

Another similarity function we propose is based on the intuition that the distance
between two terms in the term graph reflects the relations between the terms.
Intuitively, terms that appear more often in the text collections will have more
chances to be connected directly in the term graph.

Term Distance Matrix. Given a term graph, we can build its term distance
matrix as follows. Assume the graph has n terms. Its term distance matrix T is
of size n × n, where T [i][j] records the smallest number of hops between term i
and j.

Example 2. Consider the term graph shown in Figure 3(a). Its distance matrix
is shown in Figure 3(b).
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discuss

patient

disease

therapycasualty

16
91

66

34

3466

(a) The Term Graph

⎡
⎢⎢⎢⎣

0 2 1 2 3
2 0 1 1 1
1 1 0 1 2
2 1 1 0 1
3 1 2 1 0

⎤
⎥⎥⎥⎦

(b) The Corresponding Distance
Matrix

Fig. 3. An Example Term Graph and Its Distance Matrix

Distance-Weighted Similarity. We propose to use the Distance-Weighted
Similarity to characterize the similarity of a document and a category. Intu-
itively, if a document D is similar to a category C, there will be many pairs of
terms that occur in both the document and the category; in addition, the dis-
tance between terms in those pairs will not be too large. We show the algorithm
in Algorithm 1. α is a parameter to adjust the effect of the distance of the terms
to the similarity score. We set α = 2 in our experiments.

Algorithm 1 Distance-Weighted-Similarity(T , D, α)
Input:

T is the distance matrix for the category C.
Description:
1: n = 0
2: w = 0
3: for all pair of terms, (u, v) , in D do
4: w = w + (T [u][v])α

5: n = n + 1
6: end for
7: return n

w

Classification. We adopt the following simple classification method based on the
distance matrix and the distance-weight similarity function. Given the set of dis-
tance matrixes {T1, T2, . . . , Tn} representing the categories {C1, C2, . . . , Cn} and
a testing document D. The document will be classified to category Ci if and only if
the distance-weighted similarity of Ci and D is the largest among all the categories.

5 Experimental Evaluation

In this section, we present some preliminary experiment results using classifiers
build on our term graph model. We note that our current focus is to more
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Table 1. Statistics of the Categories

Category Training Set Testing Set minsup

acq 1488 643 12
corn 159 48 6
crude 349 161 10
earn 2709 1044 15
grain 394 134 8
interest 289 100 12
money-fx 460 141 20
ship 191 85 7
trade 337 112 14
wheat 198 66 6

on gaining more insight into the term graph model and exploring its potential
applications in text mining.

We have implement our two classification methods in Java. We choose to use
the SVM classifier with linear kernel for comparison, as it is one of the most
best text classifier[8]. We build our SVM classifier built using TF-IDF weighting
scheme on top of the libsvm library [4].

The text collections we used in the experiments are the Reuters-21578 repos-
itory, which is the standard collections in many previous studies on text catego-
rization. There exist several modes of splitting the Reuters-21578 text collections
into the training and testing parts. For comparison purpose, we choose to use
“ModApte” split, which produces 9603 documents for the training set and 3299
documents for the testing set. We also follow the popular approach to choose
to use only top-10 categories with the most number of training documents in
the experiment [18]. We list the category names, the corresponding numbers of
training and testing documents, and the minimum support thresholds in Table 1.
The minimum support thresholds are set empirically such that the size of the
term graphs for the categories are of similar size.

We measure the adjusted accuracy of different classifiers on the testing doc-
uments. The adjustment is necessary because a Reuters document may belong
to multiple categories. We regard it as a correct classification as long as the
predicted class label match one of the class labels of the testing document.

5.1 Visualization of the Graph Model

We show the plot of an example term graph (with PageRank scores) for a medical
text document collections in Figure 4. We observe that many important notions
have been captured in the figure, such as “patient” with “disease”.

5.2 Experiments Using the Rank-Based Classification

We performed experiments using classification methods based on the notion of
rank correlation. We list the results of each of the four heuristics in Table 2.

As shown in the tables above, method of using Union Set is most competitive:
it has similar accuracy with SVM for four out of ten categories. Specifically, it
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Fig. 4. Visualization of the Term Graph

Table 2. Experiments Using the Rank-based Classification

Category Union Set Bigger Set Smaller Set Intersection SVM

acq 98.4 80.9 34.5 20.7 95.6
corn 93.7 70.8 62.5 31.2 93.8
crude 83.2 70.8 65.2 35.4 90.1
earn 95.4 95.3 64.9 27.0 98.8
grain 90.2 51.5 43.2 20.1 94.8
interest 57.0 70.0 55.0 40.0 83.0
money-fx 51.8 75.9 57.4 52.5 90.8
ship 58.8 65.9 58.8 35.3 84.7
trade 80.3 70.5 49.1 27.7 89.3
wheat 96.9 53.0 50.0 21.1 100.0

significantly outperforms SVM for acq category. Considering the simplicity of
our classifier, these results are rather encouraging.

We can also observe that the methods of using Intersection Set or Smaller
Set do not produce good results. The problem for these methods is that the
input vectors are not able to represent the category. There are a large num-
ber of words used to present the whole category. For example, the acq category
has 776 words, the earn category has 527 words. Using Intersection or Smaller
sets means that we use only a small portion of those when we calculate the
correlation between the category and the testing document. Therefore, the ac-
curacy is very low. The accuracy of Bigger and Union sets are better for some
categories.

5.3 Experiment with Distance Score Approach

We experimented with the classifier based on the distance-weighted similarity
function and list the results in Table 3.

We can observe the similar trend between the results in this experiment
and the Bigger Set and Union Set methods above. earn, acq have the highest
precision points. The system does not perform well for overlapped categories such
as grain, corn and wheat because those categories have lots of words in common.
Unfortunately, those words also appear frequently in the testing documents and
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Table 3. Experiments Using the Distance-Weighted Classification

Category Distance-Weighted SVM

acq 87.9 95.6
corn 60.4 93.8
crude 52.8 90.1
earn 88.3 98.8
grain 54.5 94.8
interest 68.0 83.0
money-fx 80.1 90.8
ship 22.4 84.7
trade 73.2 89.3
wheat 63.6 100.0

the distance model cannot clearly discriminate between the categories to which
the documents should belong.

6 Conclusions

In this work, we introduce a new term graph model to capture more information
for text document and present preliminary results on its potential application
in text mining. The new model is capable of capturing the term co-occurrence
information among terms. We explored ideas of using novel similarity functions,
the rank correlation coefficient and the distance-weighted similarity function,
both based on the new model.

There are many area our methods can be improved. As one of our future work,
we are actively exploring new features based on our term graph model. Another
promising direction is to use our model to complement existing classification
method.
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