
TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 1

SPARK2: Top-k Keyword Query in Relational
Databases

Yi Luo, Wei Wang,Member, IEEE,Xuemin Lin,
Xiaofang Zhou,Senior Member, IEEEJianmin Wang, Keqiu Li

Abstract—With the increasing amount of text data stored
in relational databases, there is a demand for RDBMS to
support keyword queries over text data. As a search result is
often assembled from multiple relational tables, traditional IR-
style ranking and query evaluation methods cannot be applied
directly.

In this paper, we study theeffectivenessand theefficiencyis-
sues of answering top-k keyword query in relational database
systems. We propose a new ranking formula by adapting
existing IR techniques based on a natural notion ofvirtual
document. We also propose several efficient query processing
methods for the new ranking method. We have conducted
extensive experiments on large-scale real databases using
two popular RDBMSs. The experimental results demonstrate
significant improvement to the alternative approaches in terms
of retrieval effectiveness and efficiency.

Index Terms—top-k, keyword search, relational database,
information retrieval

I. I NTRODUCTION

Integration of DB and IR technologies has been an active
research topic recently [1]. One fundamental driving force
is the fact that more and more text data are now stored
in relational databases. Examples include commercial ap-
plications such as customer relation management systems
(CRM), and personal or social applications such as Web
blogs and wiki sites. Since the dominant form of querying
free text is through keyword search, there is a natural
demand for relational databases to supporteffectiveand
efficientIR-style keyword queries.

In this paper, we focus on the problem of supporting
effective and efficient top-k keyword search in relational
databases. While many RDBMSs support full-text search,
they only allow retrieving relevant tuples from within
the same relation. A unique feature of keyword search
over RDBMSs is that search results are oftenassembled
from relevant tuples in several relations such that they
are inter-connectedand collectively be relevant to the
keyword query [2], [3]. Supporting such feature has a

Y. Luo is with Laboratory Le2i of CNRS Dijon, France.
E-mail: Yi.Luo@u-bourgogne.fr

W. Wang and X. Lin are with University of New South Wales, Australia.
E-mail: {weiw, lxue}@cse.unsw.edu.au

X. Zhou is with University of Queensland, Australia.
E-mail: zxf@itee.uq.edu.au

J. Wang is with Tsinghua University, China.
E-mail: jimwang@tsinghua.edu.cn

K. Li is with Dalian University of Technology, China.
E-mail: likeqiu@gmail.com

TABLE I
SEARCHING “2001 HANKS” ON IMDB .COM

1 2001: HAL’s Legacy (2001) (TV)
2 Gigantic Skate Park Tour: Summer 2002 (2002) (TV)
3 TV Hunks and Babes 2006 (2006) (TV)

number of advantages. Firstly, data may have to be split and
stored in different relations due to database normalization
requirement. Such data will not be returned if keyword
search is limited to only single relations. Secondly, it
lowers the barrier for casual users to search databases, as
it does not require users to have knowledge about query
languages or database schema. Thirdly, it helps to reveal
interesting or unexpected relationships among entities [4].
Lastly, for websites with database back-ends, it provides a
more flexible search method than the existing solution that
uses a fixed set of pre-built template queries. For example,
we issued a search of “2001 hanks” using the search
interface on imdb.com, and failed to find relevant answers
(See Table I for the top-3 results returned). In contrast,
the same search on our system (on a database populated
with imdb.com’s data) will return results shown in Table II,
where relevant tuples from multiple relations (marked in
bold font) are joined together to form a meaningful answer
to the query.

TABLE II
TOP-3 SEARCH RESULTS ONOUR SYSTEM

1 Movies: “Primetime Glick” (
:::

2001) Tom
:::::

Hanks/Ben Stiller (#2.1)
2 Movies: “Primetime Glick” (

::::

2001) Tom
::::

Hanks/Ben Stiller (#2.1)
← ActorPlay: Character = Himself→ Actors:

::::

Hanks, Tom
3 Actors: John

:::::

Hanks← ActorPlay: Character = Alexander Kerst
→ Movies: Rosamunde Pilcher - Wind über dem Fluss (

::::

2001)

There has been many related work dedicated to keyword
search in databases recently [2]–[10]. Among them, [7]
first incorporates state-of-the-art IR ranking formula to
address the retrieval effectiveness issue. It also presents
several efficient query execution algorithms optimized for
returning top-k relevant answers. The ranking formula is
subsequently improved by Liu,et al. [10] by using several
refined weighting schemes. BANKS [3] and BANKS2 [8]
took another approach by modeling the database content
as a graph and proposed sophisticated ranking and query
execution algorithms. [4], [9] studied theoretical aspects of
efficient query processing for top-k keyword queries.

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 2

Despite the existing studies, there are still several issues
with existing ranking methods, some of which may even
lead to search results contradictory to human perception. In
this paper, we analyze shortcomings of previous approaches
and propose a new ranking method by adapting existing IR
ranking methods and principles to our problem based on
a virtual documentmodel. Our ranking method also takes
into consideration other factors (e.g., completeness and size
of a result). Another feature is the use of a single tuning
parameter to inject AND or OR semantics into the ranking
formula. The technical challenge with the new ranking
method is that the final score of an answer is aggregated
from multiple scores of each constituent tuples, yet the
final score isnot monotonic with respect to any of its sub-
components. Existing work on top-k query optimization
cannot be immediately applied as they all rely on the
monotonicity of the score aggregation function. Therefore,
we also study efficient query processing methods optimized
for our non-monotonic scoring function. We propose a
skyline sweepingalgorithm that achieves minimal database
probing by using a monotonic score upper bounding func-
tion for our ranking formula. We also explore the idea of
employing another non-monotonic upper bounding function
to further reduce unnecessary database accesses, which
results in theblock pipelinealgorithm. We then propose
the tree pipeline algorithm which share the intermediate
results among CNs at a fine granularity. We have conducted
extensive experiments on large-scale real databases on two
popular RDBMSs. The experimental results demonstrate
that our proposed approach is superior to the previous
methods in terms of effectiveness and efficiency.

We summarize our contributions as:

• We propose a novel and nontrivial ranking method that
adapts the state-of-the-art IR ranking methods to rank-
ing heterogeneous joined results of database tuples.
The new method addresses an important deficiency
in the previous methods and results in substantial
improvement of the quality of search results.

• We propose three algorithms,skyline sweeping, block
pipeline, and tree pipeline, to provide efficient query
processing mechanism based on our new ranking
method. The key challenge is that the non-monotonic
nature of our ranking function renders existing top-
k query processing techniques inapplicable. Our new
algorithms are based on several novel score upper
bounding functions. They also have the desirable fea-
ture of interacting minimally with the databases.

• We conduct comprehensive experiments on large-scale
real databases containing up to ten million tuples. Our
experiment results demonstrated that the new ranking
method outperformed alternative approaches, and that
our query processing algorithms delivered superior
performance to previous ones.

The rest of the paper is organized as follows: Section II
provides an overview of the problem and existing solu-
tions. Section III presents our new ranking method and
Section IV introduces two query processing algorithms

optimized for efficient top-k retrieval. Section V introduces
a query processing algorithm that features fine granularity
computational sharing between CNs. We introduce related
work in Section VII and Section VIII concludes the paper.

II. PRELIMINARIES

A. Problem Overview and Problem Definition

We consider a relational schemaR as a set of relations
{R1, R2, . . . , R|R|}. These relations are interconnected at
the schema level via foreign key to primary key references.
We denoteRi → Rj if Ri has a set of foreign key
attribute(s) referencingRj ’s primary key attribute(s), fol-
lowing the convention in drawing relational schema graphs.
For simplicity, we assume all primary key and foreign key
attributes are made of single attribute, and there is at most
one foreign key to primary key relationship between any
two relations. We do not impose such limitations in our
implementation. A queryQ consists of (1) a set of distinct
keywords, i.e.,Q = {w1, w2, . . . , w|Q|}; and (2) a parame-
ter k indicating that a user is only interested in top-k results
ranked by relevance scores associated with each result. Ties
can be broken arbitrarily. A user can also specify AND or
OR semantics for the query, which mandates that a result
must or may not matchall the keywords, respectively. The
default mode is the OR semantics to allow more flexible
result ranking [7].

A result of a top-k keyword query is a tree,T , of tuples,
such that each leaf node ofT contains at least one of the
query keyword, and each pair of adjacent tuples inT is
connected via a foreign key to primary key relationship.
We call such an answer tree ajoined tuple tree(JTT). The
size of a JTT is the number of tuples (i.e., nodes) in the
tree. Note that we allow two tuples in a JTT to belong to
the same relation. Each JTT belongs to the results produced
by a relational algebra expression — we just replace each
tuple with its relation name and impose a full-text selection
condition on the relation if the tuple is a leaf node. Such
relational algebra expression (or its SQL equivalent) is
also termed asCandidate Network(CN) [6]. Relations in
the CN are also calledtuple sets. There are two kinds of
tuple sets: those that are constrained by keyword selection
conditions are callednon-free tuple sets(denoted asRQ)
and others are calledfree tuple sets(denoted asR). Every
JTT as an answer to a query has itsrelevancescore, which,
intuitively, indicates how relevant the JTT is to the query.
Conceptually, all JTTs of a query will be sorted according
to the descending order of their scores and only those with
top-k highest scores will be returned.

Example 2.1:In this paper, we use the same running
example as the previous work [7] (shown in Figure 1).

In the example,R = {P, C, U}.1 Foreign key to primary
key relationships are:C → P andC → U . A user wants to
retrieve top-3 answer to the query “maxtor netvista”.

Some example JTTs include:c3, c3 → p2, c1 → p1,
c2 → p2, andc2 → p2 ← c3. The first JTT belongs to CN

1Initials of relation names are used as shorthands (except that
we useU to denoteCustomers).

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 3

Complaints

rid prodId custID date comments

c1 p121 c3232 6-30-2002 disk crashed after just one week of moderate use on
an IBM

:::::::

Netvista X41

c2 p131 c3131 7-3-2002 lower-end IBM
:::::::

Netvista caught fire, starting appar-

ently with disk
c3 p131 c3143 8-3-2002 IBM

::::::

Netvista unstable with
::::::

Maxtor HD

Products

rid prodId manufacturer model

p1 p121
::::::

Maxtor D540X

p2 p131 IBM
:::::::

Netvista

p3 p141 Tripplite Smart 700VA

Customers

rid custId name occupation

u1 c3232 John Smith Software Engineer
u2 c3131 Jack Lucas Architect
u3 c3143 John Mayer Student

Fig. 1. A Running Example from [7] (Query is “maxtor netvista”; Matches are Underlined)

CQ; the next three JTTs belong to CNCQ → PQ; and
the last JTT belongs to CNCQ → PQ ← CQ. Note that
c3 → u3 is not a valid JTT to the query, as the leaf node
u3 does not contribute to a match to the query.

A possible answer for this top-3 query may be:c3, c3 →
p2, and c1 → p1. We believe that most users will prefer
c1 → p1 to c2 → p2, because the former complaint is really
about a IBMNetvista equipped with aMaxtor disk,
and that it is not certain whether Productp2 mentioned in
the latter JTT is equipped with aMaxtor hard disk or not.

B. Overview of Existing Solutions

We will use the running example to briefly introduce
the basic ideas of existing query processing and ranking
methods.

Given the query keywords, it is easy to find relations that
contain at least one tuple that matches at least one search
keyword, if the system supports full-text query and inverted
index. The matched tuples from those relations forms the
non-free tuple sets, and are usually ordered in descending
order by their IR-style relevance scores. The challenge is
to find inter-connected tuples that collectively form valid
JTTs. Given the schema of the database, we canenumerate
all possible relational algebra expressions (i.e., CNs) such
that each of themmight generate an answer to the query.

Example 2.2:For the query “maxtor netvista”,
only P andC have tuples matching at least one keyword of
the query. The non-free tuple set ofC is CQ = [c3, c2, c1],
and the non-free tuple set ofPQ is [p1, p2]. The free tuple
set of U is U itself. While CQ → PQ might produce an
answer,CQ → U cannot produce any valid answer (i.e.,
JTT), as the joiningU tuple won’t contribute any keyword
match to the query. However, note that other larger CNs
whose query expressions contain that ofCQ → U (e.g.,
CQ → U ← CQ) may still produce an answer.

DISCOVER [6] has proposed a breadth-first CN enu-
meration algorithm that is both sound and complete. The
algorithm is essentially enumerating all subgraphs of size
k that does not violate any pruning rules. The algorithm
variesk from 1 to some search range thresholdM . Three
pruning rules are used and they are listed below. We also
show the traces of the CN generation algorithm running on
our example (Table III).

Rule 1 : Prune duplicate CNs.

TABLE III
ENUMERATING CNS. P AND C BOTH MATCH THE TWO QUERY
KEYWORDS. WE MARK INVALID CNS IN GRAY. (WE OMIT CNS

PRUNED BY RULE 1)

Schema: P Q CQ U

Size CN ID CN Valid? Violates

1 CN1 P Q Y
1 CN2 CQ Y
2 CN3 P Q ← CQ Y
2 CQ → U n Rule (2)
3 P Q ← CQ → U n Rule (2)
3 P Q ← CQ → P Q n Rule (3)
3 CN4 CQ → P Q ← CQ Y
3 U ← CQ → U n Rules (2, 3)
3 CN5 CQ → P ← CQ Y
3 CN6 CQ → U ← CQ Y

4
...

...
...

Rule 2 : Prune non-minimal CNs, i.e., CNs containing at
least one leave node which does not contain a query
keyword.

Rule 3 : Prune CNs of type:RQ ← S∗ → RQ. The
rationale is that any tuples ∈ S∗ (S∗ may be a free or
non-free tuple set) which has a foreign key pointing
to a tuple inRQ must point to the same tuple inRQ.

Four valid CNs (CN1 to CN4) are found in the above ex-
ample. Each CN naturally corresponds to a database query.
E.g., CN3 corresponds to the following SQL statement in
Oracle’s syntax:

SELECT *
FROM Products P, Complaints C
WHERE P.prodId = C.prodId

AND (CONTAINS(P.manufacturer,
’maxtor, netvista’) > 0

OR CONTAINS(P.model,
’maxtor, netvista’) > 0)

AND CONTAINS(C.comments ,
’maxtor, netvista’) > 0

To find top-k answers to the query, a naı̈ve solution is
to issue an SQL query for each CN and union them to find
the top-k results by their relevance scores. DISCOVER2 [7]
introduce two alternative query evaluation strategies:sparse
andglobal pipelinealgorithms, both optimized for stopping
the query execution immediately after the true top-k-th

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 4

result can be determined.2 The basic idea is to use an upper
bounding function to bound the scores of potential answers
from each CN (either before execution or in the middle
of its execution). The upper bound score ensures that any
potential result from future execution of a CN willnot have
a higher score. Thus the algorithm can stop earlier if the
current top-k-th result has a score no smaller than the upper
bound scores of all CNs. We note that this is the main
optimization technique for other variants of top-k queries
too [11]–[13].

The sparse algorithm executes one CN at a time and up-
dates the current top-k results; it uses the above-mentioned
criterion to stop query execution earlier. The global pipeline
algorithm adopts a more aggressive optimization: it does
not execute a CN to its full; instead, at each iteration, it
(a) first selects the mostpromisingCN, i.e., the CN with
the highest upper bound score; (b) admits the next unseen
tuple from one of the CN’s non-free tuple sets and join the
new tuple withall the already seen tuples in all the other
non-free tuple sets. As such, the query processing strategy
(of a single CN) is similar to that ofripple join [14].

C. Overview of Our Solution

In this paper, we assume that the DBMS can efficiently
locate the matching tuples for each search keyword and
form the non-free tuple sets. We will focus on the following
two sub-problems: (a) how to score a JTT, and (b) how to
generate and order the SQL queries for the CNs of a query,
such that minimal database accesses (also calledprobes) are
required before top-k results are returned

The first problem is studied in the next section. The
second problem is addressed in Section IV.

III. R ANKING FUNCTION

Due to the fuzzy nature of keyword queries, retrieval
effectiveness is vital to keyword search on RDBMSs. The
initial attempt was a simple ranking by the size of CNs [2],
[6]. DISCOVER2 later proposed a ranking formula based
on the state-of-the-art IR scoring function [7]. More re-
cently, several sophisticated improvements to the ranking
formula in [7] have been suggested [10].

In this section, we first motivate our work by presenting
observations that reveal several problems in the existing
schemes. We show that simply aggregating the the IR
scores for each individual tuple in a JTT violates the IR
scoring principle and results in anomalies. We then propose
to model a JTT as a virtual document by combining all
its tuples together and then computing a holistic score.
Our final scoring function also takes into consideration the
number of query keyword matched in a JTT and the size
of the JTT.

2In this paper, we name the system in [7] as DISCOVER2.
A hybrid algorithm that selects either sparse or global pipeline
algorithm for a query based on selectivity estimation is also
proposed in [7]. It is discussed and compared with in SectionVI.

A. Problems with Existing Ranking Functions

The basic idea of the ranking method used in DIS-
COVER2 [7] (and its variant [10]) is to

1) assign each tuple in the JTT a score using a standard
IR-ranking formula (or its variants); and

2) combine the individual scores together using a score
aggregation function,comb(·), to obtain the final
score. Only monotonic aggregation functions, e.g.,
SUM, have been considered.3

For example, the IR-style ranking function used in DIS-
COVER2 is adapted from the TF-IDF ranking formula as:4

score(T, Q) =
∑

t∈T

score(t, Q)

score(t, Q) =
∑

w∈t∩Q

1 + ln(1 + ln(tfw(t)))

(1− s) + s · dlt
avdlt

· ln(idfw)

whereidfw =
NRel(t) + 1

dfw(Rel(t))

tfw(t) denotes the number of times a keywordw appears
in a database tuplet, dlt denotes the length of the text
attribute of a tuplet, and avdlt is the average length of
the text attribute in the relation whicht belongs to (i.e.,
Rel(t)), NRel(t) denotes the number of tuples inRel(t),
and dfw(Rel(t)) denotes the number of tuples inRel(t)
that contain keywordw. The score of a JTT is the sum of
the local scores of every tuple in the JTT.

TABLE IV
DIFFERENTSCORINGFUNCTIONSPRODUCESDIFFERENTRANKINGS

(ln(idfmaxtor) = ln(idfnetvista) = 1.0 AND dlt = avdlt)

CN t ∈ CN tfmaxtor tfnetvista Scoret ScoreT Our Score

c3 → p2
c3 1 1 2.0 ff

3.0 1.13
p2 0 1 1.0

c1 → p1
c1 0 1 1.0 ff

2.0 0.98
p1 1 0 1.0

c2 → p2
c2 0 1 1.0 ff

2.0 0.44
p2 0 1 1.0

We illustrate an inherent problem in the above framework
by using the running example in Figure 1. The query is
“maxtor netvista”. Let us consider the CN:CQ →
PQ. If the CN is executed completely, it will produce 3
results. In Table IV, we list the detailed steps to obtain
the scores (ScoreT) according to the above-mentioned
method. For example,c3 → p2 consists of two tuplesc3

and p2 belonging toC and P , respectively.c3 contains
onemaxtor and onenetvista, while p2 containsone
netvista only. For simplicity, we do not consider length
normalization in the example (i.e., settingdlt = avdlt
for all t), and assume that theln(idf) values of both
keywords are1. Therefore, we can calculatescore(c3, Q)
as1+ln(1+ln(tfmaxtor(c3))+1+ln(1+ln(tfnetvista(c3)) =

3The aggregation function used in [10] is not monotonic. How-
ever, query processing issues with this non-monotonic aggregation
function are not discussed.

4To obtain the final score of a JTT,score(T, Q) needs to be
further normalized byT ’s size, i.e., multiple another 1

size(T)
.

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 5

2.0, andscore(p2, Q) = 1+ln(1+ln(tfnetvista(p2)) = 1.0.
The final score for the joined tuple,score(c3 → p2), is
2.0+1.0 = 3.0. Similarly, c1 → p1 andc2 → p2 both have
the same score2.0 and thus are both ranked as the second.

However, a careful inspection of the latter two results
reveals thatc1 → p1 in fact matchesboth search keywords
while c2 → p2 matches only one keyword (netvista)
albeit twice. We believe that most users will find the former
answer more relevant to the query than the latter one. In
fact, it is not hard to construct an extreme example where
the DISCOVER2’s ranking contradicts human perception
by ranking results that contain a large amount of one
search keyword over results that contain all or most search
keywords but only once.

There are two reasons for the above-mentioned ranking
problem. Firstly, when a user inputs short queries, there
is a strong implicit tendency for the user to prefer answers
matching queries completely to those matching queries par-
tially. We propose acompleteness factorin Section III-C to
quantify this factor. Secondly, the framework of combining
local IR ranking scores has an inherent side effect of overly
rewarding contributions of thesamekeyword in different
tuples in the same JTT.

We note that a similar observation and remedy about
the need of non-linear term frequency attenuation was also
made by IR researchers [15]. The difference is that the
same approach is motivated by the semantics of our search
problem; in addition, our problem is more general and a
number of other modifications to the IR ranking function
are made (e.g., inverse document frequencies and document
length normalization for each CN).

B. Modelling a Joined Tuple Tree as a Virtual Document

We propose a solution based on the idea of modelling
a JTT as avirtual document. Consequently, the entire
results produced by a CN will be modeled as a document
collection. The rationale is that most of the CNs carry
certain distinct semantics. E.g.,CQ → PQ gives all
details about complaints and their related products that
are collectively relevant to the queryQ and form integral
logical information units. In fact, the actual lodgment of a
complaint would contain both product information and the
detailed comment — it was split into multiple tables due
to the normalization requirement imposed by thephysical
implementation of the RDBMSs.

A very similar notion ofvirtual documentwas proposed
in [16]. Our definition differs from [16] in that ours is
query-specific and dynamic. For example, a customer tuple
is only joined with complains matching the query to form a
virtual document on the run-time, rather than joining with
all the complaints as [16] does.

By adopting such a model, we could naturally compute
the IR-style relevance score without using an esoteric score
aggregation function. More specifically, we assign an IR

ranking score to a JTTT as

scorea(T, Q) =
∑

w∈T∩Q

1 + ln(1 + ln(tfw(T)))

(1− s) + s · dlT
avdlCN∗(T)

· ln(idfw)

(1)

wheretfw(T) =
∑

t∈T

tfw(t), idfw =
NCN∗(T) + 1

dfw(CN∗(T))

CN(T) denotes the CN which the JTTT belongs to,
CN∗(T) is identical to CN(T) except that all full-text
selection conditions are removed.CN∗(T) is also written
asCN∗ if there is no ambiguity.

Example 3.1:Consider the CNCQ → PQ, CN∗ is
C → P (i.e.,C ⋊⋉ P) in Table IV.NCN∗ = 3. dfmaxtor = 2
anddfnetvista = 3.

In our proposed method, the contributions of the same
keyword in different relations arefirst combined andthen
attenuated by the term frequency normalization. Therefore,
tfmaxtor(c2 → p2) = 0, tfnetvista(c2 → p2) = 2, while
tfmaxtor(c1 → p1) = 1, tfnetvista(c1 → p1) = 1. Accord-
ing to Equation (1) and omitting the size normalization,
scorea(c2 → p2) = 0.44, while scorea(c1 → p1) = 0.98.
Thus,c1 → p1 is ranked higher thanc2 → p2, which agrees
with human judgments.5

There are still two technical issues remaining: how to
obtaindfw(CN∗) andNCN∗ and how to obtainavdlCN∗ .
No doubt that computingdfw(CN∗) and NCN∗ exactly
will incur prohibitive cost. One solution is to compute them
approximately: we estimatep = dfw(CN∗)

NCN∗

, such that the
idf value of the term inCN∗ can be approximated as1

p
.

Consider aCN∗ = R1 ⋊⋉ R2 ⋊⋉ . . . ⋊⋉ Rl, and denote the
percentage of tuples inRj that matches at least a keyword
w aspw(Rj). We can derive

dfw(CN∗)

NCN∗ + 1
≈

dfw(CN∗)

NCN∗

= p ≈ 1−Πj(1− pw(Rj))

by assuming that (a)NCN∗ is a large number, and (b) tuples
matching keywordw are uniformly and independently
distributed in each relationRj . In a similar fashion, we
estimateavdlCN∗ as

∑

j avdlRj
.

C. Other Ranking Factors

Completeness Factor:As motivated in Section III-A,
we believe that users usually prefer documents matching
many query keywords to those matching only few key-
words. To quantify this factor, we propose to multiply
a completenessfactor to the raw IR ranking score. We
note that the same intuition has been recognized by IR
researchers when studying ranking forshort queries[17],
[18].

Our proposed completeness factor is derived from the
extended Boolean model[19]. The central idea of the
extended Boolean model is to map each document into
a point in am-dimensional space[0, 1]m, if there arem

keywords in the queryQ. A documentd will have a large

5c3 ← p2 will have score 1.13, which still makes it ranked as the first
result.

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 6

coordinate value on a dimension, if it has high relevance
to the corresponding keyword. As we prefer documents
containing all the keywords, theideal answer should be
located at the positionPideal = [1, . . . , 1

| {z }

m

]. In our virtual

document model, a JTT is a document and can be projected
into this m-dimensional space just as a normal document.
We thus use the distance of a document to the ideal
position,Pideal, as thecompleteness valueof the JTT. More
specifically, we use theLp distance and normalize the value
into [0, 1]. The completeness factor,scoreb, is then defined
as:

scoreb(T, Q) = 1−

(

∑

1≤i≤m(1 − T.i)p

m

)

1
p

(2)

whereT.i denotes the normalized term frequency of a JTT
T with respect to keywordwi, i.e.,

T.i =
tfwi

(T)

max1≤j≤m tfwj
(T)
·

idfwi

max1≤j≤m idfwj

In Equation (2),p is a tuning parameter.p can smoothly
switch the completeness factor biased towards the OR
semantics to the AND semantics, whenp increases from 1.0
to∞. To see that, considerp→∞, the completeness factor
will essentially becomemin1≤i≤m T.i, which essentially
gives 0 score to a result failing to match all the search
keywords. In our experiment, we observed that ap value of
2.0 is already good enough to enforce the AND-semantics
for almost all the queries tested.

Apart from the nice theoretical properties, the ability
to switch between AND and OR semantics is a salient
feature to query processing. It enables a unified framework
optimized for top-k query processing for both AND and
OR semantics. In contrast, previous approaches are either
optimized for the AND semantics [2] or for the OR
semantics [7].

Size Normalization Factor:The size of the CN or
JTT is also an important factor. A larger JTT tends to
have more occurrences of keywords. A straightforward
normalization by 1

size(CN) [7] usually penalizes too much
for even moderate-sized CNs.We experimentally found that
the following size normalization factor works well in the
experiment:

scorec = (1 + s1 − s1 · size(CN))

· (1 + s2 − s2 · size(CNnf)) (3)

wheresize(CNnf) is the number of non-free tuple sets for
the CN. In our experiments, we found thats1 = 0.15 and
s2 = 1

|Q|+1 yielded good retrieval results for most of the
queries.

D. The Final Scoring Function

In summary, our ranking method can be conceptually
thought as first merging all the tuples in a JTT into a
virtual document, and then obtaining its IR ranking score
(Equation (1)), the completeness factor score (Equation (2),
and the size normalization factor score (Equation (3)). Since

each component score reflects the quality of the answer in
different perspectives, we obtain the final score of the JTT,
score(T, Q), as the product of all the three scores:

score(T, Q) = scorea(T, Q) · scoreb(T, Q) · scorec(T, Q)

IV. T WO TOP-k JOIN ALGORITHMS

While effectiveness of keyword search is certainly the
most important factor, we believe that the efficiency of
query processing is also a critical issue. Query execution
time will become prohibitively large for large databases, if
the query processing algorithm is not fully optimized for
the ranking function and top-k queries.

In this section, we propose two efficient query processing
algorithms for our newly proposed ranking function. The
first algorithm carefully constructs a minimal group of
potential solutions by observing the score dominance re-
lationship between candidates solutions. This results in the
Skyline Sweeping algorithm which is optimal in terms of
number of database probes. The second algorithm partitions
the tuples in a CN into blocks according to their signatures
and can effectively alleviate the inefficiency inherent in our
complex, non-monotonic scoring function. Yet another al-
gorithm that further exploits computational sharing between
CNs will be given in Section V.

A. Dealing with Non-monotonic Scoring Function

The technical challenge of query processing mainly
lies with the non-monotonic scoring function (mainly the
scorea(·) and scoreb(·) functions) used in our ranking
method. To the best of our knowledge, none of the existing
top-k query processing methods deals with non-monotonic
scoring function. We use the single pipeline algorithm [7]
to illustrate the challenge and motivate our algorithms.

C

P

c[i] c[i + 1]

p[j]

p[j + 1]

y

x
I II

III IV

(a) Single Pipeline

C

P

y

x
I

II

z

z′

z′′

(b) Skyline Sweeping

Fig. 2. Query Evaluation Strategies

Example 4.1:Figure 2(a) illustrates a snapshot of run-
ning the single pipeline algorithm on the CNC → P .
Assume that we have processed the light gray area marked
with “I” (i.e., the rectangle up to(c[i], p[j])). We use the
notationc[i] to denote thei-th tuple in the non-free tuple
setCQ in descending order of their scores.

In the figure, hollow circles denotecandidatesthat we
have examined but did not produce any result, filled circles

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 7

denote joined results, and hollow triangles denote candi-
dates that have not been examined.

Assume that a user asks for top-2 results, and we have
already found two resultsx and y. The single pipeline
algorithm needs to decide whether to continue the query
executing (and check more candidates) or stop and return
{x, y} as the query result. DISCOVER2 needs to bound the
maximum score that any unseen candidate can achieve. If
the last seen candidate isc[i]→ p[j], then the upper bound
is max(score(p[1], c[i+1], score(p[j+1], c[1]). This is true
because DISCOVER2 uses a monotonic scoring function
(SUM) and thereforescore(p[1], c[i+1]) ≥ score(p[u], c[v])
(u ≥ 1, v ≥ i + 1) and score(p[j + 1], c[1]) ≥
score(p[u], c[v]) (u ≥ j + 1, v ≥ 1); the combination of
the right-hand sides in the above two inequalities covers
all the unseen candidates (i.e., those marked as triangles).

We note that, with our new ranking method, the score
of a JTT is not monotonic with respect to the score of
its constituent tuples. For example, consider the last two
JTTs in Table IV. If we assumeidfnetvista > idfmaxtor,
then score(c2) = score(c1) but score(p2) > score(p1).
However, we havescore(c2 → p2) < score(c1 → p1),
even if we do not impose the penalty from the completeness
factor. Consequently, previous algorithms on top-k query
processing cannot be immediately applied, and a naı̈ve
approach would have to produce all the results to find the
top-k results.

Our solution, which underlies both of our proposed
algorithms, is based on the observation that if we can find
a (preferably tight)monotonic, upper boundingfunction
to the actual scoring function, we can stop the query
processing earlier too. We derive such an upper bounding
function for our ranking function in the following.

Let us denote a JTT asT , which consists of tu-
ples t1, . . . , tm. Without loss of generality, we as-
sume every ti is from a non-free tuple set; other-
wise, we just ignore it from the subsequent formulas.
Let sumidf =

∑

w∈CN(T)∩Q idfw and watf(ti) =
∑

w∈ti∩Q (tfw(ti) · idfw)

sumidf
(i.e., pseudo weighted averagetf

of tuple ti). Then we have the following lemma.6

Lemma 4.1:scorea(T, Q) (Equation (1)) can be
bounded by a functionuscorea(T, Q) = 1

1−s
·min(A, B),

where

A = sumidf ·
(

1 + ln
(

1 + ln
(

∑

ti∈T∩Q
watf(ti)

)))

B = sumidf ·
∑

ti∈T∩Q
watf(ti) .

In addition, the bound is tight.
A tight upper bound for the completeness factor (denoted

asuscoreb) can be determined given the keywords matched
in each non-free tuple sets of a CN. The size normalization
factor is also a constant for a given CN. Therefore, we have
the following theorem to upper bound the score of a JTT.

6Sinceidfw is monotonically decreasing with the size of CNs, we can
use the maximumidfw value for all size-1 CNs here.

Theorem 4.1:

score(T, Q) ≤ uscore(T, Q), where (4)

uscore(T, Q) = uscorea(T, Q) · uscoreb(CN(T), Q)

· scorec(CN(T), Q)

and for a givenCN , the upper bound score ismonotonic
with respect towatf(ti) (ti ∈ T).

This result immediately suggests that we should sort all
the tuples (ti) in the non-free tuple set of a CN by the
decreasing order of theirwatf(ti) values (rather than their
local IR scores as used in previous work), such that we can
obtain an upper bound score of all the unseen candidates.

Example 4.2:Continuing the previous example, assume
that we have ordered all tuplest in CQ andPQ according
to the descending order of theirwatf(t) values. Then the
score of the unseen candidates in the CN:X = CQ → PQ

is bounded byM · uscoreb(X, Q) · scorec(X, Q), where
M = max(uscorea(c[i+1], p[1]), uscorea(c[1], p[j +1])).

B. Skyline Sweeping Algorithm

Based on Theorem 4.1, we could modify the existing
single or global pipeline algorithm such that it will correctly
compute the top-k answers for our new ranking function.
However, single/global pipeline algorithm may incur many
unnecessaryjoin checking. Therefore, we design a new
algorithm,skyline sweeping, that is guaranteednot to incur
any unnecessary checking and thus has the minimal number
of accesses to the database.

Example 4.3:Consider the single pipeline algorithm
running on the example in Figure 2(a). Assume that the
algorithm has processedc[1] . . . c[i] on non-free tuple set
CQ andp[1] . . . p[j] on PQ. If the algorithm cannot stop,
it will pick up eitherc[i+1] or p[j +1]. If it picks c[i+1],
j probing queries will be sent to verify whetherc[i + 1]
joins with p[k], where1 ≤ k ≤ j.

It is obvious that some of thesej queries might be
unnecessary, if, e.g., ifc[i + 1] joins with p[1] and its real
score is higher than the upper bound scores of the rest of the
candidates, then the otherj−1 probes will be unnecessary.

We propose an algorithm designed to minimize the num-
ber of join checking operations, which typically dominates
the cost of the algorithm. Our intuition is that if there are
two candidatesx and y and the upper bound score ofx

is higher than that ofy, y should not be checked unless
x has been checked. Therefore, we should arrange all the
candidates to be checked according to their upper bound
scores. A naı̈ve strategy is to calculate the upper bound
scores for all the candidates, sort them according to the
upper bound scores, and check them one by one according
to this optimal order. This will incur excessive amount of
unnecessary work, since not all the candidates need to be
checked.

We take the following approach. We define adominance
relationship among candidates. Denotex.di as the order
(i.e., according to theirwatf values) of candidatex on the
non-free tuple setdi. If x.di ≤ y.di for all non-free tuple
set di, then uscore(x) ≤ uscore(y). This enables us to

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 8

compute the upper bound score and check candidates in a
lazy fashion: immediately after we check a candidatex, we
push all the other candidates directly dominated byx into
a priority queue by the descending order of their upper
bound scores. It can be shown that the candidates in the
queue form askyline [20] and the skyline sweeps across
the Cartesian space of the CN as the algorithm progresses,
hence the name of the algorithm.

Algorithm 1 : Skyline Sweeping Algorithm

Q.push((

m
z }| {

1, 1, . . . , 1), calc uscore((

m
z }| {

1, 1, . . . , 1)));1
top-k ← ∅;2
while top-k[k].score < Q.head().uscore do3

head← Q.pop max();4
r ← executeSQL(formQuery(head));5
if r 6= nil then6

top-k.push(r, score(r));7

for i← 1 to m do8
t← head.dup();9
t.i← t.i + 1;10
Q.push(t, calc uscore(t)); /* According to11
Equation (4) */;
if head.i > 1 then12

break;13

return top-k;14

The algorithm is shown in Algorithm 1. A result list,
top-k, contains no more thank results ordered by the
descending real scores. The main data structure is a priority
queue,Q, containing all the candidates (which are mapped
to multi-dimensional points) according to the descending
order of their upper bound scores. The algorithm also
maintains the invariant that the candidate at the head of the
priority queue has the highest upper bound score among
all candidates in the CN. The invariant is maintained by
(a) pushing the candidate formed by the top tuple from
all dimensions into the queue (Line 1), and (b) whenever a
candidate is popped from the queue, itsadjacentcandidates
are pushed into the queue together with their upper bounds
(Lines 8–13). The algorithm stops when the real score of the
current top-k-th result is no smaller than the upper bound
score of the head element of the priority queue; the latter
is exactly the upper bound score of all the unprocessed
candidates.

A technical point is that we should avoid inserting
the same candidate multiple times into the queue. Doing
duplicate checking is inefficient in terms of time and space.
We adopt a space partitioning method to totally avoid
generating duplicate candidates. This is implemented in
Lines 12–13 using the same ideas as [12]. For example,
in Figure 2(b), assume the order of the dimensions isP ,
C. Both z′ and z′′ are the adjacent candidates toz, but
only z′ will be pushed intoQ whenz is examined by the
algorithm.

Theorem 4.2:The skyline sweeping algorithm has the
minimal number of probing to the database.

Generalizing to Multiple CNs:The skyline sweeping al-
gorithm can be easily generalized to support more than one
CN. The only modification is to change the initialization
step: we just push the top candidate of each CN to the
priority queueQ.

C. Block Pipeline Algorithm

We present another algorithm to further improve the
performance of the skyline sweeping algorithm. We observe
that the aggregation function we used is non-monotonic,
yet, in order to stop execution earlier, wehave touse a
monotonic upper bounding function to bound it. As such,
the upper bounding may be rather loose at places.

Large gaps between the upper bound scores and the
corresponding real scores cause two problems in the skyline
sweeping algorithm: (a) it is harder to stop the execution, as
the upper bound of unprocessed candidates may be much
higher than their real score, and consequently higher than
the real score of the top-k-th result, and (b) the order of the
probes is not optimal, as the algorithm will perform large
number of probes and only obtain candidates with rather
low real score, which cannot contribute to the final top-k

answer.
In order to address the above problems, we propose a

novel block pipelinealgorithm. The central idea of the
algorithm is to employ anotherlocal non-monotonicupper
bounding function that bounds the real score of JTTs more
accurately. As such, we will check the most promising
candidates first and thus further reduce the number of
probes to the database.

To illustrate the idea, we define several concepts first.
Consider a non-free tuple setRQ and a queryQ =
{w1, . . . , wm}. We define thesignature of a tuple t in
RQ as an ordered sequence of term frequencies for all the
query keywords, i.e.,〈tfw1(t), . . . , tfwm

(t)〉. Then, we can
partition eachRQ into a number ofstrata such that all
tuples within the same stratum have the same signature
(also called the signature of the stratum). For a given
CN, the partitioning of its non-free tuple sets naturally
induces a partitioning of all the join candidates. We call
each partition of the join candidates ablock. The signa-
tures of the strata that forms a blockb can be summed
up as〈

∑

ti∈T tfw1(ti), . . . ,
∑

ti∈T tfwm
(ti)〉, to form the

signature of the block (denoted assig(b)).
If two candidates in the same block both pass the join

test, they should havesimilar real scores, as they agree on
the term frequencies of all the query keywords (and thus the
completeness wrt. the query), and the size of the result. This
observation helps to derive a much tighter upper bounding
function,bscore, for any candidateT within the same block
via the block signature:

bscore(b, Q) =
∑

w∈Q∩b

1 + ln(1 + ln(sigw(b))

1− s
· ln(idfw)

· scoreb(b, Q) · scorec(CN(T), Q) (5)

We note that this new bounding function, albeit being
tighter (as it is no larger thanuscore(T, Q) defined in

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 9

Lemma 4.1),cannotbe directly used to derive the stopping
condition for top-k query processing algorithms, as it is not
monotonic with respect to any single computable measure
of its non-free tuple sets.

Algorithm 2 : Block Pipeline Algorithm
Input : CN is the set of CNs
Q← ∅;1
forall cn ∈ CN do2

b← the first block ofcn;3
b.status← USCORE;4
Q.push(b, calc uscore(b)); /* According to5
Equation (4) */;

while top-k[k].score < Q.head().getScore() do6
head← Q.pop max();7
if head.status = USCORE then8

head.status← BSCORE;9
Q.push(head, calc bscore(head)); /* based10
on Eq. (5) */;
forall the adjacent blocks b′ to head enumerated11
in a non-redundant way do

b′.status← USCORE;12

Q.push(b′, calc uscore(b′));13

else if head.status = BSCORE then14
R← executeSQL(formQuery(b));15
forall result t ∈ R do16

t.status← SCORE;17
Q.push(r, calc score(head)); /* compute18
the real score */;

else19
Inserthead into top-k;20

return top-k;21

We introduce a solution using lazy block calculation
and integrate it with the monotonic upper bounding score
function (Equation (4)) seamlessly. Algorithm 2 describes
the pseudo-code of theblock pipelinealgorithm. Intuitively,
the algorithm is “unwilling” to issue a database probing
query if the current top-ranked item in the priority queue
is only associated with its upper bound score (uscore), as
the score might not be close enough to its real score. Our
non-monotonic bounding function plays its role here by re-
inserting the item back to the priority queue, but with its
bscore (Lines 9–10).

Theorem 4.3:The block pipeline algorithm will never
be worse than the skyline sweeping algorithm in terms of
number of probes to the database. When the score aggre-
gation function is non-monotonic, there exists a database
instance such that the block pipeline algorithm will check
fewer candidates than the skyline sweeping algorithm.

Example 4.4:Consider the example in Figure 2(a) and
assume that we have onlyi+1 tuples in the non-free tuple
setCQ and j + 1 tuples inPQ. Further assume that both
c[1], . . . , c[i] andp[1] . . . , p[j] are tuples matching the same
keyword, w1, once (and thus form two strata), and both
c[i+1] andp[j +1] matchw2 once (and form another two
strata). Assume theidf values ofw1 is higher than that
of w2, and hence the strata containing matches ofw1 is
ranked above those matchingw2. This gives us four blocks.
E.g., block I is [c[1] . . . c[i]] × [p[1] . . . p[j]], and its block

signature is〈2, 0〉. Similarly, block II and III have the same
block signature as〈1, 1〉.

We assumeln(idfw1) = 1.1, ln(idfw2) = 1.0, the
completeness factor,scoreb, is 0.5, the size normalization
factor,scorec, is 1.0, ands is 0.2. We calculate thebscores
anduscores for each block in the following table:

Block bscore uscore

I 1.05 2.74
II 2.63 2.63
III 2.63 2.63
IV 0.95 2.50

The skyline sweeping algorithm will inspect tuples in
Block I first, then Block II and III, as tuples in Block I all
have higheruscores than those in Block II or III. However,
all answers in Block I, if any, will have rather low scores
(no higher than 1.05), and are not likely to become top-k

results.
In contrast, in the block pipeline algorithm, even though

Block I is pushed into the queue first (Lines 3–5), it is
re-inserted with itsbscore (calculated bycalc bscore) as
1.05. Blocks II and III will go through the same process,
but they will both be associated with abscore of 2.63. Thus
they will both be checked against the database before any
candidate in Block I. Furthermore, ifk results are found
after evaluating candidates in Blocks II and III and the real
score of the top-k-th result is higher than1.05, the block
pipeline algorithm can terminate immediately.

D. Discussion

Instance optimality is a notion proposed by Faginet
al. [11] to assert that the cost of an algorithm is bounded
by a constant factor of any other correct algorithms on
all database instances. This notation is widely studied and
adopted in most top-k query processing work.

We note that although the skyline sweeping algorithm
can be shown to be instance-optimal, this notion of op-
timality is not helpful in our problem setting. Consider
a single CN. If the skyline sweeping algorithm accesses
di tuples from the each of them non-free tuple sets,
and let d = max1≤i≤m di, we can show that any other
algorithm must at least access at leastd tuples. Therefore,
the total cost in terms of tuple accesses of the skyline
sweep algorithm can be bounded by anm-factor of other
algorithms. However, the dominant cost in our problem
setting is the cost of probing the database. For a large CN
with a number of free and non-free tuple sets, each probe
is a complex query involving joins of multiple relations. In
contrast, sequentially accessing tuples in the non-free tuple
sets is practically an inexpensive in-memory operation.
Consider the sketch of proof of the instance-optimality
above, it is possible that the skyline sweeping algorithm has
to probe the databaseO(dm) times, while another algorithm
only needs to probe the database forO(d) times. As a
result, the cost ratio cannot be bounded by a constant factor.

V. TREE PIPELINE ALGORITHM

It is observed that there are substantial sharing of
common join expressions among CNs. Hence substantial

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 10

computational efforts can be saved if multiple CNs can
be executed/probed in a calculated way that maximizes
the sharing of intermediate results; in addition, an empty
intermediate result is useful in pruning any other CN that
contains it.

Example 5.1:Consider a particular blockb in CN4 =
CQ → PQ ← CQ with tuple signaturesα, β, and γ on
the non-free tuple setCQ, PQ, andCQ, respectively. Now
considerCN3 = PQ ← CQ. It comprises of a blockb′

which has the same signature for every non-free tuple set
as b, e.g.,b′ also has signature ofα on CQ (b′ is called a
projection ofb). We have the following observations:

1) Pruning. If b′ has been executed and the result is
empty, we knowb will have empty result. In fact, any
other block that hasb as the projection will have empty
result too.

2) Reusing Partial Results. If b′ has been executed and
the result is not empty and has beencached, we can
use the result for executing blockb rather than starting
from scratch.

In the rest of this section, we propose the Tree Pipeline
Algorithm (TPA). We first introduce the notation of the
partitioning graph, which captures the sharing relationships
among CNs. We then propose query processing algorithms
that efficiently utilizes the intermediate results.

A. Partitioning Graph

We introduce the concept ofpartition graph which
capturesall the binarydecompositionsof CNs.

Assume thatCN1 andCN2 are two valid CNs. We say
that CN1 is a sub-CNof CN2 if the graph representation
of CN1 is a sub-graph of that ofCN2; or we can sayCN2

containsCN1. We useb.CN to denote the CN the blockb
belongs to. Given a CNCN2, its sub-CNCN1 and a block
b in CN2, theprojectionof b on CN1 is a blockb′ in CN1

such that on each common non-free tuple set ofCN1 and
CN2, the signatures ofb′ andb are the same.

Next, we define abinary decompositionof a valid CN7.
Two valid CNsCN1 andCN2 are a binary decomposition
of CN if and only if

• both CN1 andCN2 is contained inCN , and
• the set of nodes inCN1 andCN2 do not overlap, and
• the union of non-free tuple sets inCN1 and CN2

equals to the set of non-free tuple sets inCN .

For example,CN7 = CQ → U ← CQ → PQ can be
decomposed to two valid CNs:CQ and CQ → PQ. Note
that since the nodeU is not a non-free tuple set, it is not
included in any of the two sub-CNs.

A CN can have more than one binary decomposition. For
example, there are two binary decompositions ofCN7 =
CQ → U ← CQ → PQ as {CQ, CQ → PQ} and
{PQ, CQ → U ← CQ}. We can capture all such binary
decompositions in a partitioning graph. APartitioning
Graph is a directed acyclic graph containing two kinds
of nodes:CN nodesand partitioning nodes(P nodes for

7i.e., CNs that satisfy Rules 2 and 3 in Section II-B.

short). A CN node corresponds to avalid CN with respect
to the given query. A partitioning node denotes a binary
partitioning from a valid CN (with incoming edge) to two
smaller valid CNs (with outgoing edges). A large CN node
usually can be partitioned in several different ways and
hence connected to several partitioning nodes. For a given
P-nodeP , we useP.child to denote its child CN (with
incoming edge), andP.parents to denote its parents CNs
(with outgoing edges). Note that both the two parents ofP

are sub-CNs ofP.child.
Example 5.2:The partitioning graph for CNs in Table III

is shown in Figure 3. As an example,CN7 has two
decompositions (namelyP6 andP7).

PQ

CN1

CQ

CN2

P1 P2 P3

PQ
← CQ

CN3

CQ
→ U ← CQ

CN5

CQ
→ P ← CQ

CN6

P4 P5 P6 P7
. . .

CQ
→ PQ

← CQ

CN4

CQ
→ U ← CQ

→ PQ

CN7

.

Fig. 3. Partitioning Graph

B. Query Processing

We now show the join execution of the Tree Pipeline
Algorithm in Algorithm 3.

In the Block Pipeline algorithm, a block is in a state
with either its USCORE or its BSCORE. In TPA, a block
must be in one of thefive states: 1) NOT IN QUEUE,
2) NOT EXECUTED USCORE, 3) NOT EXECUTED BSCORE,
4) EXECUTED NOT EMPTY, and 5) EXECUTED EMPTY.
NOT EXECUTED USCORE (NOT EXECUTED BSCORE) corresponds
to USCORE (BSCORE) in the Block Pipeline Algorithm. The
EXECUTED (EXECUTED EMPTY) indicates that a block has been
executed and has non-empty results (has empty results).
During the execution, the status of a block moves only
from a lower level to a higher level as shown in Figure 4.

Fig. 4. Relationships Between States

The initialization procedure of the TPA algorithm is
shown in Algorithm 4. All blocks in all CNs are marked
asNOT IN QUEUE, except blocks that are the first block of a
CN. In addition, when the CN is a single non-free node,
we mark the block as executed, since the result is simply
the corresponding tuples of the block in the non-free tuple
set. (Lines 9–11). Otherwise, since there must be at least

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 11

Algorithm 3 : Tree Pipeline Algorithm
Input : CN is the set of CNs
Initialize; /* see Alg. 4 */;1
while top-k[k].score < Q.head().getScore() do2

Q.emptyhead← Q.pop max();3
if head.status = NOT EXECUTED USCORE then4

head.status← NOT EXECUTED BSCORE;5
Q.push(head, calc bscore(head));6
AddNeighbors(head);7

else if head.status = NOT EXECUTED BSCORE then8
plan← FindExecPlan(head);9
forall curP ∈ plan (in that order) do10

curC ← head.projectTo(curP.child);11
AddNeighbors(curC);12
curC.resultset←13
executeSQL(formQuery(curP));
if curC.resultset 6= ∅ then14

curC.status← EXECUTED;15
forall result t ∈ curC.resultset do16

Q.push(t, calc score(t));17

else18
curC.status← EXECUTED EMPTY;19
/* need to propagate this to

other relevant blocks */
forall rest of the P-nodes, curP , in plan20
do

of the blockscurC ←21
head.projectTo(curP.child);
AddNeighbors(curC);22
curC.status← EXECUTED EMPTY;23

break;24

else25
Inserthead into top-k;26

return top-k;27

Algorithm 4 : Initialize
Input : CN is the set of CNs
Q← ∅;1
all blocks in all CNs are marked asNOT IN QUEUE;2
forall cn ∈ CN do3

b← the first block ofcn;4
if size(cn) > 1 then5

b.status← NOT EXECUTED USCORE;6
Q.push(b, calc uscore(b));7

else8
b.status← EXECUTED;9
forall result t ∈ b do10

Q.push(t, calc score(t));11

a join in the CN, we will only compute theuscore of the
block and push it into the priority queue (Lines 6–7).

The overall flow of TPA algorithm (Algorithm 3) is
similar to that of the Block Pipeline Algorithm. At each
step of TPA, the first item (head) of the priority queue is
popped out (Line 3). If its state isNOT EXECUTED USCORE

(Lines 5–7), we calculate itsbscore, upgrade its state
to NOT EXECUTED BSCORE, and push its neighbors into the
queue with theiruscore. The last step is implemented in
Algorithm 5. Note that theif test is necessary (e.g., some

block might have already been added to the queue and have
already been executed).

The main difference between the TPA algorithm and the
Block Pipeline Algorithm is when the current head block
is in the state ofNOT EXECUTED BSCORE (Lines 9–24 in
Algorithm 3). In TPA, rather than directly executing the
SQL query corresponding to the block, we find an appro-
priate execution plan to exploit the possibility of sharing
computation or pruning. An execution plan is essentially
a sequence of binary decompositions arranged from fine
to coarse granularities, i.e., the last decomposition is for
the current CN. The plan is found by Algorithm 6 (to be
covered shortly in Section V-C) and is implemented as a
sequence of partitioning nodes. For each partitioning nodes,
we form an SQL query that joins the intermediate results
of its two parent nodes to obtain the result for its child
node (Lines 11–13). If the result is non-empty, it is pushed
into the queue with their actual scores (Lines 15–17).
Otherwise, we know the current block is empty, and more
importantly, we need topropagatesuch information to other
relevant blocks. Hence we iterate through the rest of the
partitioning nodes and mark the projections of the current
EXECUTED EMPTY block asEXECUTED EMPTY (Lines 19–23).
An subtle yet important issue is that we need to invoke
AddNeighbors on projected blocks (Line 22) and on the
current block (Line 12), as otherwise we may miss some
blocks and hence potentially some query results.

Example 5.3:Consider running the TPA algorithm to a
state when the current blockb is from CN7 and its state is
alreadyNOT EXECUTED BSCORE. Assume theFindExecPlan
procedure returns〈P1, P6〉, which essentially means the
best plan to acquire the result of the current block in
CN7 is to first execute the corresponding SQL query to
obtain b’s projection onCN3 (due to P1) and then join
the intermediate results (if not empty) withb’s projection
on CN2 (due to P6). If none of the intermediate results
(i.e., b’s projection on any of the CNs) is empty, we not
only obtain the result for the current blockb in CN7,
but also the result ofb’s projection in CN3 (namedb′).
Note that the latter will also reduce the cost of obtaining
other blocks, e.g., the blockb′′ in CN4 such thatb′′’s
projection onCN3 is b′. On the other hand, ifb′ is empty,
b’s state will be directly marked asEXECUTED EMPTY and a
costly four-way join is avoided (as required by all other
algorithms). Note that we won’t propagate the fact thatb′

is empty to CNs not involved in the current execution plan
(e.g.,CN4). However, when the corresponding blockb′′ in
CN4 becomes the head of the queue, theFindExecPlan
procedure (See Section V-C) will notice thatb′ is in the
state ofEXECUTED EMPTY and will pruneb′′ directly without
sending any query to the database.

C. Find An Execution Plan

Given a blockB of the current CNCNc, we can utilize
the partition graph to either prune the block or compute
the result ofB from some intermediate results (i.e., query
results cached for some blocks belonging to other CNs).

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 12

Algorithm 5 : AddNeighbors(B)

forall neighboring block Bn of block B do1
if Bn.state = NOT IN QUEUE then2

Q.push(Bn, calc uscore(Bn));3
Bn.state← NOT EXECUTED USCORE;4

Since a CN node may have multiple parent P-nodes, it is
desirable to find theexecution planthat has the lowest cost.

Algorithm 6 : FindExecPlan(B)
Input : A block B; the Partitioning GraphP
Output : The best execution sequence to compute the

current blockB. Return∅ if the current block is
pruned.

BestP ← ∅;1
if B.status ∈ {EXECUTED, EXECUTED EMPTY} then2

return ∅;3

forall P ∈ B.parents() do4
forall CN ∈ P.parents() do5

B′ ← B.projectTo(CN);6

B′.plan← FindExecPlan(B′);7

if B′.status 6= EXECUTED EMPTY then8

P.plan← P.plan ∪B′.plan;9
else10

B.status← EXECUTED EMPTY; /* Prune B11
if any of its parent node has
empty resultset */;
return ∅;12
/* recursively pruning till the

outmost CN */

P.plan← P.plan ∪ P ;13
if cost(P.plan) < cost(BestP lan) then14

BestP lan← P.plan;15

return BestP lan;16

TheFindExecPlan algorithm (Algorithm 6) is designed
to perform this task. It will return an execution plan in the
form of an ordered list of P-nodes. We have the invariant
that the corresponding blocks in the two parents of the P-
nodes in the execution plan must have been executed and
has non-empty results. Therefore, the plan is always viable
in the sense that the result of the current block can be
obtained by forming and executing SQL queries for each
P-nodes in the execution plan. The algorithm may return
an empty set, which indicates that the current blockB can
be safely prune as one of its projection is found to have
empty result.

The algorithm searches the best execution plan by a
breadth-first search of all the possible partitioning of the
current blockB. This is achieved by a loop through all
the P-nodes (Line 5) and recursively call theFindExec-
Plan. The plan with the lowest cost is maintained in the
BestP lan variable (Line 15) and will be returned at last.

Line 12 implements apull-basedpruning strategy. When
a projected block is executed yet has empty result, instead
of returning directly, we still maintain the iteration but
prune the rest of the blocks by setting their status to

EXECUTED EMPTY.
Example 5.4:Consider a simplified example on the par-

titioning graph in Figure 3. Assume the currenthead is
a block B in CN7 and we first consider the partitioning
node P6. Since CN2 is a size-1 CN, all its blocks are
in the EXECUTED state. If the corresponding block onCN3

has been executed, the returned execution plan will beP6;
otherwise,FindExecPlan will recursively find execution
plan for the corresponding block onCN2. The recursive
call will return plan〈P1〉 (as both of its parent nodes are
size-1 CN node and all blocks are inEXECUTED state), and
the final execution plan for the blockB on CN7 will be
〈P1, P6〉. The rest of the partitioning nodes ofCN7, P7 in
our example, will be considered in a similar fashion; it will
return 〈P2, P7〉. Finally, the execution plan with the least
cost will be selected and returned.

D. Discussion

Although the idea of sharing common sub-expressions
is a well-known topic [21] in query optimization, DIS-
COVER [6] is the only work to apply this idea to the key-
word search problem in relational databases. Our sharing
method has the following major differences from theirs:

• Basic Sharing Units: the basic sharing unit in the DIS-
COVER system is a join expression involving at least
two relations, while the sharing unit in our method is a
block in a candidate network, which is typically much
smaller than a join expression in most practical top-k

settings. This design choice also guarantees that the
TPA algorithm only caches potential keyword query
results (which might not be among the top-k results)
while the DISCOVER method may cache many results
not belonging to the keyword query.

• Integration into top-k algorithms: The sharing method
in DISCOVER can be easily integrated into the Sparse
algorithm [7]. However, it is hard to be integrated into
algorithms such as Global Pipeline, Skyline Sweeping,
or Block Pipeline, as they operate on a tuple basis. Our
TPA algorithm results from integrating our sharing
idea with the Block Pipeline algorithm to further
improve its performance.

VI. EXPERIMENTS

In order to evaluate the effectiveness and the efficiency
of proposed methods, we have conducted extensive ex-
periments on large-scale real datasets under a number of
configurations.

The datasets we used include: the Internet Movie
Database (IMDB) 8, DBLP data (DBLP) [22], and Mon-
dial 9. All are real datasets. Schema and statistics of the
two datasets can be found in Tables VI(a) and VI(b).
For the IMDB dataset, we converted a subset of its raw
text files into relational tables. Mondial is a very small
dataset consisting only around 10K tuples about geographic

8http://www.imdb.com/interfaces
9http://www.dbis.informatik.uni-goettingen.de/Mondial/

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 13

TABLE V
TOP-1 RESULT FORDQ1 (NIKOS CLIQUE) ON DBLP

Method Size Top-1 Result

[7] 1 InProceeding:
:::::

Clique-to-
:::::

Clique Distance Computation Using a Specific Architecture

[10] 6 Person:
::::

Nikos Karatzas← Proceeding→ Series← Proceeding
InProceeding: Maximum

:::::

Clique Transversals
InProceeding: On . . .

::::

Clique-Width and . . .
Ours 3 Person:

::::

Nikos
::::::::

Mamoulis← RPI → InProceeding: Constraint-Based Algorithms for Computing
::::

Clique Intersection Joins

information. But its schema is much more complex than the
other two datasets, which consists 28 relations. We will use
Mondial only for evaluating CN Generation efficiency.

We manually picked a large number of queries for each
dataset. We tried to include a wide variety of keywords
and their combinations in the query sets, e.g., selectivity
of keywords, size of the most relevant answers, number of
potential relevant answers, etc. The complete list of queries
used in the experiment can be found in [23]. We focus on
a subset of the queries here. There are 22 queries for the
IMDB dataset (IQ1 to IQ22) with query length ranging
from 2 to 3. There are 18 queries for the DBLP dataset
(DQ1 to DQ18) with query length ranging from 2 to 4.

TABLE VI
DATASET STATISTICS (TEXT ATTRIBUTESARE UNDERLINED)

(a) IMDB Dataset

Relation Schema # Tuples

movies(mID,name) 833,512
direct(mID, dID) 561,173
directors(dID,name) 121,928
actressplay(asID,charactor, mID) 2,262,149
actresses(asID,name) 445,020
actorplay(atID, charactor, mID) 4,244,600
actors(atID,name) 741,449
genres(mID,genre) 629,195

Total Number of Tuples 9,839,026

(b) DBLP Dataset

Relation Schema # Tuples

InProceeding(InProceedingId,Title, Pages, URL, Pro-
ceedingId)

212,273

Person(PersonId,Name) 174,709
RelationPersonInProceeding(InProceedingId, PersonId) 491,777
Proceeding(ProceedingId, Title, EditorId, PublisherId,Se-
riesId, Year, Url)

3,007

Publisher(PublisherId,Name) 86
Series(SeriesId,Title, Url) 24

Total Number of Tuples 881,867

We used two popular relational database servers, both
with their default configurations. Indexes were built on all
primary key and foreign key attributes. For most of the
queries, similar results were obtained on the two systems.

We implemented theSparse and global pipeline (GP)
algorithms, and our skyline sweep (SS), block pipeline
algorithms (BP) and tree pipeline (TP). Note that we can
lower bound the execution time of theHybrid algorithm [7]
as the minimum of the running times of Sparse and GP.

Without this optimization, the original GP algorithm would
have sent an excessive number of queries to the database
and incurred significant overhead. Unless specified explic-
itly, all algorithms ran using OR semantics.

All algorithms were implemented using JDK 1.5 and
JDBC. All experiments were run on a PC with a 1.8GHz
CPU and 512M memory running Debian GNU/Linux 3.1.
The database server and the client were run on the same
PC. All algorithms were run in warm buffer mode and Java
JIT was enabled.

To measure the effectiveness, we adopt two metrics used
in the previous study [10]: (a) number of top-1 answers that
are relevant (#Rel), and (b) reciprocal rank (R-Rank). In
order to select the relevant answer, we ran all the algorithms
for the same query and merged their top-20 results. Then we
manually judged and picked the relevant answer(s) for each
query. The relevant answer(s) must satisfy two conditions:
it must match all the search keyword and its size must be
the smallest. For example, the manually marked relevant
answer for the query “nikos clique” is a paper named
“Constraint-Based Algorithms for ComputingClique In-
tersection Joins” written by “Nikos Mamoulis”. When
measuring the reciprocal rank, we search for the first
relevant answer in the top-20 results. In case none of the
top-20 answers is relevant, we upper bound its R-Rank
value by 1

#uniq score+1 , where#uniq score is the number
of unique scores in its top-20 results. To measure efficiency,
we measure the average elapsed times of the algorithms
over several runs.

A. Effectiveness

We show thereciprocal ranks of [7], [10], and our
proposed method on the DBLP dataset in Table VII. For
[10], we used all four normalizations, but not the phrase-
based ranking. For our ranking method, we vary the tuning
parameterp from 1.0 to 2.0, thus representing the change of
preference from the OR-semantics to the AND-semantics.
The results show that our R-Rank is higher than other
methods, as our method returns the relevant result as the
top-1 result for 16 out of the 18 DBLP queries when
p = 1.0. While [7] and [10] methods have a tie in #Rel
measure, [10] actually performs better than [7], because it
often returns relevant answer(s) within the top-5 results,
while [7] method often fails to find any relevant answer
in the top-20 results. This is reflected in their R-Rank
measures. Similar results were obtained on the IMDB
dataset too.

Manual inspection of the top-20 answers returned by
the algorithms reveals some interesting “features” of the

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 14

ranking methods. Due to the inherent bias in [7]’s ranking
aggregation method and extremely harsh penalty on the
CN sizes, it tends to return results that have only partial
matches to the query or small-sized results. [10] proposed
using a soft CN size normalization and a non-linear rank
aggregation method. Consequently, it tends to return large-
sized results that match most of the keywords. Our method
seems to strike a good balance between the completeness
of the matches and size of the results. For instance, we
show the top-1 results returned by all ranking methods for
DQ1 on DBLP in Table V.

TABLE VII
EFFECTIVENESS ON THEDBLP DATASET BASED ON TOP-20 RESULTS

[7] [10] p = 1.0 p = 1.4 p = 2.0

#Rel 2 2 16 16 18
R-Rank ≤ 0.243 ≤ 0.333 0.926 0.935 1

TABLE VIII
p’ S IMPACT ON R-RANK

Dataset QueryID p = 1 p = 1.4 p = 2.0

DBLP DQ9 1/3 1/2 1
DBLP DQ17 1/3 1/3 1
IMDB IQ10 1 1 1
IMDB IQ17 1/3 1/3 1
IMDB IQ19 1/2 1 1
IMDB IQ21 1/2 1/2 1/2

We also conducted experiments by varyingp from 1.0
to 2.0. This should inject more AND semantics into our
ranking method. As the defaultp = 1.0 already returns
relevant results for most queries, we only list queries whose
result qualities (R-Rank values) are affected by the varying
p in Table VIII. With an increasing value ofp, the R-Rank
values for most such queries increase. This is because we
start to penalize more on results that does not match all
the keywords. For example, whenp = 1.0, the relevant
answer for DQ9 is only ranked as the third. The top-1
answer matches all but one keyword. Whenp increases to
1.4, the relevant answer moves up to the second. Finally,
when p reaches 2.0, it is successfully ranked as the top
answer.

B. Efficiency

We show running time for all queries on the DBLP and
IMDB datasets in Figures 5(a) to 5(e) fork = 20, k = 10
and k = 1. Note that the y-axis is in logarithm scale. We
can make the following observations:

• BP and TP are usually the faster algorithm on both
DBLP and IMDB datasets. The speedup is most sub-
stantial onhard queries, e.g., DQ7, DQ13, and DQ17.
BP can achieve up to two orders of magnitude speedup
against the better algorithm of Sparse and GP (thus the
lower bound of Hybrid algorithm). BP can return top-
10 answers within 2 seconds for 89% of the queries
on the DBLP dataset and 77% queries on the IMDB
dataset which is 10 times larger.

 1

 10

 100

 1000

 10000

 100000

DQ18DQ17DQ16DQ15DQ14DQ13DQ12DQ11DQ10DQ9DQ8DQ7DQ6DQ5DQ4DQ3DQ2DQ1

tim
e(

m
s)

Sparse
GP
SS
BP
TP

(a) Query Time, DBLP,k = 20, the i-th Query is DQi.

 1

 10

 100

 1000

 10000

 100000

DQ18DQ17DQ16DQ15DQ14DQ13DQ12DQ11DQ10DQ9DQ8DQ7DQ6DQ5DQ4DQ3DQ2DQ1

tim
e(

m
s)

Sparse
GP
SS
BP
TP

(b) Query Time, DBLP,k = 10, the i-th Query is DQi.

 1

 10

 100

 1000

 10000

 100000

IQ22IQ21IQ20IQ19IQ18IQ17IQ16IQ15IQ14IQ13IQ12IQ11IQ10IQ9IQ8IQ7IQ6IQ5IQ4IQ3IQ2IQ1

tim
e(

m
s)

Sparse
GP
SS
BP
TP

(c) Query Time, IMDB,k = 10, the i-th Query is IQi.

 1

 10

 100

 1000

 10000

 100000

DQ18DQ17DQ16DQ15DQ14DQ13DQ12DQ11DQ10DQ9DQ8DQ7DQ6DQ5DQ4DQ3DQ2DQ1

tim
e(

m
s)

Sparse
GP
SS
BP
TP

(d) Query Time, DBLP,k = 1, the i-th Query is DQi.

 1

 10

 100

 1000

 10000

 100000

IQ22IQ21IQ20IQ19IQ18IQ17IQ16IQ15IQ14IQ13IQ12IQ11IQ10IQ9IQ8IQ7IQ6IQ5IQ4IQ3IQ2IQ1

tim
e(

m
s)

Sparse
GP
SS
BP
TP

(e) Query Time, IMDB,k = 1, the i-th Query is IQi.

Fig. 5. Evaluation of Query Processing Performance – I

• On hard queries, TP usually outperforms BP. While
on easyqueries or smallk , performance of BP and
TP are similar. The reason is that top-k results can be
retrieved from small number of CNs, and TP can not
take advantage by sharing computation among CNs.
Also note that on DQ8 query, TP fails to return top-
10 results, due to the limitation of the number of
temporary relations allowed to be created in MySQL.

• SS usually outperforms Sparse and GP, with only a
few losses to Sparse, even fork = 20. When k is
small, SS shows more performance advantages. SS can
achieve up to one order of magnitude speedup against
the better algorithm of Sparse and GP.

• There is no sure winner between Sparse and GP. In
general, while Sparse might lose for smallk values or
easyqueries, its performance does not deteriorate too

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 15

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 3 5 7 9 11 13 15 17 19

Sparse
GP
SS
BP
TP

(a) DBLP, DQ9,k = 1 to 20

 1

 10

 100

 1000

 1 3 5 7 9 11 13 15 17 19

Sparse
GP
SS
BP
TP

(b) DBLP, DQ11,k = 1 to 20

 1

 10

 100

 1000

 1 3 5 7 9 11 13 15 17 19

Sparse
GP
SS
BP
TP

(c) DBLP, DQ14,k = 1 to 20

Fig. 6. Evaluation of Query Processing Performance – II

much for largek or hard queries.
• All algorithms are more responsive for smallerk

values. We note that since our ranking function usually
returns the relevant answer as the top-1 answer, the ex-
ecution time for top-1 answer is an important indicator
of system performance from the user’s perspective.

We plotted the execution times with differentk values
for all queries. We selected three representative figures from
the DBLP query set and show the results in Figures 6(a)
to 6(c). In general, the costs of all algorithms increase with
the increasingk value, as more candidate answers need to
be found and compared. Some of the queries are amenable
to top-k optimized algorithms (e.g., DQ11), where the other
four algorithms all perform significantly better than Sparse.
There are also queries where BP and TP perform better than
the others (e.g. DQ9). DQ14 shows an example that when
k grows large, TP takes advantage by sharing intermediate
results, while all other algorithms jump to a large running
cost.

 1

 10

 100

 1000

 10000

 100000

DQ18DQ17DQ16DQ15DQ14DQ13DQ12DQ11DQ10DQ9DQ8DQ7DQ6DQ5DQ4DQ3DQ2DQ1

tim
e(

m
s)

Sparse
GP
SS
BP
TP

(a) Query Time, DBLP,k = 1, AND Semantics

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

DQ18DQ17DQ16DQ15DQ14DQ13DQ12DQ11DQ10DQ9DQ8DQ7DQ6DQ5DQ4DQ3DQ2DQ1

ra
tio

 o
f q

ue
ry

 s
iz

e
vs

. S
S

Sparse
GP
BP
TP

(b) Query Size Ratio, DBLP,k = 20, the i-th Query is DQi.

 1

 10

 100

 1000

 10000

DQ18DQ17DQ16DQ15DQ14DQ13DQ12DQ11DQ10DQ9DQ8DQ7DQ6DQ5DQ4DQ3DQ2DQ1
#q

ue
rie

s

Sparse
GP
SS
BP
TP

(c) Query Number, DBLP,k = 20, the i-th Query is DQi.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

DQ18DQ17DQ16DQ15DQ14DQ13DQ12DQ11DQ10DQ9DQ8DQ7DQ6DQ5DQ4DQ3DQ2DQ1

Sparse
GP
SS
BP
TP

(d) Ratio of DBMS Query Processing Time over Overall ElapsedTime,
DBLP, k = 20, the i-th Query is DQi.

Fig. 7. Evaluation of Query Processing Performance – III

We also run all the algorithm using the AND semantics
for top-1 results on DBLP. All algorithms can find the
relevant results as the top-1 results, so we focus on the
execution time, which is plot in Figure 7(a). It is obvious
that similar conclusions can be drawn about the relative
performance of the algorithms.

The fundamental reason of superior performances of our
algorithms is that they avoid many unnecessary database
probes. To verify this, we recorded the number of can-
didates each algorithm has checked against the database
(QSize) and the number of queries sent to the database
(QNum) and plot them in Figures 7(b) and 7(c), respec-
tively. Specifically, we choose SS as the baseline algorithm
(since it has the minimal QSize without utilizing a second
upper bounding function) and calculate the ratio of probes
of other algorithms over this baseline number. We can
observe from Figure 7(b) that Sparse usually has to examine
many candidates, as it cannot stop earlier until the complete
query of a CN has been executed. GP is only slightly
better than Sparse, partly because we specify a rather
largek value, hence GP’s performance drops quickly. BP
algorithm makes use of additional upper bounding functions
and delays probing the database as much as possible. As

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 16

a result, it usually examines fewer candidates than SS.
The number of candidates examined by TP is extremely
small, and for many queries, the TP bar can not been seen
in the plotted graph. But somehow the measurement is
unreasonable, as TP partitions the search space into lower-
dimensions, and the number of candidates is counted in
the low dimensional space. In terms of query numbers, as
expected, Sparse always sends a small number of queries.
Interestingly, SS sends the largest number of queries in all
the cases compared to GP, BP and TP. The reason is that
the three algorithms can examine a number of candidates
together in one single query using our range parametric
query optimization; in contrast, SS exams candidates in an
ad-hoc manner and such optimization cannot be applied.

We broke down the elapsed time for all the four algo-
rithms. We summed up time used by the RDBMS to process
queries and divided them over the total elapsed times of
the queries. The result for the DBLP dataset is shown in
Figure 7(d). Overall speaking, the dominant cost for all
algorithms is the DBMS query processing time. GP’s cost is
mostly dominated by DBMS query processing time, as GP
only needs to keep a few data structures (the current tuple
in each of the non-free tuple set of the CNs) and does not
have expensive calculation and data structure maintenance
overhead. Among the other algorithms there is no clear
winner. Sparse’s overhead mainly comes from the need
to calculate the IR scores forall results returned by its
large-sized queries. SS needs to spend time on maintaining
the priority queue. TP needs to maintain the partitioning
graph and to find the best plan. Overall speaking, the BP
algorithm is still dominated by DBMS query processing
time (averaged about 71%), but to the least extent. This
is because, intuitively, BP spends more time in its internal
calculation (of upper bounding scores) to avoid expensive
database probes.

VII. R ELATED WORKS

Keyword Search Systems The main goal of a keyword
search system is to find a set of closely inter-connected
tuples that collectively match the keywords.

One type of approaches is based on modeling data as
a graph, and the results as subtrees or sub-graphs. The
keyword search problem can be shown to be an instance
of the Group Steiner tree problem, which is NP-hard.
Exhaustive search based on dynamic programming is de-
veloped [24], [25], which is capable to find the optimal
solution of minimum group Steiner tree problem with
polynomial time when the number of keywords(groups)
is fixed. Most other work relax the definition or adapt
a heuristic approach to attain reasonable efficiency. Early
work in this category includes RUI [26] and the BANKS
systems [3], [8].Q-subtree [27] combines the technique of
BANKS and [28]. More recently, re-computing [29] and
indexing approaches [30]–[34] are also developed for the
efficiency propose.

Another type of approaches is based on relational
databases where structured data are stored. As such, they

exploit the schema information and leverage the DBMS
for query processing. Early work includes DBXplorer [2].
When data schema is used for query processing purpose,
existing approach is mainly based on Candidate Network
(CN) generation, Different query processing techniques are
then applied immediately [2], [6], [7], [35], [36] or in an
interactive way [29], [37]. Data schema is also used for
indexing [16], ranking [10], and data browsing and user
interface design [24], [38].

[39] provides a comprehensive survey on recent survey
covering keyword query on both structured and semi-
structured databases.

Besides the common definition of keyword search, stud-
ies have also been performed on identifying entities that
do not match keywords directly, but implicitly relevant or
“near” the occurrence of search keywords [5], [40], [41].
Keyword search can also be an idea means to associate
structured data with unstructured data [42], [43].
Ranking and Searching Quality Keyword searches
are inherently ambiguous, and not all query results are
equally relevant to a user. Most work focuses on bringing
more effective ranking from IR literatures. Various ranking
schemes have been proposed to order the query results into
a sorted list so users can focus on the top results. Various
ranking schemes are used in existing work, which consider
both the properties of data nodes/tuples such as TF*IDF,
node weight, or page-rank style ranking, and inter-tuple
or global properties such as number of edges, weights on
edges, size normalization, or redundancy penalty. Some
advanced features, such as schema term awareness and
phrase-based ranking, are also proposed [10], [24], [25],
[27], [28], [30], [32], [33], [35], [38], [44]–[49].

Keyword search has been studied under a few generalized
contexts too [45], [46], [50]. In order to help users to find
interesting results and to improve search quality, techniques
of result browsing and clustering [24], [51], [52], query
cleaning and suggestion [53]–[55] are also developed.
Rank Aggregation Given a set of objects, each being
scored according to some aggregate function on its at-
tributes, the rank aggregation query considers the problem
of retrieving thek objects with the highest scores.

Rank aggregation query processing has also been exten-
sively studied in the literature. Faginet al. [11], [56] in-
troduced a set of novel algorithms, assuming sorted access
and/or random access of the objects is available on each
attribute. A number of improvements have been suggested
after Fagin’s seminal work, for example, minimizing com-
putational cost [57], and minimizing the IO cost [58]. Some
other approaches to attack the problem include building
indexes [59] or building materialized views [60].

A generalized version of rank aggregation problem is
to consider more general or expensive predicates as the
underlying ranked objects. Expensive predicates checking
for top-k query has been studied [13], [61]–[63] to support
user-defined functions, external predicates, fuzzy joins,etc.
As the bottleneck of proceeding these queries comes from
score predicates rather than finding object candidates, these
papers focus on reducing the number of predicates to be

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 17

made.
[12] studied finding top-k joined objects and proposed

a J∗ algorithm, which is based on theA∗ class of search
algorithms. A similar probing mechanism can be found
in the work from Changet al. [13], where an optimal
algorithm, MPro, was proposed based on thenecessary
probing principle. A number of approaches were suggested
by Iiyaset al. [64], includingnested-loop rank-join(NRJN)
andhash rank-join(HRJN), which can be viewed as variant
of the ripple join algorithm [14]. More recently, [65] gives
a more general problem statement for the rank join query,
analyzes existing techniques, and studies the theoretical
aspects of the problem.

VIII. C ONCLUSIONS

In this paper, we studied supporting effective and ef-
ficient top-k keyword queries over relational databases.
We proposed a new ranking method that adapts the state-
of-the-art IR ranking function and principles into ranking
trees of joined database tuples. Our ranking method also
has several salient features over existing ones. We also
studied query processing method tailored for our non-
monotonic ranking functions. Three algorithms were pro-
posed that aggressively minimize database probes and max-
imize computational sharing. We have conducted extensive
experiments on large-scale real databases. The experimental
results confirmed that our ranking method could achieve
high precision with high efficiency to scale to databases
with tens of millions of tuples.

ACKNOWLEDGMENT

Wei Wang is supported by ARC Discovery Projects DP0881779
and DP0987273. Xuemin Lin is supported by ARC Discovery
Projects DP0881035, DP0987557, and DP110102937, and the
Google Research Award. Jianmin Wang is supported by Project
2009CB320700 from 973 Program of China. Keqiu Li is partically
supported by NSFC under Grants 60973115 and 60973117.

REFERENCES

[1] S. Chaudhuri, R. Ramakrishnan, and G. Weikum, “Integrating DB
and IR technologies: What is the sound of one hand clapping?”in
CIDR, 2005, pp. 1–12.

[2] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A system for
keyword-based search over relational databases.” inICDE, 2002, pp.
5–16.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.Sudarshan,
“Keyword searching and browsing in databases using BANKS.”in
ICDE, 2002, pp. 431–440.

[4] B. Kimelfeld and Y. Sagiv, “Efficient engines for keywordproximity
search.” inWebDB, 2005, pp. 67–72.

[5] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Garcia-
Molina, “Proximity search in databases,” inVLDB, 1998.

[6] V. Hristidis and Y. Papakonstantinou, “DISCOVER: Keyword search
in relational databases.” inVLDB, 2002, pp. 670–681.

[7] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient IR-
Style Keyword Search over Relational Databases,” inVLDB, 2003.

[8] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R.Desai, and
H. Karambelkar, “Bidirectional expansion for keyword search on
graph databases.” inVLDB, 2005, pp. 505–516.

[9] B. Kimelfeld and Y. Sagiv, “Finding and approximating top-k
answers in keyword proximity search.” inPODS, 2006, pp. 173–
182.

[10] F. Liu, C. T. Yu, W. Meng, and A. Chowdhury, “Effective keyword
search in relational databases.” inSIGMOD, 2006, pp. 563–574.

[11] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms
for middleware.” inPODS, 2001.

[12] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter,
“Supporting incremental join queries on ranked inputs.” inVLDB,
2001, pp. 281–290.

[13] K. C.-C. Chang and S. Hwang, “Minimal probing: supporting
expensive predicates for top-k queries.” inSIGMOD, 2002, pp. 346–
357.

[14] P. J. Haas and J. M. Hellerstein, “Ripple joins for online aggrega-
tion,” in SIGMOD 1999, 1999, pp. 287–298.

[15] S. E. Robertson, H. Zaragoza, and M. J. Taylor, “Simple BM25
extension to multiple weighted fields.” inCIKM, 2004, pp. 42–49.

[16] Q. Su and J. Widom, “Indexing relational database content offline
for efficient keyword-based search,” inIDEAS, 2005.

[17] R. Wilkinson, J. Zobel, and R. Sacks-Davis, “Similarity measures
for short queries.” inTREC, 1995.

[18] D. E. Rose and D. R. Cutting, “Ranking for usability: Enhanced
retrieval for short queries,” Apple Technical Report, Tech. Rep. 163,
1996.

[19] G. Salton, E. A. Fox, and H. Wu, “Extended boolean information
retrieval,” Communication of the ACM, vol. 26, no. 11, pp. 1022–
1036, 1983.

[20] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator.”
in ICDE, 2001, pp. 421–430.

[21] T. K. Sellis, “Multiple-query optimization,”ACM Trans. Database
Syst., vol. 13, no. 1, pp. 23–52, 1988.

[22] R. Cyganiak, “D2RQ benchemarking,” http://sites.wiwiss.fu-berlin.
de/suhl/bizer/d2rq/benchmarks/.

[23] Y. Luo, X. Lin, W. Wang, and X. Zhou, “SPARK: Top-k keyword
query in relational databases,” School of Computer Scienceand
Engineering, University of New South Wales, Tech. Rep. 0708, 2007.

[24] S. Wang, Z. Peng, J. Zhang, L. Qin, S. Wang, J. X. Yu, and B.Ding,
“Nuits: A novel user interface for efficient keyword search over
databases,” inVLDB, 2006, pp. 1143–1146.

[25] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin, “Finding
top-k min-cost connected trees in databases,” inICDE, 2007.

[26] W.-S. Li, K. S. Candan, Q. Vu, and D. Agrawal, “Query relaxation
by structure and semantics for retrieval of logical web documents,”
IEEE Trans. Knowl. Data Eng., vol. 14, no. 4, pp. 768–791, 2002.

[27] K. Golenberg, B. Kimelfeld, and Y. Sagiv, “Keyword proximity
search in complex data graphs,” inSIGMOD, 2008.

[28] B. Kimelfeld and Y. Sagiv, “Finding and approximating top-k
answers in keyword proximity search,” inPODS, 2006, pp. 173–
182.

[29] A. Baid, I. Rae, A. Doan, and J. Naughton, “Toward Industrial-
Strength Keyword Search Systems over Relational Data,” inICDE,
2010.

[30] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan, “Keyword search on
external memory data graphs,”PVLDB, vol. 1, no. 1, pp. 1189–1204,
2008.

[31] R. Goldman, N. Shivakumar, S. Venkatasubramanian, andH. Garcia-
Molina, “Proximity search in databases,” inVLDB, 1998, pp. 26–37.

[32] H. He, H. Wang, J. Yang, and P. S. Yu, “Blinks: ranked keyword
searches on graphs,” inSIGMOD, 2007, pp. 305–316.

[33] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou, “EASE: an effective
3-in-1 keyword search method for unstructured, semi-structured and
structured data,” inSIGMOD, 2008.

[34] A. Markowetz, Y. Yang, and D. Papadias, “Reachability Indexes for
Relational Keyword Search,” inICDE, 2009.

[35] Y. Luo, X. Lin, W. Wang, and X. Zhou, “SPARK: Top-k keyword
query in relational databases,” inSIGMOD, 2007.

[36] L. Qin, J. X. Yu, and L. Chang, “Keyword Search in Databases: The
Power of RDBMS,” inSIGMOD, 2009.

[37] E. Chu, A. Baid, X. Chai, A. Doan, and J. Naughton, “Combining
Keyword Search and Forms for Ad Hoc Querying of Databases,” in
SIGMOD, 2009.

[38] P. Wu, Y. Sismanis, and B. Reinwald, “Towards keyword-driven
analytical processing,” inSIGMOD, 2007, pp. 617–628.

[39] J. X. Yu, L. Qin, and L. Chang,Keyword Search in Databases.
Morgan & Claypool, 2009.

[40] T. Grabs, K. Böhm, and H.-J. Schek, “PowerDB-IR: Information
retrieval on top of a database cluster.” inCIKM, 2001, pp. 411–418.

[41] Y. Tao and J. X. Yu, “Finding Frequent Co-occurring Terms in
Relational Keyword Search,” inEDBT, 2009.

TKDE SPECIAL ISSUE: KEYWORD SEARCH ON STRUCTURED DATA, 2011 18

[42] P. Roy, M. K. Mohania, B. Bamba, and S. Raman, “Towards au-
tomatic association of relevant unstructured content withstructured
query results,” inCIKM, 2005.

[43] M. Bhide, A. G. 0004, R. Gupta, P. Roy, M. K. Mohania, and Z. Ich-
haporia, “Liptus: associating structured and unstructured information
in a banking environment,” inSIGMOD Conference, 2007.

[44] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram, “XRANK:
Ranked keyword search over XML documents,” inSIGMOD, 2003.

[45] G. Li, J. Feng, J. Wang, and L. Zhou, “An effective and versatile
keyword search engine on heterogenous data sources,”PVLDB,
vol. 1, no. 2, pp. 1452–1455, 2008.

[46] M. Sayyadan, H. LeKhac, A. Doan, and L. Gravano, “Efficient
keyword search across heterogeneous relational databases,” in ICDE,
2007.

[47] S. Tata and G. M. Lohman, “SQAK: doing more with keywords,”
in SIGMOD, 2008, pp. 889–902.

[48] Q. H. Vu, B. C. Ooi, D. Papadias, and A. K. H. Tung, “A graph
method for keyword-based selection of the top-k databases,” in
SIGMOD, 2008.

[49] B. Yu, G. Li, K. R. Sollins, and A. K. H. Tung, “Effective keyword-
based selection of relational databases,” inSIGMOD, 2007, pp. 139–
150.

[50] G. Koutrika, A. Simitsis, and Y. Ioannidis, “Précis: The essence of
a query answer,” inICDE, 2006.

[51] G. Koutrika, Z. M. Zadeh, and H. Garcia-Molina, “DataClouds:
Summarizing Keyword Search Results over Structured Data,”in
EDBT, 2009.

[52] Z. Liu, P. Sun, and Y. Chen, “Structured Search Result Differentia-
tion,” in VLDB, 2009.

[53] K. Q. Pu and X. Yu, “Keyword query cleaning,”PVLDB, vol. 1,
no. 1, pp. 909–920, 2008.

[54] N. Sarkas, N. Bansal, G. Das, , and N. Koudas, “Measure-driven
Keyword-Query Expansion,” inVLDB, 2009.

[55] S. Chaudhuri and R. Kaushik, “Extending Autocompletion to Toler-
ate Errors,” inSIGMOD, 2009.

[56] R. Fagin, “Combining fuzzy information from multiple systems.”J.
Comput. Syst. Sci., vol. 58, no. 1, pp. 83–99, 1999.

[57] N. Mamoulis, K. H. Cheng, M. L. Yiu, and D. W. Cheung, “Efficient
aggregation of ranked inputs.” inICDE, 2006.

[58] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and G. Weikum,
“IO-Top-k: Index-access optimized top-k query processing.” in
VLDB, 2006, pp. 475–486.

[59] D. Xin, C. Chen, and J. Han, “Towards robust indexing forranked
queries.” inVLDB, 2006, pp. 235–246.

[60] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis, “Answering
top-k queries using views.” inVLDB, 2006, pp. 451–462.

[61] J. M. Hellerstein and M. Stonebraker, “Predicate migration: Opti-
mizing queries with expensive predicates.” inSIGMOD, 1993, pp.
267–276.

[62] A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn, “Opti-
mizing disjunctive queries with expensive predicates.” inSIGMOD,
1994, pp. 336–347.

[63] N. Bruno, L. Gravano, and A. Marian, “Evaluating top-k queries
over web-accessible databases.” inICDE, 2002, pp. 369–.

[64] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid, “Supporting top-k
join queries in relational databases.”VLDB Journal, vol. 13, no. 3,
pp. 207–221, 2004.

[65] K. Schnaitter and N. Polyzotis, “Evaluating rank joinswith optimal
cost,” in PODS, 2008, pp. 43–52.

Yi Luo received her Masters and PhD degree
in Computer Science from the University of
New South Wales, Australia in 2005 and 2009.
She is currently in a post-doctoral position in
the Laboratory Le2i of CNRS in France. Her
research interests include integration of database
and information retrieval techniques, semantic
search, and query processing and optimization.

Wei Wang is currently a Senior Lecturer at the
School of Computer Science and Engineering
at University of New South Wales, Australia.
He received his Ph.D. degree in Computer Sci-
ence from Hong Kong University of Science
and Technology in 2004. His research interests
include integration of database and information
retrieval techniques, similarity search, and query
processing and optimization.

Xuemin Lin is a Professor in the School of
Computer Science and Engineering, the Uni-
versity of New South Wales. Dr. Lin got his
PhD in Computer Science from the University
of Queensland in 1992 and his BSc in Applied
Math from Fudan University in 1984. He cur-
rently is an associate editor of ACM Transac-
tions on Database Systems. His current research
interests lie in data streams, approximate query
processing, spatial data analysis, and graph vi-
sualization.

Xiaofang Zhou is a Professor of Computer
Science at the University of Queensland. His
research focus is to find effective and efficient so-
lutions for managing, integrating and analyzing
very large amount of complex data for business,
scientific and personal applications. He has been
working in the area of spatial and multimedia
databases, data quality, high performance query
processing, Web information systems and bioin-
formatics.

Jianmin Wang graduated from Peking Univer-
sity, China, in 1990, and got his M.E. and Ph.D.
in Computer Software from Tsinghua University,
China, in 1992 and 1995, respectively. His Ph
D. thesis was awarded by the Beijing Computer
Association in 1996. He is now a full professor
at the School of Software, Tsinghua University.
Now his research interests include: unstructured
data management, workflow and BPM technol-
ogy, benchmark for database system, software
watermarking, and mobile digital right manage-

ment.

Keqiu Li received the Bachelor’s and Master’s
degrees from the Department of Applied Math-
ematics at the Dalian University of Technology
in 1994 and 1997, respectively. He received the
PhD degree from the Graduate School of Infor-
mation Science, Japan Advanced Institute of Sci-
ence and Technology, in 2005. He is currently a
professor in the School of Computer Science and
Technology, Dalian University of Technology,
China. His research interests include Internet
technology, networking, multimedia applications

and bioinformatics.

