
SPARK: A Keyword Search Engine on
Relational Databases

Yi Luo, Wei Wang, Xuemin Lin

School of Computer Science and Engineering
University of New South Wales

Australia
{luoyi, weiw, lxue}@cse.unsw.edu.au

I. I NTRODUCTION

Relational database is the most widely adopted and mature
technology for information storage. As many services on the
Web (e.g., blog and wiki sites) and advanced applications
(e.g., Customer Relationship Management Systems and Con-
tent Management Systems) are built on RDBMSs, increasing
amount of text data is now stored in relational databases,
accompanied by increasing demands of retrieving relevant
information by free-style keyword search.

Current commercial solutions to keyword search for rela-
tional databases arenot sufficient. A typical solution is to build
a set of query templates that map keyword search to full-text
matching within one or more attributes. For example,imdb.
com allows users to search for matching movies according to
title, actor, etc. This solution offers only limited query capa-
bilities and flexibilities. For instance, we performed a search
of “2001 hanks” using the search interface onimdb.com
and cannot find any relevant answer (See Figure 1(a)).

SPARK is a system that we developed recently to address
this issue. It is able to assemble matching tuples fromdifferent
relations together according to foreign key to primary key
relationships such that the tuples arecollectively relevant
to the query. For example, we show the top-3 results for
the same query returned by the SPARK system populated
with imdb.com’s data. The second and the third results are
obvious relevant to the query, but won’t be found unless we
join Movies, ActorPlay, and Actor together. The technical
challenge lies in how to find a general-purpose and effective
ranking method for the search results while optimizing the
search within a potentially huge search space. In our previous
work [1], we approached this problem by proposing a novel
ranking method that takes into consideration several important
ranking factors. We also demonstrated that, with two new
algorithms, our query processing speed could be up to two
orders of magnitude faster than alternative methods. These
results are the foundation of the SPARK system.

In this demo, we will demonstrate the SPARK system in
work. In particular, we demonstrate that it can help bothcasual
users and professional usersto locate relevant information
via keyword search in databases. This goal is achieved by
(a) offering an easy-to-use search interface and intuitiveresult

(a) Results fromimdb.com

1 Movies: “Primetime Glick” (
::::

2001) Tom
:::::

Hanks/Ben Stiller
(#2.1)

2 Movies: “Primetime Glick” (
::::

2001) Tom
:::::

Hanks/Ben Stiller
(#2.1)← ActorPlay: Character = Himself→ Actors:

:::::

Hanks,
Tom

3 Actors: John
:::::

Hanks← ActorPlay: Character = Alexander
Kerst→ Movies: Rosamunde Pilcher - Wind̈uber dem Fluss
(

::::

2001)
(b) Top-3 Results on SPARK (Relation Names are in Bold Font andArrows
denote Foreign Key to Primary Key Relationships)

Fig. 1. Searching2001 hanks

ranking for casual users to access information stored in a re-
lational database, and (b) providingadvancedsearch methods
for professional users to perform data searching and analysis.

This proposal differs from other demos on the same topic
and our previous work [1] in the following aspects:

• We emphasize on the search effectiveness of the system.
Result quality is one of the most important factors for
keyword search systems, yet it hasnot been given suffi-
cient attentions in the past. We will demonstrate several
ranking functions implemented in SPARK. Users can
appreciate the relative strength and weakness of different
ranking methods on several datasets in the demo.



• We emphasize on how some new search and browsing
methods (in addition to the generic method in our previ-
ous work [1]) can better serve user’s information need.
In particular, we will demonstrate how anew OLAP-
style result browing method can help users to locate the
desired information quickly — a typical search scenario
we identified in the user study (See Section III-C.4). New
advanced search features and their implementation details
will also be introduced in the demo (See Sections III-C
and III-D).

• We demostrate the performance of the system powered
by different query processing algorithms. Users can have
an intuitive feeling of the substantial differences in query
response time by different algorithms and the trade-offs
of search quality/specifications and the search speed.

II. SYSTEM ARCHITECTURE

We plot the architecture of the SPARK system in Figure 2.
We choose a server-browser architecture. This means no
specialized software needs to be installed and users only need
a browser to access the service. SPARK Server is implemented
in Java and uses adapters based on JDBC to communicate with
relational DBMSs. Using adapters hides the difference in the
capabilities of the underlying RDBMSs and allows the server
to bepluggedinto any supported RDBMSs easily. Currently,
we support adapters to Oracle and MySQL.

The SPARK Server contains three key components: a non-
free tuple set constructor, a candidate network generator,and
a query processor.

Preferences

Query

RDBMS

Full−text Index

Generator

Constructor

User Interface

Query Processor

SPARK

Top−k Results

Non−Free Tuple Set

Candidate Network

Fig. 2. System Architecture

a) Non-Free Tuple Set Constructor:A non-free tuple set
of relationR is all the tuples inR that contain at least a match
to a query keyword.

When a user inputs a query, each keyword in the query is
immediately sent here to generate the corresponding non-free
tuple sets in all relations. Since full-text index is built on all
relations, a non-free tuple set can be constructed by merging
the postings of the inverted index.

b) CN Generator: A candidate network(CN) [2] is a
relational algebra expression over the tuple sets, such that the
corresponding query may produce some query results. A tuple
set is either a non-free tuple set or a free tuple set (i.e., all
tuples in a relation).

The CN Generator computes a set of CNs by a breadth-first
subgraph enumeration algorithm adapted from [2]. It finds all
minimal CNs whose sizes are within a user-defined threshold.
A CN is minimal if all its leaves correspond to non-free tuple
sets, i.e., contain some keywords.

c) Query Processor:We implemented four algorithms
in the query processor. Sparse and Global Pipeline are due
to [3]; Skyline Sweeping and Block Pipeline are proposed in
our previous work [1].

Basically, Sparse processes each CN by sending a single
SQL query to RDBMS. It iteratively chooses a CN and sorts
its results, until top-k results are found. Global Pipeline pushes
the top-k constraints deep into the query execution. Skyline
Sweeping and Block Pipeline are designed to minimize un-
necessary join checking to a further extent.

Compared to our previous work [1], we have also signif-
icantly extended the Block Pipeline algorithm by utilizing
materialized results and sharing of computations among CNs.

III. D EMO DESCRIPTION

In the demonstration, we will (a) motivate the keyword
search problem in the relational database context, and demon-
strate several novel use of the system to satisfy a variety of
information demands; (b) introduce several SPARK’s features
and showcase their usage in helping user locating the desired
information; and (c) demonstrate a set of experiments that
evaluate performance of the system, and compare results of
different implementations. We give further details below.

A. Introduction and Datasets

The first part of the demo will be an overview of the
keyword search problem in the relational database context.
We will compare results returned by the same keyword query
from imdb.com, google.com, and SPARK. We will also
illustrate that subtle and unexpected relationships can befound
by keyword search.

We will then introduce the datasets used in the demo.

DBLP It is a bibliographic database comprosed of 6 tables
and around 0.9 million tuples in total.

IMDB We download the data fromimdb.com’s web site,
and convert a subset of the data into relational tables, in-
cluding: movies, direct, directors, actressplay, actresses,
actorplay, actors, andgenres. There are about 10 million
tuples in total.

Mondial The database contains geographical information
from various resources. There are 28 tables and around
17,000 tuples.

Northwind Northwind is a small sample database that comes
with Microsoft Access. It contains sales data for a fic-
titious food trading company, with tables for customers,



orders, suppliers, products, etc. It contains 8 tables and
around 3,200 tuples.

These datasets are chosen to cover a large spectrum of
applications, data size, complexity of the schema, etc.

SPARK supports two search modes:simple searchand
power search. They are elaborated in the following two
subsections.

B. Simple Search

The simple search is intended for casual users. The design
principle is to be simplistic and intuitive.

At SPARK’s homepage, a user can (a) select a data source
(among Mondial, DBLP, IMDB, and Northwind), and (b) input
a keyword query. The default output is a ranked list of search
results assembled from tuples in the select data source that
are relevant to the query. Results are scored using the ranking
functions in [1].

For example, Figure 3 shows the results of the query2001
hanks in decreasing order of their relevance scores (which
is displayed to the right of the search results)

Fig. 3. Ranked Results of Query2001 hanks

C. Power Search

The power search is intended for professional users. The
design goal is to be customizable and to provide advanced
features to search for information more easily.

1) Query Specification:In addition to simple keyword
queries, SPARK supports several advanced query specifica-
tions:

Conjunction and Negation By default, SPARK assumes the
OR semantics. User can override this by specifying a+
before a keyword. If a keyword is prefixed with “-”, we
consider the user do not want any result containing the
keyword.

Phrase Search and Wildcard Matching Keywords appear-
ing within a pair of quotes (‘ ’) will be treated as a

phrase, which must be matched together in a tuple in a
search result. Wildcards (* and.) are also supported.

Schema Term and Alias In order to fine-tune the occur-
rence of a keyword match, a keyword can be prefixed
with a table name, an attribute name, their combi-
nation, or an alias defined by system administrators.
E.g., queryactor.name:cage will only match actor
names containingcage, but not any actress or director;
query person-name:cage will match all person’s
names, if the aliasperson-name is defined to in-
cludeactor.name, actress.name, anddirector
.name. In the special case where only schema term ap-
pears, it denotes that the result must contain the particular
schema object.

The rich set of advanced query specification can help profes-
sional users to express their information need more specifically
by injecting their domain knowledge into the query. It is also
helpful for keywords that occur frequently or are ambiguous.

2) Query Evaluation Algorithm:Users can also fine-tune
the query evaluation algorithm.

Maximum CN Size This parameter sets the threshold on the
largest candidate network that can be searched by the
system.

Query Evaluation Algorithm User can choose from Block
Pipeline (default), Skyline Sweeping, Global Pipeline,
and Sparse algorithms.

Top-k User can choose ak value such that the query evalu-
ation algorithm is optimized to return top-k results fast.

3) Ranking: The demo uses the novel ranking formula
proposed in our previous work [1]. The new ranking method
assigns a score to each query result by considering three
factors:

IR Score We adapt the state-of-the-art IR ranking formula
to query results by modelling query results asvirtual
documents, and all the results obtained by the same
join expression without full-text selection conditions as
a virtual document collection. The new method fixes
the common problem in previous approaches that overly
reward the contribution of the same keyword appearing
in different components in the result.

Completeness We use a completeness factor quantifying the
degree of matching for a result to a query, based on the
extended Boolean model. Results matching part of the
keywords will get a lower completeness factor value. A
tunable parameterp is used to allow the ranking switching
between OR and AND semantics. A smaller value (e.g.,
p = 1.0) simulates the OR semantics, while a larger
value, such asp = 2.0, approximates the AND semantics
well in our experiments.

Size We adopt an alternative result size normalization factor.
The factor takes into consideration (a) the semantical role
each tuple set plays in the result, and (b) the distribution
of result sizes for the given query. Therefore, the size
normalization factor is adaptive to the database schema
and the query.



We have shown in [1] that our new ranking method
outperforms previous approaches substantially. The average
reciprocal rank1 of SPARK is often close to the maximum
value 1.0, while previous approaches are always below 0.5.

In the demo, we will show the impact of parameter settings
on the search results. For example, for the querypartition
patel david on the DBLP dataset, the result of “David
J. DeWitt and Jignesh M. Patel coauthored a paper named
Partition Based Spatial-Merge Join” is ranked as the 7th under
the default ranking parameterp = 1.0. If we increasep to 1.4

and then2.0, this result moves to the second and the first,
respectively.

4) OLAP-style Result Browsing:Two novel ranking and
browsing methods have been implemented to enable OLAP-
style exploration of query results.

Group by CNs Under this mode, we assume results from
different CNs are incomparable. Thus, top-k results are
computed for each CN. Only the top-1 result of each CN,
together with a “snippet” about the statistics of the other
matches, is shown as the search result. Once the user
clicks a CN, all the top-k results from the chosen CN
will be shown.

Expand the Search Users can select and mark part of a
search result, and choose to expand the result. The
semantics is to return a superset of selected tuples that
is relevant to the query. This provides an easy way to
quickly zoom into part of the database and locate relevant
information.

We use the following example to illustrate the OLAP-style
Result Browsing. Assume a user wants to find all papers
written byDavid Dewitt on joins, but cannot remember
his last name. She issues a querydavid join, which has
many search results in the DBLP dataset, as both keywords
are very popular. She can first group results according to their
CNs, and only “drill down” to CNs of interest to her, i.e.,
Author on Writes on Paper. The top-3 results are three
join-related papers fromdavid dewitt, david scot
taylor, anddavid vineyard, respectively. Seeing that
david dewitt is the author she wants, she canexpand
the search by fixing the author tuple whose name isdavid
dewitt. Consequently, all thejoin-related paper from
david dewitt, even though many of them are not ranked
as top-k results globally, can be found.

D. Demonstrating System Performances

We will demonstrate a set of experiments that are designed
to evaluate performance of the system. They evaluate both
the effectiveness and efficiency. We will compare with two
previous work [3], [4]. We have command line interface sup-
porting parameters to run the search using the ranking method
and query evaluation method in [3], [4] and SPARK. Search
results from different ranking algorithms can be compared side
by side.

1It is calculated as the inverse of the rank of thefirst relevant
results.

The experiments will showcase a number of features of the
SPARK system, including:

• SPARK can return high quality result for most queries
even in the default mode (i.e., using only the simple
search interface).

• Thanks to the Block Pipeline algorithm, the query evalu-
ation speed of SPARK is usually an order of magnitude
faster than the better of SPARSE and Global Pipeline
algorithm.

• Block pipeline algorithm running in progressive mode
incurs minimal amount of waiting time of users, as the
desired result is usually returned fast as the top-1 result.

REFERENCES

[1] Y. Luo, X. Lin, W. Wang, and X. Zhou, “SPARK: Top-k keywordquery
in relational databases,” inSIGMOD, 2007.

[2] V. Hristidis and Y. Papakonstantinou, “DISCOVER: Keyword search in
relational databases.” inVLDB, 2002, pp. 670–681.

[3] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient IR-Style
Keyword Search over Relational Databases,” inVLDB, 2003.

[4] F. Liu, C. T. Yu, W. Meng, and A. Chowdhury, “Effective keyword search
in relational databases.” inSIGMOD, 2006, pp. 563–574.


