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Abstract

Histogram techniques have been used in many commercial database management systems to estimate a query result
size. Recently, it has been shown that they are very effective to support approximation of query processing especially aggre-
gates. In this paper, we investigate the problem of minimizing average errors of approximate aggregates using histogram
techniques. Firstly, we present a novel linear-spline histogram model that is more accurate than the existing models. Sec-
ondly, we propose a novel histogram construction technique for minimizing such average errors, which is shown to gen-
erate a near optimal histogram. Our experiment results demonstrate that the new histogram construction techniques lead
to a great accuracy improvement on the existing techniques.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Traditional developments in query processing optimization techniques have focused on generating exact
answers in a way that seeks to minimize response time and maximize throughput. However, in many recent
database applications it may be too expensive to produce exact answers. For example, getting the exact answer
for a complex query issued to a data warehousing may take hours or even days. Sometimes a network or disk
storage failure may cause a part of data not accessible; this makes exact answers impossible. Further, in a deci-
sion support system an early response by approximate answers is quite helpful because the user can quickly
determine a direction to drill down the data. Clearly, approximation is a good alternative in those applica-
tions. The quality of an approximate processing is measured by two conflicting parameters: efficiency and
accuracy. A ‘‘good’’ approximate query processing usually means a good trade-off between efficiency and
accuracy.
0169-023X/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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Notation

T a data distribution
B a disjoint partition
b the bucket number of B

Bk one bucket of B (1 6 k 6 b)
vik+m, fik+m the (m + 1)th value and frequency pair in bucket Bk (m P 0)
fk the average frequency in Bk

qk, ck the parameters of the linear function used in the LSLS model
q0k, c0k the parameters of the linear function used in the LSCG model
q00k , c00k the parameters of the linear function used in the LSCSG model
AT(x,y) the exact answer to a range aggregate over [x,y] of T

A0T ;Bðx; yÞ the approximate answer to a range aggregate over [x,y] of T, against a data partition B

eT,B(x,y) the absolute error between AT(x,y) and A 0T,B(x,y)
P(x,y) a probability density function of range [x,y]
ET,B the average error for a range aggregation over T, against a data partition B

M*(X,Y) the optimal result for using at most Y buckets to partition the first X values of T

M[a,b] the bucket containing the consecutive (va, fa), . . . , (vb, fb) in T

X. Lin et al. / Data & Knowledge Engineering 62 (2007) 156–176 157
Database queries have two forms – aggregate and non-aggregate. An aggregate returns a numeric value; for
instance, COUNT, SUM, AVG, etc. A non-aggregate query returns a set of tuples from a database tables; for
example, JOIN.

Aggregates are not only an important class of queries in conventional database system applications but also
serve as an important base for quantitative data mining problems [6,14] in modern applications, such as finan-
cial market analysis and telecommunications. Approximate processing of aggregates, thus, has recently
attracted a great deal of attention. Most research results are based on a data size reduction paradigm. Four
techniques [7] have been developed, such as sampling, wavelet, sketches, and histogram. Sampling [1,28,8] is
a popular technique of data size reduction, which takes a small portion of data as representative. To reduce
approximation errors caused by applying sampling techniques to data with a big distribution skew, wavelet [2]
techniques were firstly adopted by the authors in [23] to approximate query processing. The basic idea is to
compress data by important wavelet coefficients [10]. The sketch techniques [11,5] have been mainly developed
to tackle the query processing problems, such as quantile computation or window join size estimation, under
the data stream environment. The last technique is based on histograms, which were originally used in com-
mercial database management systems to capture the distribution statistics of attribute values in query
optimizers.

Among these four techniques, histogram is the most popular data reduction technique for approximately
processing range aggregates; this is partially because the histogram technique naturally suits for estimating
aggregates. The basic idea of a histogram technique is to partition original data into certain number of ‘‘inter-
vals’’ (‘‘buckets’’). The key issues in histogram techniques are: (1) how to partition the original data into buck-
ets, and (2) how to approximate the original data in each bucket. The goal is to approximately process
aggregates as accurate as possible. Many histogram techniques have been recently developed
[9,16,15,17,19,21,22,26]. In this paper, we will focus on developing effective histogram techniques.

The current research in the area may be classified into two categories: (1) effective ways to represent each
bucket [4,7,9,21] and (2) effective ways [4,7,9,12,19,20] to partition data into buckets. To represent each bucket
more accurately, a ‘‘linear-spline’’ technique has been proposed [21] combined with the least-square [29]
method in contrast to the ‘‘conventional’’ histogram techniques [16,15,17,19,22,26]. In [4], an ‘‘encoding’’
scheme has been developed as a post-process to further partition data in each bucket following a data
partitioning.

Most existing techniques in partitioning data have been focused on minimizing approximation errors based
on various different intuitive optimal models [15–17,19,22,26]. The paper [9] presents the first work on a for-
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mal investigation of the problem of error minimization in range aggregates with respect to a ‘‘uniform’’ query
pattern. With the applications to time series data, [9] takes the assumption that all the ‘‘values’’ are evenly
distributed over a data set while the ‘‘frequencies’’ have an arbitrary distribution. The techniques in [9] are
specifically developed for such an environment; and they are not quite applicable to the applications where
values are not evenly distributed. In this paper, we will investigate the problem of processing approximate
range aggregates on an arbitrary value space.
1.1. Our contributions

A potential problem of the linear-spline technique in [21] is that although it greatly outperforms the con-
ventional histogram techniques (described in the next section) when the value space is evenly spanned by the
values, it may not necessarily take this advantage with an arbitrarily value distribution. To resolve this, in this
paper we present a new linear-spline technique to represent each data bucket in a histogram, which is shown
more accurate than the existing techniques to represent data buckets in a histogram. This is the first contri-
bution of the paper.

Based on our new linear-spline techniques, we also presented a framework for partitioning data into buck-
ets, such that the average approximate errors in processing aggregates may be minimized. Consider that the
techniques in [9] are not applicable to our framework, and the corresponding optimization problem in our
framework tends to be computationally intractable. We approach this problem first by a thorough mathematic
analysis of the dominant parts in our optimization model to obtain a simplified model, which is quite close to
the original optimization model. Secondly, we present an efficient algorithm to deliver the optimal solution to
the simplified model; such a result may serve as a near optimal solution to our original optimization model.
These are the second contribution of the paper.

Our experiment results demonstrated that the new histogram construction techniques in this paper signif-
icantly improve the accuracies of the existing histogram techniques, as well as the existing wavelet techniques.
Our experiment shows that the minimum improvement of accuracy is about 50%.
1.2. Organization

The rest of this paper is organized as follows. Section 2 presents the background knowledge and the moti-
vation of this research. Section 3 presents the new linear-spline histogram techniques. Section 4 describes the
details of our new data partitioning model, as well as the data partitioning algorithms. Section 5 reports our
experiment results. This is followed by a conclusion and remarks.
2. Background

Given a relation R and an attribute X of R, the domain D of X is the set of all possible values of X, and a
finite set V (�D) denotes the distinct values of X in an instance r of R. Let V be ordered; that is
V = {vi : 1 6 i 6 n} where vi < vj if i < j. The instance r of R restricted to X is denoted by T, and can be rep-
resented as follows:
T ¼ fðv1; f1Þ; ðv2; f2Þ; . . . ; ðvn; fnÞg:

In T, each vi is distinct and is called a value of T; and fi is the occurrence of vi in T and is called the frequency

of vi. Note that in this paper T may be called data distribution or data set alternately; that is, ‘‘data set’’ and
‘‘data distribution’’ will be used as synonyms in this paper. Fig. 1(a) shows an example of data distribution.

A histogram on data set T is constructed by the following two steps.

Step 1: Partitioning the values of T into b (P1) disjoint intervals (called buckets) – {Bi : 1 6 k 6 b}, such that
each value in Bk is smaller than that in Bl if k < l.

Step 2: Approximately representing the frequencies and values in each bucket.
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The width of a bucket is vj � vi where vj and vi are respectively the maximal value and minimum value in the
bucket. The spread si of vi (for 1 6 i 6 n � 1) is defined as vi+1 � vi. The area ai of vi is defined as fi * si for
1 6 i 6 n where we make sn = 1. Fig. 1(b) shows a possible histogram of the data distribution in Fig. 1(a).

2.1. Existing histogram techniques

In a histogram, each bucket stores an approximate representation of the original data distribution in the
bucket; this involves two approximate representations in a bucket: an approximation of the value distribution
and an approximation of the frequency distribution. To minimize the storage space of the information to be
stored in a bucket, most existing data partitioning algorithms aim to partition the data such that the data dis-
tribution in each bucket is as close to a uniform distribution as possible. Consequently, the value distribution
in a bucket may be approximately represented by the uniform-spread assumption (that is, the values are
assumed to evenly span the bucket [26]), while the frequency distribution may be approximately represented
by a constant [7,25] – the average frequency in the bucket.

With the uniform-spread assumption, to represent a value distribution in a bucket we only need to store the
minimum and maximum values in the bucket together with the number of distinct values in this bucket; the
other values can be approximately derived according to this assumption. Fig. 3(a) shows the information to be
stored for each bucket.

The existing histogram techniques for generating buckets, based on the above histogram representation,
may be summarized below according to different data partitioning goals. We also give an example for each
histogram. Note that all the example histograms are constructed on the data distribution in Fig. 1(a).

• Equi-width [22]: bucket widths equal each other. Fig. 1(b) shows an example.
• Equi-sum [24,22]: the sum of the frequencies in each bucket is the same. Fig. 2(a) shows an example.
• Maxdiff [26]: the data distribution is partitioned such that the differences of the frequencies between adja-

cent boundaries are maximized. Fig. 2(b) shows an example.
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Fig. 1. Data distribution and histogram. (a) Data distribution and (b) histogram (equi-width).
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Fig. 2. Various histograms. (a) Histogram (equi-sum), (b) histogram (Maxdiff) and (c) histogram (V-optimal).
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• V-optimal [16,15,17,21]: Partition data such that
Pb

j¼1

Pnj

k¼1ðf 0j;k � fj;kÞ2 is minimized, where b is the number
of buckets, nj is the number of distinct values in the jth bucket. fj,k is the original frequency (or area) of kth
distinct value in the jth bucket, and f 0j;k is the corresponding approximate frequency (or area). Fig. 2(c)
shows an example.

Experiment results [21] suggest that in most applications, Maxdiff and V-optimal outperform equi-width
and equi-sum [26]. V-optimal usually leads to more accurate approximate aggregation results than Maxdiff
[20] does.

Gilbert et al. [9] proposed to investigate the average error minimization for a uniform distributed query pat-
tern; that is each range takes the same probability. In their investigation, they assume the whole value set is
evenly distributed; and thus the original value set can be exactly retrieved from a histogram.

Observing the limitation of the frequency approximation in a bucket, [21] proposed a straight line q * v + c
to represent the frequency distribution in a bucket; this is a generalization of the conventional representation
(the representation above) where q = 0 and c is set to the average frequency. Note that in this kind of histo-
gram, the information required for a bucket is illustrated in Fig. 3(b).

Fig. 4 illustrates an example. With respect to the data distribution in Fig. 4, the line in Fig. 4(b) is much
closer to the original data distribution than that in Fig. 4(a) where the horizontal line corresponds to the aver-
age frequency in a conventional histogram. Further, it is well-known that an application of the least-square

technique [29] will minimize the errors in matching by a linear model. These motivated König et al. to develop
the linear-spline histogram with least-square method [21] (LSLS):

• LSLS: In this model, the frequencies in each bucket are approximated by a linear function lj(v) = qj * v + cj

where j represents the jth bucket. The goal is to find a histogram with b buckets, such thatPb
j¼1

Pnj

k¼1ðljðvj;kÞ � fj;kÞ2 is minimized where nj is the number of entries in the jth bucket and vj,k, fj,k are
the kth value and frequency of jth bucket. Note that in this model, for each bucket Bj, the least-square
method is used to fix the variables qj and cj.
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Fig. 3. Two representations. (a) Conventional representation and (b) linear-spline representation.
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The paper [4] goes a step further by proposing a continuous model to approximately processing COUNT
against a histogram; and therefore the number of distinct values is no longer required to be recorded. Taking
this advantage, [4] proposed an encoding schema to represent more detailed information about the frequency
distribution in a bucket within an integer space which was used to represent the number of distinct values
before. Therefore, the space used in an encoded histogram is the same as that in a conventional histogram
but the encoded histogram has much more information than that in a conventional histogram. The encoded
scheme is proposed to be used as a post-process after data are partitioned. So it may also be applied, as a post-
process, to our technique.

2.2. Motivation

In this section, we show the motivation of this research. We analyze the existing linear-spline technique and
the existing optimization models for data partitioning.

2.2.1. Least-square: best alternative?

Clearly, the LSLS model can simulate an arbitrary data distribution more closely than a conventional data
model does; this is because that a horizontal line is a special member in the family of linear splines. Further,
LSLS usually provides the closest matching within linear models. However, it should be noted that a given
data distribution does not always follow the uniform-spread distribution for its values’ distribution. Conse-
quently, LSLS may not generally bring the best approximate solutions; we will show this in our experiments.
In fact, the LSLS model cannot generally guarantee the following two properties:

P1: The approximation on total frequencies in a bucket of a histogram is the same as that in the original data
set.

P2: The approximation on summation of all the values from the data set restricted to a bucket are the same
as that (i.e.,

P
ivi � fi) in the original data set restricted to the bucket.

Note that in contrast, any conventional model has the property P1. For example, suppose that a bucket
holds the following data distribution:
Conven

Histo
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Fig. 5(a) and (b) illustrate the information stored in a conventional model and in LSLS, respectively.
The table below summarises the results by querying the original data, the conventional histogram, and the

LSLS histogram.
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Since the properties P1 and P2 are also critical in histogram techniques, this motives our research on finding
new linear-spline model.

2.2.2. Intuitively optimal: always best?
Note that the value distribution may also have a great impact on an approximation query processing result.

This has been addressed in [26], where an area variance was proposed to replace a pure frequency variance. It
has been shown [26] through empirical results that the area variance may greatly improve the accuracy com-
paring with a pure frequency variance. However, the area method may sometimes still fail to reduce the errors,
caused by a value distribution approximation, in approximate aggregation. Below are the examples to show
the limitation of the existing data partitioning methods.

In the example as depicted in Fig. 6(a), a data distribution consists of eight distinct values
{1,2,3,5,405,409,411,412}. The frequencies of 1, 2, 411, and 412 are 1000, respectively; and the frequencies
of 3, 5, 405 and 409 are 1010, respectively. In the example, a partitioning method based on either Maxdiff [26]
or V-optimal [20] (including the linear-spline model in [21]) will always produce the following partition, as
shown in Fig. 6(a), if only three buckets are given:

Partition 1A: Bucket 1: {1,2}. Bucket 2: {3,5,405,409}. Bucket 3: {411,412}.

Suppose that we have three range aggregates to answer: (1) 1 < value < 3, (2) 10 < value < 390, and (3)
409 < value < 412. Clearly, a histogram (conventional or linear-spline) built based on Partition 1A is able
to give an exact answer to the first query and the third query but the error will be at least 2020 for the second
query depends on the query processing method: 2020 for the uniform-spread assumption, and 7371 for the
continuous model. In this example, consider the following partition:

Partition 1B: Bucket 1: {1, 2,3}. Bucket 2: {5, 405}. Bucket 3: {409,411,412}.

A histogram (conventional or linear-spline based) built against Partition 1B will produce the exact solution
for the second query but approximate solutions for the first query and the third query within an error b
(b < 10) respectively. Clearly, if these three queries are equally important and we want to have the minimum
average error, we would prefer to have Partition 1B.

The variations of V-optimal and Maxdiff, respectively, may fix the problem in the example in Fig. 6(a) by
using the area (fi * si) instead of fi. They both produced following data partition with a similar performance
(a little bit worse than) to that of Partition 1B.

Partition 1C: Bucket 1: {1,2,3}. Bucket 2: {5}. Bucket A: {405,409,411,412}.

However, with respect to the example in Fig. 6(b) both the above variations for V-optimal and Maxdiff
perform poorly; and they produced the data partition as illustrated in Fig. 6(b). With respect to the same
set of transactions above, the following data partition is the best for a similar reason as stated above.
411 412 1 2 3

1000
1010

5 4092071 2 3

1000
1010

5 Value

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

10

411 412 Value409405

Fig. 6. Two data distributions.
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Partition 2B: Bucket 1: {1,2,3}. Bucket 2: {5,207}. Bucket 3: {409,411,412}.

Note that the data partitioning models in [9] will also lead to Partition 1A for the example in Fig. 6(a). It
should also mention that the histogram construction techniques in [21] cannot handle well the example in
Fig. 6(a), even by the variation where the area parameter is used.

Clearly, in the above two examples we want a data partitioning algorithm to generate Partition 1B for the
example in Fig. 6(a) and Partition 2B for the example in Fig. 6(b); this can be done through minimizing the
average error. In fact our algorithm can guarantee Partition 1B and Partition 2B, respectively, for the two
examples.

3. New models of linear-spline histogram

Suppose that a data distribution T = {(v1, f1), (v2, f2), . . . , (vd, fd)} is given, which is partitioned into b buckets
{Bk : 1 6 k 6 b}. In each bucket Bk, a linear spline, lk(x) = qk * x + ck, is used to approximate the correspond-
ing data distribution. The total variances of the approximation by linear splines are
Xb

k¼1

X
vi2Bk

ðlkðviÞ � fiÞ2
Below, we show two new ways to determine qk and ck corresponding to each bucket Bk.

3.1. LSCG: linear-spline histogram with count guaranteed

Suppose that a bucket Bk is given. A linear function l0kðxÞ ¼ q0k � xþ c0k is used to approximate the data dis-
tribution fðvik ; fik Þ; ðvikþ1; fikþ1Þ; . . . ; ðvikþjk

; fikþjk
Þg in Bk. In this model, we will first enforce that the total

approximate frequency of Bk, computed from the linear function l0kðxÞ, equals the original one; that is property
P1 in Section 2.2.1 is hold. Then, the least-square method is used. That is, we first enforce the following
equation:
Xjk

m¼0

ðq0k � v0ikþm þ c0kÞ ¼
Xjk

m¼0

fikþm ð1Þ
Here, v0ikþm represents the (m + 1)th smallest distinct value in Bk with respect to a histogram. According to the
uniform-spread assumption, v0ikþm should be calculated in (2). Note that this v0ikþm will be used in approximate
query processing against the histogram instead of vikþm (if m 5 0 or m 5 jk) in the original distribution.
v0ikþm ¼ vik þ m � vikþjk
� vik

jk

ð2Þ
From (1) and (2), we can derive
c0k ¼ fk �
vik þ vikþjk

2
� q0k ð3Þ
Here, fk is the average frequency in Bk. Next we use the least-square method to determine a0k. That is
dð
Pjk

m¼0ðq0k � vikþm þ fk �
vikþvjk

2
� q0k � fikþmÞ2Þ

dðq0kÞ
¼ 0 ð4Þ
Note that in (4), we use (3) to replace c0k first.
Thus we derive
q0k ¼
12 �

Pjk
m¼0ðfikþm � ðmþ 1ÞÞ � 6 � ðjk þ 2Þ �

Pjk
m¼0fikþm

ðvikþjk
� vik Þ � ðjk þ 1Þðjk þ 2Þ ð5Þ
Note that in (5), the denominator equals zero if and only if vik ¼ vikþjk
(i.e., Bk contains only one distinct value

vik ). Consequently, we assign that q0k ¼ 0 and c0k ¼ fik if Bk contains only one distinct value.
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3.2. LSCSG: linear-spline histogram with count and sum guaranteed

As with LSCG, a linear function l00kðxÞ ¼ q00k � xþ c00k is used to approximate the data distribution in bucket
Bk. However, q00k and c00k will be chosen to make the total frequency and total summation approximately cal-
culated over Bk in the histogram are the same as those from the original data set, simultaneously; that is,
enforce P1 and P2 in Section 2.2.1. This requires that q00k and c00k satisfy the following linear equations:
Pjk

m¼0

ðq00k � v0ikþm þ c00kÞ ¼
Pjk

m¼0

fikþm ðaÞ

Pjk

m¼0

ðv0ikþm � ðq00k � v0ikþm þ c00kÞÞ ¼
Pjk

m¼0

ðfikþm � vikþmÞ ðbÞ

8>>><
>>>:

ð6Þ
Similarly, here
v0ikþm ¼ vik þ m � vikþjk
� vik

jk
Solving Eq. (a) and (b) of (6), we get a00k and b00k as follows.
q00k ¼
Pjk

m¼0
ðfikþm�vikþmÞ�ðjkþ1Þ�

Pj

m¼0
fikþm�

Pjk
m¼0

v0ikþm

ðmþ1Þ�
Pjk

m¼0
ðv0ikþmÞ

2�
Pjk

m¼0
v0ikþm�

Pjk
m¼0

v0ikþm

ðaÞ

c00k ¼
Pjk

m¼0
fikþm�

Pjk
m¼0
ðv0ikþmÞ

2�
Pjk

m¼0
ðfikþm�vikþmÞ�

Pjk
m¼0

v0ikþm

ðjkþ1Þ�
Pjk

m¼0
ðv0ikþmÞ

2�
Pjk

m¼0
v0ikþm�

Pjk
m¼0

v0ikþm

ðbÞ

8>>><
>>>:

ð7Þ
It can be immediately verified that the denominators in (7) equals zero if and only if vik ¼ vikþjk
(i.e., Bk con-

tains only one distinct value). Consequently, we assign that a00k ¼ 0 and b00k ¼ fik if Bk contains only one distinct
value.

It is worth to note that under uniform-spread assumption in the value space, our two new histogram mod-
els, LSCG and LSCSG, will degrade to LSLS model.

Theorem 1. Suppose that a value space follows the uniform-spread assumption. Then, LSCSG, LSCG and LSLS

are equivalent to each other.

Proof. Suppose that a bucket Bk is given. The data distribution in Bk can be represented as
fðvik ; fik Þ; ðvikþ1; fikþ1Þ; . . . ; ðvikþjk

; fikþjk
Þg. A linear function lk(x) = qk*x + ck is used to approximate this data

distribution. Let fk represents the average frequency in Bk and vk, the average value. As discussed earlier,
the two variables in lk(x) are chosen as follows against the three different models LSLS, LSCG and LSCSG,
respectively.

In LSLS:
qk ¼
Pjk

m¼0ðvikþm � vkÞ � ðfikþm � fkÞPjk
m¼0ðvikþm � vkÞ2

ck ¼ fk � qk � vk

ð8Þ
In LSCG:
q0k ¼
12 �

Pjk
m¼0ðfikþm � ðmþ 1ÞÞ � 6 � ðjk þ 2Þ �

Pjk
m¼0fikþm

ðvzik þ jk � vik Þ � ðjk þ 1Þðjk þ 2Þ

c0k ¼ fk �
vik þ vikþjk � a0k

ð9Þ
2
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In LSCSG:
q00k ¼
Pjk

m¼0ðfikþm � vikþmÞ � ðjk þ 1Þ �
Pj

m¼0fikþm �
Pjk

m¼0v0ikþm

ðmþ 1Þ �
Pjk

m¼0ðv0ikþmÞ
2 �

Pjk
m¼0v0ikþm �

Pjk
m¼0v0ikþm

c00k ¼
Pjk

m¼0fikþm �
Pjk

m¼0ðv0ikþmÞ
2 �

Pjk
m¼0ðfikþm � vikþmÞ �

Pjk
m¼0v0ikþm

ðjk þ 1Þ �
Pjk

m¼0ðv0ikþmÞ
2 �

Pjk
m¼0v0ikþm �

Pjk
m¼0v0ikþm

ð10Þ
Since the given value space follows the uniform-spread assumption, we have:
vikþm ¼ v0ikþm ð0 6 m 6 jkÞ ðaÞ
v0ikþm ¼ vik þ

vjk�vik
jkþ1
� m ð0 6 m 6 jkÞ ðbÞ

ð11Þ
From (a) and (b) of (11), we can derive:
Xjk

m¼0
vikþm ¼ ðjk þ 1Þ � vik þ

vjk
� vik

jk þ 1
� jk � ðjk þ 1Þ

2Xjk

m¼0
v2

ikþm ¼ ðjk þ 1Þ � v2
ik
þ vik �

vjk
� vik

jk þ 1
� jkðjk þ 1Þ þ jk � ðjk þ 1Þ � ð2 � jk þ 1Þ

6
� vjk

� vik

jk þ 1

� �2 ð12Þ
Replacing corresponding items of Eqs. (8)–(10) by (a) of (11) and (12), we can easily get
qk ¼ q0k ¼ q00k
ck ¼ c0k ¼ c00k �

ð13Þ
4. Minimization of average aggregate errors

In this section, we will present a new histogram partition technique. This technique is based on the mini-
mization of average errors.

Suppose that a data set (data distribution) T = {(v1, f1), (v2, f2), . . . , (vn, fn)} is given, which is partitioned into
b disjoint buckets {Bi : 1 6 i 6 b}, where the partition is denoted by B. Against a histogram built on the data
partition B, an aggregate over a range [x,y] will be processed by the following two steps:

• Allocate x and y in the partition B.
• Using the corresponding buckets to answer the query.

Note that while processing aggregates over a range [x,y] against a data set T, we need to find all the distinct
values in [x,y] to answer the queries. However, it is impossible to find exact distinct values in [x,y] in a his-
togram of T due to an approximate representation of the value distribution in each bucket unless values
are evenly distributed. In fact, in a bucket of a histogram the ith distinct value may be approximately obtained
by a uniform-spread model [18] or a continuous model [7,4]. Note that the continuous model in a histogram
can support only one aggregate where the histogram is built based on the aggregate. Unless we will build a
histogram for each aggregate, the uniform-spread model should be used in order to approximately process
all range aggregates. In this paper, we will use the uniform-spread model/assumption.

Given a partition B, a histogram H on B, and a range [x,y], the error generated by an approximate query
over the range against H is denoted by eH

B ðx; yÞ. Note that in this paper, we will always choose the specific lin-
ear-spline form LSCSG; this implies that once a data partition is given, H is unique. Consequently, eH

T ;Bðx; yÞ
may be abbreviated to eT,B(x,y). There are several ways to specify an error [18]. Without loss of generality, in
this paper we use an absolute error function; that is,
eT ;Bðx; yÞ ¼ jAT ðx; yÞ � A0T ;Bðx; yÞj ð14Þ
Here, AT(x,y) represent the exact answer to a range aggregate over [x,y], and A0T ;Bðx; yÞ is an approximate an-
swer. Note that there are many types of aggregates. In this paper, we will use COUNT aggregate in our study
for generating a data partition.
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Suppose that the probability distribution for ranges [x,y] is a continuous distribution over a data set T,
which can be represented by a probability density function P(x,y) [29] where

R vn

v1

R vn

x P ðx; yÞdxdy ¼ 1. The
average error for range aggregations (COUNT) over T against a data partition B is
ET ;B ¼
Z vn

v1

Z vn

x
P ðx; yÞ � eT ;Bðx; yÞdy

� �
dx ð15Þ
Our goal is to find a data partition B such that (15) will be minimized. In this paper we will investigate the
minimization of (15) with respect to a uniform query distribution; that is P ðx; yÞ ¼ 2

ðvn�v1Þ2
. Therefore, (15) can

be represented as follows:
ET ;B ¼
2

ðvn � v1Þ2
Z vn

v1

Z vn

x
eT ;Bðx; yÞdy

� �
dx ð16Þ
The problem of finding a data partition B to minimize the goal function tends to be computation intrac-
table. Below we first present a reasonably tight upper-bound on the goal function in (16); this will be done
based on a mathematic analysis of the goal function. Then we will adopt the dynamic programming technique
developed in [3,20] to generate an optimal data partition against the upper-bound.

The rest of the section will be organized as follows. We first describe the linear-spline model used in our
study. Then we will provide an upper-bound for (16). This will be followed by an efficient optimal algorithm
against the upper-bound.

4.1. A linear-spline model

As stated in Section 3, we proposed to use a new linear-spline qv + c to represent the frequency in a bucket.
We also proposed two ways to fix q and c. Our performance evaluation showed that LSCSG model is slightly
better than LSCG. Thus, we propose to use LSCSG model to fix q and c in our data partitioning techniques
presented in this section – Section 4:
q and c should be chosen to make the COUNT and SUM over the bucket by qv + c are, respectively,
equal to those over the bucket by using the original data set.
Note that in a bucket [ai,bi] with k distinct values, the k distinct values in a histogram restricted to the bucket
[ai,bi] may be approximately retrieved by the following formula (17) in the uniform-spread assumption.
v0l ¼ ai þ l � bi � ai

k � 1
ðfor 0 6 i 6 k � 1Þ ð17Þ
4.2. Upper-bounds

In this subsection, we work out good upper-bounds for (16). The deduction is quite mathematics involved.
Suppose that B = {Bi = [ai,bi] : 1 6 i 6 b} is a disjoint partition, with b buckets, of the distinct values of T,

where a1 = v1 and bb = vn. Suppose that CBi denotes the COUNT value over Bi against T. Clearly, the
COUNT value over Bi against the histogram using the linear-spline model LSCSG is also CBi . By this property
and an immediate math deduction, below are the important properties for eT,B(x,y) regarding the five possi-
bilities for x and y for a given range [x,y].

Case 1: x and y fall into different bucket; that is, x 2 [ai, bi] and y 2 [aj,bj] (i < j). In this case,
eT ;Bðx; yÞ 6 eT ;Bðx; biÞ þ eT ;Bðaj; yÞ ð18Þ
Case 2: x falls between buckets, y falls into a bucket; that is, x 2 (bi,ai+1) and y 2 [aj,bj] (i < j). In this case,

eT ;Bðx; yÞ ¼ eT ;Bðaj; yÞ ð19Þ
Case 3: x falls into a bucket, y falls between buckets; that is, x 2 [ai,bi] and y 2 (bj,aj+1) (i 6 j). In this case,

eT ;Bðx; yÞ ¼ eT ;Bðx; biÞ ð20Þ
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Case 4: x and y both fall between buckets; that is, x 2 (bi,ai+1) and y 2 (bj,aj+1) (i 6 j). In this case,

eT ;Bðx; yÞ ¼ 0 ð21Þ
Case 5: x and y fall into one bucket Bi; that is, x,y 2 [ai,bi]. In this case,

eT ;Bðx; yÞ 6 eT ;Bðai; xÞ þ eT ;Bðx; xÞ þ eT ;Bðy; yÞ þ eT ;Bðy; biÞ ð22Þ

Since the original data distribution is partitioned into b buckets, the query [x,y] can have the above five
forms. By the four properties (18)–(21), we can derive the following upper-bound for (16).

Theorem 2.
ET ;B 6
2

ðvn � v1Þ2
Xb

i¼1

Z bi

ai

Z bi

x
eT ;Bðx; yÞdy dxþ ðvn � biÞ

Z bi

ai

eT ;Bðx; biÞdxþ ðai � v1Þ
Z bi

ai

eT ;Bðai; xÞdx
� �

ð23Þ

(Note that a1 = v1 and bb = vn.)

Proof. By properties (19)–(21), the following formula can be immediately obtained.
ET ;B ¼
2

ðvn � v1Þ2
Xb

i¼1

Z bi

ai

Z bi

x
eT ;Bðx; yÞdy dx

� �
þ
Xb�1

i¼1

Xb

j¼iþ1

Z bi

ai

Z bj

aj

eT ;Bðx; yÞdy dx

 ! 

þ
Xb�1

i¼1

Xb

j¼iþ1

Z aiþ1

bi

Z bj

aj

eT ;Bðaj; yÞdy dx

 !
þ
Xb�1

i¼1

Xb

j¼i

Z bi

ai

Z ajþ1

bj

eT ;Bðx; biÞdxdy

 !!
ð24Þ
Now, by the property (18) the following inequality immediately follows from (24).
ET ;B 6
2

ðvn � v1Þ2
Xb

i¼1

Z bi

ai

Z bi

x
eT ;Bðx; yÞdy dx

� �
þ
Xb�1

i¼1

Xb

j¼iþ1

Z bi

ai

Z bj

aj

ðeT ;Bðx; biÞ þ eT ;Bðaj; yÞÞdy dx

 ! 

þ
Xb�1

i¼1

Xb

j¼iþ1

Z aiþ1

bi

Z bj

aj

eT ;Bðaj; yÞdy dx

 !
þ
Xb�1

i¼1

Xb

j¼i

Z bi

ai

Z ajþ1

bj

eT ;Bðx; biÞdxdy

 !!
ð25Þ
The theorem immediately follows from (25) by a simple calculation; that is, we can verify that the right side
of (23) is equal to the right side of (25). h

In the upper-bound given by the right side of (23), there are three parts. Below we show that the second and
third parts may be represented by a similar form.

Theorem 3. "Bi 2 B,
R bi

ai
eT ;Bðx; biÞdx ¼

R bi

ai
eT ;Bðai; xÞdx.

Proof. Note that "Bi, the COUNT value over Bi against our histogram construction is always the same as
that in T. Thus,
eT ;Bðai; xÞ ¼ jAT ðai; xÞ � A0T ;Bðai; xÞj ¼ jAT ðx; biÞ � A0T ;Bðx; biÞ � ðAT ðx; xÞ � A0T ;Bðx; xÞÞj ð26Þ

Note that AT ðx; xÞ � A0T ;Bðx; xÞ takes at most 2ki non-zero values in Bi where ki is the number of distinct values
in Bi. This implies,
Z bi

ai

jAT ðx; biÞ � A0T ;Bðx; biÞ � ðAT ðx; xÞ � A0T ;Bðx; xÞÞj ¼
Z bi

ai

jAT ðx; biÞ � A0T ;Bðx; biÞj ¼
Z bi

ai

eT ;Bðx; biÞ: �
From Theorem 3, it follows that the right side of (23) may be re-written as
2

ðvn � v1Þ2
Xb

i¼1

Z bi

ai

Z bi

x
eT ;Bðx; yÞdy dxþ ðvn � v1 � ðbi � aiÞÞ

Z bi

ai

eT ;Bðai; xÞdx
� �

ð27Þ
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The calculation of the first part in (27) may have to be carried out in a quadratic time. By the property (22),
below we show that the first part is usually not a dominant factor.

Theorem 4. "Bi 2 B,
R bi

ai

R bi

x eT ;Bðx; yÞdy dx 6 ðbi � aiÞ
R bi

ai
eT ;Bðai; xÞdx.

Proof. By property (22), the following is immediate.
Z bi

ai

Z bi

x
eT ;Bðx; yÞdy dx 6

Z bi

ai

Z bi

x
ðeT ;Bðai; xÞ þ eT ;Bðx; xÞ þ eT ;Bðy; yÞ þ eT ;Bðy; biÞÞdy dx ð28Þ
By a similar argument as that in the proof of Theorem 3, the right side of (28) is equal to
Z bi

ai

Z bi

x
ðeT ;Bðai; xÞ þ eT ;Bðy; biÞÞdy dx ð29Þ
By a simple integration transformation and calculation, together with Theorem 3, (29) is equal to
ðbi � aiÞ
Z bi

ai

eT ;Bðai; xÞdx �
From Theorem 2, (27), Theorems 3 and 4, the following is immediate:
ET ;B 6
2

vn � v1

Xb

i¼1

Z bi

ai

eT ;Bðai; xÞdx
� �

ð30Þ
It should be clear, vn � v1 � (bi � ai) is usually larger than bi � ai (for 1 6 i 6 n) unless there is a huge bucket.
In fact, in our experiment we are always able to obtain the same data partitioning result for the goal functions
in (30) and (27) respectively. However, the upper-bound in (30) leads to a much faster algorithm than the
upper-bound in (27) does. Below we present our algorithm to produce a data partition B with b buckets to
minimize (30).

4.3. Data partition algorithm

In this subsection, we will present an efficient algorithm to partition a data set T = {(v1, f1),
(v2, f2), . . . , (vn, fn)} such that the upper-bound in (30) is minimized. Since v1 and vn are two constants for a
given T, we need only to find a data partition B with b buckets such that the following goal function is
minimized.
Xb

i¼1

Z bi

ai

eT ;Bðai; xÞdx
� �

ð31Þ
We first show a linear algorithm to calculate an integration
R bi

ai
eT ;Bðai; xÞdx.

4.3.1. Integration calculation
Our algorithm for calculating the integration

R bi

ai
eT ;Bðai; xÞdx for a bucket Bi is based on a merge paradigm

in external merge sort algorithm [27]. It runs in linear time with respect to the number of distinct values in
[ai,bi].

Suppose that Bi = [ai,bi] contains k distinct values in T, that is, Bi contains fðvji
; fji
Þ; ðvjiþ1; fjiþ1Þ; . . . ;

ðvjiþk�1; fjiþk�1Þg, and vji
¼ ai and vjiþk�1 ¼ bi. In a histogram representation of B, the k distinct values are

approximately represented, by a uniform-spread assumption, as the following:
v0jiþl ¼ ai þ l � bi � ai

k � 1
ð0 6 l 6 k � 1Þ
The k corresponding frequencies are represented as
f 0jiþl ¼ q � v0jiþl þ c
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In general, the relationship between V i ¼ fvjiþl : 0 6 l 6 k � 1g and V 0i ¼ fv0jiþl : 0 6 l 6 k � 1g may be
arbitrary. This implies that the combination of Vi and V 0i may divide [ai,bi] into at most 2k � 3 sub-intervals
(noting ai ¼ vji

¼ v0ji
and bi ¼ vjiþk�1 ¼ v0jiþk�1). However, in each sub-interval, eT,B(ai,x) is a constant, and can

be determined by the values in Vi and the values in V 0i before the sub-interval. More specifically, given an x,
eT,B(ai,x) is equal to
eT ;Bðai; xÞ ¼
Xp

l¼0

fjiþl �
Xm

l¼0

f 0jiþl

�����
����� ðvjiþp 6 x < vijiþpþ1

; v0jiþm 6 x < v0jiþmþ1Þ ð32Þ
Clearly, once Vi and V 0i are merged together to form a partition on [ai,bi], we need only to run a linear scan
over the partition to calculate the integration. For instance, we have a bucket which holds three value-fre-
quency points {(0,4), (1,5), (4,9)}. In the histogram, we approximately reconstruct the bucket by
{(0, 4.75), (2, 6), (4, 7.25)}. The combination of them form three sub-intervals: [0, 1), [1,2), and [2, 4). Then:
Z 4

0

eð0; xÞdx ¼ j4:75� 4j � ð1� 0Þ þ j4:75� 4� 5j � ð2� 1Þ þ j6þ 4:75� 4� 5j � ð4� 2Þ ¼ 8:5
To calculate the integration, the critical part is to merge Vi and V 0i together according to their ordering.
However, as Vi and V 0i is already ordered, this can be easily done by the merge paradigm in the external merge
sort [27], and runs in a linear time with respect to k. The algorithm for calculating the integration consists of
the following two steps.

Step 1: Sort merge Vi and V 0i together to form a disjoint partition on Bi.
Step 2: Scan the partition once to calculate the integration by taking the advantage that eT,B(ai,x) is a con-
stant in each partitioned sub-interval.

As described above, both steps run in O(k) time.

4.3.2. Dynamic programming based data partition algorithm

We now present an efficient algorithm to partition a give data set T = {(v1, f1), (v2, f2), . . . , (vn, fn)} with at
most b buckets such that (31) is minimized. The algorithm follows the dynamic programming technique devel-
oped in [3,20]. We briefly described it below.

Let M*(X,Y) represent the optimal result for using at most Y buckets to partition the first X values of T.
Let M[a,b] denote the bucket containing the consecutive {(va, fa), . . . ,(vb, fb)} in T. Below is the crucial formula.
M�ðn;bÞ ¼ min
16j6n�1

fM�ðj; b� 1Þ þM ½jþ 1; n�g
Thus, in order to calculate M*(n,b), we must calculate M*(i,k) for 1 6 i 6 n and 1 6 k < b. Applying the
dynamic programming based algorithm from [20] to our problem, there will be O(bn2) iterations to do the
computation of M*(i,k) + M[i + 1, l] where l 6 n; and a computation of M*(i,k) + M[i + 1,l] may be done
in constant time (i.e., the computation of M[i + 1, l]) in [20] if a linear pre-process is performed.

Note that in our problem, to make the computation of each M * (i,k) + M[i + 1, l] be constant time we may
have to pre-compute M[a,b] for every possible sub-interval in T. Further, as shown in the last Section 4.3.1,
the computation of M[a,b] takes linear time. Therefore, the pre-process runs in O(n3) time. This implies that
the data partitioning algorithm will run in O(n3 + bn2) = O(n3) time. It occupies O(n2) space mainly due to the
pre-process. On the other hand, if each M[a,b] is not pre-computed and stored, then the algorithm may be
implemented in O(bn3) with O(bn) space requirement. So there is always a trade-off between space and
efficiency.

It is worth to note that if we use the goal function in (27) to replace the goal function in (31), then the
dynamic programming paradigm above also works. However, the complexities will be increased to O(n4) time
with O(n2) space and O(bn4) with O(bn) space, respectively. This increment is due to the calculation of eachR bi

ai

R bi

x eT ;Bðx; yÞdy dx, which can be done in a similar way to the paradigm in the last subsection but runs a
quadratic time.
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5. Experiment results

The data sets used in our experiments are synthesized zipf [30] data, which is the most popular benchmark
to evaluate the histogram techniques, and normal distributed data. Three databases have been generated; each
database consists of 10 data sets.

• The database 1 is used to evaluate the performance of histogram techniques in the environment where all
distinct values are evenly distributed over a data set with 100,000 records. Each data set in the database 1
uses the integers in [1] as the value set.

• In the database 2, a data set has all together 10,000 records with 1001 different values from the domain
[0,10000].

• A data set in the database 3 contains 100,000 records with 1001 different values from the domain
[0,100000].

Note that a data set from the database 2 or the database 3 has its values normally distributed. The differ-
ence between the database 2 and the database 3 is that the frequency distribution in the data sets of the data-
base 2 is smoother than that of the database 3. The generation of each data set follows three steps below.

• Generating frequencies: Different frequencies are generated according to zipf law and the zipf parameter
z = 1.0. This means a medium skew frequency distribution.

• Generating values: The values of database 1 follow a uniform distribution. The values of database 2 and
database 3 follow the standard normal distribution.

• Generating data distribution: Frequencies are randomly assigned to different values.

Note that the number of buckets to be used in a histogram controls a data reduction ‘‘degree’’. If the num-
ber of buckets equals the number of distinct values, then there is no data reduction, and consequently all his-
tograms will produce the same result – the exact result.

In our experiments, we compared the performance of our data partition algorithm – MINHERR, as pre-
sented in Section 3 for minimizing (31), with other seven algorithms.

• V-optimal (area) [26,20]: We use average area instead of average frequency as a parameter for optimization,
because this gives the best performance [26] for V-optimal model.

• BSW: The linear wavelet technique [23] based on biorthogonal spline wavelet.
• LSLS (area) [21]: A linear spline of representation of a bucket, in combining with the least-square method

to fix the two parameters in a line. Note that the data partitioning algorithm for LSLS follows a similar
objective to that in V-optimal method; the difference is that in LSLS, line is used instead of average fre-
quency. Further, in our experiments we also use the area as parameter for LSLS; this is because it gives
a better performance [21].

• LSCS (area): The linear-spline histogram technique presented in Section 3.1. It uses the same data parti-
tioning method and goal function as those in LSLS (area) except that the two parameters of the line are
fixed by the discussions in Section 3.1.

• LSCSG (area): Another linear-spline histogram technique presented in Section 3.2. It uses the same data
partitioning method and goal function as those in LSLS (area) except that the two parameters of the line
are fixed by the discussions in Section 3.2.

• SAP0: The error minimization algorithm from [9].
• SAP1: Another error minimization algorithm from [9]. The difference between SAP0 and SAP1 is that

SAP0 uses average frequency summation in a bucket, while SAP1 uses two lines in a bucket.
• MINHERR: Our data partition algorithm presented in this paper in combining with LSCSG line represen-

tation technique in Section 3.2.

In our experiments, we evaluated only the accuracies of these algorithms for constructing histograms for
approximate aggregation. Note that these algorithms all run in a similar lower order polynomial time. In
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the applications where updates are not frequent, a histogram construction algorithm does not have to run very
often; and thus, the accuracy of these algorithm will be the key for approximate range queries.

We use MATLAB’s bior2.4 to construct BSW wavelet histogram. This model uses two different spline func-
tions (Fig. 7) to do wavelet decomposition and reconstruction. In the wavelet approximation, we chose the
important coefficients [23] to store.

Note that in our experiments, we have enforced that every data reduction technique occupies same storage
space, to be fair. For the database 1, we do not need to store information about the number of distinct values
for the histograms and need only to store the minimum value for each bucket since we know that the values
are evenly distributed. Therefore, we need only record two fields for each bucket in V-optimal, while respec-
tively in LSLS (area), LSCG (area), LSCSG (area), and MINHERR, three fields need to be recorded (see
Fig. 3(a) and (b) for reference). In BSW, for each remaining coefficient we need to record their position as
well; and thus two fields are needed for storing one coefficient. Consequently, the number of wavelet coeffi-
cients stored in BSW is equal to the number of buckets in V-Optimal (area), while the numbers of buckets
in LSCG (area), LSCSG (area), LSLS (area) and MINHERR, respectively, are about 67% of that in V-opti-
mal (area). Note that the numbers of buckets in SAP1 and SAP0, respectively, have been taken the same as
that in V-optimal according to the suggestions from [9].

Note that for the database 2 and the database 3, it may not necessary to store the number of distinct values
in a bucket if we calculate the number of records using a continuous model. However, as mentioned earlier this
information is necessary for some other aggregations; for instance, the total summation of the record values in
a range. Therefore, we keep this information in our histograms; see Fig. 3(a) and (b) for storage requirements.
For similar reasons to those in the last paragraph, the number of wavelet coefficients, now, should be twice of
the number of buckets in V-optimal (area), while the numbers of buckets in LSCG (area), LSCSG (area),
LSLS (area) and MINHERR, respectively, are 80% of that in V-optimal (area). Again, the numbers of buckets
in SAP1 and SAP0, respectively, are the same as that in V-optimal.

In our experiments, we use the bucket numbers 20, 25, 30, 35, 40, 45, 50 in V-optimal (area) as the reference
values, while the numbers in the other algorithms are adjusted according to the above ratios.

In our experiments, we targeted the three most popular aggregates – COUNT, SUM, and AVG. Since
AVG is derived from a division between SUM and COUNT, we focused only on two types of range queries,
COUNT and SUM. For each data set and each type of range aggregates, 1000 queries are randomly generated
with the form:
fx 6 values 6 yjx < yg
Here x and y are randomly selected from the value domains.
Let Ai denotes the actual result of a query qi and A0i denotes the approximately calculated result. The error

metrics used to evaluate our histograms are:

• absolute error: eabs
i ¼ jAi � A0ij.

• average absolute error: eabs
N ¼

PN

i¼1
eabs

i

N , where N represents the number of queries.
• relative error:
0 2 4 6 8
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Fig. 7. Two wavelet basis functions of bior2.4.
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erel
i ¼

jAi�A0ij
Ai

if Ai 6¼ 0

A0i otherwise

(
P

• average relative error: erel
N ¼

N

i¼1
erel

i

N , where N represents the number of queries.

All the generated data sets and histograms are stored in an Oracle DBMS and our experiments are done on
a Pentium III 700 MHz CPU, 256 MB memory computer with Linux 2.4.7.

Since the results do not vary significantly on different data sets within a database, we only show some typ-
ical results here; that is, one data set per database.

Figs. 8–10 show our experiment results for the database 1. Since the value space follows the uniform-spread
assumption, LSLS, LSCG, and LSCSG are equivalent according to Theorem 1. In our experiments, we
focused on the average relative errors since this performance index is more explanatorily and the space is lim-
ited. However, for the database 1 we also recorded the average absolute errors for COUNT since this perfor-
mance index was evaluated in [9]. It is interested to notice that unlike the other methods, adding more
coefficients in BSW does not improve very much the accuracy. Further, MINHERR outperforms SAP0
and SAP1 although SAP0 and SAP1 are the two optimal algorithms to achieve the minimum average errors.
This is because SAP0 and SAP1 employed different bucket representations than that in MINHERR; and the
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Fig. 8. Approximate COUNT query on databases 1. (a) Absolute error and (b) Table 1: Absolute error.
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Fig. 9. Approximate COUNT query on databases 1. (a) Relative error and (b) Table 2: Relative error.
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Fig. 10. Approximate SUM query on databases 1. (a) Relative error and (b) Table 3: Relative error.
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algorithmic paradigms cannot be applied to our representation to provide the optimal solutions. Moreover,
for the average absolute errors, BSW outperforms our MINHERR when the number of buckets is small.
The MINHERR outperforms all the other techniques significantly for the average relative errors; the mini-
mum improvement is about 50%.

Figs. 11 and 12 show the experiment results for the database 2 where Fig. 11 records the average relative
error for approximate COUNT and Fig. 12 records the average relative error for approximate SUM. Figs. 13
and 14 show the experiment results for the database 3. Clearly, the experiment results for the database 2 and
the database 3 suggested that the performances of the eight algorithms (including ours) follow a similar pat-
tern to that for the database 1, except that SAP0 and SAP1 are less competitive. This is because that SAP0 and
SAP1 are specially designed for an evenly distributed value space.

In summary, our experiment results clearly suggested that our algorithm MINHERR leads to the best per-
formance among these eight algorithms, while LSCSG and LSCG representation models are significantly bet-
ter than the existing histogram representation models. The minimum reduction for the average relative error,
by using our MINHERR, is about 50% comparing with the other techniques; however, this excludes the com-
bination of LSCSG combining with V-optimal for the database 3. For the database 3, MINHERR is just
slightly better than LSCSG on average. This is because in the database 3, the frequency distribution varies
sharply and takes the dominant role in data partitioning algorithm; and thus the advantage of MINHERR
over LSCSG fades away.
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Fig. 11. Approximate COUNT query on databases 2. (a) Relative error and (b) Table 4: Relative error.
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Fig. 12. Approximate SUM query on databases 2. (a) Relative error and (b) Table 5: Relative error.
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Fig. 13. Approximate COUNT query on databases 3. (a) Relative error and (b) Table 6: Relative error.
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Fig. 14. Approximate SUM query on databases 3. (a) Relative error and (b) Table 7: Relative error.
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6. Conclusion and remarks

In this paper, we presented a new linear-spline model and a novel framework for minimizing the average
approximate errors on aggregates. The optimization problem from our framework tends to be computation-
ally intractable even restricted to a uniform query pattern. We then concentrated on a mathematic analysis to
obtain an upper-bound for the average error, which is composed of the dominant parts in the average error.
Consequently, we developed a near optimal efficient algorithm to solve the problem. According to our results,
we will be able to choose the number of buckets to control an approximation accuracy in contrast to the exist-
ing results for general data distribution. The experiment results showed that our algorithm significantly out-
performs the existing techniques.

Note that we may replace the absolute value based error function by other error functions (for instance,
variance based error function) without the need of a change of techniques developed in this paper. Very
recently, Guha et al. [13] extended the V-optimal techniques for minimizing the relative errors. As a future
study, we will investigate the average error problem based on relative errors. We will also investigate the sit-
uation when query patterns are not necessarily uniform, as well as a data stream environment.
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