
CircularTrip: An Effective Algorithm for
Continuous kNN Queries

Muhammad Aamir Cheema, Yidong Yuan, and Xuemin Lin

The University of New South Wales, Australia
{macheema, yyidong, lxue}@cse.unsw.edu.au

Abstract. Continuously monitoring kNN queries in a highly dynamic
environment has become a necessity to many recent location-based ap-
plications. In this paper, we study the problem of continuous kNN query
on the dataset with an in-memory grid index. We first present a novel
data access method – CircularTrip. Then, an efficient CircularTrip-based
continuous kNN algorithm is developed. Compared with the existing al-
gorithms, our algorithm is both space and time efficient.

1 Introduction

Continuously monitoring k nearest neighbors over moving data objects has be-
come a necessity to many recent location-based applications. This is mainly due
to the increasing availability of wireless networks and inexpensive mobile devices.
Consequently, a number of techniques [1,2,3,4,5,6,7,8,9] have been developed to
process continuous kNN queries.

Different from a conventional kNN query, continuous kNN queries are issued
once and run continuously to generate results in real-time along with the up-
dates of the underlying datasets. Therefore, it is crucial to develop in-memory
techniques to continuously process kNN queries due to frequent location updates
of data points and query points. In many applications [6,7,9], it is also crucial to
support the processing of a number of continuous kNN queries simultaneously;
consequently, scalability is a key issue.

To address the scalability, in this paper we focus on two issues: (1) minimiza-
tion of computation costs; and (2) minimization of the memory requirements.
We study continuous kNN queries against the data points that move around in
an arbitrary way. To effectively monitor kNN queries, we develop a novel data
access method – CircularTrip. Compared with the most advanced algorithm,
CPM [9], our CircularTrip-based continuous kNN algorithm has the following
advantages. (1) time efficient: although both algorithms access the minimum
number of cells for initial computation, less cells are accessed during continuous
monitoring in our algorithm. (2) space efficient: our algorithm does not employ
any book-keeping information used in CPM (i.e., visit list and search heap for
each query). Our experimental study demonstrates that CircularTrip-based con-
tinuous kNN algorithm is 2 to 4 times faster than CPM, while its memory usage
is only 50% to 85% of CPM.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 863–869, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

864 M.A. Cheema, Y. Yuan, and X. Lin

Our contributions in this paper can be summarized as follows: (1) We develop
a novel data access method – CircularTrip which returns the cells intersecting
a given circle with the minimum number of cells examined; (2) Based on Circu-
larTrip, a time- and space- efficient continuous kNN algorithm is developed.

The rest of the paper is organized as follows: Section 2 gives the problem defi-
nition and presents the related work. We present our continuous kNN algorithm
in Section 3. Experimental study and remarks are reported in Section 4.

2 Background Information

Suppose that P is a set of 2D1 moving data points and data points change
their locations frequently in an unpredictable fashion. Each data point p ∈ P is
represented by (p.x, p.y). At each time stamp, the move of a data point p from
ppre to pcur is recorded as a location update 〈p.id, ppre, pcur〉 and the moves of
query points are recorded similarly. The problem of continuous kNN query is
formally defined below.
Continuous kNN Query. Given a set of moving data points, a moving query
point q, and an integer k, the continuous kNN query is to find k closest data
points to q at each time stamp.
Grid Index. In this paper, we assume that the dataset is indexed by an in-
memory grid index which evenly partitions the space into cells. The extent of
each cell on each dimension is δ. Cell c[i, j] indicates the cell at column i and
row j and the lower-left corner cell is c[0, 0]. Clearly, point p falls into the cell
c[�p.x/δ�, �p.y/δ�].

In the grid index, each cell is associated with an object list and an influence list.
Object list contains all the data points in this cell. Influence list of cell c maintains
the references of all the queries q such that mindist(c, q) ≤ q.distk where q.distk
is the distance of kth nearest neighbor from q. Specially, mindist(cq, q) = 0
where cq is the cell containing q. Note that both object list and influence list
are implemented as hash tables so that lookup, insertion, update, and deletion
of entries take constant time.

Accessing and encountering are two basic operations on cells. Specifically,
accessing a cell is to evaluate all data points in this cells against queries and
encountering a cell only computes its minimum distance to queries. Clearly, cost
of encountering a cell is neglected when compared with accessing a cell.

SEA-CNN [6], YPK-CNN [7], and CPM [9] are the most related existing work
to the study in this paper. Due to space limitation, we omit the details of these
techniques here. Interested readers can find them in [6,7,9], respectively.

3 Continuous kNN Algorithm

Our CircularTrip-based continuous kNN algorithm consists of two phases. In
phase 1, the initial results of each new continuous kNN query is computed. Then,
1 In this paper, we focus on 2D space only. But the proposed techniques can be applied

to higher dimensional space immediately.

CircularTrip: An Effective Algorithm for Continuous kNN Queries 865

q

Round 1 Round 2

r0

p1

p2

q

p1

p2

distk

Round 3

q

p1

p2

r0+
distk

Fig. 1. An NN Query

q

c

cu
cr

upper-left upper-right

lower-left lower-right

cstart

Fig. 2. CircularTrip

the results are incrementally updated by continuous monitoring module at each
time stamp upon the moves of query points and data points (i.e., phase 2). Both
phases take advantages of CircularTrip algorithm. Section 3.1 and Section 3.2
present phase 1 and phase 2, respectively.

3.1 Initial kNN Computation

The basic idea of kNN computation algorithm is to access the cells around query
point q round by round. A round Ci contains all the cells that intersect the cir-
cle of radius ri = r0 + iδ centered at q. Formally, Ci = {∀c | mindist(c, q) <
ri ≤ maxdist(c, q)}. r0 is the the first circle’s radius. Obviously, r0 is at most
maxdist(cq, q); otherwise cell cq will not be accessed by the algorithm. Examples
of round are shown as the shaded cells in Fig. 1. In each round, the algorithm
accesses the cells in ascending order of their mindist(c, q). The algorithm termi-
nates when the next cell to be accessed has mindist(c, q) ≥ q.distk. The following
theorem proves the correctness and optimality of this algorithm.

Lemma 1. In a grid consisting of cells with size δ×δ, given a cell c and a query
point q where c does not contain q, δ ≤ maxdist(c, q)−mindist(c, q) ≤

√
2δ. ��

Theorem 1. Given a query q, in our initial kNN algorithm, the minimal set of
cells are all accessed and only these cells are accessed. ��

According to Lemma 1, a cell is intersected by at most two consecutive circles
(e.g., the dark shaded cells in Fig. 1). Although these cells are encountered
twice during kNN computation (i.e., these cells appear in two rounds), they are
accessed once only. This is because for a query q (1) our kNN algorithm only
accesses the cells where q is not in their influence lists; and (2) q will be inserted
into its influence list after a cell is processed. In fact, Theorem 2 proves the upper
bound of the total number of times the cells are encountered in our algorithm.

Theorem 2. In kNN algorithm, the total number of times the cells are encoun-
tered is at most 1.27 times of the number cells in the minimum set of cells. ��

The detailed kNN computation algorithm is shown in Algorithm 1. We use the
following example to present its details.

866 M.A. Cheema, Y. Yuan, and X. Lin

Algorithm 1. ComputeNN(G, q, k)
Input: G: the grid index; q: query point; k: an integer;
Output: the kNN of q;
1: q.distk := ∞; q.kNN := ∅; H := ∅; r := r0 := maxdist(cq, q);
2: insert the cells returned by CircularTrip(G, q, r) into H ;
3: while H �= ∅ and mindist(eH , q) < q.distk do
4: insert q into the influence list of eH ;
5: ∀p ∈ eH , compute dist(p, q) and update q.distk and q.kNN ;
6: remove eH from H ;
7: if H = ∅ and r < q.distk then
8: r := min{r + δ, q.distk};
9: cells C := CircularTrip(G, q, r);

10: ∀c ∈ C, insert c into H if q �∈ the influence list of c;
11: return q.kNN ;

Example 1. Fig. 1 illustrates a concrete example of an NN query. As no data point
is found in the first round, the algorithm continues to process the cells in the next
round with radius (r0 + δ). In this round, p1 is found and q.distk is updated to
be dist(p1, q). Then, a third round with radius q.distk (as dist(p1, q) < r0 + 2δ)
is processed because the previous radius is smaller than q.distk. In round 3,
q.kNN and q.distk are updated after p2 is found. Computation stops when
q.distk (= dist(p2, q)) is less than mindist(eH , q) of the top entry eH .

CircularTrip Algorithm. To collect a round of cells, CircularTrip starts from
one cell intersected by the given circle and checks the cells along the circle.
Without loss of generality, consider cell c intersected by the circle which locates
in the upper-left quadrant as shown in Fig. 2. The key fact is that the next cell
intersected by the circle (i.e., the cell in which the arc is connected to one in c)
is the adjacent cell either above c (i.e., cu) or right to c (i.e., cr). This is because
the outgoing circle crosses either the upper boundary or the right boundary of
c. These two adjacent cells, cu and cr, are called candidate adjacent cells of c.
Clearly, to collect the next cell intersected by the circle, CircularTrip only needs
to examine one of the candidate adjacent cells (i.e., check its mindist(c, q) with
the given radius r). As a result, the total cost of CircularTrip to collect a round
C of cells is to compute mindist(c, q) of |C| cells, where |C| is the number of
cells in round C.

Algorithm 2 presents the implementation of CircularTrip algorithm. It always
starts from the left most cell of the round cstart (as shown in Fig. 2) and examines
the cells clockwise along the given circle until cstart is encountered again. When
the quadrant of the current cell being examined is changed, the directions to
find its candidate adjacent cells are updated accordingly (i.e., lines 9 – 10).

3.2 Continuous Monitoring

Same as in CPM, when the query moves, we simply re-issue the query on the
new location. So, continuous monitoring only concerns update of data points.

CircularTrip: An Effective Algorithm for Continuous kNN Queries 867

Algorithm 2. CircularTrip(G, q, r)
Input: G: the grid index; q: query point; r: the radius;
Output: all the cells which intersect the circle with center q and radius r;
1: C := ∅; c := cstart := c[i, j] (i := �(q.x − r)/δ�, j := �q.y/δ�);
2: Dcur := Up; /* clockwise fashion: Up → Right → Down → Left → Up */
3: repeat
4: insert c into C;
5: c′ := the adjacent cell to c in Dcur direction;
6: if c′ does not intersect the circle then
7: c′ := the adjacent cell to c in the next direction of Dcur;
8: c := c′;
9: if (c.i=cq .i and c.j = �(q.y ±r)/δ�) or (c.i = �(q.x±r)/δ� and c.j = cq.j) then

10: Dcur := the next direction of Dcur;
11: until c = cstart

12: return C;

Regarding a query q, the update of data point p, 〈p.id, ppre, pcur〉, can be classi-
fied into 3 cases:

• internal update: pcur ∈ q.kNN and ppre ∈ q.kNN ; clearly, only the order of
q.kNN is affected so we update the order of data points in q.kNN accordingly.
• incoming update: pcur ∈ q.kNN and ppre
∈ q.kNN ; p is inserted in q.kNN .
• outgoing update: pcur
∈ q.kNN and ppre ∈ q.kNN ; p is deleted from q.kNN .

It is immediately verified that only the queries recorded in the influence lists
of cell cppre or cell cpcur may be affected by the update 〈p.id, ppre, pcur〉, where
cppre (cpcur) is the cell containing ppre (pcur). Therefore, after receiving an update
〈p.id, ppre, pcur〉, continuous monitoring module checks these queries q only. If
dist(pcur, q) ≤ q.distk, it is treated as an incoming update (if ppre
∈ q.kNN)
or an internal update (if ppre ∈ q.kNN). On the other hand, If dist(ppre, q) ≤
q.distk and dist(pcur, q) > q.distk, it is handled as an outgoing update.

After all the updates of data points are handled as described above, we update
the results of affected queries. For each query q, if |q.kNN | ≥ k, we keep the
k closest points and delete all other. For any query q where |q.kNN | < k, we
update its result in a similar way to Algorithm 1. Note that here the starting
radius r0 is set as q.distk. The intuition is the fact that any update within this
distance has already been handled.

4 Experimental Study and Remarks

In accordance with the experimental study of previous work [6,9], we use the
same spatio-temporal data generator [10]. Data points with slow speed move
1/250 of the extent of space per time stamp. Medium and fast speed are 5
and 25 times faster than slow speed, respectively. Continuous kNN queries are

868 M.A. Cheema, Y. Yuan, and X. Lin

 0

 200

 400

 600

 800

 1000

256641641

T
im

e
(s

)

CPM
CicularTrip

(a) Time

 0

 10

 20

 30

256641641

M
em

or
y

(M
B

)

78% 77% 76%
77%

78%CPM
CircularTrip

(b) Space

Fig. 3. Effect of k

 0

 100

 200

 300

 400

 200 150 100 70 50 30

T
im

e
(s

)

CPM
CircularTrip

(a) Varying N (×1K)

 0

 100

 200

 300

 400

 10 7 5 3 1

T
im

e
(s

)

CPM
CircularTrip

(b) Varying n (×1K)

Fig. 4. Effect of N and n

 0

 100

 200

 300

 70 50 30 10

T
im

e
(s

)

CPM
CircularTrip

(a) Varying Agility (%)

 0

 50

 100

 150

 200

 250

fastmediumslow

T
im

e
(s

)

CPM
CircularTrip

(b) Varying Speed

Fig. 5. Data Movement

generated in the similar way. All queries are evaluated at each time stamp and
the length of evaluation is 100 time stamps. The grid index has 256 × 256 cells.

We evaluate our CircularTrip-based continuous kNN technique against various
parameters: number of NNs (k), number of data points (N), number of queries
(n), and data point agility and moving speed. In our experiments, their default
values are 16, 100K, 5K, 50%, and medium, respectively. The experimental
results are reported in Fig. 3, 4, and 5.

In this paper, we develop an efficient CircularTrip-based continuous kNN al-
gorithm. Compared with the existing algorithm, our technique accesses the min-
imum set of cells for initial computation and significantly reduces the continuous
monitoring cost, while less memory space is required.

References

1. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In:
SSTD. (2001) 79–96

2. Tao, Y., Papadias, D.: Time-parameterized queries in spatio-temporal databases.
In: SIGMOD Conference. (2002) 334–345

3. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB.
(2002) 287–298

4. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial
queries. In: SIGMOD. (2003) 443–454

5. Iwerks, G.S., Samet, H., Smith, K.P.: Continuous k-nearest neighbor queries for
continuously moving points with updates. In: VLDB. (2003) 512–523

6. Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous
k-nearest neighbor queries in spatio-temporal databases. In: ICDE. (2005) 643–654

7. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving
objects. In: ICDE. (2005) 631–642

CircularTrip: An Effective Algorithm for Continuous kNN Queries 869

8. Hu, H., Xu, J., Lee, D.L.: A generic framework for monitoring continuous spatial
queries over moving objects. In: SIGMOD. (2005) 479–490

9. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning: An
efficient method for continuous nearest neighbor monitoring. In: SIGMOD. (2005)
634–645

10. Brinkhoff, T.: A framework for generating network-based moving objects. GeoIn-
formatica 6(2) (2002) 153–180

	Introduction
	Background Information
	Continuous kNN Algorithm
	Initial kNN Computation
	Continuous Monitoring

	Experimental Study and Remarks

