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Probabilistic Reverse Nearest Neighbor
Queries on Uncertain Data
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Abstract —Uncertain data is inherent in various important applications and reverse nearest neighbor (RNN) query is an important
query type for many applications. While many different types of queries have been studied on uncertain data, there is no previous
work on answering RNN queries on uncertain data. In this paper, we formalize probabilistic reverse nearest neighbor query that is to
retrieve the objects from the uncertain data that have higher probability than a given threshold to be the RNN of an uncertain query
object. We develop an efficient algorithm based on various novel pruning approaches that solves the probabilistic RNN queries on
multidimensional uncertain data. The experimental results demonstrate that our algorithm is even more efficient than a sampling-based
approximate algorithm for most of the cases and is highly scalable.

Index Terms —Query Processing, Reverse Nearest Neighbor Queries, Uncertain Data, Spatial Data.
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1 INTRODUCTION two blocks. However, the results provided by the converation

G IVEN a set of data point& and a query poing, a reverse gueries may not be meaningful. There are two major limita-

nearest neighbor query is to find every pgint P such tions for conventiqnal querie; on such data_ )
that dist(p, q) < dist(p,p') for everyp' € (P — p). In this 1) The conventional queries do not consider the locations
paper, we formalize and study probabilistic RNN query th&Qf houses within each reS|dgnt|aI bloqk. ThIS. affects dqyali
is to find the probable reverse nearest neighbors on uneeri@ the reported results. For instance, if the distance betwe
data with probability higher than a given threshold. centroids of two residential blocks is used as distancetiomc
Uncertain data is inherent in many important applicatiof§€ closest block ofi is B (in other words the person living
such as sensor databases, moving object databases, mafkét IS not the RNN of someone living irQ). However, if
analysis, and quantitative economic research. In these Hbe locations of houses within each block are considered, we
plications, the exact values of data might be unknown dd{@d that for most of the houses i, the houses i are

to limitation of measuring equipment, delayed data updat&doser than the houses ii. For example, the distance of

incompleteness, or data anonymization to preserve privacyl© €Very house irQ is less that its distance to any house in
. Similarly, the distance ofi; to every house inQ is less

Usually an uncertain object is represented in two Way§ e ; e b
1) using a probability density function [4], [6] (continueu than its distance té;. Which means, a person I|\_/|r_19 m has
case) and 2) using all possible instances [22], [17] eafffh chances to be the RNN of some person livingjn
with an assigned probability (discrete case). In this paper ~ 2) Conventional queries do not report the probability of
investigate discrete cases. objects to be the answer (an object is _elt.her a RNN or not

Probabilistic RNN queries have many applications. Consid@ RNN). On the other hand, probabilistic reverse nearest
the example in Fig. 1, where three residential blogks3 and nelghbgr queries prqwde more information by including the
Q are shown. The houses within each block are shown as snffbability of an object to be the answer. For example, a
circles. The centroid of each residential block is shown asPiobabilistic reverse nearest neighbor query reports tet
hollow triangle. For privacy reasons, we may only know therobability of a person living in blocki to become the RNN
residential blocks in which the people live (or zipcode) biftf @ person living in@ is 0.75 according to the possible
we do not have any information about the exact addresses/{¥f'd semantics (see example 1). This type of results aremor
their houses. We can assign some probability to each pessffiéaningful and interesting.
location of a person in his residential block. e.g; the exact Probabilistic RNN queries have applications in privacy
location of a person living iM is a; with 0.5 probability. preserving location-based services where the exact tcati

Conventional queries on these residential blocks may udgevery user is obfuscated into a cloaked spatial regioh [16

reverse nearest neighbors. We can model this problem to
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trends in stock markets. Each stock has many deals. A deal and the probability threshold. Although in this paper, we
(transaction) is recorded by the price (per share) and the focus ondiscretecase where each object is represented by
volume (number of shares). For a given staglkclients may some possible probable instances, our pruning rules can
be interested in finding all other stocks that have tradiagds be applied to thecontinuouscase where each uncertain
more similar tos than others. In such application, we can treat  object is represented by a probability density function.
each stock as an uncertain object and its deals as its uimcerta« To better understand performance of our proposed ap-
instances. There are a number of other applications for the proach, we devise a baseline exact algorithm and a
queries that consider the proximity of uncertain objecfs [4  sampling-based approximate algorithm. Experiment re-
[6], [14] and the applications of RNNs on uncertain objects sults on synthetic and real datasets show that our algo-
are very similar. rithm is much more efficient than the baseline algorithm
and performs better than the approximate algorithm for
most of the cases and is scalable.

The rest of the paper is organized as follows: In Section 2,
we formalize the problem and present the preliminaries and
notations used in this paper. Our proposed pruning rules
are presented in Section 3. Section 4 presents our proposed
algorithm for answering probabilistic reverse nearesginei
bor queries. Section 5 evaluates the proposed methods with
extensive experiments and the related work is presented in
Section 6. Section 7 concludes the paper.

Dist(A,B)

B

Fig. 1: An example of a Fig. 2: Any point in shaded
probabilistic RNN query area cannot be RNN aof 2 PROBLEM DEFINITION AND PRELIMINARIES

Probabilistic RNN query processing poses new challeng%’s1 Problem Definition

in designing new efficient algorithms. Although RNN querysiven a set of data point8 and a query poin, a conventional
processing has been extensively studied based on varifgierse nearest neighbor query is to find every ppisg P
pruning methods, these pruning techniques either cannot h thatdist(p, q) < dist(p, p’) for everyp’ € (P —p).

directly applied to probabilistic RNN queries or becomefine Now we define probabilistic reverse nearest neighbor
ficient. For example, the perpendicular bisectors adopteae  dueries. Consider a set ohcertain objects/ = {U1, ..., U, }.
state-of-the-art RNN query processing algorithm [20] assu Each uncertain object; consists of a set ofinstances
that objects are spatial points. In contrast, uncertaieabj {u1 - um}. Eachinstance; is associated with a probability
have arbitrary shapes of their uncertain regions. In amfujiti Pu, Called appearance probabilitywith the constraint that

applying the pruning rules on the instance level of uncertab_j—1 Pu, = 1. We assume that the probability of each
objects is extremely expensive as each uncertain objeatlysuinstance is independent of other instancespassible world
has a |arge number of instances. W = {ul,...,un} is a set of instances with one instance

Another unique challenge in probabilistc RNN querieffom each uncertain object. The probability 16f to appear is
is that the verification of candidate objects usually incuB(W) = [;_, pu,. Let Q be the set of all possible worlds,
substantial cost due to large number of instances in ed®@N > ycq P(W) =1.
uncertain object. By verification, we mean computing thecexa The probability RN N (U;) of any uncertain object; to
probability of an object being the RNN of the query and testinP€ the RNN of an uncertain obje@ in all possible worlds
whether it qualifies the probabilistic threshold or not. &ltitat  can be computed as;
instances from objects that are close to the candidate tsbhjec
also ne.ed to be considered_in the verification phase. o RN Ny (U;) = Z Py -Pu- RNNy(u) (1)

In this paper, we formalize the problem of probabilistic
RNN queries on uncertain data using the semantigesible ) - ) )
worlds We present a new probabilistic RNN query processinfg’¥ V() is the probability that an instance € U is the
framework that employs (i) several novel pruning approach&NN of an instance; € @ in any possible world¥” given
exploiting the probability threshold and geometric, tagptal that bothu andg appear ini.
and metric properties. (ii) a highly optimized verification RN N, (u) = H (1— Z ps) (2)
method that is based on careful upper and lower bounding VeU-U;—Q) veV,dist(u,v)<dist(u,q)

of the RNN probability of candidate objects. . . . .
Our contributions in this paper are as follows: thg's\f;} da Sf;bgmugfi_ﬁ'_?] Ob:ggg)_li?% rae z:ggar?(lalgest
« To the best of our knowledge, we are the first to formalize pp nding p Histic rev

the problem of probabilistic reverse nearest neighborr]elghbors of any uncertain objeGtis to find every uncertain

based on the possible worlds semantics. Object U; € U such thatRN No (Us) = p.

« We develop efficient query processing algorithm of prolExample 1: Consider the example of Fig. 1 where the un-
abilistic RNN queries. The new method is based on nonertain objects4, B and @) are shown. Assume that the
trivial pruning rules especially designed for uncertaitedaappearance probability of each instance0i5. According

(u,q),u€lU;,qeQ
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to Equation (2),RNN, (a1) = 1 becausea; is closer to need verification. In this section, we present several pgini
¢ than it is to by or bs. Also RNN, (az) = 1 — 0.5 rules from the following orthogonal perspectives:

becausedist(as, ba) < dist(az, ¢1). Note thatb, does not  , Hajf.space based pruning that exploits geometrical prop-
affect the probability ofa; to be the RNN ofg; because erties (Section 3.1)

dist(ag,b1) > dist(az, q1). Similarly, RNNy,(a1) = 1 and | pominance based pruning that exploits topological prop-
RN Ny, (az) = 0.5. According to Equation (1)RNNg(A) = erties (Section 3.2)
(0.5x0.5x 1)+ (0.5x0.5x 1)+ (0.5 x0.5x0.5) 4 (0.5 x « Metric based pruning (Section 3.3)

0.5 x 0.5) = 0.75. RNN probability of B can _Pe computed | propabilistic pruning that exploits the probability thnes
similarly and RN Ng(B) = 0.25. If the probability threshold old (Section 3.4)

p is 0.7, then the object is reported as result. m

3.1 Half-space Pruning
2.2 Preliminaries Consid ing and a filter biecly that h
. . L . .Consider a query poing and a filtering objec at has
The filter-and-refine paradigm is widely adopted in progegsi instances{uy, us, .., u,}. Let H,. ., be the half-space

e e oty i boveen and. Ary nsance. ¢ U Vat es . 1.
Y . . %as zero probability to be the RNN of because by the
filtering poinf) than to the query point. The State'Of'the'arﬁroperty ofH, ... u is closer to every; than tog
pruning rule is based on perpendicular bisector [20]. Itsigis v ! '
of two phases: the pruning phase and the verification phasExample 2: Consider the example of Fig. 2 where the bi-
Hence, some objects are used to filter other objects agwttors between, and the instances of are drawn and the
are calledfiltering objects Objects that cannot be filteredhalf-spacesH,,.,, and H,,.,, are shown. Intersection of the
are calledcandidate objects The pruning in RNN query two half-spaces is shown shaded and any point that lies in
processing involves three objects, the query, the filtevinjgct the shaded area is closer to bath and a, than¢,. For this

and a candidate object. We ufk), Ry; and R.,4 to denote reasonp, cannot be the RNN of; in any possible worldg
the smallest hyper-rectangles enclosing uncertain qugect

filtering object and candidate object, respectively. This pruning is very expensive because we need to compute
Table 1 defines the symbols and notations used throughintersection of all half-spaced,, ., for everyu; € U. Below
this paper. we present our pruning rules that utilize the MBR of the entir
filtering object,R ¢;;, to prune the candidate object with respect
TABLE 1: Notations to a query instancg or the MBR of uncertain query object
[ Notation | Definition | Q.
U an uncertain object
u; i'" instance of uncertain obje€f 3.1.1 Pruning using Ry; and an instance ¢
By.q a perpendicular bisector between painand g
Hyq a half-space defined bi,,., containing pointz First we present the intuition. Consider the example of Big.
Hy:w a half-space defined bi,:, containing poinig where we know that the pointlies on a lineM N but we do

H,,NH.q4 | intersection of the two half-spaces . . .
Pl value of pointP in the /%" dimension not know the exact location gé on this line. The bisectors

Ry minimum_bounding rectangle (MBR) enclosing dil Petweeng and the end points of the line\{ and N) can be
instances of an uncertain objelct used to prune the area safely. In other words, any pointitet |

in the intersection of half-spacé$,,., and Hy., (grey area)

can never be the RNN gf. It can be proved that whatever be
3 PRUNING RULES the location of pointp on the lineM N, the half-spacédd,,.,
lways containg ., N Hy.,. Hence any poinp’ that lies in
M:q N Hy.q would always be closer tp than tog and for
athis reason cannot be the RNN @f

Although the pruning for RNN query processing in spati
databases has been well studied, ithn-trivial to devise
pruning strategies for RNN query processing on uncertaia.d
For example, if we rizely use every instance of a filtering
object to perform bisector pruning [20], it will incur a huge
computation cost due to large number of instances in ea
uncertain object. Instead, we devise non-trivial geneagitbn
of bisector pruning for minimum bounding rectangles (MBRS|
of uncertain objects based on a novel notionnofmalized
half-space

Verification is extremely expensive in probabilistic RNN
query processing because, in order to verify an object
probabilistic RNN, we need to take into consideration nd
only the instances of this object but also the instances efyqu Fig. 3: The exact location of Fig. 4: Any point in shaded
object and other nearby objects. Hence it is important tisdevthe pointp on line M N is area cannot be RNN af in
efficient pruning rules to reduce the number of objects thabt known any possible world
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Based on the above observation, below we present a prun‘\
rule for the case when the exact location of a pgints
unknown within some hyper-rectangley;;.

PRUNING RULE 1: LetRy; be a hyper-rectangle arndoe a
query point. For any point that lies inﬂ?il He,.q (C;is the
ith corner of Ryy), dist(p,q) > maxdist(p, Rpy) and thusp
cannot be the RNN of.

Thg pruning rule is based on Lemma 4 that is proved in OHQ. 5: Any point in dotted Fig. 6: Antipodal corners
technical report [5].

. . . L area can never be RNN gf and normalized half-spaces
Consider the example of Fig. 4. Any point that lies in shaded

area is closer to every point in rectanglg;; than tog. Note

that if Ry;; is a hyper rectangle that enclosals instances of cornerg if for every dimensioni where C[i] = R1.[i] then

thedfiltering object; then any instance € Uj ;j»; thatliesin  ¢/[;] = R2y[i] and for every dimension where C[j] =

N?2_, He,., can never be the RNN af in any possible world. R1[j] thenC’[j] = R2,[j]. Fig. 6 shows two rectangle’1
and R2. The cornerd) andO are antipodal corners. Similarly,
other pairs of antipodal corners am®,(M), (C, N) and A, P).

3.1.2 Pruning using Ry; and Rq Antipodal Half-Space: A half-space that is defined by the

b{sector between two antipodal corners is calbeatipodal

Pruning rule 1 prunes the area such that any point lying mHaIf-space Fig. 6 shows two antipodal half-spacks,.; and

can never be the RNN of some instarcélowever, the points
in the pruned area may still be the RNNs of other instancés?:A-

of the query. Now, we present a pruning rule that prunes tﬂeNgrr.Tg;id|g|s?zh;_8;nadczgl_etr£ ggvj\é bi_rt]\gon%?::;izlg q
area usingRy; and R such that any point that lies in the yp 9 ' P Y-

) P . .
pruned area cannot be the RNN arfy instance ofQ. half-spaced;,. ; is a space defln_ed by the bls_ector betvyﬁén
: , . andB that passes through a poinsuch that[i] = (R1.[i]+
Consider the example of Fig. 5 where the exact location

the query point; on line M N is not known. Unfortunately, in 2.[1])/2 for all dimensionsi for which Bi] > M| and
: ' i| = (R1gl[i] + R2g[j])/2 for all dimensions; for which
contrast to the previous case of Fig. 3, the bisectors betwecj] (Rlyfi] + R2u i)/ ! paid v

. . . [4] < M[j]. Fig. 6 shows two normalized (antipodal) half-
p and the end points of the ling/ N do not define the area spacesH}, , and H)_,. The pointc for each half-space is
that can be pruned. If we prune the arHg.,; N Hy.n (the ; '

rey area), we may miss some pojsitthat is the RNN of also shown. The inequalities (3) and (4) define the halfspac
2 I¥ig 5 s,hows a goinp’ that is tphe RNN ofg but lies in Hyr.p and its normalized half-spadd),. 5, respectively.

the shaded area. This is because the half-sphggdoes not ¢ ) ) ) < (Blil — MTiN(Bl] + Mli
contain H,,.»; N H. . This makes the pruningﬁﬁgﬁ@f” and  »_(Blil-M[i])-a[i] <) (Bl [ ])2( ] D ©)
R, challenging. i=1 i=1

Note that if H,.; is moved such that it passes through the 2
point whereH,., intersectsH,,.,; then H,.,; N H,.y would > (Bi] = M[i) - a[i] <
be contained byH,.,. We note that in the worst case when =1

lies infinitesimally close to poind/, H,., and H,,.); intersect d (R1L[i] + R2p[i]) if Bli] > M][i]
each other at point which is the centre of line joining and (Bli] — M[i])x 2 ] '

M. Hence, in order to safely prune the area, the half-space;=; (Rlu[i] + R2pi]) otherwise
H,.n should be moved such that it passes through the point 2 ’ 4)

c. The pointc is shown in Fig. 5. A half-space that is moved fQote that the right hand side of the Equation (3) cannot be

the pointc i.S called anorm_alizedhalf-spa?e anql a half-spacema|ier than the right hand side of Equation (4). For thisoea
Hp.n that is normalized is denoted d#, . Fig. 5 shows ., - Has
MB = IB-

7 ; ; / 1
H,, y in broken line andH,, y N Hy.x (the dotted shaded Now, we present our pruning rule.
area) can be safely pruned.

The correctness proof of the above observation is lengtfifUNING RULE 2 Let Rq and Ryy be two hyper-
though it is quite intuitive. Thus we omit it from the papehel rectangles. For any poinp that lies in ﬂle He o
interested readers may read the proof in our technical tgflor mindist(p, Rg) > maxdist(p, Rgy) where HJ, ., is nor-
for a more general case when both the query and data objegiflized half-space betwee (theit” corner of the rectangle
are represented by hyper—rectanglesdlmlmen3|onal space R.,;) and its antipodal cornef’ in R,.
(Lemma 5). Before we present our pruning rule for the generalf ) o _
case that useg? half-spaces to prune the area using hype?—-he proof_of correctngss is non-trivial and can be found in
rectanglesR, and Ry;;, we define the following concepts: Lemma 5 in our technical report [5].

AntipOdal Corr_1ers: Let C' be a corner of rectanglE_l and 2. Rr[t] (resp.Rg[i]) is the lowest (resp. highest) coordinate of a hyper-
C’ be a corner inR2, the two corners are calleantipodal rectangleR in i*" dimension
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\ ; H’
H.. M:B
\P.A HN;C
N o bisectors is not needed 8., is returned without further

M >§§// clipping (line 10).

fil N
/ P 1
A 5 3.2 Dominance Pruning
'on We first give the intuition behind this pruning rule. Fig. 9
D C Hop shows another example of pruning by using pruning rule 2 in

> two dimensional space. The normalized half-spaces areadefin
Fig. 7: Any point in shaded Fig. 8: Clipping part of the such that ifRg; is fully dominated by R in all dimensions
area can never be RNN of candidate objectR.,, that  then all the normalized antipodal half-spaces meet at pgjnt
anyqg e Q can not be pruned as shown in Fig. 9. We also observe that for the case uten
is fully dominated byR, the angle between the half-spaces
that define the pruned area (shown in grey) is always greater
Consider the example of Fig. 7 where the normalizehan90°. Based on these observations, it can be verified that
antipodal half-spaces are drawn and their intersectionds  the space dominated h¥, (the dotted-shaded area) can be
shaded. Any point that lies in the shaded area is closer ty everuned*.
point in rectangleR;; than every point in rectangl&,.

Rem; and Rems. Note that at any stage if the remnant
rectangleRem becomes equal t&.,q, the clipping by other

Note that if Ry, and Ry are the MBRs enclosing all { f
instances of an uncertain obje€f; and query object@, .
respectively, any instance € U; ;.; that lies in the pruned P

d
region,ﬂf:1 Hg,ﬁc,, cannot be RNN of any instance @& @
in any possible world. Even if the pruning region partially
overlaps withRy;, we can still trim the part of any other Fo
hyper-rectangleRy, ;. that falls in the pruned region. It
is known that exact trimming becomes inefficient in high u
dimensional space, therefore, we adopt the loose trimming
R.,.q proposed in [20]. Fig. 9: Pruning area of half- Fig. 10: Dominance Prun-
space pruning and domi-ing: Shaded areas can be

Algorithm 1 : hspace_pruning (Q, Ry¢ii, Rena) nance pruning pruned
Input: Q: an MBR containing instances @ ; Ry;: the MBR to be o .

used for timmingR,.,,4: the candidate MBR to be trimmed Let Ry be the MBR containing instances 6§. We can
Discgpﬂoni /R C rectanl obtain the2¢ regions as shown in Fig. 10. L&k, be an

: em = & emant rectangle . . . } . H

2' for each cornerC; of Ry, do MBRdof a filtering objectRy; that lies completely in one of

3. if Q is a pointthen the 2¢ regions. Letf be the furthest corner aRy, from Rg

451: lRe_?wé? C“F;](chdvflth‘,:%;// clipping algorithm[10]  andn be the nearest corner & from f. The frontier point

. eise | IS a hyper-rectanglienen . . P

6 ¢/ = antipodal comer of’; in Q F, lies at the centre of line joining andn.

: amip ! I . ' . _

7 Remi=clip(Rena, He, o) /elipping algorithm [10]  ppyniNG RULE 3: Any instanceu € U, that is dominated

8 enlargeRem to encloseRem; by the frontier pointF, of a filtering object cannot be RNN

9:  if Rem = Rcpq then of any ¢ € @ in any possible world.

10: return Re.nq
11: return Rem Fig. 10 shows four examples of dominance pruning (one in

each region). In each partition the shaded area is domirgted

The overall half space pruning algorithm that integratels, and can be pruned. Note thatff,; is not fully dominated
pruning rules 1 and 2 is illustrated in Algorithm 1. For eachy Rq, we cannot use this pruning rule because the normalized
half-space, we use the clipping algorithm in [10] to finéntipodal half-spaces in this case do not meet at the same
a remnantrectangle Rem; C R..q that cannot be pruned point. For example, the four normalized antipodal halfessa
(lines 4 and 7). After all the half-spaces have been used fotersect at two points in Fig. 7. In general, the pruning pow
pruning, we calculate the MBRem C R.,q as the minimum of this rule is less than that of the half-space pruning. Big.
bounding hyper rectangle covering eveRym;. As such, we shows the area pruned by the half-space pruning (shaded area
trim the original R.,,4 to Rem. and dominance pruning (dotted area).

For better illustration we zoom Fig. 7 and show the clipping The main advantage of this pruning rule is that the pruning
of a hyper-rectangleR.,.q in Fig. 8. The algorithm returns procedure is computationally more efficient than the hpifee
Remi, Rems (rectangles shown with broken lines) whempruning, as checking the dominance relationship and trimgmi
H}, 5 and Hj , are parameters to the clipping algorithmthe hyper-rectangles is easier.
respectively. For the half_SpaCéﬁfv:C and H/O’D the whole 3. If every point inR; is dominated (dominance relationship as defined in

hyper-rectangle.,.s can be pruned_ so the algorithm returngyyiines) by every point ik we say thatR; is fully dominated byRs.
¢. The remnant hyper-rectangléem is an MBR that encloses 4. Formal proof is given in Lemma 6 of our technical report [5]
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3.3 Metric Based Pruning o R
1
PRUNING RULE 4 : An uncertain objecR.,,; can be pruned Ul J j
if mazdist(Rend, Rpi) < mindist(Repa, Rg)- R us| "¢
u
This pruning approach is the least expensive. Note that|it as R $ )
cannot prune part ofR.,.q, i.€., it either invalidates all the R !
instances ofR.,4 or does nothing. at a
9 Q2| Ry
3.4 Probabilistic Pruning - 9;
Note that we did not discuss probability threshold whil&ig. 11: Regions pruned by Fig. 12: Probabilistic Prun-

presenting previous pruning rules. In this section, we gres [ig and its subsefz;, ing

a pruning rule that exploits the probability threshold and

embeds it in all previous pruning rules to increase theinjmg

powers. for everyg; andp,, = 0.25 for every ;). Suppose that no

A simple exploitation of the probability threshold is tortri part of R.,4 can be pruned using, and any filtering object
the candidate object using previous pruning rules and thé&h;; (for better illustration, filtering object is not shown). We
prune the object if the accumulative appearance probgabilpruneR.,q using the rectanglézg, that is contained byzg.
of instances within its remnant rectangle is less than tAdis trims R.,4 and the remnant rectanglg, is obtained.
threshold. Next, we present a more powerful pruning rulé th@imilarly, R, is the remnant rectangle when pruning rules are
is based on estimating an upper bound of the RNN probabiliapplied for Rg,. Note that only the instances iR; (u; and
of candidate objects. uz) can be the RNN of instances iRg, (g3, g4« and gs).

First, we present an observation deduced from Lemma 5%milarly, no instance can be the RNNs of any instance in
our technical report [5]. In previous pruning rules, we gunRg, becauseR, is empty. So the maximum RNN probability
some area using MBR of a query objet, and a filtering of Rcpnq is (0.6 x 0.5) + (0.4 x 0) = 0.3. If the probability
object ;. We observe that the area pruned by usitjg and thresholdp is greater tha.3, we can pruneR., 4. Otherwise,
R}il always contains the area pruned By, and Ry; where we can continue to trink.,,4 by using the smaller rectangles
Ry € Rg and R);; C Ryy. Fig. 11 shows an example. Thecontained inRg, . m
shaded area is pruned whéh, and Ry;; are used for pruning .
and the dotted shaded area is pruned wRenand Ry; are In our implementation, we build an R-tree on query object
used. Note that this observation also holds for the dommar@nd the pruning rule is applied iteratively using MBRs of
pruning. children. For more details, please see Algorithm 5.

We can use the observation presented above to prune thélthough the smaller rectangle;; contained infR2y; can
objects that cannot have RNN probability greater than tiso be used, we do not use them because unlike query object
threshold. First, we give a formal description of this pngi there may be many filtering objects. Hence, using the smaller
rule and then we give an example. rectangles for each of the filtering objects would make this

pruning rule very expensive in practice (more expensiva tha

PRUNING RULE 5: Let the instances of) be divided into the efficient verification presented in Section 4.3).

n disjoin® sets {Q1,Q2,...,Q,} and Ry, be the mini-
mum bounding rectangle enclosiral instances inQ;. Let
{Rend,, Rendy, -, Rena, } be the set of bounding rectangles3.5 Integrating the pruning rules

such that eachfi.,q, contains the instances of the candip|gorithm 2 is the implementation of Pruning rules 1-4.
date object that cannot be pruned iQr using any of the gpecifically, we apply pruning rules in increasing orderhafit
pruning rules. LetP*e: and P4 be the total appearancecomputational costs (i.e., from Pruning rule 4 to 1). While
probabilities of instances iM); and R.,q,, respectively. If simple pruning rules are not as restricting as more expensiv
>oiy (Pfienai- PRiei) < p, the candidate object can be prunedypes; they can quickly discard many non-promising candidat

Pruning rule 5 computes an upper bound of the RNN prob@bjects and save the overall computational time.
bility of the candidate object by assuming that all instanice
R..q;, are RNNs of all instances i®,. The candidate object
can be safely pruned if this upper bound is still less than the
threshold.

Example 3: Fig. 12 shows MBRs of the query objeét,
and a candidate objed®..q along with their instancesq{

to g5 and u; to uy). Assume that all instances within an
object have equal appearance probabilities (pg;= 0.2

5. We only require instances @} to be disjoint. The pruning rule can be >

applied even when the minimum bounding rectangtes overlap each other . .
as shown in Fig. 12. Fig. 13: R.,q can be pruned byk; and R,
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Algorithm 2 : Prune(Q, Stii, Rena) Algorithm 3 : Answering Probabilistic RNN

Input: Rg: an MBR containing instances @ ; Sy;;: a set of MBRs  Input: @: uncertain query objecty: probability threshold;
to be used for trimmingR..,,4: the candidate MBR to be trimmed Output:  all objects that have higher thanprobability to be RNN of@

Description: Description:
1. for each Ry;; in Sy;; do 1: Shortlisting: Shortlist candidate and filtering objects (Algorithm 4)
2. if mazdist(Reng, Rpy) < mindist(RQ, Reng) then 1 2: Refinement: Trim candidate objects using disjoint subsets(@fand
Pruning rule 4 apply pruning rule 5 (Algorithm 5)
3: return ¢ 3: Verification: Compute the exact probabilities of each candidate and
4. if mindist(Rcpg, Ryq) > mazdist(RQ, Rena) then report results
5: Sti = Spa — Ry Il Ry cannot prune Reng
Rem = Rcpgq

6: for each Ry;; in Sy do
7. if Ry is fully dominated byRg in a partitionp then //Pruning 4.1 Shortlisting

rule 3
8: if some part ofRem lies in the partitionp then In this phase (Algorithm 4), the global R-tree is traversed t
9 Rem = the part of Rem not dominated by, shortlist the objects that may possibly be the RNN(bfThe
10: if (Rem = ¢) then return ¢

11: for each Ry, in Sy do MBR R.nqg pf each _shortlisted candi_o!ate object is stored in a
12 Rem = hspacepruning®q, Ry, Rem) I/ Pruning Rules 1 Set of candidate objects calléd,, . Initially, root entry of the
and 2 R-tree is inserted in a min-heap H. Each entng inserted in
ﬁ ret'Lr(nR%:; ¢) then retum ¢ the heap with keynazdist(e, Ro) because a hyper-rectangle
that has smaller maximum distance Ry, is likely to prune
a larger area and has higher chances to become the result.

It is important to useall the filtering objects to filter a Algorithm 4 : Shortlisting
candidate objects. Consider the example in Fig. B3.4 R i S 7
. . . il =Y Pend =
Cann_Ot b_e pruned by eithdt, or Rs, but will be pruned by 2: InJ;tiaIize a min-heapH with root entry of Global R-Tree
considering both of them. 3: while H is not emptydo

Two subtle optimizations in the algorithm are: g; i‘]fe(}gi:f f”‘)i’:%@’ Spa.e) # 6 then

o If mindist(Rena, Ri) > mazxdist(Rg, Reng) for a ? if gis aija;a objecthen
given MBR Ry, then_Rﬂl Canno_t prune any part of g elsemi;‘dei_s aclne%?o{rei];\termediate nodéen
R.,q. Hence suchRy;; is not considered for dominance o: S = Spa — {e}
and half-space pruning (lines 4-5). Howevéy; may 10: for each data entry or child: in e do
still prune some other candidate objects, so we remo g’;;"zc g’;c’lﬁ {"Z';h key mazdist(c, Fq)
such Rg; only from alocal set of filtering object,S ;.
This optimization reduces the cost of dominance and half- ) .
space pruning. We try_ to prune every de—h(_aaped enbr;(hne 5) by using

. If the frontier point £, of a filtering objectRy, is the pruning rules presented in the previous sec.tlolne 13
dominated by the frontier poink,, of another filtering & data object and cannot be pruned, we insert it it
objectRy;,, thenF,,, can be removed from';; because Ot_herW|se_, ife is an mter_medlate or Igaf node, we insert its
the area pruned by, can also be pruned by,,. children ¢ into heap H with keymaxdz_st(c, RQ). Note that
However, note that a frontier point cannot be used f! €ntrye can be removed frons;; (line 9) if at least one
prune its own rectangle. Therefore, before deletig, of its chlld_ren is inserted 'meil because the area pruned by
we use it to prune rectangle belonging f,. This an entrye is always contained by the area pruned by its child

optimization reduces the cost of dominance pruning. (Lémma 5 in our technical report [5]).

4.2 Refinement

4 PROPOSED SOLUTION In this phase (Algorithm 5), we refine the set of candidate
objects by using pruning rule 5. More specifically, we deslcen
In this section, we present our algorithm to find the probanto the R-tree of@Q and trim each candidate obje@.,q
bilistic RNNs of an uncertain query objec). The data is against the children of) and apply pruning rule 5.
stored in system as follows: for each uncertain object, an R-Let P be the aggregate probability of instances in any
tree is created and stored on disk that contains the ingtanagper-rectangleR. At this stageP ¢ of a candidate object
of the uncertain object. Each node of the R-tree contains theiy be less than one becaug,; might have been trimmed
aggregate appearance probability of the instances inbtse®i  during shortlisting phase. We can pruRe,.q if upper bound
We refer these R-trees &xcal R-trees of the objects. AnotherRNN probability of a candidate objedi/ ax Prob = PRerd is
R-tree is created that stores the MBRs of all uncertain ¢hjedess tharp (line 3).
This R-tree is calledjlobal R-tree We use a max-heap that stores entries in foenR( key)
Algorithm 3 outlines our approach. Our algorithm consisteheree and R are hyper-rectangles containing instances of
of three phases namely Shortlisting, Refinement and Verifia@ and R4, respectivelykey is the maximum probability of
tion. In the following sub-sections, we present the detafls instances inR to be the RNNs of instances in(i.e; key =
each of these three phases. Pe . Plend) We initialize the heap by inserting)( Ry,
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Algorithm 5 : Refinement

Description:

1: for each R.,,q in S.pq dO

2. if (MaxProb = Pfena) < p then

3 Send = Send — Rena; continue;

4: Initialize a max-heap H containing entries in form R, key)
5: insert Q, Rcng, MaxProb) into H
6:
7
8
9

while H is not emptydo
de-heap an entrfe, R, p)
Rem = Prune ¢, Sy, R)

: MaxzProb = MaxProb—p+ (P€ - PRem) Maxdist(u,,R ) +dist(u,,c)
10: if MaxProb < p then
11 Scnd = Send — Rena; break; Fig. 14: Finding the range of the global quer
12: if (PTe™ > 0) AND (e is an intermediate node or leafjen 9. 1% g the range of the global query
13: for each child ¢ of e do
14: insert ¢, Rem, (P - PEe™)) into H

Consider the example of Fig. 14 where the range of
queries centred ati; and us are maxzdist(u, Ry) and

MazProb) (line 5). For each de-heaped entw; R, p), we mazxdist(uz, Rg), respectiyely (circles With broken .Iines).
trim the hyper-rectangleR againste by S, and store the We want to reduce multiple range queries to a single range

trimmed rectangle inkRem (line 8). The upper bound RNN dUery centred at the centre @i, with a global ranger
probability Maz Prob is updated toMazProb — p + (P° - such that all instances required to compute RNN probataifity
PEem). Recall thatp = P¢ - PR was inserted with this entry every candidate instaneg € R.,q are returned. Let; be the

assuming that all instances f are RNNSs of all instances in '2ng€ of the range query af; computed as described above.

e. After we trim R using e (line 8), we know that only the 1he global range is max(r; + dist(u;, c)) for everyu;
instances inRem can be RNNs of. That is the reason we fena Wherec is the centre 0fi.,,q. In the example of Fig. 14,
subtractp from MazProb and add(P¢ - PRem), the global range is = maxdist(uz, Rq) + dist(uz, ) as
At any stage, if theMazProb < p the candidate object shown in thg figure (solid grcle). Note that this range easur
can be pruned. Otherwise, an entey Rem, (P¢.PRe™)) is that all the instances required to compute RNN probability o

inserted into the heap, for each chilcf e. Note that if the POthu1 andus lie within this range.
trimmed hyper-rectangle does not contain any instance thz?% 2 Computing the exact RNN probability of Ry,

PFRem js zero and we do not need to insert childreneah ) )
We issue a range query on global R-tree with ramgas

the heap for suctRem. H .
Recall that every node in local R-tree stores the aggreg&fPuted above. For each returned objéctwe issue a range

appearance probability of all instances in its sub-treectvhiduery on the local R-tree d¥/; to get the instances that lie
makes computation of aggregate probability cheaper. within the range and then create a list containing all these
instances. We sort the entries in eachisin ascending order

of their distances fromi,,.
4.3 Verification The list L, for the instances of query obje€t is shown in
The actual probability of a candidate objet,, to be the Fig. 15. Each entry contains two valuesd, p) such thatd is
RNN of @ is the sum of probabilities of every instanege distance of from u.,,; andp is the appearance probability of
Rena to be the RNN of every instanagof @ . To compute the instances. The lists for other objects are slightly different
the probability of an instance; to be RNN ofg, we have to in that each entry contains two valuesd, P) where P is
find, for each uncertain obje&t, the accumulative appearancdhe accumulativeappearance probability of all the instances
probability of its instances that have smaller distance;tthan that appear in the list before In other words, given an entry
dist(q,u;) (Equation (2)). A straight forward approach is tdd, P), the total appearance probability of all instances (is thi
issue a range query for eveny € R.,q centred atu; with list) that have smaller distance thans P.
range set aslist(q,u;) and then compute the accumulative Given these lists, we can quickly find the accumulative
appearance probability of instances of each object that @@pearance probability of all instances of any uncertajaatb
returned. However, this approach requite§ | x | R..q | that lie closer tou.,q than a query instancg. The example
number of range queries wher€) | and| R, | are number below illustrates the computation of exact probability of a
of instances inQ and R.,.q, respectively. Below, we presentcandidate instancec,q.

an efficient approach that issues o.n.ly one globa_l range quef¥ample 4: Fig. 15 shows the lists of query obje@ and
to compute the exact RNN probability of a candidate objeciyree uncertain objectd, B and C. The lists are sorted on

o their distances from the candidate instance,. We start
4.3.1 Finding range of the global range query the computation from the first entry, in @ and compute
Let Ry;; be an MBR containing instances of a filtering objectRN N, (ucnq). The distanced,, is 0.3. We do a binary
An instanceu; has zero probability to be RNN of an instanceearch onA, B and C to find an entry in each list with
q if dist(u;, q) > mazxdist(u;, Ry;). So the range of a rangelargestd smaller thand,,. Such entries ares(0.1,0.3) and
query foru, centred atu; is minimum of maxdist(u;, Rg) 54(0.2,0.4) in lists A and B, respectively. No instance is
andmaxdist(u;, Ryy) for every Ry, in Sy found in C. Hence, the sum of appearance probabilities of
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Q B C
a, .33 ® a, a,
0,(0.3,0.2) F*a,(0.1,0.3)| | |b,(0.1,02)| | ©:(04.0-5)
0,(0.3,0.3) | *a,(0.4,0.5)| #b,(0.2,0.4) | ¥ C(0-4,1.0) maxdist(chd,RQ)

9,(0.5,0.3) H. |a,(0.6,0.7)| »{b,(0.4,0.7)
a

,(0.6,0.1) b,(0.6,0.9) 1

45(0.7,0.1) by(0.6,1.0)

Fig. 15: lists sorted on distance from a candidate instange mindist(R,,,Ry) maxdist(R,, ,,q,)

Fig. 16: Bounding lower and upper bound RNN probabilities
instances ofB that have distance from.,; smaller than g g PP P

dg, is 0.4, similarly for A it is 0.3. Given bothgs and ucpq
appear in a world, the probability of.,,; to be RNN ofg, is
obtained from Equation (2) g4 —0.4)(1 —0.3) = 0.42. The
probability of u.,qs to be RNN ofgs in any possible world is
0.42(pg, X Pupa)-

Similarly the next entry in @ is processed and
RN Ny, (ucna) is computed which is agaif.42 because its
distance fromu,,q is the sameRN N, (ucnq) iS zero because

the binary search o6 gives an entryd, P) whereP =1 (all which mazdist(Reng, Ro) < dist(u;, ) — d/2 is stored in

instances oC" have smaller distance t0,,,q then d?f".).' Note P/ Then the maximum RNN probability of any instance
that, we do not need to compute the RNN probabilities gf; o man near L o
k R L Uend 18 pF =11y, (1 — P*"). The minimum probability
against remaining instances and ¢; because their distances ¢ sen i be RNN of0) is o™i — pfar
from wenq are larger thani,, and RN N, (tuena) = 0. Also ' @V 'nSt;TC?‘C"d to be ofQ is pind’ = vz, (™)
note that the area to be searched in anyllisby binary search becauseP; ™" is the total probability of instances that are

becomes smaller for the processing of next query instzimcedeﬁ“ite'y farther. So we assume that all other instances are
closer tou.,q than¢; and this gives us the minimum RNN

The above example illustrates the probability computatigrrobability.
of an instanceu.,4 to be the RNN of all instances ). We Let Pfna be the aggregate appearance probability of all
repeat this for every instance.,q € R..q to compute the the instances inR.,q then R.,q can be pruned ifPftena .
RNN probability of the candidate object. Next, we presem.,;” < p. Similarly, the object can be reported as answer if
some optimizations that improve the efficiency of verifioati Pferd - p7in > p.

phase. b) Bounding RNN probabilities using instances(@f

Optimizations o L If an object R.,4 cannot be pruned or verified as result
Our proposed optimizations bound the minimum and Ma¥: this stage, we try to make a better estimate pfif7
imum RNN probabilities and verify the objects that have th ma by, using instances withinQ. Note that evgry

H HF cnd
minimum probapll|ty greater than or equal to the thrgsholu.cnd € Runq is always closer to; than a query instance
Similarly, the objects that have the maximum probabilitysle

;if indist(Rena, ;) > dist(a;g, d/2. Similarly,
than the threshold are deleted. Below, we present the slet (I/elry sz Z\fvcguld dal(\llvzays beziu(r(ih ecr) erromL/z» the:n |q4 I);
of the proposed optimizations. cnd N !

maxdist(Rend, ¢;) < dist(a;, c) —d/2. Consider the example
a) Bounding RNN probabilities using: of Fig. 16 where every point it is closer to both:; and
Recall that, for each candidate objeRt, s, a global range a4 thang,. Similarly, every point inR.,q is further from both
query is issued and for each objdét within the range a list a2 andas than it is fromg;.
L; is created containing the instancesf lying within the To updatep?’®, we first sort every list in ascending order
range. Just before we sort these lists, we can approximate @i dist(c, u) wheredist(c,u) is already known (returned by
maximum and minimum RNN probability of the candidateglobal range query). Then, the lil; is sorted in ascending
object based on the following observations. order of themindist(R.n4, q;)- Then for eachy; in ascending
Let c be the centre and be the diagonal length dt.,.; and order, we conduct a binary search on every ligstand find
a; be some instance in lisd. Every u.,q € R..q iS always the entrye(d, P) with greatestd in the list that is less than
closer toa; than everyq; € Q if mindist(Rena, Rg) > mindist(Rena,q:) — d/2. The probability P of this entry is
dist(a;,c) + d/2. Similarly, every u.,q would always be accumulated appearance probabilty<*" of all the instances
further froma, than everyg; € Q if maxzdist(Rena, Rg) < @i such that every..,,q is always closer ta; thang;. Then the
dist(a;, c)—d/2. Consider the example of Fig. 16, every pointaximum probability of any instance.,; € R.,q to be the
in R.,q is always closer ta,; than any point inRg. Similarly, RNN of ¢; is p**7 =[], (1 — P/***"). We do such binary

lend

every point inR.,.q is always further from, than it is from searches for every; in the list andp?'%* = Zv% cQ P

any point inRg. The update ofp”" is similar except that the lisL is
Based on the above observations, for every object, we csorted in ascending order ofaxdist( R4, ¢;) and the binary

accumulate the appearance probabilities of all the ins&nc
u such that every.,q is always closer to (or further from)
u than everyq;. More specifically, we traverse each lift
and accumulate the appearance probabilities of everyniosta
u; for which mindist(Renq, Rg) > dist(u;,c) + d/2 and
store the accumulated probabilities #**". Similarly, the
accumulated appearance probabilities of every instander
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search is conducted to find the entifyl, P) with the greatest 4. The appearance probabilities of instances were generated
d that is smaller thannaxzdist(Rena,q:) + d/2. The total following either uniform or normal distribution. Our defau
appearance probabilities of all instanceslinthat are always synthetic dataset contains approximately 1.8 Million amses
farther from everyu.,q thang; is Pif‘“" = (1 — P). Finally, (M). Similar to [19], the query object follows same
P =1y, (P/) andpmin = S vaeq Pt distribution as the underlying dataset.

After updating p®¥ ancél(;gjg, we delete the candidate The real datasétonsists of 28483 Zip codes obtained from
objects for whichPXena . pmar 5 Similarly, a candidate 40 states of United States. Each zip code represents art objec
object is reported as answer fifficna . pmin > and theaddress blocksvithin each zip code are the instances.

The data source provides address ranges instead of individu
ddresses and we use the teamdress blockfor a range

. ! - g f addresses along a road segment. The address block is an
estimation of maximum and minimum RNN probabilities the'ﬂ'lstance in our dataset that lies at the middle of the road

we have to compute exact RNN probabilities (as descr'bedéggment with the appearance probability calculated asvsl)

Sect|on_ 4'3‘2) of the mstanc_e_s_ N 't.' B_y using . MaxiMUuilyy ) he the number of total addresses in a Zip coderartk
and minimum RNN probabilities, it is possible to verify,

invalidat biect without tina th ¢ RNt e number of addresses in the current address block then the
or gws.ll.t.a N :;m "otr{ec. V}” ou cile/mpur;ng ti. exacm ppearance probability of the current address block: fs..
probabriities ot all the Instances. We achieve this as ;O. The real dataset consists of 11.24 Million instances and the

We sort all the instances iR..,,4 in descending order of their aximum number of instances (address blocks) in an object
appearance probabilities. Assume that we have computed @Snford North Carolina) were 5918

exact RNN probabilityR N Ng (u) of first ¢ instances. LeP be
the aggregate appearance probabilities of these finstances 51 C . ith oth iol luti
and Pryn be the sum of theiRNNg(u). At any stage, an ™ omparison with other possible solutions

object can be verified as answetf#; vy + (1— P).p™in > p.  We devise a rige algorithm and a sampling based ap-

Similarly, an object can be pruned gy + (1 — P).pmer < proximate algorithm to better understand the performance

p. of our algorithm. More specifically, in the hee algorithm,
Note that(1 — P).p™" is the minimum probability for we first shortlist the objects using our pruning rule 4 (e.g;

the rest of the instances to be the RNN @f Similarly, any objectR.,s can be pruned ifmindist(Rcna, Rg) >

(1 — P).pmer is the maximum probability for the remainingmazdist(Rcna, Ryi)). Then, we verify the remaining objects

c) Early stopping:
If an object R..,.q is not pruned by the above mentioneci‘

instances to be the RNN. as follows. For each paifu;,q;), we issue a range query
centred atu; with rangedist(u;,q;) and compute the RNN
5 EXPERIMENT RESULTS probability of the instance:; against the query instanag

) _ using the Equation (2). Finally, the Equation (1) is used to
In this section we evaluate the performance of our proposggmpute the RNN probability of the object.

approach. All the experiments were conducted on InteI_Xeonln sampling based approach, we create a few sample possi-
2.4 GHz dual CPU with 4 GBytes memory. The node size e \yorids before starting the computation. More specifical

each local R-tree i K and that of global R-tree i8K. We 5 hossible world is created by randomly selecting one igtan
measured both the 1/O and CPU time and I/O cost is arou m each uncertain object. For each possible world, we

1-5% of the total cost for all experimentsience, for clarity create an R-tree (node sizB) that stores the instances

of experiment figures, we dieplay the average total cost P& the possible worlds. This reduces the problem of finding
query. We used both synthetic and real datasets. probabilistic RNNs to conventional RNNs. For each possible
world, we compute the RNNs using TPL [20] that is the best-

TABLE 2: System Parameters known RNN algorithm for multidimensional data. Lete the

[ Parameter [ Range | number of possible worlds evaluated amdbe the number of
Probability threshold 4) 0.1,03,050.7,09 possible worlds in which an objedt.,.; is returned as RNN,
Number of objects % 1000) 2,4,6, 8,10 ; ;
Maximum number of instances in an objeft200, 400,600, 800, 1000 then Re,q |s_reported_as answerm/n Z. p- The COStS shown
Maximum width of hyper-rectangle 19, 2%, 3%. 4% do not consider the time taken in creating the possible world
Distribution of object centres Uniform, Normal Note that this algorithm provides only approximate resiits
Distribution of instances _ Uniform , Norma real dataset, the accuracy varies fr66% to 75%.
Appearance probability of instances Uniform, Normal

Naive algorithm appeared to be too slow (average query

time from 7 minutes to 2 hours) so we show its computation

Table 2 shows the specifications of the synthetic datasgjs only when comparing our verification phase in Fig. 18.
we used in our experiments and the defaults values arey 17 compares our approach with the sampling based
shown in bold. F_|rst the centres (_)f fche_uncertam Ob]eczﬁjproximate approach (for 100 and 200 possible worlds) on
were created (uniform or normal distribution) and then tr@ynthetic dataset. In two dimensional space, our algoritim
instances for each object (uniform or normal distributioveye comparable with the sampling algorithm that returns approx
created within their respective hyper-rectangles. Thetiwidim(,i,[e answer. On the other hand, the Fig. 17 shows that our

of the hyper-rectangle in each dimension was set flom ;o yithm is more efficient for higher dimensions and scales
to w% (following uniform distribution) of the whole space

and we conducted experiments far changed froml to 6. http://www.census.gov/geo/wwwitiger/
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ol s et~ ood L nomvom with appearance probability following uniform distriboui.
| Sl O ] e The performance of our algorithm on non-uniform data is
u - I ” better than the uniform data as can be observed from Fig. 20.
2 o s g This is mainly due to two reasons. Firstly, we observe that
; T oos \M the number of candidates i$\.,,; is smaller after the pruning
005 phase if the data is non-uniform. Secondly, if the probspbili

2 3 4 5 6

Number of Dimensions Number of Dimensions distribution is not uniform the verification phase is faster
because we sort the instances in descending order of their
appearance probabilities and this lets us validate or iohwes

an object earlier.

Fig. 17: Overall cost Fig. 18: Verification cost

better. The cost for our algorithm first decreases as the rumb
of dimensions increase and then it starts increasing. Tdsore 5 Effect of data size
is that for low dimensional space, the data is more dense an'a
the verification phase cost dominates the pruning phase costFig. 21, we increase the maximum number of instances
On the other hand, for high-dimensional space, the dataiiseach object from 200 to 1000. The performance degrades
sparse and while the verification is cheaper the pruningephags the number of instances increase. Although the increase i
is expensive (e.g; greater number of bisectors requirediiogd number of instances does not have significant effect on pguni
the space). phase, the verification phase becomes more expensive if each
In Fig. 18, we compare the verification cost of our algorithrabject has greater number of instances. Also observe that
with the verification cost of rige algorithm. The costs shownthe cost does not change significantly for higher dimensions
are verification costs per candidate object. Our proposgédcause in high dimensional space, the pruning phase cost is
verification is three orders of magnitude faster than thigena dominant which is not affected significantly by the number of
verification. instances

5

5.2 Performance on real dataset and effect of data
distribution I
Fig. 19 compares the performance of our algorithm againgt’
the sampling based approximate algorithm on real dataset fo
probability threshold changed from 0.1 to 0.9. For sampling *
based algorithm, the costs are shown for the evaluation ®f 10 ° "%
and 200 possible worlds. Our algorithm performs better than

the approximate sampling based algorithm for larger ttolesh Fig. 21: Effect of number of Fig. 22: Effect of number of
instances in each object objects in the dataset

Time (seconds)

Number of Instances Number of Objects

,_‘
>
w

Our Algorithm —x— unif-unif-unif Bz
unif-unif-norm e

oo S Fig. 22 evaluates the performance of our algorithm with

K _norm-norm-norm ———

14 Sampling (#PW=100) it
Sampling (#PW=200) &

N
@

N

increasing number of objects in the dataset. The compautatio
cost increases with increase in number of objects mainly due
to the increased verification cost because larger number of
e S objects (and in effect instances) are returned by the global
Probability Threshold Number of Dimensions range query
Fig. 19: Comparison on Real Fig. 20: Effect of data distri-
Dataset bution

Time (seconds)
Time (seconds)
=

O

o
@

5.4 Effect of probability threshold and width of
Note that although the accuracy may vary, the cost of Sarlf}iper-rectangle

pling algorithm does not change with the change in threshol
underlying data distribution (as noted in [20]), width ofgey- Fig. 23 shows the effect of probability threshold. The algo-
rectangle or number of instances in each object. Moredver, tithm performs better as the probability threshplihcreases
cost of sampling algorithm increases linearly with the nembbecause fewer number of candidate objects pass the pruning
of possible worlds evaluated. For this reason, now we foeus phase and require the verification. The effect is more signif
the performance evaluation of only our proposed algorithmicant in lower dimensions because for low dimensions the
Fig. 20 shows the performance of our algorithm for differerverification cost dominates the overall cost.
data distributions. The legend shows data distributiorferim In Fig. 24, we change width of each hyper-rectangle and
distl dist2 dist3 where distl is the distribution of the objecstudy the performance of our algorithm. The performance
centres, dist2 is the distribution of instances within thgeots degrades in low-dimensional space due to larger overlap of
and dist3 is the distribution of appearance probability. &c objects with each other and the query object. The effect in
ample, normnorm_unif shows the result for the data such thahigher dimensions is not as significant as in low-dimendiona
the centres of objects and instances are normally distributspace.
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Fig. 23: Effect of probability Fig. 24: Effect of width of Fig. 27: Effectiveness of Fig. 28: Effect of width of
Threshold hyper-rectangles pruning rules hyper-rectangles

5.5 Evaluation of different phases is used. More specifically, we compare the number of objects

In this section, we study the effect of our pruning phasegeMo" Sena When only the pruning rule 4 is used, the dominance
specifically, we compare the number of candidates after filning is used along with pruning rule 4, and when all
phase (shortlisting), second phase (refinement), opttiaiza PTUNINg rules from 1to 4'are used..S.mce pruning rule 5 uses
(of the verification phase) and the number of objects in find]€ Other underlying pruning rules, it is enabled for all&bo
result. Fig. 25 shows the number of candidates after ed@gntioned settings. The half-space pruning significangly r
phase. The number of candidates afshortlisting is from duces the number of candidate objects and the effectivafess

10-20 and therefinementphase reduces the number to lesdominance pruning is more significant for the low-dimenalon

than its half. The optimization presented in the verificatiodat@-

phase prunes more objects in high-dimensional space becaus

in low-dimensional space due to larger volume of MBRs, mo§t7 Effect of hyper-rectangle width on the size of
of the MBRs of remaining candidates overlap with the quepagt

object. Hence the optimizations are more useful for higher ) )
dimensions. We note that if the hyper-rectangles of objects largely layer

each other, the probabilistic reverse nearest neighboriegue
are not very meaningful. In other words, there would be no
objects satisfying some reasonable probability thresHald
value that can be considered significant). Fig. 28 shows the
number of objects that satisfy different probability threlsls.

The width of hyper-rectangle in each dimension is changed

Number of candidates

from 1% to 7% and the results are shown for two dimensional
Fig. 25: Number of objects Fig. 26: Computational time space. It can be observed that with large overlap in reatangl
in S.,q after each phase taken by each phase more and more objects satisfy very small probability thodgh

constraint. On the other hand, there are very few or no object
Fig. 26 shows the time taken by each of the prunindt all that have greater than 0.1 probability to be the RNN.

phase. Our proposed optimization takes very small amount of
timt_a_an(_j is quite u_seful espec_ially for high—dimens_ionah_da 6 RELATED WORK
Verification phase is the dominant cost for low-dimensional
queries and the pruning phases (shortlisting and refingmeRecently, a lot of work has been dedicated to uncertain
dominate the overall cost for high-dimensional queriesteNodatabases (see The TRIO system [22], The ORION project [7]
that logscale is used for y-axis. and the references therein). Query processing on uncertain
databases has gained significant attention in last few years
, . especially in spatio-temporal databases.
5.6 Effectiveness of pruning rules In [8], the authors develop index structures to querying
Pruning rule 5 is used in phase 2 (refinement) of our algorithomcertain interval effectively. They are the first to study
and uses the other pruning rules to estimate the maximyprobabilistic range queries. In [19], the authors propasess
probability. Its effectiveness can be observed in Fig. 25 hyethods designed to optimize both the 1/O and CPU cost
comparing the number of objects aftgortlistingandrefine- of range queries on multi-dimensional data with arbitrary
mentphases. probability density functions. The concept of probabitist
Fig. 27 shows the effectiveness of other pruning rules. Véémilarity joins on uncertain objects is first introduced[1r3]
observed that the dominance pruning rule prunes fewer sbjewhich assigns a probability value to each object pair irtitica
than the simple distance based pruning rule 4. However, tie likelihood that it belongs to the result s&ankingand
dominance pruning can prune some objects that cannot theesholdingprobabilistic spatial queries are studied in [9].
pruned by the simple pruning rule because the dominan&ethresholding probabilistic query is to retrieve the olgec
pruning rule can trim part of the candidate objects. qualifying the spatial predicates with probability greatean
Fig. 27 shows the number of candidates aftefinement a given threshold. Similarly, a ranking probabilistic quer
phase of our algorithm when a combination of pruning rulegtrieves the objects with the highest probabilities tolifypa
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the spatial predicates. A probabilistic skyline model is-pr and DP0666428) and Google Research Award. Wei Wang'’s
posed in [17] alongwith two effective algorithms to answeresearch is supported by ARC Discovery Grants DP0987273
probabilistic skyline queries. While nearest neighbor tpger and DP0881779. Jian Pei’s research is supported in part by a
on uncertain objects are studied in [4], [6], [14], to the tbe®NSERC Discovery grant and a NSERC Discovery Accelerator

of our knowledge, there does not exist any previous work @upplement grant.

reverse nearest neighbor queries on uncertain data.
Now, we overview the previous work related to reverse

nearest neighbor queries where the data is not uncertam. KREFERENCES
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