
Efficiently Answering Probabilistic Threshold Top-k
Queries on Uncertain Data (Extended Abstract)

Ming Hua† Jian Pei† Wenjie Zhang‡ Xuemin Lin‡

†Simon Fraser University, Canada ‡The University of New South Wales & NICTA
{mhua, jpei}@cs.sfu.ca {zhangw, lxue}@cse.unsw.edu.au

Abstract— In this paper, we propose a novel type of proba-
bilistic threshold top-k queries on uncertain data, and give an
exact algorithm. More details can be found in [4].

I. PROBABILISTIC THRESHOLD TOP-k QUERIES

We consider uncertain data in the possible worlds semantics
model [1], [5], [7], which is also adopted by some recent
studies on uncertain data processing, such as [8], [2], [6].

Generally, an uncertain table T contains a set of (uncertain)
tuples, where each tuple t ∈ T is associated with a membership
probability value Pr(t) > 0. When there is no confusion, we
also call an uncertain table simply a table.

A generation rule on a table T specifies a set of exclusive
tuples in the form of R : tr1 ⊕ · · · ⊕ trm where tri ∈ T
(1 ≤ i ≤ m) and

∑m
i=1 Pr(tri) ≤ 1. The rule R constrains

that, among all tuples tr1 , . . . , trm involved in the rule, at most
one tuple can appear in a possible world.

As [8], [2], we assume that each tuple is involved in
at most one generation rule. For a tuple t not involved in
any generation rule, we can make up a trivial rule Rt : t.
Therefore, conceptually, an uncertain table T comes with a
set of generation rules RT such that each tuple is involved
in one and only one generation rule in RT . We write t ∈ R
if tuple t is involved in rule R. The probability of a rule is
the sum of the membership probability values of all tuples
involved in the rule, denoted by Pr(R) =

∑
t∈R Pr(t).

The length of a rule is the number of tuples involved in the
rule, denoted by |R| = |{t|t ∈ R}|. A generation rule R is a
singleton rule if |R| = 1. R is a multi-tuple rule if |R| > 1.
A tuple is dependent if it is involved in a multi-tuple rule,
otherwise, it is independent.

For a subset of tuples S ⊆ T and a generation rule R,
we denote the tuples involved in R and appearing in S by
R ∩ S. A possible world W is a subset of T such that for
each generation rule R ∈ RT , |R ∩ W | = 1 if Pr(R) = 1,
and |R ∩W | ≤ 1 if Pr(R) < 1. We denote by W the set of
all possible worlds.

Clearly, for an uncertain table T with a set of generation
rules RT , the number of all possible worlds is |W| =∏

R∈RT ,Pr(R)=1 |R|
∏

R∈RT ,Pr(R)<1(|R| + 1). The number
of possible worlds on a large table can be huge.

Each possible world is associated with an existence prob-
ability Pr(W) that the possible world happens. Following
with the basic probability principles, we have Pr(W) =∏

R∈RT ,|R∩W |=1 Pr(R ∩ W)
∏

R∈RT ,R∩W=∅(1 − Pr(R)).

Apparently, for a possible world W , Pr(W) > 0. Moreover,∑
W∈W Pr(W) = 1.
A top-k query Qk(P, f) contains a predicate P , a ranking

function f , and an integer k > 0. When Q is applied on
a set of certain tuples, the tuples satisfying predicate P are
ranked according to ranking function f , and the top-k tuples
are returned. For tuples t1, t2, t1 ¹f t2 if t1 is ranked higher
than or equal to t2 according to ranking function f . ¹f , called
the ranking order, is a total order on all tuples.

Since a possible world W is a set of tuples, a top-k query
Q can be applied to W directly. We denote by Qk(W) the
top-k tuples returned by a top-k query Q on a possible world
W . Qk(W) contains k tuples.

A probabilistic threshold top-k query (PT-k query for short)
on an uncertain table T consists of a top-k query Q and
a probability threshold p (0 < p ≤ 1). For each possible
world W , Q is applied and a set of k tuples Qk(W) is
returned. For a tuple t ∈ T , the top-k probability of t is
the probability that t is in Qk(W) in all W ∈ W , that is,
Prk

Q,T (t) =
∑

W∈W,t∈Qk(W) Pr(W). When Q and T are
clear from context, we often write Prk

Q,T (t) as Prk(t) for
the interest of simplicity.

The answer set to a PT-k query is the set of all tu-
ples whose top-k probability values are at least p. That is,
Answer(Q, p, T) = {t|t ∈ T, Prk

Q(t) ≥ p}. We are interested
in how to compute efficiently the answer set for a PT-k query
on an uncertain table.

II. AN EXACT ALGORITHM

Hereafter, by default we consider a top-k query Qk(P, f)
on an uncertain table T . P (T) = {t|t ∈ T ∧ P (t) = true} is
the set of tuples satisfying the query predicate. P (T) is also
an uncertain table where each tuple in P (T) carries the same
membership probability as in T . Moreover, a generation rule
R in T is projected to P (T) by removing all tuples from R
that are not in P (T). Then, the problem of answering the PT-k
query is to find the tuples in P (T) whose top-k probability
values pass the probability threshold.

Apparently, Answer(Q, p, T) = Answer(Q, p, P (T)). We
only need to consider P (T) in answering a top-k query.

A. The Dominant Set Property

For a tuple t ∈ P (T) and a possible world W such that
t ∈ W , whether t ∈ Qk(W) depends only on how many other
tuples in P (T) ranked higher than t appear in W . Technically,

generation rule R

ti

compression
rule−tuple ti

rule−tuple

Case 2: ti is ranked lower than all tuples in R

rule−tuple, Pr(tR)=Pr(R)

Case 3: ti is ranked between tuples in R

generation rule R

tR_left ti
compression

tR

Case 1: ti is ranked higher
than all tuples in R

generation rule R

ti

generation rule R

ti

Fig. 1. Computing Prk(ti) for one tuple ti.

for a tuple t ∈ P (T), the dominant set of t is the subset of
tuples in P (T) that are ranked higher than t, i.e., St = {t′|t′ ∈
P (T) ∧ t′ ≺f t}.

Theorem 1 (The dominant set property): For a tuple t ∈ T ,
Prk

Q,T (t) = Prk
Q,St

(t).
Our PT-k query answering algorithm scans the tuples in

P (T) in the ranking order, and derives the top-k probability of
a tuple t based on the tuples preceding t in the ranking order.
Generation rules are handled by the rule-tuple compression
technique. The probability threshold is used to prune tuples
whose top-k probability values fail the threshold.

B. The Basic Case

We first consider the basic case where all tuples are inde-
pendent. Let L = t1 · · · tn be the list of all tuples in table
P (T) in the ranking order. Then, in a possible world W , a
tuple ti ∈ W (1 ≤ i ≤ n) is ranked at the j-th (j > 0)
position if and only if exactly (j − 1) tuples in the dominant
set Sti = {t1, . . . , ti−1} also appear in W .

The position probability Pr(ti, j) is the probability that
tuple ti is ranked at the j-th position in possible worlds.
Moreover, the subset probability Pr(Sti , j) is the probability
that j tuples in Sti appear in possible worlds.

Trivially, we have Pr(∅, 0) = 1 and Pr(∅, j) = 0 for 0 <
j ≤ n. Then, Pr(ti, j) = Pr(ti)Pr(Sti−1 , j−1). Apparently,
the top-k probability of ti is given by

Prk(ti) =

k∑
j=1

Pr(ti, j) = Pr(ti)

k∑
j=1

Pr(Sti−1 , j − 1) (1)

Particularly, when i ≤ k, we have Prk(ti) = Pr(ti).
Theorem 2: In the basic case, for 1 ≤ i, j ≤ |T |,
Pr(Sti , 0) = Pr(Sti−1 , 0)(1− Pr(ti)) =

∏i
j=1(1− Pr(ti)),

Pr(Sti , j) = Pr(Sti−1 , j − 1)Pr(ti) + Pr(Sti−1 , j)(1− Pr(ti)).

C. Handling Generation Rules

In the basic case, Theorem 2 can be used to compute the
top-k probability values for all tuples in time O(kn), where
n is the number of tuples in the uncertain table. However, a
general case may contain some multi-tuple generation rules.

1) Rule-Tuple Compression: Consider P (T) = t1 · · · tn in
the ranking order, i.e., ti ¹f tj for i < j. Let us compute
Prk(ti) for a tuple ti ∈ P (T). A multi-tuple generation rule
R : tr1 ⊕ · · · ⊕ trm 1 ≤ r1 < · · · < rm ≤ n can be handled in
one of the following cases (see Figure 1 for illustration.)
Case 1: ti ¹f tr1 , i.e., ti is ranked higher than or equal to all
tuples in R. According to Theorem 1, R can be ignored.

Case 2: trm
≺f ti, i.e., ti is ranked lower than all tuples in

R. R is called completed with respect to ti. At most one tuple
in R can appear in a possible world. According to Theorem 1,
we can combine all tuples in R into a rule-tuple tR with
membership probability Pr(R).

Corollary 1 (Rule-tuple compression): For a tuple t ∈
P (T) and a multi-tuple rule R, if ∀t′ ∈ R, t′ ≺f t,
then Prk

Q,T (t) = Prk
Q,T (R)(t) where T (R) = (T − {t|t ∈

R}) ∪ {tR}, tuple tR takes any value such that tR ≺f t,
Pr(tR) = Pr(R), and other generation rules in T remain the
same in T (R).
Case 3: tr1 ≺f ti ¹f trm , i.e., ti is ranked in between tuples
in R. R is called open with respect to ti. Among the tuples
in R ranked better than ti, let trm0

∈ R be the lowest ranked
tuple i.e., rm0 = maxm

l=1{rl < i}. The tuples involved in R
can be divided into two parts: Rleft = {tr1 , . . . , trm0

} and
Rright = {trm0+1, . . . , trm}. Prk(ti) is affected by tuples in
Rleft only and not by those in Rright.

Two subcases may arise. First, if ti 6∈ R, similar to
Case 2, we can compress all tuples in Rleft into a rule-tuple
tr1,...,rm0

where membership probability Pr(tr1,...,rm0
) =∑m0

j=1 Pr(trj), and compute Prk(ti) using Corollary 1.
Second, ti ∈ R, i.e., ti = trm0+1. In a possible world

where ti appears, any tuples in R cannot appear. Thus, to
determine Prk(ti), according to Theorem 1, we only need to
consider the tuples ranked higher than ti and not in R, i.e.,
Sti − {t′|t′ ∈ R}.

Corollary 2 (Tuple in rule): For a tuple t ∈ R such that
P (t) = true and |R| > 1, Prk

Q,T (t) = Prk
Q,T ′(t) where

uncertain table T ′ = (Sti − {t′|t′ ∈ R}) ∪ {t}.
For a tuple t and its dominant set St, we can check t against

the multi-tuple rules one by one. Each multi-tuple rule can
be handled by one of the above three cases, and dependent
tuples in St can be either compressed into some rule-tuples
or removed due to the involvement in the same rule as t.
After the rule-tuple compression, the resulted set is called the
compressed dominant set of t, denoted by T (t). Based on the
above discussion, for a tuple t ∈ P (t), all tuples in T (t)∪{t}
are independent, Prk

Q,T (t) = Prk
Q,T (t)∪{t}(t). We can apply

Theorem 2 to calculate Prk(t) by scanning T (t) once.
We can sort all tuples in P (T) into a sorted list L in the

ranking order. For each tuple ti, by one scan of the tuples in L
before ti, we obtain the compressed dominant set T (ti) where
all tuples are independent. Then, we can compute Prk(ti) on
T (ti)∪{ti} using Theorem 2. In this way, the top-k probability
for all tuples can be computed in O(n2) time where n is the
number of tuples in the uncertain table.

2) Scan Reduction by Prefix Sharing: Equation 1 indicates
that to compute Prk(ti) using subset probability Pr(Sti−1 , j),
the order of tuples in Sti−1 does not matter. This gives us
the space to order the tuples in compressed dominant sets
of different tuples so that the prefixes and the corresponding
subset probability values can be shared as much as possible.

Consider the list L = t1 · · · tn of all tuples in P (T) and a
tuple ti in L. Two observations may help the reordering.

First, for a tuple t that is independent or is a rule-tuple of

a completed rule with respect to ti (Case 2 in Section II-C.1),
t is in T (t′) for any tuple t′ Âf ti. Thus, t should be ordered
before any rule-tuple of a rule open with respect to ti (Case 3
in Section II-C.1).

Second, there can be multiple rules open with respect to ti.
Each such a rule Rj has a rule-tuple tRjleft

, which will be
combined with the next tuple t′ ∈ Rj to update the rule-tuple.
Thus, if t′ is close to ti, tRjleft

should be ordered close to
the rear so that the rule-tuple compression affects the shared
prefix as little as possible. In other words, those rule-tuples of
rules open with respect to ti should be ordered in their next
tuple indices descending order.

An aggressive method to reorder the tuples is to always
put all independent tuples and rule-tuples of completed rules
before rule-tuples of open rules, and order rule-tuples of open
rules according to their next tuples in the rules. On the other
hand, a lazy method always reuses the maximum common
prefix in T (ti−1), and reorders only the tuples not in the
common prefix using the above two observations. We can
show that the lazy method is always not worse than the
aggressive method.

D. Pruning Techniques
Can we avoid retrieving or checking all tuples satisfying

the query predicates? Some existing methods such as the well
known TA algorithm [3] can retrieve in batch tuples satisfying
the predicate in the ranking order. Using such a method, we
can retrieve tuples in P (T) progressively. Now, the problem
becomes how we can use the tuples seen so far to prune some
tuples ranked lower in the ranking order.

Hereafter, by default we consider a PT-k query using
probability threshold p. We give three pruning rules which
can determine that some tuples not checked yet cannot pass
the probability threshold. The tuple retrieval method (e.g., an
adaption of the TA algorithm [3]) uses the pruning rules in the
retrieval. Once it can determine all remaining tuples in P (T)
fail the probability threshold, the retrieval can stop.

Please note that we still have to retrieve a tuple t failing
the probability threshold if some tuples ranked lower than t
may satisfy the threshold, since t may be in the compressed
dominant sets of those promising tuples.

Theorem 3 (Pruning by membership probability):
Prk(t) ≤ Pr(t). Moreover, for an independent tuple t,
if Prk(t) < p, then (1) for any independent tuple t′ such that
t ¹f t′ and Pr(t′) ≤ Pr(t), Prk(t′) < p; and (2) for any
multi-tuple rule R such that t is ranked higher than all tuples
in R and Pr(R) ≤ Pr(t), Prk(t′′) < p for any t′′ ∈ R.

To use Theorem 3, we maintain the largest membership
probability pmember of all independent tuples and rule-tuples
for completed rules checked so far whose top-k probability
values fail the probability threshold. All tuples identified by
the above pruning rule should be marked failed.

Theorem 4 (Pruning by tuples in the same rule): For
tuples t, t′ involved in the same multi-tuple rule R, if t ¹f t′,
Pr(t) ≥ Pr(t′), and Prk(t) < p, then Prk(t′) < p.

Based on the above pruning rule, for each rule R open
with respect to the current tuple, we maintain the largest

Input: an uncertain table T , a set of generation rules RT , a
top-k query Qk(P, f), and a probability threshold p;

Output: Answer(Q, p, T);
Method:
1: retrieve tuples in P (T) in the ranking order one by one,

for each ti ∈ P (T) do
2: compute T (ti) by rule-tuple compression;
3: compute subset probability values and Prk(ti);
4: if Prk(ti) ≥ p then output ti;
5: check whether ti can be used to prune future tuples;
6: if all remaining tuples in P (T) fail the probability

threshold then exit;
end for

Fig. 2. The exact algorithm.

membership probability of the tuples seen so far in R whose
top-k probability values fail the threshold. Any tuples in R
that have not been seen should be tested against this largest
membership probability.

Our last pruning rule follows with that the sum of the top-k
probability values of all tuples is k, i.e.,

∑
t∈T Prk(t) = k.

Theorem 5 (Pruning by total top-k probability): Let A be
a set of tuples whose top-k probability values pass the prob-
ability threshold p. If

∑
t∈A Prk(t) > k − p, then for every

tuple t′ 6∈ A, Prk(t′) < p.
The exact algorithm for PT-k query answering is shown in

Figure 2. The complexity of the algorithm can be analyzed
as follows. For a multi-tuple rule R : tr1 ⊕ · · · ⊕ trm where
tr1 , . . . , trm are in the ranking order, let span(R) = rm− r1.
When tuple trl

(1 < l ≤ m) is processed, we need to remove
rule-tuple tr1,...,rl−1 , and compute the subset probability values
of the updated compressed dominant sets. When the next
tuple not involved in R is processed, tr1,...,rl−1 and trl

are
combined. Thus, in the worst case, each multi-tuple rule causes
the computation of O(2k ·span(R)) subset probability values.
Moreover, in the worst case where each tuple P (T) passes
the probability threshold, all tuples in P (T) have to be read
at least once. The time complexity of the whole algorithm is
O(kn + k

∑
R∈RT

span(R)).
As indicated by our experimental results, in practice the

three pruning rules are effective. Often, only a very small
portion of the tuples in P (T) are retrieved and checked before
the exact answer to a PT-k query is obtained.

REFERENCES

[1] S. Abiteboul et al. On the representation and querying of sets of possible
worlds. In SIGMOD’87.

[2] O. Benjelloun et al. Uldbs: databases with uncertainty and lineage. In
VLDB’06.

[3] R. Fagin et al. Optimal aggregation algorithms for middleware. In
PODS’01.

[4] M. Hua et al. Efficient answering probabilistic threshold top-k queries
on uncertain data (full version). Technical report TR 2007-26, School
of Computing Science, Simon Fraser University.

[5] T. Imielinski and Jr. Witold Lipski. Incomplete information in relational
databases. Journal of ACM, 31(4):761–791, 1984.

[6] J. Pei et al. Probabilistic skylines on uncertain data. In VLDB’07.
[7] A. D. Sarma et al. Working models for uncertain data. In ICDE’06.
[8] M. A. Soliman et al. Top-k query processing in uncertain databases. In

ICDE’07.

