
Labeling Scheme and Structural Joins
for Graph-Structured XML Data�

Hongzhi Wang1,2, Wei Wang1,3, Xuemin Lin1,3, and Jianzhong Li2

1 University of New South Wales, Australia
{hongzhiw, weiw, lxue}@cse.unsw.edu.au

2 Harbin Institute of Technology, Harbin, China
lijz@mail.banner.com.cn

3 National ICT of Australia, Australia

Abstract. When XML documents are modeled as graphs, many
challenging research issues arise. In particular, query processing for graph-
structured XML data brings new challenges because traditional struc-
tural join methods cannot be directly applied. In this paper, we propose
a labeling scheme for graph-structured XML data. With this labeling
scheme, the reachability relationship of two nodes can be judged effi-
ciently without accessing other nodes. Based on this labeling scheme, we
design efficient structural join algorithms to evaluate reachability queries.
Experiments show that our algorithms have high efficiency and good
scalability.

1 Introduction

XML has become the de facto standard for information representation and ex-
change over the Internet. XML data has hierarchical nesting structures. Al-
though XML data is often modeled as a tree, IDREFs within the XML docu-
ment represent additional “referencing” relationships and are essential in some
applications, e.g., to avoid redundancy and anomalies. Such XML data could be
naturally modeled as a graph.

Query processing of graph-structured XML data brings new challenges:
– One traditional method of processing queries on tree-structured XML data

is to encode the nodes of XML data tree with certain labeling scheme and
process the query based on structural joins [2]. Under the coding scheme,
the structure relationship between any two elements (such as parent-child
or ancestor-descendant relationships) can be judged efficiently without ac-
cessing other elements. This property is the foundation of all structural join
algorithms so far. However, none of the existing XML coding schemes can
be applied to graph-structured XML data directly.

– Another query processing methods is based on structural index such as
1-index [14] and F&B index [12]. However, structural indexes of graph-
structured XML documents are likely to have a large number of nodes. As

� This work was partially supported by ARC Discovery Grant – DP0346004.

Y. Zhang et al. (Eds.): APWeb 2005, LNCS 3399, pp. 277–289, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

278 H. Wang et al.

a result, they efficiency could be a problem when there is not enough mem-
ory. For example, the number of nodes in F&B index of the standard 100M
XMark document, when modeled as a tree, has 0.44M nodes; the number of
nodes in F&B index of the same document, when modeled as a graph, has
1.29M nodes [12].

Given the successes of query processing methods based on XML coding
schemes and structural joins, in this paper, we adopt a similar approach deal-
ing with query processing tasks for graph-structured XML data. We propose
a reachability coding scheme for general digraph, which can be used to assist
efficient reachability queries. In this coding scheme, all the strongly connected
components of the digraph are contracted to single representative nodes such
that the digraph is reduced to a DAG. Then a DAG labeling scheme is applied
to the generated the code [15]. Based on the the features of the coding scheme,
we design the efficient structural join algorithms, Graph-Merge-Join (GMJ) and
its improved version Improved-Graph-Merge-Join (IGMJ). They can be viewed
as the natural generalizations of the tree-merge and stack-tree algorithms [2] for
the graph-structured XML data.

The contributions of the paper can be summarized as follows:

– We generalize the coding scheme in [15] and present an effective coding
scheme to judge the reachability relationships between nodes in a general
digraph.

– We present two efficient structural join algorithms, GMJ and IGMJ, based
on the graph coding scheme.

– Our experiments show that our coding scheme is efficient for XMark data.
Our two join algorithms outperform 1-index based query processing methods
significantly and have good scalabilities.

The reset of the paper is organized as follows: Section 2 introduces some
background knowledge and notations used in the paper. Section 3 presents
the reachability coding scheme. Structural join algorithms based on the coding
scheme are given in Section 4. We present our experiment evaluation results and
analysis in Section 5. Related work is described in Section 6. We conclude the
paper in Section 7.

2 Preliminaries

In this section, we briefly introduce graph-structured XML data model as well
as terms and notations used in this paper.

XML data is often modeled as a labeled tree: elements and attributes are
mapped into nodes of graph; directed nesting relationships are mapped into edges
in the tree. A feature of XML is that from two elements in XML document, there
may be a IDREF representing reference relationships [18]. With this feature,
XML data can be modeled as a labeled directed graph (digraph): elements and
attributes are mapped into nodes of graph; directed nesting and referencing

Labeling Scheme and Structural Joins for Graph-Structured XML Data 279

(a) An Example XML Docu-
ment

(b) The Corresponding XML
Graph

Fig. 1. An Example XML Document and Its XML Graph

relationships are mapped into directed edges in the graph. An example XML
document is shown in Fig 1(a). It can be modeled as the digraph shown in
Figure 1(b). Note that the graph in Figure 1(b) is not a DAG.

XML query languages, such as XQuery [4], are based on the tree model
and allow retrieving part of the XML document by the structural constraints.
For example, the XPath query b//e will retrieve all e elements nested within b
elements (// represents the ancestor-descendant relationship). In the example
XML document in Figure 1(a), the query result is empty. However, when we
model XML document as a graph, the ancestor-descendant relationship (as well
as parent-child relationship) can be extended based on the notion of reachability.
In [12], IDREF edges are represented as ⇒ and ⇐1 for the forward and backward
edge2, respectively. Two nodes, u and v belong to a graph G satisfy reachability
relationship if and only there is a path from u to v in G (denoted as u � v).
Each edge in this path can be either an edge representing nesting relationship
or referencing relationship. For example, the query b � e will return e1, e2, and
e3 for the example XML data graph in Figure 1(b). Such queries are referred to
as reachability queries in the rest of the paper.

3 The Coding of Graph-Model XML Document

In this section, we describe the coding scheme of graph-structured XML doc-
ument. We extend the coding scheme for directed acyclic graph (DAG) in [15]
to support directed cyclic digraph. Therefore, with this coding, the reachability

1 FIXME
2 FIXME

280 H. Wang et al.

relationship between two nodes in a general digraph can be judged efficiently
without accessing any other node.

3.1 The Coding of DAGs

In this subsection, we encode DAG using the method introduced in [15]. In this
coding scheme, each node is assigned a list of intervals. We briefly summarize the
encoding method for a DAG G in the following: First, find an optimal tree-cover
T of the DAG D. T is traversed in a depth-first manner. During the traversal,
an interval [x, y] is assigned each node n of T , where x is the postorder of n
in the traversal. y is the smallest postorder number of all n’s descendants in T .
Next, examine all the nodes of D in the reverse topological order. At each node
n, copy and merge, if possible, all the intervals of its out-going nodes in G to its
code.

The judgement of the reachibility relationship between two nodes a and b is
to check whether the postorder of b is contained in one of the intervals of a.

An example of encoding a DAG G is shown as following. The coding of the
DAG in Fig 2(a) is the in Fig 2(b). We use postid to denote the postorder number
of each nodes, which is also the second value of the first interval of its code.

3.2 The Coding of General Graph

We now generalize the above scheme for the case of a directed cyclic graph. We
assume that the graph consists of only one connected component with a single
root. The root is a node without any incoming edge. Otherwise, we can pick up
any root node or add a virtual root node.

The process of coding a general digraph G is sketched as the following steps:

1. Find all Maximal Strongly Connected Components (MSCC) with number
of nodes greater than one. A maximal strongly connected component C is a
MSCC if and only if there is no strongly connected component (SCC) that
contains C in G.

2. Each MSCC of G is contracted to a representative node. As a result G is re-
duced to a DAG G′ (the correctness of this step is proved in Theorem 1). Sup-
pose MSCC S = {node0, node1, · · · , nodet} in G is contracted in to nodeS .
nodeS is the representative node in G′. If a node in G is not contracted, then
its corresponding node is itself in G′.

3. G′ is encoded using the method introduced in Section 3.1.
4. For each nodeS in G′, assuming its code is Cs, Cs is assigned to every

node0, node1, · · · , nodet in G. It means that all nodes in the same MSCC
have the same codes, i.e., the list of intervals and the postid number.

For example, a directed cyclic graph G is shown in Figure 1(b). In order
to encode G, the first step is to contract all the maximal strongly connected
components. In G, there is only one such MSCC, S = {d3, c1, e1, e2, e3}. By
contracting this MSCC, a DAG G′ shown in Figure 1(b) is generated. In G′,
R is the representative node for MSCC S. The interval codes of G′ is shown in

Labeling Scheme and Structural Joins for Graph-Structured XML Data 281

(a) The DAG contracted
from XMLGraph

(b) Interval Coding for
the DAG

(c) Interval Coding for the XML Graph

Fig. 2. The Coding Scheme

Figure 2(b). At last, the intervals associated with R, i.e., [0, 3], is assigned to
each node in S in G. As a result, d3, c1, e1, e2, e3 all have the same interval
code [0, 3]. The interval codes of graph G is shown in Figure 2(c). The postid of
each node is the second value of its first interval. For example, d3.postid is 3.

The following theorems ensure the correctness of the encoding method. In
the interest of space, we don’t show the proofs of the theorems.

Theorem 1. A directed cyclic graph G is converted to a DAG in the way stated
above.

Theorem 2. For two nodes a and b of XML graph encoded in steps stated, sup-
pose the codea = {[a0.x, a0.y], ..., [an.x, an.y], postida} and codeb = {[b0.x, b0.y],
..., [bm.x, bm.y], postidb}. postida and postidb are the postorders of a and b in
the tree cover T of G′ generated from G by contracting MSCCs, respectively.
Then a � b if and only if ∃i(0 ≤ i ≤ n) such that ai.x ≤ postidb ≤ ai.y.

282 H. Wang et al.

Time Complexity Analysis. The finding of all MSCCs can leverage the DFS-
based algorithm in [1], and its time complexity is O(n), where n is the number
of the nodes of G. The efficiency of contracting step is O(nc), where nc is the
total number of nodes belonging to the MSCCs. The complex of encoding a DAG
is O(n′) [15], where n′ is the number of nodes in the DAG. The last step needs
O(nc) time. Since both nc and n′ are smaller than n, the time complexity of
encoding method is O(n).

4 Join Algorithms Based on the Labeling Scheme

In this section, we design two join-based algorithms to process reachability query
on graph-structured XML data using the labeling scheme presented in Section 3.
The structural join algorithms compute the result of reachability query a � d,
where a ∈ Alist and d ∈ Dlist are element sets.

4.1 Preprocess of the Input

One difference of the interval labeling scheme of a graph and that of a tree is
that there may be more than one interval assigned to a node. The reachability
relationship of two nodes a and b can be judged based on Theorem 2. We choose
to preprocess the joining nodes by inverting the nodes and their corresponding
interval codes. That is, if a node has k intervals, it is treated as k nodes: for
Alist, each element has one interval; for Dlist, each element has a postid and
the id of this element. Then both inputs are inverted: for the Alist, the list is
sorted on the intervals [x, y] by the ascending order of x and then the descending
order of y; for the Dlist, the list is sorted by the ascending order of postid. The
intuition is to leverage the order in the intervals and postids to accelerate join
processing.

We note that the same interval will occur more than once in the preprocessed
Alist, for one of the following two reasons:

– All the nodes with the same tag in an MSCC have the same codes, hence
intervals.

– Even if two nodes does not belong to the same MSCC, there could be some
interval associated with both of them. This is because in the third step of
the DAG encoding, when considering a node n with multiple children, some
intervals of its child will be appended to n. If some added interval of a child
c cannot be merged in the existing code of n, c and n with the same tage will
have the same interval even if they do not belongs to any MSCC together.

Similar case exists in Dlist as well because all nodes in the same MSCC have the
same postid.

Inmplementation-wise, in order to decrease the interval set of processing,
repeated intervals with different node IDs are merged into one interval with
multiple node IDs. Repeated postids in Dlist are also merged in a similar way.

Labeling Scheme and Structural Joins for Graph-Structured XML Data 283

For example, before the preprocessing for answering query d � e against
the XML document shown in Figure 2(c), Alist is {d1([0, 1]), d2([0, 0], [0, 2]),
d3([0.4])}, and Dlist is {e1(4), e2(4), e3(4)}. The intervals associated with a node
is in the brackets following the node. After preproocessing, the Alist becomes
{[0, 4](d3), [0, 2](d2), [0, 1](d1), [0, 0](d2)}, the Dlist becomes {4(e1, e2, e3)}. Pre-
processed Alist and Dlist are sorted by the codes (intervals and postids, re-
spectively). The nodes corresponds to an interval i (or postid) is in the bracket
followed the interval (or the postid). In Alist, the intervals associated to d2 are
separated. In Dlist, since e1, e2, e3 have the same postid, they are merged into
the same postid.

4.2 Two Join Algorithms

After preprocessing, a näıve structural algorithm can be obtained by generalizing
the sort-merge based structural join algorithm in [2]. One subtlety is that the
intervals in the preprocessing Alist might have the same starting or ending values
(i.e., x or y). The codes shown in Figure 2(c) is such an example. We present
the merge based join algorithm on graph, named Graph-Merge Join (GMJ), in
Algorithm 1.

Algorithm 1 GMJ(Alist,Dlist)
1: a = Alist.head()
2: d = Dlist.head()
3: while a �= NULL ∧ b �= NULL do
4: while a.x > d.postid ∧ d �= NULL do
5: d = d.next()
6: while a.y < d.postid ∧ a �= NULL do
7: a = a.next()
8: if d �= NULL ∧ a �= NULL then
9: bookmark = a

10: while a �= NULL ∧ a.x ≤ d.postid ∧ a.y ≥ d.postid do
11: Append (a, d) pair to the output
12: a = a.next()
13: a = bookmark
14: d = d.next()

For example, assume the two lists (preprocessed) to be joined are:

– Alist: a1([1, 3]), a2([1, 1]), a3([3, 6]), a4([4, 5]),
– Dlist: d1(1), d2(4), d3(7)

In GMJ, the basic idea is to join intervals and postids in a sort-merge fashion.
Since intervals might be nested, a bookmark is needed to keep track of the current
position of intervals while outputting results. In the example, the pointer of Alist,
i.e., a, points to a1. d1 joins a1 and a2. When processing d2, the pointer of Alist
moves to a3. d2 join with a3 and a4. When processing d3, the pointer moves to
the tail of Alist, so the algorithm terminates.

284 H. Wang et al.

Fig. 3. An Example of Overlapping Code

GMJ suffers the same problem of tree-merge join algorithms in that part of
the input might be scanned repeatedly. We note that stack-based structural join
algorithm in [2] cannot be directly generalized and work with our coding scheme.
This is because that two intervals may be partially overlapped. For an example,
a graph and its codes is shown in Figure 3. The intervals assigned to a2 and a4
are partially overlapping. As a result, stacks can no longer be used to represent
the nesting relationship between intervals in our coding scheme.

Algorithm 2 IGMJ(Alist,Dlist)
1: a = Alist.head()
2: d = Dlist.head()
3: rstree.insert(a)
4: a = a.next()
5: while a �= NULL ∧ d �= NULL do
6: if a.x ≤ d.postid then
7: rstree.trim(a.x)
8: rstree.insert(a)
9: a = a.next()

10: else
11: rstree.trim(d.postid)
12: for all element a in rstree do
13: Append (a, d) pair to the output
14: d = d.next()

We design a new algorithm, named Improved Graph Merge Join (IGMJ)
instead. The basic idea of GRJ is to store the intervals that can be joined in a
range search tree (RST for brief). In the tree, the intervals indexed and organized
according to their y values. When a new interval a of Alist arrives, it is compared
with the current node d of Dlist. If a contains the postorder of d, a is inserted to
the tree and all elements in the tree with y value smaller than a.x are deleted (via
the trim() method). Otherwise, we process current node d in Dlist. All elements
in the tree with y value smaller than d.postid are deleted. Then output d with
all the a nodes in the tree. The algorithm of IGMJ is shown in Algorithm 2. In
this algorithm, brtree is a RST that supports the following methods: insert(I)

Labeling Scheme and Structural Joins for Graph-Structured XML Data 285

and trim(v). insert(I) will insert an interval I to the BRST; trim(v) will batch
delete the intervals in brtree whose y values smaller than v.

For example, let’s consider running IGMJ on the same example above. x
values of a1 and a2 are smaller than d1.postid. At first, a1 and a2 are inserted
into the RST. Then, (d1, a1) and (d1, a2) are appended to the result list. a3 and
a4 are processed before d23. They are inserted to RST. When a3 is processed,
a2 is trimmed from the RST because a2.y < a3.x. a1 is trimmed from RST
when processing d2, since a1.y < d2.postid. Then, (a3, d2) and (a4, d2) will be
appended to the result list. a3 and a4 are trimmed from RST based on d3.

5 Experiments

In this section, we present results and analyses of part of our extensive experi-
ments of the new coding scheme and the structural join algorithms.

5.1 Experimental Setup

All our experiments were performed on a PC with Pentium 1GHz CPU, 256M
main memory and 30G IDE hard disk. The OS is Windows 2000 Professional.
We implemented the encoding of graph, the Graph-Merge-Join (GMJ) and
Improved-Graph-Merge-Join (IGMJ) using the file system as the storage engine.
For comparison, we also implemented a näıve traversal-based query processing
algorithm based on the 1-index [14] (1-index).

We use the XMark benchmark dataset [16] in our experiments. It is a fre-
quently used dataset and features irregular schema. We measure the performance
of different algorithms on the 20M XMark dataset (with scale factor 0.2). It has
351241 nodes and its 1-index has 161679 nodes. We generated other XMark
datasets with sizes 10M, 20M, 30M, 40M, and 50M respectively. They are used
in the scalability experiment.

We show the set of queries used in the experiments in Table 1. They represent
different characteristics in terms of the sizes of Alist, Dlist, and result (based on
the 20M XMark dataset).

Table 1. The Query Set

ID Query Alist Size Dlist Size Result Size

Q1 person�emph 3158 14222 8032
Q2 site�item 1 4549 4350
Q3 person�category 3158 200 199
Q4 people�privacy 205 1195 1182

3 FIXME

286 H. Wang et al.

Table 2. The Size of Code

Doc Size Intervals Intervals after preprocessing IPN IPNJ

11.3M 252284 173702 1.44 0.990
22.8M 503112 346014 1.43 0.985
34.0M 746234 516546 1.40 0.985
45.3M 999784 687596 1.43 0.986
56.2M 1255877 859823 1.44 0.988

5.2 Space Overhead of the Coding

We measure the space overhead of our coding scheme with the following two
parameters:

IPN =
number of total intervals

number of nodes in the XML document

IPNJ =
number of total intervals after preprocessing

number of nodes in the XML document

The former measurement represents the average number of intervals associated
to one node. The later measurement represents the average number of intervals
associated with one node that will be processed during structural join.

The results of the size of codes are shown in Table 2. IPNJ is small than 1.0.
This is because some nodes in the interval sets may share the same interval. It
can be observed from the result that even though the average number of intervals
of a node is larger than one, the average number of intervals after preprocessing
are smaller. This shows that the preprocessing of the Alist and Dlist in join is
meaningful by exploiting the sharing of intervals and postids, respectively.

5.3 Execution Time

We show in Figure 4(a) the execution time of GMJ, IGMJ, and 1-index for Q1
to Q4 on the 20M XMark dataset. Note that Y-axis is in logarithm scale. Both

 1

 10

 100

 1000

 10000

 100000

 1e+006

GSJ4GSJ3GSJ2GSJ1

ru
nt

im
e(

m
s)

data size

GMJ
IGMJ

1-index

(a) Execution Time

 50

 100

 150

 200

 250

 300

 10 15 20 25 30 35 40 45 50

ru
n

tim
e

data size

IGMJ
GMJ

(b) Scalability of IGMJ and GMJ
(Q1)

Fig. 4. Experiment Results

Labeling Scheme and Structural Joins for Graph-Structured XML Data 287

GMJ and IGMJ outperform 1-index. This is because there are many nodes in
1-index. During processing the query with form ’a//b’, when a node a1 with tag
a is found, all the nodes in the subgraph formed with nodes that are reachable
from a1 need to be traversed. We also found that IGMJ is always faster than
GMJ. It is because with the usage of RST, whenever an interval will not join
with any d in the Dlist, it will be trimmed from the RST.

5.4 Scalability Experiment

To evaluate the scalability of the new algorithms, We ran Q1 on XMark docu-
ments with size ranging from 10M to 50M. The result is shown in Fig 4(b). It
can be seen that both algorithms scale linearly with the increase of the data size.

6 Related Work

There are many reachability labeling schemes for trees. Recent work includes [3,
8, 11]. Reachability labeling schema schemes for directed acyclic graphs (DAGs)
includes [15, 22]. [6] is a survey of labeling schemes for DAGs and compares
several labeling schemes in the context of semantic web applications. [10] presents
a reachability coding for a special kind of graph, which is defined as planar-st
in [17]. Based on this coding, [19] presents a twig query processing method. [17]
extends this coding scheme to spherical st-graph. Note that both “planar st”
and “spherical st” are strong conditions. To the best of our knowledge, there is
no direct generalization of the above two labeling schemes to support general
digraph.

[7] presents a 2-hop reachability coding scheme. But the length of the label for
a node could be O(n). This might add to much overhead for the query processing
for graph-structured XML data.

With efficient coding, XML queries can also be evaluated using the join-
based approaches. Structural join is such an operator and its efficient evaluation
algorithms have been extensively studied in [2, 21, 13, 8, 5, 9, 20]. They are all
based on coding schemes that enable efficient checking of structural relationship
of any two nodes in a tree, and thus cannot be applied to the graph-structural
XML data directly.

7 Conclusions

In this paper, we present a labeling scheme for graph-structured XML data.
With such labelling scheme, the reachability relationship between two nodes
in a graph can be judged efficiently. Based on the labeling scheme, we design
efficient structural join algorithms for graph-structured XML, GMJ and IGMJ.
Our experiments show that the labeling scheme has acceptable size while the
proposed structural join algorithms outperform previous algorithms significantly.
As one of our future work, we will design efficient index structure based on the
labeling scheme to accelerate query processing.

288 H. Wang et al.

References

1. Introduction to Algorithms. MIT Press, Cambridge MA, 1990.
2. Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick Koudas, and

Divesh Srivastava. Structural joins: A primitive for efficient XML query pattern
matching. In Proceedings of the 18th International Conference on Data Engineering
(ICDE 2002), pages 141–152, 2002.

3. Stephen Alstrup and Theis Rauhe. Small induced-universal graphs and compact
implicit graph representations. In Proceedings of 2002 IEEE Symposium on Foun-
dations of Computer Science (FOCS 2002), pages 53–62, Vancouver, BC, Canada,
November 2002.

4. Donald D. Chamberlin, Daniela Florescu, and Jonathan Robie. XQuery: A query
language for XML. In W3C Working Draft, http://www.w3.org/TR/xquery, 2001.

5. Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras, and Carlo
Zaniolo. Efficient structural joins on indexed XML documents. In Proceedings
of 28th International Conference on Very Large Data Bases (VLDB 2002), pages
263–274, 2002.

6. Vassilis Christophides, Dimitris Plexousakis, Michel Scholl, and Sotirios Tourtou-
nis. On labeling schemes for the semantic web. In Proceedings of the Twelfth In-
ternational World Wide Web Conference(WWW2003), pages 544–555, Budapest,
Hungary, May 2003.

7. Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and dis-
tance queries via 2-hop labels. In Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms (SODA 2002), pages 937–946, San Francisco,
CA, USA, January 2002.

8. Torsten Grust. Accelerating XPath location steps. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data (SIGMOD 2002),
pages 109–120, Hong Kong, China, August 2002.

9. Haifeng Jiang, Hongjun Lu, Wei Wang, and Beng Chin Ooi. XR-Tree: Indexing
XML data for efficient structural join. In Proceedings of the 19th International
Conference on Data Engineering (ICDE 2003), pages 253–263, 2003.

10. Tiko Kameda. On the vector representation of the reachability in planar directed
graphs. Information Process Letters, 3(3):78–80, 1975.

11. Haim Kaplan, Tova Milo, and Ronen Shabo. A comparison of labeling schemes for
ancestor queries. In Proceedings of the thirteenth annual ACM-SIAM symposium
on Discrete algorithms (SODA 2002), pages 954 – 963, San Francisco, CA, USA,
January 2002.

12. Raghav Kaushik, Philip Bohannon, Jeffrey F. Naughton, and Henry F. Korth.
Covering indexes for branching path queries. In Proceedings of the 2002 ACM SIG-
MOD International Conference on Management of Data (SIGMOD 2002), pages
133–144, 2002.

13. Quanzhong Li and Bongki Moon. Indexing and querying XML data for regular
path expressions. In Proceedings of 27th International Conference on Very Large
Data Base (VLDB 2001), pages 361–370, 2001.

14. Tova Milo and Dan Suciu. Index structures for path expressions. In Proceedings of
the 7th International Conference on Database Theory (ICDE 1999), pages 277–295,
1999.

15. H. V. Jagadish Rakesh Agrawal, Alexander Borgida. Efficient management of
transitive relationships in large data and knowledge bases. In Proceedings of the
1989 ACM SIGMOD International Conference on Management of Data (SIGMOD
1989), pages 253–262, Portland, Oregon, May 1989.

Labeling Scheme and Structural Joins for Graph-Structured XML Data 289

16. Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana
Manolescu, and Ralph Busse. XMark: A benchmark for XML data management.
In Proceedings of 28th International Conference on Very Large Data Bases (VLDB
2002), pages 974–985, 2002.

17. Roberto Tamassia and Ioannis G. Tollis. Dynamic reachability in planar digraphs
with one source and one sink. Theoretical Computer Science, 119(2):331–343, 1993.

18. C. M. Sperberg-McQueen Franois Yergeau Tim Bray, Jean Paoli. Extensible
markup language (xml) 1.0 (third edition). In W3C Recommendation 04 February
2004, http://www.w3.org/TR/REC-xml/, 2004.

19. Zografoula Vagena, Mirella Moura Moro, and Vassilis J. Tsotras. Twig query pro-
cessing over graph-structured xml data. In Proceedings of the Seventh International
Workshop on the Web and Databases(WebDB 2004), pages 43–48, 2004.

20. Wei Wang, Haifeng Jiang, Hongjun Lu, and Jeffrey Xu Yu. PBiTree coding and
efficient processing of containment joins. In Proceedings of the 19th International
Conference on Data Engineering (ICDE 2003), pages 391–402, 2003.

21. Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and Guy M.
Lohman. On supporting containment queries in relational database management
systems. In Proceedings of the 2001 ACM SIGMOD International Conference on
Management of Data (SIGMOD 2001), pages 425–436, 2001.

22. Yoav Zibin and Joseph Gil. Efficient subtyping tests with pq-encoding. In Pro-
ceedings of the 2001 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 2001), pages 96–107, San Fran-
cisco, CA, USA, October 2001.

	Introduction
	Preliminaries
	The Coding of Graph-Model XML Document
	The Coding of DAGs
	The Coding of General Graph

	Join Algorithms Based on the Labeling Scheme
	Preprocess of the Input
	Two Join Algorithms

	Experiments
	Experimental Setup
	Space Overhead of the Coding
	Execution Time
	Scalability Experiment

	Related Work
	Conclusions

