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Abstract. Summarizing topological relations is fundamental to many
spatial applications including spatial query optimization. In this paper,
we examine the selectivity estimation for range window query to summa-
rize the four important topological relations: contains, contained, over-
lap, and disjoint. We propose a novel hybrid histogram method which uses
the concept of Min-skew partition in conjunction with Euler histogram
approach. It can effectively model object spatial distribution. Our exten-
sive experiments against both synthetic and real world datasets demon-
strated that our hybrid histogram techniques improve the accuracy of
the existing techniques by about one order of magnitude while retaining
the cost efficiency.

1 Introduction

For range query in the spatial databases, users are looking for data objects
whose geometries lie inside or overlap a query window. In many applications,
however, users are more interested in summarized information instead of ob-
jects’ individual properties . Especially with the availability of a huge collection
of on-line spatial data [1, 2, 3] (e.g. large digital libraries/archives), it becomes
extremely important to support interactive queries by query preview [4, 1]. These
applications require systems to provide a fast summarized spatial characteristics
information. Summarizing spatial datasets is also a key to spatial query process
optimization.

In this paper, we investigate the selectivity estimation problem of summariz-
ing topological relations between rectangular objects and window query. Several
techniques have been proposed for estimating the selectivity [5, 6]. Technique
based on histogram to approximate data distributions is widely used by cur-
rent database systems [7]. Histogram-based techniques can be classified into two
categories: 1) data partition techniques and 2) cell density techniques [8]. The
Min-skew algorithm [9] and the SQ-histogram technique [10] belong to the first
category. They group “similar” objects together into one bucket for estimating
the number of disjoint and non-disjoint objects with respect to window query.
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Techniques based on cell density [4, 11, 3, 8] propose to divide the object space
evenly into a number of disjoint cells, and record object density information in
each cell. Cumulative density based approach [11] and Euler histogram [4] can
provide the exact solutions against the aligned window query (to be defined in
Section 2) for non-disjoint and disjoint topological relations only. Euler-Approx
[3] and Multiscale Histogram [8] substantially extended the Euler histogram tech-
niques for summarizing the 4 important binary topological relations: “contains”,
“contained”, “overlap”, and “disjoint” ( to be defined in Section 2) against the
aligned window query.

In this paper, we will focus on these 4 relations against aligned window query.
Specifically, we developed a novel hybrid histogram method that combines Min-
skew technique with Euler histogram approach. By combining these two tech-
niques together, this hybrid histogram may lead to more accurate solution for
aligned window query. We evaluate our new techniques by both synthetic and
real world datasets. Our experiment results demonstrated that the hybrid his-
togram may improve the accuracy of the existing techniques by about one order
of magnitude while retaining the cost efficiency.

The rest of the paper is organized as follows. In Section 2, we provide prelim-
inaries and related work. Section 3 presents our hybrid histogram construction
algorithm, query algorithm and analysis of this structure. Section 4 evaluates
the proposed methods through extensive experiments with synthetic and real
datasets, and Section 5 concludes the paper with direction for future work.

2 Preliminary

In this section, we give a brief overview of Min-skew algorithm [9], Euler his-
togram [4], Euler-Approx algorithm [3] and Multiscale Histogram [8]. These
techniques are closely related to our work in this paper. First we introduce
the middle-resolution topological relations.

A binary topological relation between two objects, P and Q, is based upon
the comparison of P ’s interior, boundary, exterior with Q’s interior, boundary,
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and exterior [12]. It can be classified into 8 high-resolution topological relations
according to the 9-intersection model [12], and can be also classified into the
middle-resolution topological relations by removing the intersections involving
the object boundaries [13, 3] (Figure 1).

Aligned window query means the query window contains whole cells but not
part of the cells.

2.1 Min-Skew Algorithm

Acharya, Poosala, and Ramaswamy proposed a partitioning scheme to build
histograms for spatial data called Min-skew partition [9]. It is regarded as the
winner among several other histogram techniques. The technique uses a uniform
grid that covers the whole space and their spatial densities as input. Initially one
bucket represents the whole space. The algorithm iteratively splits a bucket into
two until the histogram has the required number of buckets B. The algorithm
tries to minimize the spatial-skew, defined as the variance of the number of
objects in the grid cells constituting the bucket, at each step.

2.2 Euler Histogram

To construct an Euler histogram [4], the whole space is first divided evenly into
n1 × n2 disjoint cells. For each node, edge and cell, a bucket would be allocated
respectively. So the total space required is (2n1 −1)× (2n2 −1). For every object
insertion, an update is needed for all the nodes, edges and cells that the object
intersects: the value of relevant cell and node is increased by 1 and the value
of relevant edge is decreased by 1. Figure 2(a) gives an example of an Euler
histogram for a dataset with only one object.

Table 1 lists the symbols that will be used frequently throughout the paper.
Given Q, we can get Pi by summing up all the bucket values inside Q. By Euler
formula, we have:

Nnds = Pi (1)
Nnds + Nds = |S| (2)

Equation (1) and equation (2) yield the exact solution for low-resolution
relations Nnds and Nds. In Figure 2(b) for example, given Q (shadow area),
Nnds = Pi = 2−1+3 = 4, Nds = |S|−Nnds = 5−4 = 1, which means there are
4 objects (cs, cd, it, cr) non-disjoint with Q and 1 object (ds) disjoints with Q.
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1 1

11

1

−1

−1

−1

−1

1

−1

1

−1

1

1

−1

1

−1

−1

−2

2

−2

2

2

−1

2

−1

1

−1

1

−2

1

−1

1

−1

3

−1

1

1
−1

1

−1

−12

Fig. 2. Euler Histogram and Query Method



Summarizing Spatial Relations - A Hybrid Histogram 467

Table 1. Frequent Symbols

Q aligned window query
|S| the total number of objects in dataset
Pi the summation of all the bucket values inside Q

Pe the summation of all the bucket values outside Q

Nds the number of objects that disjoint with Q

Nnds the number of objects that non-disjoint with Q

Ncs the number of objects that Q contains
Ncd the number of objects by which Q is contained
Nov the number of objects that overlap Q

Nit the number of objects that intersect Q

Ncr the number of objects that crossover Q

2.3 Euler-Approx Algorithm

Sun, Agrawal and El Abbadi [3] proposed to use the histogram information out-
side query window, Pe, to solve middle-resolution relations: contains, contained,
overlap and disjoint. The equal relation is merged into contains relation. It is
shown the overlap relation has to be separated into two classes: intersect re-
lation and crossover relation. This is because an object with intersect relation
contributes 1 to the outside of query and an object with crossover relation con-
tributes 2 to the outside of query (see Figure 2(b) object it and cr for example).
So we have to deal with crossover and intersect relation respectively, and then
sum them up to get overlap relation. In the rest of paper, the 5 relations rep-
resent contains, contained, intersect, crossover and disjoint relations. Again, by
Euler formula, we have:

Ncs + Nit + Ncr + Ncd = Pi (3)
Nds + Nit + 2 × Ncr = Pe (4)

Ncs + Nit + Ncr + Ncd + Nds = |S| (5)

For example, in Figure 2(b), Pi = 4. This 4 comes from the object cs, cd, cr,
and it. We can also have Pe = 4. This 4 comes from the object ds, it, and cr
which contributes 2 to Pe.

The information in one Euler histogram is not enough to determine all the
above 5 relations. To solve these 5 relations with only 3 exact equations, Sun
et. al proposed three query algorithms: Simple-Euler, Euler-Approximate and
Multi-resolution Euler Approximate. All algorithms are based on assumptions
Ncd = 0 and/or Ncr = 0 (see [3] for details).

2.4 Multiscale Histogram

Lin et. al proposed a multiscale framework [8] which can provide exact solution
for many real applications. The framework contains two parts: exact algorithm
(MESA) and approximate algorithm (MAPA). In MESA, it is proved that if
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all the objects involved in one Euler histogram have at most four adjacent scales
(w, h), (w + 1, h), (w, h + 1), (w + 1, h + 1), the exact results can be obtained.
So objects with adjacent scales are grouped together and one Euler histogram
is constructed for each group. When storage space is limited to k, MAPA will
build k − 1 exact histograms and 1 approximate histogram.

For an Euler histogram with a resolution n1 × n2, the storage space required
is O(n1 × n2). Both Euler-Approx and Multiscale Histogram run in constant
time with the prefix-sum technique [14].

3 EM Histogram

In this section, we introduce the hybrid histogram technique. The histogram
captures information not only about the location of the data objects, but also
about their sizes. These information are essential to the accuracy of 5 relations
estimation. We call this hybrid histogram EM histogram. It takes advantages
both from Euler histogram and Min-skew partition to achieve high accuracy as
well as efficiency. We first identify our motivation.

Our study shows, despite different techniques have their own attractive as-
pects, they also have their own limited applicability due to this unique problem.
Min-skew provides a good location estimation. But to approximate the objects
within a bucket, all objects are presented by an average size object. Obviously
this solution could not be applied for our problem because it is very unlikely all
the objects in one bucket only have one relation with respect to a given query.
Multiscale Histogram could provide a very accurate estimation if most of ob-
jects are involved in the exact histograms. But usually the histogram space is
limited. If given 1 histogram space, no accurate result can be obtained for any
objects. So estimation accuracy for using only 1 histogram is a critical compo-
nent to solve the 5 relations problem. Motivated by these, next we present our
EM histogram.

3.1 Histogram Construction

EM histogram includes two parts: Min-skew-like partition and Euler histogram.
The construction method for Euler histogram is exactly the same as that in
Section 2.2. For Min-skew-like partition, given a regular n1 ×n2 cells and object
scale range, we partition the objects based on the location of their bottom-left
corners as well as their scale information. So instead of only minimizing the
location variance sum in Min-skew partition, Min-skew-like partition aims at
minimizing the location as well as scale variance sum of all the buckets.

It generates B rectangular buckets whose edges are aligned with the cell
boundaries. In each bucket, the distribution of object location and scale are
almost uniform. Then the location uniform model is applied locally in each
bucket. The scale uniform model could not be applied directly. But with this
uniform model, the accuracy of estimation can be improved a lot in each bucket.
Each bucket b records the following information:
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– the spatial extent bl.MBR [(minX, maxX), (minY, maxY )] (1 ≤ l ≤ B)
– the scale matrix bl.Matrix of the objects involved in the bucket

[(width1, height1) objNum1, ..... , (widthn, heightn) objNumn] (1 ≤ l ≤ B)

Figure 3 gives an example for skewed scale data distribution with 2 buckets.
The overall location distribution of this dataset is uniform. So by the Min-skew-
like partition, 2 buckets are obtained. In bucket 1 (Figure 3(b)), b1.MBR is [(1,
4), (1, 4)], b1.Matrix is [(1, 1) 32]. In bucket 2 (Figure 3(c)), b2.MBR is [(1, 4),
(1, 4)], b2.Matrix is [(2, 2) 3, (4, 4) 1].

3.2 Querying EM Histogram

By Section 2.2, we have equation (3), (4) and (5) based on the Euler histogram.
Next we will use the Min-skew-like partition to get 2 more equations to solve 5 re-
lations: contains(cs), contained(cd), intersect(it), crossover(cr) and disjoint(ds).

Given a query Q and a bucket, we estimate its selectivity with respect to 5
relations based on the bucket scale matrix information. The basic idea is by the
scales of objects and a given query, the objects in each bucket can be separated
into 5 groups. In each group, a mean object will be calculated to represent the
objects in that group. Then probabilistic method is applied to estimating the 5
relations. Details can be explained in 3 steps:

Step 1. For each bucket, Q divides the objects into five groups according to
object scale Ow,h and query scale Qi,j . In each group, we know exactly how
many objects may contribute to the specific relations.

Group A. w ≤ i and h ≤ j - at most 3 relations: cs, it and ds.
Group B. w ≥ i + 2 and h ≥ j + 2 - at most 3 relations: cd, it and ds.
Group C. w ≤ i and h ≥ j + 2 - at most 3 relations: cr, it and ds.
Group D. w ≥ i + 2 and h ≤ j - at most 3 relations: cr, it and ds.
Group E. w = i + 1 or h = j + 1 - at most 2 relations: it and ds.

In the example of Figure 3(c), there are 2 kinds of objects in this bucket. A
query window with scale (3, 3) separates the scale matrix into five groups:
A, B, C, D, E. Objects with (2, 2) scale belong to group A. So these objects
will only contribute contains, intersect or disjoint relation to Q. No object
belongs to group B,C,D which indicates no object contributes to contained
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(crossover) relation. The objects with (4, 4) scale belong to group E. So they
may only contribute to intersect and disjoint relation.

Step 2. Calculate a mean object Mg

w̄,h̄
(g ∈ {A, B, C, D, E}) for each group.

To make the computation more efficient, we use 5 mean objects Mg

w̄,h̄
to

represent all the objects in 5 groups respectively. The number of Mg

w̄,h̄
(mg)

can be calculated by adding up all the objects with scales belonging to
group g.

Step 3. Estimate the number of objects with respect to the 5 relations using
probabilistic approach based on the mean object. Each mean object has 3 or 2
relations with respect to the query window Qi,j . The occurring probabilities
against the 3 or 2 relations can be calculated based on each mean object
Mg

w̄,h̄
by applying the location uniform model in each bucket.

In Figure 4, δs show the rectangular areas used by the mean object
bottom-left corner regards to different relations for group A, B and D re-
spectively. The rectangular areas for group C is similar to group D and
for group E, it is similar to group A without the white area δA

cs. δg
relation

(g ∈ {A, B, C, D, E}, relation ∈ {cs, cd, cr, it, ds}) denotes the possible area
covered by the objects Mg

w̄,h̄
that will contribute to relation relation in group

g with respect to Q. For example, in Figure 4(a) δA
cs means if the mean object

MA
w̄,h̄

has cs relation with Q, its bottom left corner should locate in this δA
cs

area. So compared with other bucket estimation method, we would not com-
pute the intersection area between bucket and query window, but between
bucket and δg

relation. Even there is no intersection between bucket and query
window, the objects in this bucket may still contribute to some relations (eg.
contained, crossover or intersect) to Q (see Figure 4(a, c) for example). Nds

can be computed directly from equation (3) and (5). We would not compute
it using probability approach. There are 2 possible cases between b.MBR
and δg

relation:

– case 1: b.MBR ∩ δg
relation = ∅ (relation ∈ {cs, cd, cr, it})

– case 2: b.MBR ∩ δg
relation = ωg

relation (relation ∈ {cs, cd, cr, it})
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In case 1, there is no object that will contribute to relation relation in this
group. For example in Figure 4(a), b.MBR ∩ δA

cs = ∅, so all the objects in
this bucket will not contribute to cs relation with respect to Q.

In case 2, the selectivity ρg
relation that objects in the g group contribute

to relation relation can be calculated by the ratio of ωg
relation to the total

area b.MBR. The number of objects which contribute to a specific relation
in each group is mg ×ρg

relation. The summations of the results from 5 groups
with respect to 5 relations form the results of this bucket.
By summing up the estimation of different relations (αcr, βit, γcs, µcd) from

each bucket, 2 more equations can be obtained:

Ncs : Ncd = γcs : µcd (6)
Ncr : Nit = αcr : βit (7)

Together with equation (3), (4) and (5), five relations Ncs, Ncd, Ncr, Nit, Nds

can be solved.

3.3 EM Maintenance

If an object is updated, EM histogram may be also updated. First, for an in-
sertion or deletion, the value of relevant node, cell and edge should be updated.
Because Euler histogram is constructed in a cumulative fashion, an efficient up-
date technique, ∆ tree [15], can be applied. Second, based on the object’s spatial
location and scale, the scale matrix information in the corresponding bucket will
also be updated.

3.4 EM Performance Analysis

The storage space required by Euler histogram is (2n1 − 1)(2n2 − 1). And the
space for buckets is Bn1n2 in the worst case (B is the number of buckets). The
total actual storage space required by EM histogram can be calculated as (2n1 −
1)(2n2−1)+Bn1n2. But in practice, by our extensive experiments, it takes much
smaller space than that in theory. This would be shown in our experiment part.

Because we can also represent the scale matrix information in each bucket by
applying prefix-sum techniques, querying each bucket runs in constant time. The
time for querying B buckets is O(B). And we know an Euler histogram can be
queried in constant time, so the total time for querying EM histogram is O(B).

4 Performance Evaluation

This section experimentally evaluates the proposed methods. All the experiments
were performed on Pentinum IV 1.80GHz CPU with 512 Mbytes memory.

The objective of this study is to show by taking advantages of Euler his-
togram and Min-skew-like techniques, EM histogram provides an accurate and
efficient method for spatial selectivity estimation for middle-resolution topologi-
cal relations, especially for non-uniform distribution dataset. In the first part of
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experiments, we will show the importance that we integrate Min-skew-like parti-
tion technique into our EM histogram. In the second part of experiment, we will
show the importance of Euler histogram. And cost comparison will be examined
in the third part. We evaluate the accuracy of the following techniques:

– EM Histogram
– Euler-Approx [3]
– Multiscale Histogram [8]
– Pure-Minskew Method: it is used to show the advantages of Euler histogram.

In Pure-Minskew method, only bucket information is recorded without any
Euler information. The spatial space and object scale space are partitioned
by Min-skew algorithm. In each bucket, the bucket spatial extent as well
as object scale matrix are maintained. For previous Min-skew algorithm,
only 1 average scale information is recorded. Modified in this way, the Pure-
Minskew method can also be used to answer the query for middle-resolution
relations.

Datasets. In our experiment, both real-world and synthetic datasets are used.
To do a fair comparison with Euler-Approx and Multiscale histogram regarding
accuracy, we adopt the 360 × 180 resolution to evaluate the accuracy of our
algorithms, as this resolution was used in [3] and [8] to provide the experiment
results. The 360×180 grid is a simulation of the earth resolution by the longitude
and latitude. Below are the datasets used.

– Ca road consists of the 2, 851, 627 California road segments obtained from
the US Census TIGER [16] dataset. We normalized the dataset into the
360 × 180 grid.

– Zipf is a synthetic dataset with one million square objects. Both the side
length and the spatial location of the object follow a Zipf distribution.

Query Sets. We adopt the same query setting in [8]. This is because this setting
simulates various user query patterns. Query windows are divided into 2 classes,
small and non-small. A query window in small class has a scale such that the
width and height are both smaller than 5, while a query window in non-small
class has either height between 6 and 20 or width between 6 to 20. We randomly
generate 3 different sets of windows, T1, T2, and T3, each of which has 100, 000
query windows.

In T1, 20% of the 100, 000 query windows are in the small class. In T2, 40% of
the query windows are in the small class, while in T3, 80% of the query windows
are in the small class.
Error Metrics. We adopt average relative error for Ncs, Ncd and Nov where
Nov = Nit + Ncr.

4.1 The Advantages of Min-Skew-Like Partition

To prove the advantages of Min-skew-like partition, in this part, we evaluate the
performance of EM histogram in comparison with Euler-Approx and Multiscale
Histogram.
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Fig. 5. Performance Comparison for Real Dataset: Ca road
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Fig. 6. Performance Comparison for Synthetic Dataset: Zipf

First we compare the performance between EM histogram and Euler-Approx.
Both algorithms can calculate the Nds accurately. Figure 5 shows the experiment
results for Ca road dataset. Because the location distribution is not quite skew,
the performance with different number of buckets of EM is quite similar. By
Figure 5, we can see even using 1 bucket, EM histogram has a better result than
that of Euler-Approx using 5 histograms in most cases.

Figure 6 shows the experiment results for synthetic dataset Zipf using differ-
ent query set. 100 buckets are allocated to EM histogram. Again, even using 1
histogram, the EM still outperforms the Euler-Approx with 5 histograms. The
performance difference between 2 algorithms is quite large compared with that
of Ca road dataset. This is because when the dataset follows non-uniform dis-
tribution, the assumptions made by Euler-Approx would be fail. On the other
hand, EM histogram uses only a few buckets to capture the skew data distri-
bution and local uniformity assumption is applied only in each bucket. Another
problem of Euler-Approx shown in [8] is the accuracy of Nov is fixed regardless
of the number of histograms used (see Figure 5(a), 6(a)).

In fact, Multiscale histogram is a special case of EM histogram if k = 1 (the
number of Euler histograms) and B = 1 (the number of buckets). On the other
hand, we can also treat EM histogram as a solution for the last histogram in
Multiscale histogram techniques. So for Ca road dataset, the performance of EM
(Figure 5) is also the performance of Multiscale histogram. Figure 7 for B = 1 is
the experiment result of Multiscale histogram for dataset Zipf. We can see EM
always outperforms Multiscale histogram.
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Fig. 7. Synthetic Data: Zipf

With Min-skew-like partition technique, EM histogram can capture the fea-
tures of data objects accurately which are the critical information for the esti-
mation accuracy.

4.2 The Advantages of Euler Histogram

To prove the advantages of Euler histogram, in this part, we evaluate the per-
formance of EM histogram in comparison with Pure-Minskew method in which
no Euler information is provided.

Figure 7 shows the experiment results of T3 query set against the different
number of buckets The results for T1 and T2 query set are similar to T3 query
set. With the increase of number of buckets, the Ncs and Ncd calculated by EM
histogram are improved quickly. The Nov with low relative error is not changed
too much. We can always get the exact results for Nds from EM histogram by
using equation (3) and (5).

The accuracy of Ncs by Pure-Minskew method is increased with the increase
of number of buckets. But it is interesting to note the performance of Ncd and
Nov are decreased. Another major concern about Pure-Minskew is, even the
performance could be improved with the increase of number of buckets, a big
number of buckets means more buckets have to be accessed in the on-line phase,
which slows down the query performance.

With Euler histogram, EM histogram could use only a relative few number
of buckets to accurately estimate the underlying data distribution. It is espe-
cially noteworthy for the on-line case. Pure-Minskew could not be a solution for
selectivity estimation of middle-resolution relations.

4.3 Cost Evaluation

Storage Space. In theory, the storage space required is (2n1 − 1)(2n2 − 1) +
Bn1n2. By our experiment, the space required for every 100 buckets is about
2.5KB (0.18% of one Euler histogram space) both for Ca road dataset and Zipf
dataset. So the storage space required for EM histogram is slight higher than
those of the other 2 algorithms when using 1 Euler histogram. But from the
experiments, we can see this is worthwile especially for non-uniform data. And
more, 1 EM histogram even outperforms 5 Euler-Approx histogram in most cases
but with much less space.
Histogram Construction Time. We evaluate the time to construct the EM
histogram. The time costs for constructing 1 Euler histogram are similar to
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the Euler-Approx and Multiscale algorithms, about 40 to 41 seconds. For EM
histogram, extra time is required to build buckets. With the resolution 360 ×
180 spatial resolution, the time cost is about 43 seconds to build 100 buckets.
The histogram construction time will be decreased with the decrease of spatial
resolution.
Query Time. As analyzed in Section 3.4, the time for querying EM histogram
is O(B) (B is the number of buckets), which is irrelevant to the size of the
Euler histogram and the underlying dataset. By our experiment, for every 10,000
window queries, it takes about 1 seconds for querying EM histogram with 100
buckets.

5 Conclusion and Remarks

In this paper, we investigate the problem of summarizing the spatial middle-
resolution topological relations: contains, contained, overlap and disjoint. Spatial
datasets could be various both in location distribution and scale distribution. A
novel hybrid histogram technique, EM histogram, is presented as an accurate
and effective tool to solve the problem. EM histogram use the concept of Min-
skew partition in conjunction with Euler histogram approach. Our experiment
results demonstrated that our approach may greatly improve the accuracy of
existing techniques while retaining the costs efficiency.

As a possible future study, we will investigate the problem of non-aligned
window query and explore other related research topics.
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