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Abstract. Large amount of uncertain data is inherent in many novel
and important applications such as sensor data analysis and mobile data
management. A probabilistic threshold range aggregate (PTRA) query
retrieves summarized information about the uncertain objects satisfying
a range query, with respect to a given probability threshold. This paper
is the first one to address this important type of query. We develop a new
index structure aU-tree and propose an exact querying algorithm based
on aU-tree. For the pursue of efficiency, two techniques SingleSample
and DoubleSample are developed. Both techniques provide approximate
answers to a PTRA query with accuracy guarantee. Experimental study
demonstrates the efficiency and effectiveness of our proposed methods.

1 Introduction

Many emerging important applications involve dealing with uncertain data, such
as data integration, sensor data analysis, market surveillance, trends prediction,
mobile data management, etc. Uncertainty is inherent in such data due to vari-
ous factors like randomness or incompleteness of data, limitations of equipment
and delay or loss in data transfer. Extensive research effort has been given to
model and query uncertain data recently. Research directions include modeling
uncertainty [16], query evaluation [2], indexing [18], top-k queries [8], skyline
queries [15], clustering and Mining [10], etc. However, though range aggregate
query on uncertain data is very important in practice, this problem remains
unexplored.

A range aggregate query (RA query) on certain data returns summarized
information about objects satisfying a given query range, such as the total num-
ber of qualified objects [19]. This type of query is important since users may be
interested only in aggregate information instead of specific IDs. For instance, to
monitor traffic volume of a crossroad A in rush hours, query “how many vehicles
pass A from 8AM to 9AM today” is of more interest than “which vehicles pass
A from 8AM to 9AM today”. aR-tree [13] is the most popular index structure
to answer RA query on spatial space.

While many sophisticated techniques have been developed to answer RA
query over certain data [19], the counter problem of RA query over uncertain
data has not attracted much research attention. Modeling and answering RA



query over uncertain data require comprehensive analysis of probabilities, as
shown in Figure 1. Assume we still use aR-tree to index the uncertain objects.
Ni (1 ≤ i ≤ 3) represents nodes in aR-tree and Uj (1 ≤ j ≤ 9) represents
uncertain objects. Each uncertain object contains a set of uncertain instances.
A probabilistic threshold range query q fully covers node N2 and intersects with
node N3. After accessing node N3, only part of the instances in uncertain object
U7 is in the query range of q. Clearly in this case we have to retrieve the instances
of U7 to compute the probability for it to satisfy q. If this probability is no less
than a probability threshold, then U7 will be counted in the reulst otherwise it
will be excluded from final result. Computing such probability is time consuming
when the number of uncertain instances from uncertain objects is large.
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Fig. 1. Uncertain Objects

Challenges and Contributions. Aggregate information retrieval on uncertain
objects requires detailed analysis of appearance probabilities from uncertain in-
stances (discrete case) or probability density function (PDF) (continuous case).
Naively computing the probability for every uncertain object to satisfy a PTRA
query can be very time consuming. Our contributions in this paper are:

– We formally define PTRA query over uncertain objects.

– A novel index structure, aU -tree is developed to support exactly execut
PTRA queries.

– Two techniques, SingleSample and DoubleSample are proposed to approx-
imately answer PTRA queries with accuracy guarantee.

– An extensive experimental study over real and synthetic datasets shows the
efficiency and effectiveness of our proposed techniques.

Organization of the paper. The rest of the paper is organized as follows. Sec-
tion 2 models the problem and introduces preliminaries. Exact and approximate
query processing techniques are presented in Section 3 and Section 4, respec-
tively. In Section 5, the efficiency and effectiveness of our proposed techniques
are experimentally studied. This is followed by related work in Section 6. We
conclude our paper in section 7.



2 Background Information

In this section, we give a formal definition of PTRA query for discrete cases.
The extension of problem definition and techniques to continuous cases will be
discussed in the end of this paper in Section 7.

2.1 Problem Statement

A PTRA query q is related with a d-dimensional query range rq and a probabil-
ity threshold pq. In discrete cases, an uncertain object U is represented by a set
of uncertain instances {u1, ..., ul}. Each instance ui is associated with a member-

ship probability P (ui) and
∑l

i=1
P (ui) = 1. Let Papp(U, q) be the appearance

probability that object U satisfies a query with range rq, then

Papp(U, q) =
∑

u∈U,u`rq

P (u) (1)

where u ` rq denotes uncertain instance u is inside rq.
Given a set of uncertain objects U , a PTRA query q returns the number of

uncertain objects in U with appearance probability no less than pq:

|{U ∈ U|Papp(U, q) ≥ pq}| (2)

Example 1. As the example illustrated in Figure 1, to process PTRA query q,
we calculate the appearance probability of P (U7, q) using the formulate 1. If
P (U7, q) ≥ pq, then the result for q is 5; otherwise, the result is 4.

2.2 Preliminaries

Possible World Semantics. Given a set of uncertain objects U = {U1, · · · , Un},
a possible world W = {u1, · · · , un} is a set of n instances - one instance per uncer-
tain object. The probability of W to appear is P (W ) =

∏n
i=1

P (ui). Let Ω be the
set of all possible worlds; that is, Ω = U1×U2 · · ·×Un. Then,

∑
W∈Ω P (W ) = 1.

Namely, Ω enumerates all the possibilities of U .
aR-tree based Range Query Processing. aR-tree is a modification of R-
tree [7] by storing the number of objects in each entry. Figure 2 illustrates the
structure of 2-level aR-tree. Besides R-tree structure information, entries in root
node also keep the number of objects contained, such as entry e1 ∈ root contains
3 objects. The dashed rectangle is the range of a RA query q. As shown in Fig-
ure 2, leaf node N3 is fully covered by q, so N3 will not be accessed but adding
3 to the final result. Node N1 does not need to be accessed either since it does
not intersect with q. The only accessed node is N2 and object O5 is detected to
satisfy q. So the final result is 4.
U-tree. One of the most popular index structure for multi-dimensional uncer-
tain data with arbitrary PDFs is U-tree [18], which is built based on R*-tree



Y

X

N1: 3

N2: 3

N3: 3

o1

o2

o3

o4

o5

o6

o7

o8

o9

RA query q

e1: 3 e2: 3 e3: 3

O1 O2 O3 O4 O5 O6 O7 O8 O9

N1 N2 N3

Fig. 2. Certain Objects Indexed by aR-tree

U.ur

l1- l1+

l2-

l2+

Range query q1

Range query q2������
Fig. 3. Pruning/Validating in U-tree

with a set of pruning and validating rules to support range queries over uncer-
tain data. In Figure 3, polygon U.ur is the uncertain region of 2-dimensional
object U . For a given probability p = 0.2, in the horizontal dimension, two lines
are calculated. U has probability p to occur on the left side of line l1−, also
probability p to occur on the right side of line l1+. In the vertical dimension,
two such lines are also computed according to the PDF of U . The intersection of
these four lines is called probabilistically constrained regions (PCRs). Suppose
probability threshold of range query q1 is 0.8, U can be validated without access-
ing the instances of U since it fully contains PCR(p = 0.2). On the other hand,
suppose probability threshold of range query q2 is 0.2, U will be pruned from
the result of q2 because q2 does not intersect with PCR(p = 0.2). To trade-off
between pruning/validating power and space cost, only a set of m probability
values are chosen as representatives to compute their PCRs. These m PCRs
are further bounded from the “outside” and from “inside”, called o.cfbout and
o.cfbin, respectively. A U-tree is built by organizing the cfbout and cfbin of un-
certain objects.
Min-Skew Partitioning. Min-Skew partitioning skill was proposed by [1]
aiming at dividing the data space into a number of buckets according to the
spatial distribution of input data points. Two metrics are proposed in [1] to cap-
ture the underlying feature of the input data distribution: spatial density of a
point representing the number of rectangles that include the point; spatial-skew
of a bucket which is the statistical variance of the spatial densities of all points



grouped in that bucket. The partitioning procedure is: use a uniform grid of re-
gions with the spatial density in each grid to represent the spatial density of the
input data. The process starts from a single bucket including the whole space.
Split is processed along the boundary of the grid which will lead to the largest re-
duce of spatial skewness. The iteration stops when the number of buckets meets
users’ specification.

3 Exact Query Processing

In this section, we firstly present aU-tree which is modified based on U-tree by
integrating aggregate information; this is followed by the exact query processing
algorithm based on aU-tree.

3.1 aU-tree

Similar with the adjustment of aR-tree to R-tree for the RA query over certain
data, aU-tree is modified on U-tree by embedding aggregate information in every
entry. Updating the aggregate information for aU-tree is similar as for aR-tree:
whenever inserting or deleting an object, the aggregate information on entries
along the corresponding insertion/deletion path is updated as well.

Specifically, each intermediate entry in an aU-tree keeps the following infor-
mation: a pointer referencing its child node; two d-dimensional rectangles which
are used for pruning as introduced in Section 2; agg which is the number of
uncertain objects indexed under the subtree rooted at this intermediate entry.
Each leaf entry records the following: conservative functional boxes for uncertain
object U for both pruning and validating as introduced in Section 2; MBR of the
uncertain region of U ; uncertain region U.ur; and a set of instances to describe
the probability distribution. For a leaf entry, its agg value is assigned to 1.

3.2 Querying Algorithm

With aU-tree, if the intermediate entry is totally covered by the query range, the
aggregate result for the subtree underneath can be retrieved immediately without
accessing every uncertain object in it. However, given a probability threshold,
U-tree can only be used to prune a subtree in the intermediate level but not
validate a subtree unless the query range fully covers it. In such cases, we still
have to access the children of the intermediate entry. Algorithm 1 illustrates the
steps of exact results retrieval based on aU-tree.

Till here, to process a PTRA query, we need to reach the leaf level if an
intermediate entry can not be either pruned or fully covered by the query range.
Then on the leaf level, the pruning/validating rules of U-tree are applied on
individual uncertain object. If an object can not be pruned or validated, its
exact appearance probability in rq will be computed. Two aspects impede the
efficiency of the exact algorithm. Firstly, validating on higher levels in aU-tree
is not possible and the pruning power is not powerful enough especially when



Algorithm 1 Exact Query Processing

INPUT: root node N of aU-tree;
probabilistic query q with probability threshold pq; query range rq;
OUTPUT: result:number of objects inside rq with probability ≥ pq;

Description:

1: if rq fully covers N then

2: result += N.agg;
3: if rq partially overlaps with N then

4: if N is an intermediate node then

5: if N can not be pruned w.r.t pq then

6: for each child child of N do

7: call Algorithm 1 with child and q as input;
8: if N is a leaf node then

9: apply PCR technique of U-tree on N
10: if N is validated then

11: result += 1;
12: if N is neither pruned nor validated then

13: compute the exact probability of Papp(N, q);
14: if Papp(N, q) ≥ pq then

15: result += 1;
16: return result;

index space is limited; Secondly, computing the appearance probability of an
uncertain object is time expensive when the number of instances is large. In
the next section, we develop approximate query processing algorithms which are
both efficient in time and effective in accuracy.

4 Approximate Query Processing

For a set of uncertain objects U = {U1, ..., Un}, a possible world consists of n
sampled instances – one instance from one uncertain object. Suppose the number
of uncertain instance in an uncertain object Ui is |Ui| (1 ≤ i ≤ n), the total
number of possible worlds is Πn

i=1|Ui|. This number can be huge when n is large
and each uncertain object is represented by a large number of instances. The
basic idea of our approximate algorithm is to sample all possible worlds using a
small number m of possible worlds Si (1 ≤ i ≤ m) where each Si also contains n
instances – one per object. Intuitively, for an uncertain object U , if its sampled
instance is inside rq in m′ out of m corresponding sampled possible worlds,
Papp(U, q) can be approximated by m′/m. If m′/m ≥ pq, then U is considered a
result contributed to q.

We consider two scenarios in this section. The first one is for the case where
the number of uncertain objects is relatively small, we sample the possible worlds
only. Techniques developed are called SingleSample. The second one is deployed
when the number of uncertain objects is also large. It will become too time-
consuming to get an approximate answer with decent accuracy performance. In
this case, in the first step we sample a small number of uncertain objects Us, in
the second step sampling possible worlds is applied on Us. The technique is thus
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Fig. 4. aU-tree indexing uncertain data.

named DoubleSample. Query processing algorithms and accuracy guarantee are
presented for both techniques.

4.1 SingleSample

In this section, an aU-tree is built on the MBR of sampling instances from
all uncertain objects, as illustrated in Figure 4. In Figure 4, each uncertain
object is represented using 5 sampling instances. Si,j represents the sampling
instance from the i-th sample worlds (1 ≤ i ≤ m) and the j-th uncertain object
(1 ≤ j ≤ n).

Approximate Query Algorithm Theoretically, for each sampled possible
world Si (1 ≤ i ≤ m), we process a PTRA query and record for every uncertain
object Uj (1 ≤ j ≤ n) whose sample instance Si,j is inside rq. Noticing the
fact that Si,j is inside rq is not affected by the sample instances from the other
possible worlds or other uncertain objects, a more efficient query algorithm is
developed in this section. As shown in Figure 4, two sampled instances from
U1 are inside the query region, so Papp(U1, q) is approximated by 2/3; similarly
for U2 and U3, the approximated probability is 2/3 and 1/3, respectively. If the
given probability threshold is 1/2, then result for this PTRA is 2 (U1 and U2).
Algorithm detail is described in Algorithm 2.

Accuracy Guarantee Theorem 1 presents the accuracy guarantee for Algo-
rithm 2.

Theorem 1. Suppose s1 = 1

ε2
1

logδ−1
1 sampling instances are drawn for each

uncertain object, then the following inequation holds with probability at least 1 -
δ1,

|PE − P | ≤ ε1 (3)

where P is the actual appearance probability of the uncertain object and PE is
the probability computed using Algorithm 2.

The theorem can be proved using the Chernoff Hoeffding bound. Proof details
are omitted due to space limitation.



Algorithm 2 Query Processing for SingleSample

INPUT: aU-tree indexing the MBR of all uncertain objects;
probabilistic query q with probability threshold pq; query range rq;
OUTPUT: result:number of objects inside rq with probability ≥ pq;

Description:

1: sample m possible worlds from all possible worlds;
2: apply pruning/validating techniques on aU-tree as in Algorithm 1;
3: if a node N is validated then

4: result += N.agg;
5: for every uncertain object Ui that can not be pruned/validated do

6: record m′ as number of sampled instance inside rq;
7: if m′/m ≥ pq then

8: result += 1;
9: return result;

4.2 DoubleSample

When the number of uncertain objects is huge, the aU-tree in Algorithm 2 may
take a large space which prevents the range query from efficiently processing. In
this case, we propose a solution to get a sample set of uncertain objects Us first,
and then sample the possible worlds based on Us.
Sample Uncertain Objects A naive way to select uncertain objects is to
use uniform sampling; however, this may lead to lose of spatial distribution of
uncertain objects. Instead, we utilize Min-Skew partitioning technique to select
K nodes from the aU-tree indexing the MBR of uncertain objects. K can be a
user-specific parameter to meet with the space requirements. We call the selected
K nodes best K nodes (BKNs).

The criteria to select BKNs is that the sum of the spatial skewness of the K
subtrees is as small as possible meanwhile cover all uncertain objects. To do this,
we propose an efficient heuristic. In the first step, identify from aU-tree a level L
which has intermediate nodes less than K and the number of intermediate nodes
on its child level L− 1 is larger than K. (Note that if there exists a level L with
exactly K nodes then we simply choose them as the K nodes. ) Otherwise, each
node Ni on level L is split into Gi buckets, making

∑r
i=1

Gi = K, where r is the
number of nodes on level L. Gi (1 ≤ i ≤ r) is computed according to the spatial
skewness of each node. For two nodes Ni and Nj , Gi : Gj = Ski : Skj , where Sk
represents the skewness of a node. After getting the BKNs, we perform uniform
sampling on each selected node and obtain the sampled objects Us.

Sampling possible worlds is processed the same as in SingleSample technique.
The difference is we form sample worlds based on Us instead of U .
Approximate Query Algorithm

Based on Us, we process Algorithm 2 which returns result. Since we apply sam-
pling twice in DoubleSample, the final result for DoubleSample is therefore:

result(DoubleSample) = result ∗
|U|

|Us|
(4)

Accuracy Guarantee

The following theorem states the accuracy guarantee of DoubleSample technique.



Theorem 2. Let A be number of objects with appearance probability Px ≥ pq.
Suppose s2 = 1−δ1

ε2
2

log δ−1
2 sampling objects are drawn. s1 sampled instances are

generated for each sampled uncertain object. Assuming the appearance probability
of each uncertain object follows uniform distribution regarding the query, then
the following inequality holds with probability at least 1 - δ2:

|AE − A| ≤ (ε1 + ε2) ∗ N (5)

where AE is the estimated value of A and N is the total number of uncertain
objects. s1, ε1 and δ1 are the same as in Theorem 1.

This theorem can also be proved using Chernoff Hoeffding bound. Limited by
space, proof details are omitted.

5 Experimental Analysis

All algorithms are implemented in C++. Experiments are run on PCs with Intel
P4 2.8GHz CPU and 2G memory under Debian Linux. The page size is fixed to
8192 bytes.

Two real spatial data sets are used in this section. LB with 53K points and
CA with 62K points, presenting locations in the Long Beach country and Cali-
fornia. Data domain along each dimension is [0, 10000]. An data U is generated
with uncertainty region as a circle with radius radU 250. For each uncertain ob-
ject U , 10000 instances are generated and the spatial distribution follows either
uniform or Constrained-Gaussian (Con-Gau) distribution. A synthetic Aircraft
data set consisting of 53K points is also generated to investigate the perfor-
mance in 3D space with instances in Con-Gau distribution. All data sets are
downloaded from http://www.cse.cuhk.edu.hk/ taoyf/paper/tods07-utree.html.

The query region rq is a square/cube with radius radq ranging from 500 to
1500. The probabilistic threshold pq is ranged from 0.3 to 0.9.

For approximate querying algorithms, the number of sampling instances
varies among [10, 1000, 1000]. We denote BKNs as the number of buckets in
DoubleSample technique. BKNs ranges from 5 to 30 and each bucket keeps 250
sampled objects. The default value for sampling instances is 1000 and for BKNs
is 30.

5.1 Efficiency Evaluation

Figure 5 illustrates the query efficiency of aU-tree and DoubleSample technique
in terms of CPU cost, I/O cost and total cost. DoubleSample techniques outper-
forms aU-tree significantly. As BKNs increases, the query time increases too
since more uncertain objects are sampled to form Us.

5.2 Accuracy Evaluation

Accuracy is defined as relative error of approximate answer w.r.t. exact answer
by the formula: accuracy = |

Rex−Rap

Rex

|, where Rex and Rap present the exact



 0

 20

 40

 60

 80

 100

 120

LB Aircraft

Q
ue

ry
 T

im
e(

se
c)

aUtree BKNs5 BKNs15 BKNs30

(a) CPU time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

LB Aircraft

nu
m

be
r 

of
 n

od
e 

ac
ce

ss
es

aUtree BKNs5 BKNs15 BKNs30

(b) IO cost.

 50

 100

 150

 200

 250

 300

 350

 400

LB Aircraft

Q
ue

ry
 T

im
e(

se
c)

aUtree BKNs5 BKNs15 BKNs30

(c) Total cost.

Fig. 5. Efficiency Evaluation.
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Fig. 6. Accuracy Evaluation for singleSample.

result and approximate result, respectively. We use 0.4 as a default value for pq.
We evaluate the accuracy for SingleSample in Figure 6. As expected, accuracy
increases as the sample size gets larger.

In Figure 7, we evaluate the accuracy of DoubleSample. We fix the sample
instance size at 1000 and vary BKNs. Clearly, if more BKNs are deployed,
higher accuracy will be obtained. This trend is obvious for 2D dataset LB and
less obvious for 3D datasets. We compare the accuracy of SingleSample and Dou-
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bleSample in Figure 8. As shown, in both 2D and 3D datasets, SingleSample is
more accurate than DoubleSample. Both techniques are not affected significantly
by pq values.
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6 Related Work

Considerable research effort has been put into modeling and managing uncertain
data in recent years due to many emerging applications. Sarma et al [16] mod-
els uncertain data using possible world semantics and a prototype of uncertain
data management system, Trio, is developed by the Stanford Info Lab [12].
General issues in modelling and managing uncertain data are addressed by Dey
and Sarkar in [4], Lee in [11], and Antova, Koch, and Olteanu in [6]. Querying
uncertain data by the probabilistic paradigm has been investigated by Dalvi and
Suciu in [2] and Sen and Deshpande in [17]. Very recently Dalvi and Suciu [3]
have shown that the problem of query evaluation over probabilistic databases is
either PTIME or #P -complete.

A number of problems in querying uncertain data have also been studied,
such as indexing [18], similarity join [5], nearest neighbor query [9], skyline
query [15], clustering [10], etc. Relatively complete and detailed study of existing
techniques on managing uncertainty can be found in [14] and [20].

Range aggregate query over certain data is thoroughly studied in [19]. Range
query over uncertain data [18] is the one that is the mostly related with our
work, as we introduced in Section 2. To the best of our knowledge, this paper is
the first one to address range aggregate query over uncertain data.

7 Conclusion

An important problem, probabilistic threshold range aggregate query over un-
certain data is investigated in this paper. After formally defining this problem,
we propose a novel index structure aU-tree to retrieve exact answers to PTRA
queries. To trade-off between efficiency and accuracy, SingleSample and Dou-
bleSample methods are developed to approximately answer PTRA queries. Our
experimental study confirms the efficiency and effectiveness of the techniques we
proposed.

Our techniques proposed can be extended to continuous cases directly. Based
on the continuous probability density functions of uncertain objects, Monte Carlo
sampling technique can be utilized and obtain a set of uncertain instances for



each object. Thus both exact and approximate querying algorithms can be ap-
plied.
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