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Abstract. The processing of k-NN queries has been studied extensively
both in a centralized computing environment and in a structured P2P
environment. However, the problem over an unstructured P2P system
is not well studied despite of their popularity. Communication-efficient
processing of k-NN queries in such an environment is a unique challenge
due to the distribution, dynamics and large scale of the system. In this
paper, we investigate the problem of efficiently computing k-NN queries
over unstructured P2P systems. We first propose a location-based domi-
nation model to determine a search space. We then present two types of
probing strategies, radius-convergence and radius-expanding. A compre-
hensive performance study demonstrates that our techniques are efficient
and scalable.

1 Introduction

Due to their importance in many applications in a variety of domains, k-NN
queries have been extensively studied [8,13]. An often used mechanism that pro-
vides much needed retrieval efficiency is a centralized index. However, for k-NN
queries in a distributed environment, especially unstructured P2P environments,
centralized indexing is not a practical solution. The following example shows the
reason that new techniques are needed and hence motivate the work of this
paper.

Consider a tsunami alarm system for a certain area, e.g., the bay area of
Indonesia. Detection of a tsunami in many cases need data from areas that
go across multiple nations. Assume the nations establish a logical cooperative
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network, where for any two nations, they have either direct cooperative rela-
tionship, represented as logical neighbors in the network, or indirect cooperative
relationship if their logical neighbors can cooperate. Each nation autonomously
maintains a set of sensors to monitor her own sea area and can request data from
her cooperative nations. Note that it is not necessary that two logical neighbors
are geographically bordered. Therefore, those autonomous nations need to coop-
erate to answer a distributed k-NN query efficiently. In this application, global
indexing is not available for the k-NN query, either, since data values may change
dynamically. Furthermore, it is often not possible for all the nations to follow
some organization rules (hashing functions) to arrange or store the data as re-
quired by a structured P2P system.

Compared to the distributed k-NN problems on P2P [6,7], a constrained k-
NN search with value predicates in unstructured P2P systems has posed the
following unique challenges: (i) Topology mismatch between the P2P logical
overlay network and physical underlying network; and (ii) Data in each peer is
maintained autonomously in unstructured P2P systems.

We address the above problems and make the following contributions. (i) We
propose a new framework for processing k-NN queries in unstructured P2P sys-
tems, (ii) we give a novel filtering mechanism to reduce the communication cost
and effectively terminate our search, and (iii) we also give detailed complexity
analysis of our algorithms.

The rest of the paper is organized as follows. The formal definition of con-
straint k-NN queries and a proposed filter model, called domination model, to
efficiently prune peers are given in Section 2. Section 3 provides our techniques
searching k-NN queries with least communication cost. Experimental results and
performance studies are discussed in Section 4. In Section 5, we discuss related
work. Finally, we conclude in Section 6.

2 Problem Definition

We assume a set of logically connected, cooperative peers, each covering a spatial
region that does not overlap with the spatial regions covered by all other peers.
We use a non-directed graph G = (P, E) to model the logical connections, where
P is a set of vertices representing the peers and E a set of edges expressing the
logical connections between the peers. For a peer p ∈ P , we use R(p) to denote
the spatial region it covers and D(p) to denote data set maintained by p. We
also assume that each peer has pre-knowledge of spatial regions covered by all
other peers. This assumption is reasonable since it is easy for a peer to collect
data from different peers and derive this knowledge in an incremental manner.

Each item in D(p) maintained by p has two kinds of attributes, namely lo-
cation attributes and non-location attributes. Hence, we denote each data item
d in D(p) as a pair 〈 vl(d), vn(d) 〉, where vl(d) ( vn(d), resp.) is a value
vector of the location (non-location resp.) attributes of d. For each d in D(p),
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vl(d) must be contained in the region R(p). A k-NN query q is composed of
two parts, location value and non-location value predicate, denoted as 〈 vl(q),
qc 〉, respectively. A value predicate returns, when applied to a non-location
value vector, true or false. We define the distance between q and data d as
following:

Definition 1. Given a query q and data d, let the distance between q and d be

dist(q, d) =
{

dist(vl(q), vl(d)) if qc(vn(d)) = true
∞ otherwise

where dist can be any of the Lp-norm.

Given a query q and a peer p, we use minDist(q, p) (maxDist(q, p), resp.) to
express the minimum (maximum, resp.) distance between q and all the points
in R(p).

Formal Problem Statement: Assume we have a set of logically connected
peers p1, . . ., pn, each of which manages a set of data items, denoted D(pi), with
locations of each data item in D(pi) being in the spatial region R(pi). Assume
further that R(pi) ∩ R(pj) = ∅ for all i �= j. Given a continuous query q issued
by a peer pi, continually search k data items {d1, . . . , dk} among the data items
in D(p1) ∪ · · · ∪ D(pn) such that there does not exist any data item d satisfying
the condition dist(q, d) ≤ dist(q, dh) for some 1 ≤ h ≤ k . We aim to minimize
total communication costs.

The intuition of the domination model comes from the following simple facts:
If we know an upperbound ru of the distance from the query point q to the
kth data item in the query results, then a peer p′ does not need further probing
(for possible answers) if ru ≤ minDist(q, p′). Similarly, if we know that a peer
p provides the kth item in the answer set, then a peer p′ does not need further
probing if maxDist(q, p) ≤ minDist(q, p′). These facts form the basis for our
optimized search algorithms, which are described in Section 4.

Definition 2. (Dominate relationship) Given a query q, and two peers p1 and
p2, if maxDist(q, p1) ≤ minDist(q, p2), we then say that p1 dominates p2, de-
noted p1 ≺q p2, or p1 ≺ p2 when q is understood. For two groups of peers P1 and
P2, if for each peer p ∈ P1 and each peer p′ ∈ P2, p ≺ p′, we say P1 dominates
P2, denoted P1 ≺ P2.

3 Pruning Candidate Peers

We propose two probing strategies, namely the radius-convergence strategy and
the radius-expanding strategy. The radius-convergence strategy shrinks the probe
radius gradually until all peers in the probe circle have been probed, while the
radius-expanding strategy gradually expands the probe radius.
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3.1 The Radius-Convergence Approach

The first strategy that we introduce for direct probing is radius-convergence
strategy, which keeps shrinking the proving radius when more peers are probed
and closer data are found. For each probe, it keeps the new k nearest data and
let the new probe radius rk be the Euclidean distance between q and the new
kth data. This procedure repeats until all peers overlapping the circle with the
(shrinking) rk have been probed.

Ideally, we prefer to find a “better” peer that can get a close probe radius in
the first a few times probe. Seeking “better” peers to start with can be considered
as a rank aggregation (RA) problem [5], which searching top candidates from a
set of sorted rank list. We propose an algorithm to choose best-k peers in the
probe circle and put emphasis on the minimum distance.

Our RA-based approach is shown in Algorithm 1. Line 1, in Algorithm 1, nor-
malizes the attribute values 〈min, max, plen〉 for minimum distance, maximum
distance, and the logical paths of each peer to the range of [0,1], so that they
have the same weight for estimating a peer. Line 2 sorts all peers according to
minimum distance attribute in the ascending order. Lines 3-12 choose the top-
k peers with the smallest grades. Compare it with the random-based approach,
RA-based approach can decrease probe radius quickly, that is, probes peers with
higher probabilities to provide closer answers.

Algorithm 1: RA-based algorithm
Input: P = {p1, ..., ph}, each pi = 〈id, min, max, plen〉, k(≤ h),

geographical weight wg, logical weight wl

Output: a set of top-k peers
1: normalize P to P ′; // p.min, p.max, p.plen ∈ [0, 1]
2: l1=sort P ′ according to min; List result = ∅; count = 0; λ = 0;
3: for i = 1; i ≤ |P |; i++ do
4: λ=wg×((l1+i).min+(l1+i).max)+wl×(l1+i).plen;
5: r = last element in result;
6: if λ ≤ wg× (r.min+r.max)+wl× r.plen then
7: insert {(l1+i).id} to result; count++;
8: if count==k then return result;
9: else insert (l1+i) in candidate in ascending order;

10: end if
11: end if
12: end for
13: return result;

Note that, even some peers can provide k closest data, we are not able to
prune out all the rest peers whose minimal distances to q are less than the new
query radius rk. We then choose another top-k peers, using the same procedure,
in the remaining peers, and probing these peers to get another set of k′-closest
satisfying data (k′ ≤ k). We choose the first k data among these two sets of
returned satisfying data and shrink rk. The above procedure repeats until all
peers in the shrunk probe circle have been probed.
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3.2 The Radius-Expanding Approach

We propose a partition-based approach (PA in short) to gradually grow the prob-
ing radius. Ideally, we hope to find a small set of peers P1, such that if P1 can
answer the k closest answers, then all other peers can be safety pruned out. For
peers in each group, we build up a steiner tree using the local filtering mecha-
nism. Since messages are forwarded through edges of the constructed tree, we
hope to find and merge groups (such as P1 and P2) such that the summation of
edges of corresponding steiner trees T1 and T2 is minimal. In fact, this property
has been proved and stated in the following Theorem.

Theorem 1. Given an undirected graph G(P, E) and two set of target nodes
P1 ⊆ P and P2 ⊆ P , the summation of edges of the two trees T (P1) and T (P2)
is not less than the edge of T (P1 + P2), i.e. we have the following property

|T (P1)| + |T (P2)| ≥ |T (P1 + P2)|.

The basic task for the PA is the following. Given an undirected graph G =
(P, E), a set of terminal nodes P ′ ⊆ P , and subsets P1 ≺ . . . ≺ Ph, Pi ⊆ P ′

(1 ≤ i ≤ h), find an optimal partition of P ′ = {C1, C2}, such that neither C1
nor C2 is empty, each Pi can only belong to C1 or C2 (but not both), and the
sum of number of edges in steiner trees for {C1, C2} is minimal. PA combines
geographical dominate relationship and logical steiner tree together. We use
Algorithm 2 to greedily approximately build two steiner trees.

Algorithm 2: PA
Input:k, undirected graph G, source node s, and terminal nodes P ′ = {P1, ..., Ph}
Output:two steiner trees T1 and T2

1: for each Pi between P1 and Pk do
2: STi = greedyST(G, {s} ∪ Pi);
3: end for
4: find two minimal trees, assuming they are for Pu and Pv;
5: T1 = STu; RT1 = Pu; T2 = STv; RT2 = Pv;
6: for each peer Pi in P ′ − RT1 − RT2 do
7: pick the a minimal tree STi for Pi;
8: T ′

1 =greedyST(T1 ∪ Ti, {s} ∪ RT1∪ Pi); T ′
2 =greedyST(T2∪ Ti, {s}∪ RT2∪ Pi);

9: if edge(T ′
1) ≤ edge(T ′

2) then T1 = T ′
1; RT1 = RT1 ∪ Pi;

10: else T2 = T ′
2; RT2 = RT2 ∪ Pi;

11: end if
12: end for

PA classifies peers into two groups C1 and C2 corresponding to the two steiner
trees T1 and T1, respectively. Peers in C1 can be probed together. Note that,
groups in C2 = C − C1 may contain a group Pj dominates groups in C1. If the
first round probe gets k′ (≤ k) closest answers, then using the locations of these
k′ answers, we can know k1 (≤ k′) out of k′ answers are returned by P1. Then it
classifies P ′ − C1 into two classes and request k − k1 to C1. PA iterative repeats
the above procedures until k closest answers are returned.
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4 Experimental Study

In this section, we built a peer-to-peer simulator to evaluate the performance
of our proposed system over large-scale networks. To evaluate the cost of query
processing, we tested the network with different number of peers N from 200 to
1800. Each peer contains a set of data from 1K to 200K with two dimensional
location values and one non-location value. We generated two datasets. Dataset 1
conforms to uniform distribution and dataset 2 conforms to normal distribution.
All approaches were implemented in C++ and run on Intel XEON(TM) 3.2GHz
dual-CPU with 2G RAM on Windows 2003 Server. For each setting, we tested
an algorithms by running it 10 times to compute the average result.

Comparison of different k-NN searches. We compared the communica-
tion cost (represented as # of messages) of getting k-NN results using differ-
ent search strategies. We ran 10 different k-NN queries whose locations and
predicate values are randomly specified. Besides flooding search, we tested two
radius-convergence approaches and two radius-expanding approaches. Radius-
convergence approaches include random search and RA-based search, whereas
radius-expanding approaches include exhausted search every dominate groups
(EX in short) and Partition-based search (PA in short). We used two datasets
with uniform and normal distributions, respectively. In addition, we also com-
pared three straightforward approaches according to the ranking of the minimal
and the maximal geographical distances and the shortest path in logical graph,
respectively.

Fig. 1 shows the conveying messages of these algorithms using two datasets
conforming to uniform and normal distributions. We let the number of peers
vary between 500 and 2500, and ran 10 different 100-NN queries. Figs. 1(a) and
(b) compare five approaches using dataset 1. It shows that flooding search costs
the most conveying messages, whereas PA uses the least conveying messages.
Our proposed two approaches RA and PA are all independent on the number of
peers. RA is the second best approach. Fig. 1(c) shows the similar result using
dataset 2. Figs. 1(b) and (d) show the number of conveying messages when fixed
the number of peers to 1000 and varied k from 20 to 100. They all show that
both RA and PA outperform than the other approaches, and PA always use least
messages to get k-NN nearest results.

Comparison of filtering capabilities. We tested the capabilities of filtering
peers using PA and RA approaches on dataset 1. We first changed the number
of k values from 20 to 70. Fig. 1(e) shows the filtering capability decreased when
increasing k values. RA has less filtering capability than PA. The reason is RA
is a radius-convergence approach that gradually shrink query radius. It keeps
probing at least k peers for each iteration until all peers in the shrinking query
radius have been probed. Whereas, PA is a radius-expanding approach that when
k closest data is met, it can stop. Fig. 1(f) shows the filter capabilities when
varying the number of peer groups. It shows that PA has better filter capability
than RA. When the peer group number increased to 16, the capability of PA
climbs to a peak value 52%, whereas RA has no peak value. It proved that the
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Fig. 1. Comparison of different k-NN searches

filter capability of PA depends on the chosen number of groups in all dominate
group set, whereas RA does not since RA only considers the first k ranked peers
using geographical distances and logical graphs.

5 Related Work

As far as we aware, there is no similar work has been on the proposed problem
setting. The most closed work to ours fall in to two categories: continuous k-NN
searches over spatial database and k-NN queries over structured P2P systems.
We will review the work in this two directions and explain the difference between
our work and theirs. There are many work have been proposed for continuous k-
NN queries over moving objects in spatial database domain. Most of these works
focus on reducing the number of updates to the indexes. In order to achieve this,
the trajectories of moving objects are modeled by some linear functions, thus a
R-tree can be built use time as a function [12,16]. Compared to these work, our
problem setting is for distrusted environment and we do not assume existence
of a centralized index. Moreover, we have the logical communication cost as a
constraint to the k-NN queries.

k-NN queries over P2P systems can be classified into search over unstructured
P2P and structured P2P. For structured P2P systems, data allocation strategies
are important for k-NN search. Distrusted Hashing Table (DHT) is often used
to allocate data, such as CAN [9], Chord [15], Pastry [11], and Tapestry [17],
which use uniform hash functions and achieve good load balance. However, these
hashing functions destroys data locality (data that are similar should be allocate
near to each other in the space). Complicated queries such as k-NN have to rely
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on multi-cast or additional indexes. Some locality-preserving data allocation ap-
proach are also proposed, such systems include P-Grid [2], P-Ring [4], Baton [7],
Vbi-tree [6], and Mercury [3]. The basic idea of these approaches is to keep data
locality over the attribute as much as possible. For unstructured P2P systems,
very few work have been done so far. Gnutella [1] using flooding techniques to do
k-NN search. Compared to these work, our work focus on continuous constrained
k-NN search over unstructured P2P system. Besides finding the k-NN, we have
to guarantee that searched value satisfying the value predicate specified in the
query. Furthermore, in contrary to traditional setting of P2P systems that each
peer maintains static data, a peer in our system maintains dynamic data.

6 Conclusion

This paper has investigated the new problem of processing the constrained k-
NN queries over unstructured P2P systems, and proposed two approaches to
efficiently filter peers in the search space. The experimental results on the two
synthetic datasets have shown that (i) the algorithms proposed outperform most
the other heuristic algorithms, (ii) the novel adaptive histogram can save more
communication cost, and (iii) our technique can efficiently process continuous
k-NN queries in a distributed, and large scale environment.
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