
Graph Partition Based Multi-Way Spatial Joins

Xuemin Lin, Hai-Xin Lu, Qing Zhang
School of Computer Science & Engineering

University of New South Wales
Sydney, NSW 2052, Australia

lxue, cshlu, qzhang@cse.unsw.edu.au

Abstract

In this paper, we investigate the problem of efficiently
computing a multi-way spatial join without spatial indexes.
We propose a novel and effective filtering algorithm based
on a two phase partitioning technique. To avoid missing
hits due to an inherent difficulty in multi-way spatial joins,
we propose to firstly partition a join graph into sub-graphs
whenever necessary. In the second phase, we partition
the spatial data sets; and then the sub-joins will be exe-
cuted simultaneously in each partition to minimise the I/O
costs. Finally, a multi-way relational join will be applied
to merge together the sub-join results. Our experiment re-
sults demonstrated the effectiveness and efficiency of the
proposed algorithm.

Keywords: Spatial Databases, Spatial Joins, Query Pro-
cessing.

1. Introduction

Multi-way spatial join selects, from n sets of spatial ob-
jects in the 2-dimensional space, the tuples each of which
consists of n objects respectively from the n data sets and
satisfies some given spatial predicates. An example of a
multi-way spatial join is “find all residential areas that in-
tersect a lake that passes some golf courses”. Spatial join
is an important but expensive query form to process spatial
information in GIS, satellite images, digital video, multime-
dia documents, etc. A multi-way spatial join can be mod-
elled by a join graph whose vertices represent respectively
different data sets and edges represent respectively spatial
predicates between pairs of vertices. We will formally de-
fine a spatial multi-way join in the next section.

Due to high processing complexities and costs, a spa-
tial join is usually executed in two steps [2, 14], filtering
and refinement. In the filtering step, spatial objects are ap-
proximated by the isothetic Minimal Bounding Rectangles

(MBR); and then the MBRs are processed to produce a can-
didate result set. In the refinement step, each tuple from the
candidate set is examined further, for the given spatial pred-
icates, against the real objects instead of their MBRs. In
this paper, we will concentrate on the filtering step. There-
fore, the multi-way spatial joins discussed in this paper will
be restricted to data sets where spatial objects are isothetic
rectangles. A special predicate may be in various different
forms; for instance, direction joins [22], distance joins [6],
etc. In this paper, we will discuss only one of the most pop-
ular predicates - overlapping.

Spatial joins with the predicate of overlapping has re-
ceived a great attention in the last twenty years. A num-
ber of different computation methods have been proposed
for efficiently processing 2-way spatial joins, such as Z-
order elements technique [13, 14], R-tree join [2, 5] and
its variations, filter tree join [20], seeded tree join [9], par-
tition based spatial merge join [15], spatial hash join [10],
size separation spatial join [7], the scalable sweeping-based
spatial join [1], and slot index spatial join [12]. However,
there has been little research on the general multi-way (with
more than 2 data sets) join until very recently. The papers
[16, 17, 18] provided spatial join algorithms based on a syn-
chronous traversal technique on R-trees, while the paper
[12] proposed to apply a slot index spatial join method to
handle a join of an intermediate join result and an indexed
data set.

In this paper, we investigate the multi-way spatial join
processing algorithms when no spatial data indexes exist.
One way to process a multi-way join is by a sequence of 2-
way joins; and then apply some non-index based spatial join
algorithms [1, 10, 15, 7] to each two-way join. However,
such an approach does not only have to involve extra I/O
overheads to repartition every intermediate result set when
it does not fit in the buffer but also has to involve some
extra computation costs (e.g. if swapping-line algorithm is
applied, data sets may have to be scanned more than once).

The experiment results in [1] suggest that a data parti-
tioning based join approach [10, 15, 7] tends to have small

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’02)
1098-8068/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 06:49 from IEEE Xplore. Restrictions apply.

I/O overhead. Consequently, an alternative way to process
a multi-way spatial join is firstly to partition the data space
into a number of buckets [15]; and secondly to process data
only in each bucket to produce the local multi-way join re-
sults; and thirdly merge the local sub-join results together
by a union, like what was suggested in [10, 15] for 2-way
joins. Unfortunately, such a data partitioning based method
may miss some join result tuples; and we will illustrate them
in the next section.

Motivated by the above facts, in this paper we will pro-
pose a novel multi-way spatial join algorithm based on a
two-phase partitioning technique in the filtering step (that
is, join sets of rectangles):

� Firstly, we partition (if necessary) a join graph into a
set of subgraphs.

� Secondly, we partition the involved data sets into a
number of buckets.

Once the two-phase partitioning is done, we simultaneously
execute the joins, which correspond respectively to a sub-
graph, in each bucket by reading in spatial data only once.
After the local joins have done for each data bucket, a rela-
tional join will be applied on the sub-join results to “merge”
them together to produce the join results for the original
query graph. This is the first and the principal contribution
of the paper. The second contribution of the paper are the
results we obtained for the optimal graph partitioning prob-
lem. The third contribution of the paper is that we com-
pletely characterise a class of join graphs where a graph
partitioning is not necessarily required while applying our
join algorithm. Finally, our experiment results confirm the
efficiency of our algorithm.

The rest of the paper is organised as follows. In sec-
tion 2, we present a precise definition of multi-way join, an
overview of related work, and the difficulties to process a
spatial multi-way join without indexes. Section 3 presents
the framework of our two-phase partitioning technique, the
fundamental, and the join algorithm. Section 4 reports our
experiment results. This is followed by conclusions and re-
marks.

2 Background

A multi-way spatial join can be defined as follows. As-
sume that fRi : 1 � i � ng is a set of n spatial relations,
and fCi;j : (i; j) 2 I & I � [1; n] � [1; n]g is a set of bi-
nary spatial predicates. The multi-way join of fR1; :::; Rng
with respect to the given spatial predicates is to compute all
n-tuples:
f(r1;x1

; :::; ri;xi
; :::rn;xn) : 8i; ri;xi

2 Ri; 8(i; j) 2 I; C(ri;xi
; rj;xj

)g

As mentioned in the last section, in this paper we discuss
only one predicate - overlapping. We also assume that each
spatial data set consists of only isothetic rectangles.

Note that a multi-way spatial join of n spatial tables
fRi : 1 � i � ng is represented by a join graph G =
fV;Eg where V = fRi; 1 � i � ng and corresponding to
each Ci;j , (Ri; Rj) is an edge. In a graph, a vertex is adja-
cent to another vertex if there is an edge connecting them.
The number of the edges incident to a vertex is called de-
gree of the vertex. Suppose that V 0 is a subset of V . The
induced graph by V 0 from G is the subgraph of G whose
vertex set is V 0 and whose edge set consists of the edges in
G connecting only the vertices in V 0.

2.1 Related Work

The study of 2-way join has gained much attention in
the last two decades. Many techniques have been published
for the case when spatial data sets are fully indexed; for
instance, those in [2, 5, 14, 20]. Due to an equal importance
of the applications where no spatial index exists, the papers
[10, 15, 1, 7] studied spatial two-way joins without spatial
indexes.

Consider that the number of data objects to be joined
may be too large to fit in the main memory simultaneously.
The Partition Based Spatial Merge Join (PBSM) [15] di-
vides the data set into a number of different regions; and
each region is called a bucket. To avoid missing hits, PBSM
suggests to duplicate each object to the buckets which inter-
sect the object. Then, the join algorithm is locally executed
in each bucket to produce the local join results. Adding up
the local join results from different buckets gives the join
result.

Independently, the authors in [10] proposed another data
partition based join algorithm - Spatial Hash Join (SHJ). In
SHJ, the author proposed a data partition such that each ob-
ject from one data set is assigned to only one bucket which
contains it; this will avoid a post-process to eliminates du-
plicates among the local join results. However, unlike [15]
buckets in SHJ may overlap with each other. Note in SHJ,
the data objects from another data set still need to duplicate
to the intersected bucket.

The Sized Separation Spatial Join (S3J) [7] is a non-
trivial variation of the data partition based join methods
[10, 15]; and it has gone one step further to completely re-
move data replication in each bucket by applying a multi-
resolution idea. It involves a two-step data partitioning.
The object space is firstly modelled into a multi-resolution
space; and secondly the space for each resolution is parti-
tioned by the Hilbert curve technique. Then the join is ex-
ecuted cross different levels of the multi-resolution space,
such that 1) in the same level the join process needs to be
carried out only within the same bucket, and 2) in the differ-
ent levels the join process needs to be carried out only be-
tween a bucket from higher resolution level and the bucket
in a lower level which contains the bucket in the higher

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’02)
1098-8068/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 06:49 from IEEE Xplore. Restrictions apply.

level.
The Scalable Sweeping-based Spatial Join (SSSJ) [1] is

mainly focused on improving the computation in the main
memory by a novel application of interval tree technique
from computational geometry [19].

In this paper, to efficiently do I/O we will develop a data
partition based algorithm for processing a multi-way spatial
join. Below we first show the difficulties/problems in such
a paradigm.

2.2 Problems

A partition based join paradigm can be generally de-
scribed below. Firstly, we partition the whole data space
into a number of buckets (usually isothetic rectangles). Sec-
ondly we assign each object to some (at least one) buckets
which intersect the object. Thirdly, bucket by bucket we
process the data in each bucket to produce local join re-
sults. Finally, all the local join results are merged together
to produce the results of the join. Note that in two-way spa-
tial join, such a merge process is trivial [10, 15] - a union of
all the local join results.

The following problems need to be resolved in a parti-
tion based join paradigm while processing a multi-way spa-
tial join. As pointed out in [10, 15], an object may have to
be duplicated into all the buckets which intersect the object,
in order to avoid missing hits. For example in Figure 1, b2
has to be duplicated into the two buckets to get join tuples
(a2; b2) and (a4; b2). Data replication will cause an extra
computation in two ways. Firstly, some pairs may be repeat-
edly examined in different buckets. For instance in Figure 1,
if the objects a3 and b2 are respectively duplicated into the
two buckets then the pair (a3; b2) will be examined twice
respectively in each bucket to see if they intersect with each
other. Secondly, some joint result pairs may be repeatedly
obtained in different buckets; for instance, the pair (a3; b2)
is obtained in both buckets. Consequently, it requires an ex-
tra sorting process to remove all duplicates [15]. To resolve
this, the authors in [10] proposed a non-uniform space par-
tition such that each object from one data set chooses only
one bucket, which contains the object, to assign; while the
objects from another data set are replicated cross the buck-
ets which intersect the objects respectively. We will apply
this idea in our partition based join algorithm for multi-way
joins. It will be shown in the next section that to ensure
the algorithm correctness, we will have to apply this idea in
multi-way spatial joins.

In multi-way spatial join, the “sparsity” of a join graph
may cause missing hits in a data partition join paradigm
even if each object is duplicated to all the buckets that
intersect with the object. For example, regarding the join
graph in Figure 2(b) we assume that data are partitioned
into two buckets (as depicted in Figure 2(a)) where a1 is in

a1

a2

a3

a4

a5

bucket 1 bucket 2

b1

b2

Figure 1. a3 and b2 are respectively replicated
into two buckets

bucket 1, c1 is in bucket 2, and b1 and d1 are in both buck-
ets. In this example, the joining tuple (a1; b1; c1; d1) will
be missed by applying the partition based join paradigm.
This is because in both buckets we can only obtain a part of
the tuple. In bucket 1, we obtain only (a1; b1; d1), while in
bucket 2 we obtain only (b1; c1; d1). Therefore, we cannot
obtain the joining tuple in either bucket.

a1

b1

c1

d1

(a) (b)

A

Bucket 2Bucket 1

B

D
C

Figure 2. Sparsity missing hits problem

To resolve this sparsity missing hits problem, we may
decompose the join graph in Figure 2(b) into two subgraphs:
the one (depicted by a dotted curve) induced by vertices A,
B, and D, and the one (depicted by a solid curve) induced
by B, C, and D. Regarding the example in Figure 2(a), in
each bucket we then execute simultaneously the local joins,
which are respectively represented by the two subgraphs,
by reading in the objects only once. Finally, we perform a
relational join between two tables (A;B;D) and (B;D;C)
with B and D being the join columns. In this example,
the join tuple (a1; b1; c1; d1) is obtained from the join of
(a1; b1; d1) and (b1; c1; d1). This is the basic idea of our
approach.

In the next section, we will present our join algorithm,
its I/O management, and the correctness.

Note that that by similar examples, it can be shown that a
trivial application of S3J to multi-way spatial joins does not
work either; that is, it is no longer correct in a multi-way
spatial join that we only need to handle the join within one
bucket in the same level. It is worth to point out that our
graph partition based technique presented in this paper is
also applicable to an application of S3J to multi-way spatial

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’02)
1098-8068/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 06:49 from IEEE Xplore. Restrictions apply.

joins, though it will not be presented in this paper.

3 Graph Partition Based Join Algorithm

In this section, we propose a new multi-way spatial join
algorithm - Two-Phase Partitioning Join (TPPJ). TPPJ con-
tains two partitioning phases, a graph partitioning and a data
partitioning phase. To present our algorithm, the following
notation is needed.

A graph G = (V;E) is star-like if G has at least three
vertices, and in G there is a peak vertex v0 such that every
other vertex is adjacent to v0. For example, the three graphs
in Figure 3 are respectively star-like. A graph consists of
only two vertices is 2-graph; that is, a graph has two vertices
and one edge connecting the two vertices. A set of sub-
graphs fGi = (Vi; Ei) : 1 � i � kg of G = (V;E) covers
G if E = [k

i=1Ei. Suppose that G is a star-like join graph
and v0 is a peak vertex of G, and P is a data partition for
every vertex (data set) in G. We call P compatible with G
and v0 if:

� each object o from the data set v0 chooses only one
bucket to be assigned; and this bucket also contains o.

� each object o from other data sets (vertices) is dupli-
cated to the buckets which intersect o.

A data partition P is compatible with a 2-graph G if each
object from the data sets (vertices) in G is duplicated to the
buckets which intersect the object.

peak peak peak

(b) (c)(a)

Figure 3. star-like graphs

Below is a framework of our spatial multi-way join algo-
rithm TPPJ. It consists of four steps.

Algorithm TPPJ

Step 1: Decompose the join graph G = (V;E) into a set
S = fGi = (Vi; Ei) : 1 � i � kg of subgraphs of G
such that:

� each Gi is either a star-like graph or a 2-graph,
and

� S covers G, and

� for each star-like graph Gi, there is a denoted
peak vertex vi;0 with the property that for each
pair of star-like graphs Gi and Gj , vi;0 and vj;0
are not adjacent, and

� any vertex in a 2-graph is not from those denoted
peak vertices fvi;0 : Gi is star-likeg.

Step 2: Obtain a data partition P for all data sets (vertices)
in G such that P is compatible with every star-like Gi

and its denoted peak vertex vi;0. P is also compatible
with every 2-graph.

Step 3: For each bucket, do joins given by the subgraphs.

Step 4: Suppose that for each subgraph Gi, the join results
obtained from step 3 over all buckets are maintained
in a table denoted by Ti where each column of Ti cor-
responds to a vertex (data set) in Gi, and every tuple
of Ti corresponds to a join result tuple for Gi but con-
sists of only IDs for the corresponding objects. Do the
multi-way equi-join on all Ti such that for each pair of
Ti and Tj with some join columns, they have to per-
form an equi-join as part of the multi-way join. The
relational multi-way join results will be the results of
the spatial multi-way join.

For example, suppose that we have 4 data sets A, B , C,
and D where each data set has only one object respectively
a1, b1, c1, and d1. Assume that the join graph is the one
as depicted in Figure 2(b). Below is an illustration of our
algorithm.

� In step 1, we partition the join graph into two star-like
graphs (A, B, D), and (B, C, D).

� In step two, we partition each data set into two buckets
as depicted in Figure 2(a) such that in bucket 1 has a1,
d1, and b1, and bucket 2 has b1, c1, and d1.

� In Step 3, we do the join for each bucket. In bucket
one, we obtain a tuple (a1; b1; c1) for the star-like
graph induced by (A;B;C) and null for another star-
like graph induced by (B;C;D). In bucket 2, we
obtain a tuple (b1; c1; d1) for (B;D;C) but null for
(A;B;C).

� In step 4, we implement the relational equi-join
between (A;B;C) and (B;C;D) where the join
columns are B and C. The tuple (a1; b1; c1; d1) is
obtained; and it is also the result of spatial join as de-
picted in Figure 2(b).

Figure 4. an example

Note that in an ideal situation, we would prefer to de-
compose the graph into star-like graphs only with the prop-
erties required in Step 1; however, it is not always possible

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’02)
1098-8068/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 06:49 from IEEE Xplore. Restrictions apply.

to do this. For example, the graph G as depicted in Figure 4
cannot be decomposed into a set of star-like subgraphs cov-
ering G such that the peak vertices are not adjacent to each
other. This is the reason why we allow 2-graphs in Step 1.

Step 4 is about processing multi-way relational equi-
joins; and there are many existing techniques in the liter-
ature [11]. In our implementation, we apply a left-deep tree
based hash join algorithm. Below we will detail every step
except step 4. We start with the correctness of TPPJ and
the theoretical reasons about why we put those constraints
in TPPJ.

3.1 Fundamentals of TPPJ

Consider that our TPPJ is a special case of the partition
based join paradigm. In this subsection, we will show that
those constraints in TPPJ are sufficient and necessary. That
is, we are going to show that the necessity of having the con-
straints, as well as the correctness of the algorithm. First,
we show that if a join graph has at least 3 vertices then only
a star-like join graph does not need to be partitioned into
subgraphs.

Theorem 1 Suppose that a spatial join of R1, R2, ..., Rn

forms a star-like join graph G where R1 is a peak vertex
of the graph; and a data partition P is compatible with G

and R1. Then, the union of all local join results from all the
buckets is equal to the join result for G.

Proof: Suppose that there are m buckets, Tj denotes the
local join result set for G in bucket j (1 � j � m),
and T denotes the complete join result set for G. Clearly,
[m
j=1Tj � T . Below we prove T � [n

j=1Tj .
Suppose that 8(r1;x1 ; r2;x2 ; :::; rn;xn) 2 T , Bl is the

bucket containing the rectangle r1;x1 from R1. Then for
2 � i � n, ri;xi must be in Bl as well; this is because
that each ri;xi has to intersect r1;x1 to qualify for a rect-
angle in the join result tuple. Consequently, this n-tuple
(r1;x1 ; r2;x2 ; :::; rn;xn) is in Tl. �

Theorem 1 means that if the algorithm TPPJ is applied
to a star-like join graph then we do not need to implement
the step 1 (graph decomposition) and the step 4 (relational
multi-way join). On the other hand, we can show that only
a star-like graph does not need a graph partition when im-
plementing the partition based join paradigm.

Theorem 2 Suppose that the join graph G of a spatial join
is not star-like. Then, there is data partition P of the data
sets (vertices) in G such that the union of all local join re-
sults from all buckets does not cover the join result for G.

Proof: Since G is not star-like but connected, there must
be 4 vertices, say, A, B, C, and D, such that A is adjacent
to B and D. However, C is not adjacent to A and B is

not adjacent to D. Note that we are not interested in the
relationship between C and B, nor that between C and D.

Suppose that a partition P restricted to A, B, C, and D
is the one as illustrated in Figure 2(a). Further, suppose that
a1, b1, c1, and d1 are respectively from A, B, C, and D,
and their locations are illustrated as those in Figure 2(a).
We assume that a1, b1, and d1 are in bucket 1, while b1, c1,
and d1 are in bucket 2. We also assume that there is one
object from each data set other than A, B, C, or D (if there
are more than 4 data sets) in the join graph intersecting re-
spectively a1, b1, c1, and d1; and also intersects each other.
Consequently, (a1; b1; c1; d1) must be one part of a tuple in
the join result. However, according to a partition-based join
algorithm any tuple containing (a1; b1; c1; d1) cannot be in
the result; this is because (a1; b1; d1) has to be in bucket 1
while (b1; c1; d1) has to be bucket 2. �

In PBSM [15] and Theorem 1, it is already shown that
that if a data partition is compatible with a join graph which
is either a 2-graph or a star-like graph, then we can guaran-
tee the correctness of an application of the partition based
join paradigm. The examples below show that it is neces-
sary to have a compatible data partition.
Example 1. A star-like join graph has three vertices, A, B
and C. Suppose that a, b, and c are the objects respectively
from A, B, and C. The whole space is divided into two
buckets; the data partition and the locations of a, b, and c

are shown in Figure 5(a), where a and b are assigned to
bucket 1, and a and c are assigned to bucket 2. �
Example 2. Suppose that A and B are two adjacent ver-
tices in a join graph G. A and B respectively have only one
object a and b. Assume that the whole space is partitioned
into two buckets. The buckets and the locations of a and b
are shown in Figure 5(b), where a is assigned to bucket 1
and b is assigned to bucket 2. We also assume that every
vertex in G other than A or B has only one object which in-
tersects a and b; and those objects from other vertices also
intersect each other. �

a

b c

a b

bucket 1

bucket 2

(a) (b)

bucket 1 bucket 2

Figure 5. an illustration

Example 1 shows that even for a star-like graph G, if in
a data partition P an object from the peak vertex is not con-
tained by any bucket (therefore, P is not compatible with

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’02)
1098-8068/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 06:49 from IEEE Xplore. Restrictions apply.

G and the peak vertex) then the union of local join results
may lead to some missing hits. In the example, the join re-
sult (a; b; c) cannot be obtained from a union of local join
results in the two buckets even a has been duplicated into
the two buckets.

Example 2 shows that even for a data partition which is
compatible with the peak vertex may still lead to missing
hits if an object from a non-peak vertex is not duplicated to
all the buckets which intersect the object. In the example,
there is actually only one tuple in the join result; however it
will be missed in local joins in both buckets.

Now we show the correctness of the algorithm.

Theorem 3 The algorithm TPPJ is correct; that is, TPPJ
can produce the exact solution for any multi-way spatial
join (G) where every data set is a set of isothetic rectangles.

Proof: Suppose thatG is a join graph, andG is decomposed
into a set of subgraphsGi (1 � i � k) by the step 1 in TPPJ

From theorem 1, it follows that TPPJ can produce cor-
rect join results for every star-like Gi. The results in paper
[15] also implies that our TPPJ can produce the correct join
results for every 2-graph Gi.

Clearly, every tuple t in the join result for G can be de-
composed into k sub-tuples which are respectively a tuple
in a sub-join result (for Gi); and the tuple t can be recov-
ered from those sub-tuples by the relational equi-join. On
the other hand, it can be immediately verified that in step
4, any tuple in the result set of the multi-way relational join
among all sub-join results also a tuple in the result set of
spatial multi-way join (for G). �

Note that it can be immediately verified that the intersec-
tion of any pair of local join result sets from two different
buckets is empty due to the fact that each object from a peak
vertex is assigned to only one bucket.

In the next several subsections, we will show the details
for steps 1, 2, and 3 in TPPJ.

3.2 Graph Partition

In this subsection, we investigate the step 1 in TPPJ -
the graph partitioning problem. We will first formalise one
optimisation problem in the graph partitioning. Then we
will show the complexity of the problem, together with a
heuristic.

Clearly, Step 1 in TPPJ is feasible. A naive way to do
Step 1 is to decompose a join graph into a number of 2-
graphs for each edge. However, such a decomposition may
have many subgraphs. This not only means that we have to
process too many intermediate results but also potentially
increases the computational complexity in Step 4 (relational
multi-way join) of TPPJ. Therefore, we propose to have a
graph decomposition in Step 1 with the minimum number

of subgraphs. The optimisation problem is thus described
below.

Optimal Graph Decomposition Problem (OGDP)
INSTANCE: A connected graph G = (V;E).
QUESTION: Decompose it into a set of subgraphs with the
requirements specified in Step 1 of TPPJ such that the num-
ber of subgraphs is minimised.

Theorem 4 OGDP is NP-hard.

Proof: In this paper, we show only the basic idea of the
proof. The interested readers may refer our full paper [8]
for the detail.

We will transform the vertex cover [4] problem to a spe-
cial case of OGDP. For each graph G in the vertex cover
problem, we attach 2n2 adjacent vertices to each vertex of
G to make an instance G0 of OGDP; for instance, Figure
6 illustrates such a transformation (from (a) to (b)). Then,
we can show that the optimal solution for G0 has to con-
sist of 1) the star-like graphs with the peak vertices which
form a minimum vertex cover for G, and 2) the remaining
uncovered 2-graphs in G0. �

22n
22n

22n

22n

22n

(a) (b)

Figure 6. an transformation from vertex cover
to OGDP

Now, we present a heuristic for solving OGDP. It applies
a greedy heuristic to iteratively choose an available vertex
with the maximum degree. Below is the algorithm.

Step 1 - Algorithm OGDP

Step 1.1: Iteratively do the following (till no such vertex
to choose):

� choose a vertex v0 from V with the maximum
degree in G, which is at least 2, and then

� delete from V all vertices incident to v0, as well
as remove v0, and then

� enter into the next iteration.

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’02)
1098-8068/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 06:49 from IEEE Xplore. Restrictions apply.

Step 1.2: For each chosen vi, form the induced subgraph
Gi of G with the vertex set which consists of vi and all
the adjacent vertices of vi.

Step 1.3: For each edge left, form a 2-graph.

Step 1.4 Return the star-like graphs chosen in Step 1.2 and
the 2-graphs in Step 1.3 (if any) to form a graph parti-
tion of G.

Note that each vertex vi chosen in Step 1.1 is the denoted
vertex which is not adjacent each other, and needs to be
treated specially in the data partitioning phase.

v1 v2

v3 v4 v5 v6 v7

Figure 7. gdp algorithm illustration

For example, regarding the graph in Figure 7 the algo-
rithm will output two star-like graphs respectively induced
by (v1, v3, v4, v5, v6) and (v2, v4, v5, v6, v7), and one 2-
graph (v6, v7). Note that both star-like graphs include edge
v4 and v5. In fact, we have the option of removing the edge
(v4; v5) from one of these two star-like graphs. However,
adding one more edge to a join graph will make the size of
join result smaller. This was why we duplicate (v4; v5) in
both subgraphs.

Note that the algorithm can run in O(n logn) time (n
is the number of vertices) if we sort vertices in G first ac-
cording to their degree values. Moreover, it may be imme-
diately shown that the algorithm can guarantee a detection
of whether or not a graph is star-like. If a graph is star-
like, then the algorithm outputs only one subgraph - the G
itself. However, due to NP-hardness of the problem OGDP,
the algorithm OGDP cannot guarantee the minimality of the
decomposition.

3.3 Data Partition

Suppose that a graph partition has been done in Step 1 of
TPPJ. Assume that S = fGi : 1 � i � kg [fGj : k+1 �
j � qg is a set of subgraphs obtained in Step 1 where for
1 � i � k, Gi is star-like, and for k + 1 � j � q, Gj

is a 2-graph. Moreover, assume that for 1 � i � k, vi;0
is the denoted peak vertex in Gi; that is, every pair of vi;0
and vj;0 are not adjacent. In step 2 we need to partition the
data sets. As mentioned before, a data partition P should be
compatible with every Gi and vi;0 for 1 � i � k, and with
every Gj for k+1 � j � q. That is, find a data partition P
such that:

� for 1 � i � k, every object from vi;0 should be
contained by one bucket in P and is allocated to that
bucket; and

� every object from other data sets (vertices) will be al-
located to the buckets which intersect the object (pos-
sibly with some duplications).

We use a similar idea as that in [10] to partition the data
sets. Our algorithm is described below.

Step 2 - Data Partitioning

Step 2.1: Obtain an initial partition withm rectangle buck-
ets.

Step 2.2: Allocate each object r from every vi;0 for 1 �
i � n in the following way:

� In case if there is a bucket containing r, allocate
r to this bucket.

� If there is no bucket containing r, then get all
buckets which intersects r. Then choose the one
from those buckets to expand to contain r such
that the resultant area of the new bucket after
an expansion is minimum. Assign r to this new
bucket; and use the new bucket to replace the old
bucket and remove any other buckets which are
contained by the new bucket.

Step 2.3: Assign each object from the other vertices to the
buckets intersecting the object.

In data partition, we manage I/O as follows. We allocate
one page for each bucket. Once a page is full, we write it
back to the hard disk. To distinguish objects from different
data sets, we partition data sets one by one; and the denoted
peak vertices vi;0 start before the other vertices.

3.4 Join and Partitioning Skew

In Step 3, we execute local joins for the sub-join graphs
bucket by bucket. To save I/O costs, in step 3 the data in
each bucket will be read in once only into the main mem-
ory to simultaneously execute the sub-joins. In our algo-
rithm TPPJ, we implemented a variation of dynamic inter-
val tree based plane-sweeping line technique [3, 19] to do
local joins in each bucket.

While partition data, we can roughly estimate the small-
est number of buckets we should have in order to make the
data in each bucket fit in memory. Suppose the data size of
each data set Ri is denoted by jjRijj where Ri is a set of
rectangles and their IDs, k is the number of subgraphs, � is
a page size, and M is the available memory size. Then, we

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’02)
1098-8068/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 06:49 from IEEE Xplore. Restrictions apply.

compute the minimum number m of buckets by the follow-
ing formula:

m = d

Pn

i=1 jjRijj

M � k�
e (1)

As data objects may be duplicated into several buckets,
a conservative way is to double the figure calculated from
(1). A partition skew may still occur; that is, one bucket
may have extremely large number of buckets. Though our
current implementation of the algorithm does not incorpo-
rate any of partition skew resolution techniques, we feel that
the technique of “sampling the data sets to get a good ini-
tial partition” [10] will be a good choice. It is possible that
the partition skew may still exist after using this resolution
technique. Consequently, the data in one bucket may not
entirely fit in the memory. If this occurs, then the technique
of dynamically repartitioning the overflow bucket [15] will
be our next choice.

4 Experiment Results

We implemented our algorithm TPPJ on a PENTIUM
III/700 running Linux 2.4.7 with 256 main memory and
12GB local disk access. We examined the efficiency and
scalability of our algorithm against different data densities,
different data sizes, different graph sizes, different graph
densities, and different bucket numbers.

In our initial experiment, we down-loaded the two group
of data sets from TIGER/LINE file [21], as illustrated in
Figures 8 and 9. The 10 data sets in Figure 8 are the road
segment and hydrograph data of different counties from
Washington state, while the 10 data sets in Figure 9 are the
road segment from California State. The data sets from CA
have more objects but less density. Note that to implement
joins, the data sets from different counties are mapped to
the same center by a translation.

County (WA) #obj density County (WA) #obj density
A: Chelan 14701 0.13 F: Lewis 18440 0.24
B: Clark 11062 0.14 G: Skagit 12264 0.18
C: Cowlitz 16395 0.20 H: Stevens 20193 0.17
D: Grays Harbor 13811 0.20 I: Thurston 11099 0.10
E: Kittitas 15761 0.16 J: Whatcom 11131 0.15

Figure 8. 10 Counties from Washington

County (CA) #obj density County (CA) #obj density
A: Alameda 53490 0.10 F: Orange 108919 0.10
B: Contra Costa 44774 0.10 G: Riverside 114186 0.08
C: Fresno 66637 0.04 H: Sacramento 53466 0.07
D: Kern 120878 0.11 I: San Diego 123093 0.10
E: Monterey 39150 0.08 J: Santa Barbara 32493 0.06

Figure 9. 10 Counties from California State

Our experiment was based on 4 groups of query graphs
as depicted in Figure 10. The graphs in Group 1 are very
sparse. The graphs in Group 2 have a medium density. The
graphs in Group 3 are complete bipartite graphs - the graphs
with a high density, while the graphs in Group 4 are the
complete graphs - graphs with the highest density.

casse 1.4 case 1.5case 1.3case 1.2case 1.1

A

C

A

B
C

D

A

B

C D E

F

A

B

C D E F

G

H A

B

C

D
E

F

G

H

I
J

A

C
D

A

B

C

D

E

F

A

B

C

D E

F

G

H A

B

C

D

case 4.3case 4.1 case 4.2

case 2.2case 2.1 case 2.3 case 2.4

E
F

G

H

IJ

case 3.1 case 3.4case 3.3case 3.2

A

BB D

CA C E

D F

A C E G

B D HF

A C E I

B D F H J

G

A

B C

B

B

A

B

C

D

A

B

C

D
E

F

Group 1:

Group 2:

Group 4:

Group 3:

Figure 10. various query graphs

We also experimented the correlation between the num-
ber of buckets and the data sizes. As the number of buckets
given in formula (1) provides only the basic requirement,
there is a trade-off between the data partitioning overhead
and local join costs. We implement the algorithm for 5
different bucket sizes, 256, 1024, 2304, 4096, and 5625.
For each query graph, the average number of objects takes
15; 000, 30; 000, or more than 60; 000. The average num-
ber of objects per set in the complete WA data in Figure
8 is about 15; 000; and thus they are used in our experi-
ment for the case of average 15; 000 objects per data set.
Figure 12 shows the experiment results. We then randomly
choose 30; 000 objects respectively from each CA data set;
the experiment results are depicted in Figure 13 Finally, We
use the first six complete CA data sets to implement TPPJ
against the query graphs in group 4 where the average num-
ber of objects per data set is more than 60; 000. For each
query graph, the implementation of TPPJ has therefore done
for each combination of an average data size and a bucket
number.

From the experiment results, we can see a clear corre-
lation between average data size and the number of buck-
ets; that is, along with an increment of the data size, we
should increase the number of buckets to achieve a fast re-
sponse. The experiment results also suggest that our algo-
rithm is quite scalable regarding the data size. An incre-
ment of query graph density does not seem to increase the
join costs. Note that we did not provide experiment results
against the situations when the number of buckets is 256 but

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’02)
1098-8068/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 06:49 from IEEE Xplore. Restrictions apply.

the average number of data objects in each data set is at least
30; 000; this is because the computation costs of using 256
buckets for large data volume are very high and we would
like to concentrate on comparable costs.

5 Conclusion and Remarks

In this paper, we studied the problem of efficiently pro-
cessing multi-way spatial join without presence of spatial
index. We developed a novel graph partition based join al-
gorithm TPPJ. The algorithm TPPJ involves a two-phase
partitioning technique. Firstly, it divides the join graph into
a set of subgraphs; and secondly it partitions the data space.
Then in TPPJ, we run local joins in each bucket by reading
data only once. Finally, the sub-join results against the sub-
graphs are joined together by a relational multi-way join.

In TPPJ, we also investigated a novel optimisation prob-
lem of graph partitioning. Our results include the complex-
ity of the problem, as well as an approximate algorithm.
Note that our graph partitioning paradigm may also be a
necessary pre-process for applying S3J to multi-way spatial
joins. As one of our future work, we would like to imple-
ment this idea and compare it with TPPJ. Another future
work is to investigate the situation where the data sets are
partially indexed; that is, some data sets are indexed while
the others are not.

References

[1] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, J.
S. Vitter, “Scalable Sweeping-Based Spatial Join”,
VLDB’98, 1998.

[2] T. Brinkhoff, H. Kriegel, B. Seeger, “Efficient Pro-
cessing of Spatial Joins Using R-trees”, ACM SIG-
MOD’93, 1993.

[3] T.H. Cormen, C.E. Leiserson, and R. L. Rivest, Intro-
duction to Algorithms, MIT press, 1990.

[4] M.R. Garey and D.S. Johnson, Computers and In-
tractability: a guide to the theory of the NP-
Completeness, Freeman, New York, 1979.

[5] A, Guttman. “R Trees: A Dynamic Index Structure
For Spatial Searching”, ACM SIGMOD’84, 1984.

[6] G. R. Hjaltason and H. Samet, “Incremental Distance
Join Algorithms for Spatial Databases”, SIGMOD’98,
237-248, 1998.

[7] N. Koudas, K. Sevcik, “Size Separation Spatial Join”,
ACM SIGMOD’97, 1997.

[8] X. Lin, H.X. Lu, and Q. Zhang, “Graph Partition
Based Multi-Way Spatial Joins”, full paper, 2001.

[9] M.L. Lo and C. V. Ravishankar, “Spatial Joins Using
Seeded Trees”, ACM SIGMOD’94, 1994.

[10] M.L. Lo and C.V. Ravishankar, “Spatial Hash Joins”,
ACM SIGMOD’96, 1996.

[11] P. Mishra and M.H. Eich. “Join processing in rela-
tional database”, ACM Computing Surveys, 24(1):64-
113, March 1992.

[12] N. Mamoulis, D. Papadias, “Integration of Spatial Join
Algorithms for Processing Multiple Inputs”, ACM
SIGMOD’99, 1999.

[13] J. Orenstein, “Spatial Query Processing in an object-
Oriented Database System”, ACM SIGMOD’86, 326-
336, 1986.

[14] J. Orenstein, “A comparison of spatial query process-
ing techniques for native and parameter spaces”, ACM
SIGMOD’90, 343-352, 1990.

[15] J.M Patel, D.J. DeWitt, “Partition Based Spatial-
Merge Join”, ACM SIGMOD’96, 1996.

[16] D. Papadias, N. Mamoulis, and B. Delis, “Algorithms
for Querying by Spatial Structure”, VLDB’98, 1998.

[17] D. Papadias, N. Mamoulis, and Y. Theodoridis, “Pro-
cessing and Optimisation of Multi-way Spatial Joins
Using R-trees”, ACM PODS’99, 1999.

[18] H. Park, G. Cha, and C. Chung, “Multi-way Spatial
Joins Using R-Trees: Methodology and Performance
Evaluation”, SSD’99, LNCS 1651, Springer-Verlag,
229-250, 1999.

[19] F. Preparata and M. Shamos, Computational Geome-
try, Springer-Verlag, 1988.

[20] K. C. Sevcik and N. Koudas, “Filter Trees for Man-
aging Spatial Over a Range of Size Granularities”,
VLDB’96, 16-27, 1996.

[21] “Tiger/Line files (Redestricting Census) (tm). 2000”,
Technical Report, U.S. Bureau of the Census, 2000.

[22] H. Zhu, J. Su, and O. Ibarra, “On Multi-Way Spa-
tial Joins with Direction Predicates, SSTD’01, LLNCS
2121, Springer-Verlag, 217-235, 2001.

Figure 11. average more than 60,000 objects
per data set

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’02)
1098-8068/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 06:49 from IEEE Xplore. Restrictions apply.

Figure 12. average 15,000 objects per data set

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’02)
1098-8068/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 06:49 from IEEE Xplore. Restrictions apply.

