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. . . TABLE |
Abstract—With the increasing amount of text data stored SEARCHING “2001 HANKS” ON IMDB.COM

in relational databases, there is a demand for RDBMS to
support keyword queries over text data. As a search result is 2001: HAL's Legacy (2001) (TV)
often assembled from multiple relational tables, traditinal IR- 5 Gigaﬁtic Skate Park Tour: Summer 2002 (2002) (TV)
style ranking and query evaluation methods cannot be appli¢é 3 Tv Hunks and Babes 2006 (2006) (TV)
directly.

In this paper, we study theeffectivenessnd the efficiencyis-
sues of answering topkt keyword query in relational database

systems. We propose a new ranking formula by adapting number of advantages. Firstly, data may have to be split and
existing IR techniques based on a natural notion ofvirtual 0 i different relations due to database normalinatio

document We also propose several efficient query processing . . .
methods for the new ranking method. We have conducted r€duirement. Such data will not be returned if keyword

extensive experiments on large-scale real databases usings€arch is limited to only single relations. Secondly, it
two popular RDBMSs. The experimental results demonstrate lowers the barrier for casual users to search databases, as
significant improvement to the alternative approaches intems it does not require users to have knowledge about query
of retrieval effectiveness and efficiency. languages or database schema. Thirdly, it helps to reveal
Index Terms—top-k, keyword search, relational database, interesting or unexpected relationships among entitigs [4
information retrieval Lastly, for websites with database back-ends, it provides a
more flexible search method than the existing solution that
uses a fixed set of pre-built template queries. For example,
we issued a search 02001 hanks” using the search
Integration of DB and IR technologies has been an actiyigerface on imdb.com, and failed to find relevant answers
research topic recently [1]. One fundamental driving forcgee Table | for the top-3 results returned). In contrast,
is the fact that more and more text data are now storg@gk same search on our system (on a database populated
in relational databases. Examples include commercial apith imdb.com’s data) will return results shown in Table I,
plications such as customer relation management systeffifere relevant tuples from multiple relations (marked in

(CRM), and personal or social applications such as WeJp|d font) are joined together to form a meaningful answer
blogs and wiki sites. Since the dominant form of querying the query.

free text is through keyword search, there is a natural
demand for relational databases to suppeffectiveand TABLE I
efficientIR-style keyword queries. ToP-3 SEARCHRESULTS ONOUR SYSTEM

In this paper, we focus on the problem of supporting - — - -
Movies: “Primetime Glick” (2001) TomHanks/Ben Stiller (#2.1)

effective and efﬂment top- keyword search in relational Movies: *Primetime Glick” (2001) TomHanks/Ben Stiller (#2.1)
databases. While many RDBMSs support full-text search, . ActorPlay: Character = Himself— Actors: Hanks, Tom

they only allow retrieving relevant tuples from within3  Actors: JohnHanks— ActorPlay: Character = Alexander Kerst
the same relation. A unique feature of keyword search — Movies Rosamunde Pilcher - Wind tber dem Flug8Q1)
over RDBMSs is that search results are ofsssembled

from relevant tuples in several relations such that they There has been many related work dedicated to keyword
are inter-connectedand collectively be relevant to the gearch in databases recently [2]-[10]. Among them, [7]
keyword query [2], [3]. Supporting such feature has fyst incorporates state-of-the-art IR ranking formula to
o _ ; address the retrieval effectiveness issue. It also present
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E-mail: Yi.Luo@u-bourgogne.fr several efficient query execution algorithms optimized for
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Despite the existing studies, there are still several ssugptimized for efficient topk retrieval. Section V introduces
with existing ranking methods, some of which may evea query processing algorithm that features fine granularity
lead to search results contradictory to human perception.domputational sharing between CNs. We introduce related
this paper, we analyze shortcomings of previous approachesk in Section VII and Section VIII concludes the paper.
and propose a new ranking method by adapting existing IR
ranking methods and principles to our problem based on [l. PRELIMINARIES
a virtual documentmodel. Our ranking method also takesy  problem Overview and Problem Definition
into consideration other factors (e.g., completeness &ed s
of a result). Another feature is the use of a single tunin
parameter to inject AND or OR semantics into the rankin
formula. The technical challenge with the new rankin
method is that the final score of an answer is aggregat
from multiple scores of each constituent tuples, yet tt]a(e)t
final score isnot monotonic with respect to any of its sub-
components. Existing work on tap-query optimization
cannot be immediately applied as they all rely on th

monotonicity of the score aggregation function. Therefor ) 4 e .
y ggreg S Wo relations. We do not impose such limitations in our

we also study efficient query processing methods optimiz . . -
y query p g b Implementation. A queryy consists of (1) a set of distinct
for our non-monotonic scoring function. We propose E

We consider a relational scherfid as a set of relations
Ri,Rs,..., Rz }. These relations are interconnected at
e schema level via foreign key to primary key references.

denoteR; — R; if R; has a set of foreign key
(ﬁibute(s) referencing?;’s primary key attribute(s), fol-
wing the convention in drawing relational schema graphs.
For simplicity, we assume all primary key and foreign key
%ttributes are made of single attribute, and there is at most
ne foreign key to primary key relationship between any

skyline sweepinglgorithm that achieves minimal databas&SYWOrds: i-€.Q = {w,wa, ..., wiq }; and (2) a parame-
probing by using a monotonic score upper bounding fun er k indicating that a user is only interested in tbpesults
tion for our ranking formula. We also explore the idea 0q(anked by relevance scores associated with each resugt. Tie
) n be broken arbitrarily. A user can also specify AND or

employing another non-monotonic upper bounding functio . .
to further reduce unnecessary database accesses, w Iaqsemantms for the query, which mandates that a result

results in theblock pipelinealgorithm. We then propose must or may not matchll the keywords, respectively. The

the tree pipeline algorithm which share the intermedia‘[jee‘c"’lult mode is the OR semantics to allow more flexible
easult ranking [7].

. . r
results among CNs at a fine granularity. We have conducte .
. g~ g Y A result of a topk keyword query is a tre€l, of tuples,
extensive experiments on large-scale real databases on two :
. ch that each leaf node @f contains at least one of the
popular RDBMSs. The experimental results demonstra

that our proposed approach is superior to the previo(L:]Lsjery keywqrd, and (_aach pair of gdjacent tuplesIms .
methods in terms of effectiveness and efficiency. connected via a foreign key to primary key relationship.

. o We call such an answer trega@ned tuple tregJTT). The
We summarize our contributions as: sizeof a JTT is the number of tuples (i.e., nodes) in the
« We propose a novel and nontrivial ranking method thatee. Note that we allow two tuples in a JTT to belong to
adapts the state-of-the-art IR ranking methods to rantte same relation. Each JTT belongs to the results produced
ing heterogeneous joined results of database tupléy. a relational algebra expression — we just replace each
The new method addresses an important deficientyple with its relation name and impose a full-text selettio
in the previous methods and results in substantiabndition on the relation if the tuple is a leaf node. Such
improvement of the quality of search results. relational algebra expression (or its SQL equivalent) is
« We propose three algorithmskyline sweepinglock also termed a€andidate NetworlKCN) [6]. Relations in
pipeling andtree pipeline to provide efficient query the CN are also calletlple sets There are two kinds of
processing mechanism based on our new rankitgple sets: those that are constrained by keyword selection
method. The key challenge is that the non-monotonionditions are callechon-free tuple set¢denoted ask®)
nature of our ranking function renders existing topand others are callefiee tuple set¢denoted ask). Every
k query processing techniques inapplicable. Our nefM T as an answer to a query hasrékvancescore, which,
algorithms are based on several novel score upgstuitively, indicates how relevant the JTT is to the query.
bounding functions. They also have the desirable feGonceptually, all JTTs of a query will be sorted according
ture of interacting minimally with the databases.  to the descending order of their scores and only those with
« We conduct comprehensive experiments on large-scédg-k highest scores will be returned.
real databases containing up to ten million tuples. Our Example 2.1:In this paper, we use the same running
experiment results demonstrated that the new rankirgample as the previous work [7] (shown in Figure 1).
method outperformed alternative approaches, and thain the exampleR = { P, C, U}.! Foreign key to primary
our query processing algorithms delivered superidey relationships areZ’ — P andC — U. A user wants to
performance to previous ones. retrieve top-3 answer to the quenyeixt or net vi st a”.
Some example JTTs includes, cs — p2, c1 — p1,

The rest of the paper is organized as follows: Section Il . o, andes — ps — cs. The first JTT belongs to CN

. . .. C
provides an overview of the problem and existing solu?

tions. Section Il presents our new ranking method andinitials of relation names are used as shorthands (except th
Section IV introduces two query processing algorithmse useU to denoteCustomers).
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COMPLAINTS

rid prodId custID date comments
________ —_e C1 pl21 c3232 6-30-2002 disk crashed after just one week of moderate use on ~— - —————4
| an IBM Netvista X41 |
| ——————— —_® C2 pl31 c3131 7-3-2002 lower-end IBM Netvista caught fire, starting appar- *— — — - — —— |
| | ently with disk | |
| : - —e C3 pl31 c3143 8-3-2002 IBM Netyista unstable with Maxtor HD *—— — — — — [ : |
: L 1!
| [ ProbucTs CUSTOMERS [N :
| : : rid prodId manufacturer model rid custld name occupation : : |
| + 4= P1 pl21 Maxtor D540X uy (:32{52 John Smith Soft,vs_/arc Engineer <44
LLs P2 pl31 IBM Netvista U c3131 Jack Lucas Archltect <=
p3 pl4l Tripplite Smart 7TO0VA us c3143 John Mayer Student < —

Fig. 1. A Running Example from [7] (Query igvhxt or net vi st a”; Matches are Underlined)

TABLE IIl
C@; the next three JTTs belong to CH% — P<; and ENUMERATING CNS. P AND C' BOTH MATCH THE TwO QUERY
the last JTT belongs to C? — P9 « C?. Note that ~ KEYWORDS. WE MARK INVALID CNS IN GRAY. (WE OMIT CNs
¢3 — usg is not a valid JTT to the query, as the leaf node PRUNED BY RULE 1)
ug does not contribute to a match to the query.
A possible answer for this top-3 query may be; c3 — [Schema  P? < C9 > U |
p2, andc; — pi. We believe that most users will prefersi;e cNID CN valid?  Violates
c1 — p1 10 co — po, because the former complaint is really ON P2 v
about a IBMNet vi st a equipped with avaxt or disk, ! o
o . . . 1 C N2 C Y
and that it is not certain whether Prodyet mentioned in - = - - - ON.T T pToeRT T b
the latter JTT is equipped withleaxt or hard disk or not. 3 o -
2. C -y . n__Rue@
3 PY — (09 =1 n Rule (2)
Q vQ Q
B. Overview of Existing Solutions 3 P* —C~*—>P n Rule (3)
3 CNs C9 — P9 @ Y
We will use the running example to briefly introduce 3 U—C° U n Rules (2, 3)
the basic ideas of existing query processing and ranking CN; C%9 > P—C° Y
methods. 3 CNs C9 U« C° Y

Given the query keywords, it is easy to find relations that
contain at least one tuple that matches at least one searth
keyword, if the system supports full-text query and inverte
index. The matched tuples from those relations forms the

non-free tuple setsand are usually ordered in descendingyle 2 : Prune non-minimal CNs, i.e., CNs containing at

order by their IR-style relevance scores. The challenge is |east one leave node which does not contain a query
to find inter-connected tuples that collectively form valid  keyword.

JTTs. Given the schema of the database, weetarmerate Ryle 3 : Prune CNs of typeR? — S* — R@. The
all possible relational algebra expressions (i.e., CNshsu rationale is that any tuple € S* (S* may be a free or
that each of thermight generate an answer to the query.  non-free tuple set) which has a foreign key pointing
Example 2.2:For the query faxtor netvista”, to a tuple inR? must point to the same tuple iRY.
only P andC' have tuples matching at least one keyword of . .
Y P g 4 Four valid CNs C'N; to C'N,) are found in the above ex-

the query. The non-free tuple set Gfis C% = ,
auery " I les, ¢2, 1] ample. Each CN naturally corresponds to a database query.

and the non-free tuple set &< is [p1, p2]. The free tuple ) .
set of U is U itself. While C2 — P% might produce an E.g.,O’Ng corresponds to the following SQL statement in
Oracle’s syntax:

answer,C? — U cannot produce any valid answer (i.e.,
JTT), as the joinind/ tuple won't contribute any keyword SELECT = )
match to the query. However, note that other larger CNEOM_  Products P, Complaints C

. . E P.prodld = C prodld
whose query expressions contain that@® — U (e.g., AND ( CONTAI NS( P. manuf act ur er,
Q Q i ‘maxtor, netvista') > 0
C% — U «— C%) may still produce an answer_. OR  CONTAI NS(P. model )
DISCOVER [6] has proposed a breadth-first CN enu- ‘maxtor, netvista') > 0)

meration algorithm that is both sound and complete. The AND  CONTAI NS( G coments . i a ) >0

algorithm is essentially enumerating all subgraphs of size '

k that does not violate any pruning rules. The algorithm 14 fing top# answers to the query, a naive solution is
variesk from 1 to some search range thresholt Three  isque an SQL query for each CN and union them to find
pruning rules are used and they are listed below. We algQ, 1op/ results by their relevance scores. DISCOVER? [7]
show the traces of the CN generation algorithm running 9o quce two alternative query evaluation strategspsrse
our example (Table IIl). andglobal pipelinealgorithms, both optimized for stopping
Rule 1 : Prune duplicate CNs. the query execution immediately after the true fofh
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result can be determinédlhe basic idea is to use an uppeA. Problems with Existing Ranking Functions

bounding function to bound the scores of potential answerstne pasic idea of the ranking method used in DIS-
from each CN (either before execution or in the middigoyER2 [7] (and its variant [10]) is to

of its execution). The upper bound score ensures that an
potential result from future execution of a CN wilbt have

a higher score. Thus the algorithm can stop earlier if the2
current topk-th result has a score no smaller than the upper aggregation functioncomb(-), to obtain the final
bound scores of all CNs. We note that this is the main score. Only monotonic agg'regation functions, e.g.
optimization technique for other variants of tépgqueries SUM have been consideréd. ' '

too [11]-[13]. . . .
00 [11}-{13] For example, the IR-style ranking function used in DIS-

The sparse algorithm executes one CN at a time and yp- . : ao
dates the current topresults; it uses the above-mentione?OVERZ is adapted from the TF-IDF ranking formula‘as:

criterion to stop query execution earlier. The global pipel score(T, Q) = Z score(t, Q)
algorithm adopts a more aggressive optimization: it does teT
not execute a CN to its full; instead, at each iteration, it

(a) first selects the mogtromisingCN, i.e., the CN with score(t, Q) = Z
the highest upper bound score; (b) admits the next unseen wene@
tuple from one of the CN'’s non-free tuple sets and join the whereidf,, = Nrei(r) +1

¥) assign each tuple in the JTT a score using a standard
IR-ranking formula (or its variants); and
) combine the individual scores together using a score

1+In(1 +In(tf, (1) . .
(1—s) +s- B In(idf.)

avdl

new tuple withall the already seen tuples in all the other dfw(Rel(t))

non—frge tuple sets. As_ such, the query p_rqcessing strat%gvy(t) denotes the number of times a keywardappears
(of a single CN) is similar to that afipple join [14]. in a database tuple, di; denotes the length of the text
attribute of a tuplet, and avdl, is the average length of
the text attribute in the relation which belongs to (i.e.,
Rel(t)), Ngei(ry denotes the number of tuples fel(t),

In this paper, we assume that the DBMS can efficientgnd df,, (Rel(t)) denotes the number of tuples Rel(t)
locate the matching tuples for each search keyword atitht contain keywordv. The score of a JTT is the sum of
form the non-free tuple sets. We will focus on the followinghe local scores of every tuple in the JTT.
two sub-problems: (a) how to score a JTT, and (b) how to TABLE IV
generate ar?d_order the SQL quenes fOI’ the CNs Of a querlyfFFERENTSCORINGFUNCTIONSPRODUCESDIFFERENTRANKINGS
such that minimal database accesses (also cpitdnkg are (In(idfuaxtor ) = In(idfactvista) = 1.0 AND dly = avdly)
required before tof- results are returned

C. Overview of Our Solution

The first problem is studied in the next section. The CN ¢t € CN| tfraxtor tfnetvista| Scored Scorer Our Score
second problem is addressed in Section IV. s — py 3 1 1 20 N\ 39 113
P2 0 1 1.0
c1 0 1 1.0
2.0 0.98
l1l. RANKING FUNCTION aTn 1 0 1.0 }
: : c2 0 1 101N 5o 0.44
Due to the fuzzy nature of keyword queries, retrievab — P2 — 0 1 10 } : .

effectiveness is vital to keyword search on RDBMSs. The

initial attempt was a simple ranking by the size of CNs [2], \we jllustrate an inherent problem in the above framework
[6]. DISCOVER? later proposed a ranking formula baseg\, ysing the running example in Figure 1. The query is
on the state-of-the-art IR scoring function [7]. More re=juvt or net vi st a”. Let us consider the CNO®@ —s
cently, several sophisticated improvements to the ranking |f the CN is executed completely, it will produce 3
formula in [7] have been suggested [10]. _ results. In Table 1V, we list the detailed steps to obtain
In this section, we first motivate our work by presentinghe scores §corer) according to the above-mentioned
observations that reveal several problems in the existigethod. For example;; — p» consists of two tupless
schemes. We show that simply aggregating the the Yadp, belonging toC' and P, respectively.c; contains
scores for each individual tuple in a JTT violates the IBne maxt or andonenet vi st a, while p, containsone
scoring principle and results in anomalies. We then propoggt vi st a only. For simplicity, we do not consider length
to model a JTT as a virtual document by combining a}{ormalization in the example (i.e., settint, = auvdl,
its tuples together and then computing a holistic scorgy all ¢), and assume that thin(idf) values of both
Our final scoring function also takes into consideration thesywords arel. Therefore, we can calculateore(cs, Q)

number of query keyword matched in a JTT and the Siz& 4 1n(1+1In(tfaaxeor (c3)) +1+In(1+1In(Hfaetvista(cs)) =
of the JTT.
3The aggregation function used in [10] is not monotonic. How-
2|n this paper, we name the system in [7] as DISCOVERZ2uver, query processing issues with this non-monotonicezggion
A hybrid algorithm that selects either sparse or global lpige function are not discussed.
algorithm for a query based on selectivity estimation isoals “To obtain the final score of a JTBcore(T, Q) needs to be
proposed in [7]. It is discussed and compared with in Sed#ion further normalized byl™s size, i.e., multiple anothef—Z .
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2.0, andscore(p2, Q) = 1+In(1+1n(¢fpetvista(p2)) = 1.0.  ranking score to a JTT as

The final score for the joined tuplecore(cs — p2), is 1+ In(1 -+ In(tf.. (T

2.0+ 1.0 = 3.0. Similarly, ¢; — p; andc, — ps both have score,(T,Q) = > + In(1 + In( f“;l(T D nidf.)

the same scor2.0 and thus are both ranked as the second. weTNQ (1—s)+s- wdlon )
However, a careful inspection of the latter two results (1)

reveals that; — p; in fact matchedoth search keywords _ . _ Nen=(n) +1

while ¢; — py; matches only one keyworchét vi st a) whereif,(T) = >, fu(t). idfu = dfw(CN*(T))

albeit twice. We believe that most users will find the former .

answer more relevant to the query than the latter one. 4V (7) denotes the CN which the JTT belongs to,
fact, it is not hard to construct an extreme example whefe’V " (T) is identical to CN(T') except that all full-text
the DISCOVER2’s ranking contradicts human percepticielection conditions are removedN*(7') is also written
by ranking results that contain a large amount of orfes CN™ if there is no ambiguity.

search keyword over results that contain all or most searchExamr,’Ie 3.1:Con§ider the CNC? — P9, ON* is
keywords but On'y once. C — P (|.e.,C X P) n Ta.ble V. NCN* = 3. dfmaxtor =2

There are two reasons for the above-mentioned rankin petvista I
gIn our proposed method, the contributions of the same

roblem. Firstly, when a user inputs short queries, there R . . )
P TStY, | P d lr<eyword in different relations arfirst combined andhen
is a strong implicit tendency for the user to prefer answer

matching queries completely to those matching queries pg?rtenuated by the term frequency normalization. Therefore

tially. We propose @ompleteness factan Section 11I-C to Jnaxror(€2 = P2) = 0, Lfnervisealcz — p2) = 2, while
tfmaxtor(cl - pl) - 11 t.fnetvista(cl - pl) = 1. Accord-

quantify this factor. Secondly, the framework of combmlncri]yg to Equation (1) and omitting the size normalization,

local IR ranking scores has an inherent side effect of over (ca — pa) = 0.44, while (c1 — p1) = 0.98
rewarding contributions of theamekeyword in different Seor€alCy = p2) = VA% 1 scoréqlcL = p1) = U.90-
Thus,c; — p; is ranked higher tham, — p2, which agrees

tuples in the same JTT. . :
o ) with human judgments.
We note that a similar observation and remedy aboutrhere are still two technical issues remaining: how to
the need of non-linear term frequency attenuation was al@Btaindfw(C’N*) and Ny and how to obtaimwdic -
made by IR researchers [15]. The difference is that th¢, qoubt that computinglf,,(CN+) and Ney. exactly

same approach is motivated by the semantics of our seajgf) incur prohibitive cost. One solution is to compute them
problem; in addition, our problem is more general and &oproximately: we estimate = Y=(CN) guch that the

.pe . . . NCN*
number of other modifications to the IR ranking funcUon value of the term inCN'* can be approximated az];&

are made (e.g. Iveree document reauencies and doCuMShsider o+ = 7, x R i ... x Fy, and denote the
9 Izatl ' percentage of tuples iR; that matches at least a keyword
w aspy,(R;). We can derive

df, (CN*) N df,(CN*)
B. Modelling a Joined Tuple Tree as a Virtual Document Ngpy- + 1 - Non+

by assuming that (aVcn« is a large number, and (b) tuples

We propose a solution based on the idea of modellingaiching keywordw are uniformly and independently
a JTT as avirtual document Consequently, the entire yisyribyted in each relatiod?;. In a similar fashion, we
results produced by a CN will be modeled as a documeégtimateavdlcm asy . avdlp

J 3t

collection. The rationale is that most of the CNs carry
certain distinct semantics. E.gG¢ — P@ gives all
details about complaints and their related products tHat
are collectively relevant to the quety and form integral Completeness FactorAs motivated in Section IlI-A,
logical information units. In fact, the actual lodgment of ave believe that users usually prefer documents matching
complaint would contain both product information and thenany query keywords to those matching only few key-
detailed comment — it was split into multiple tables duwords. To quantify this factor, we propose to multiply
to the normalization requirement imposed by tifeysical a completenessactor to the raw IR ranking score. We
implementation of the RDBMSs. note that the same intuition has been recognized by IR
A very similar notion ofvirtual documentvas proposed résearchers when studying ranking &itort queries{17],
in [16]. Our definition differs from [16] in that ours is [18]- ) _
query-specific and dynamic. For example, a customer tupleour proposed completeness factor is de_nved from the
is only joined with complains matching the query to form &xtended Boolean mod¢l9]. The central idea of the

virtual document on the run-time, rather than joining witl§xtended Boolean model is to map each document into
all the complaints as [16] does. a point in am-dimensional spacé, 1|, if there arem

By adopting such a model, we could naturally comput‘@ey\'\lordS in the query?. A documentd will have a large

the |R'St)_’|e r3|evalnce score WIthO.u_t using an esqter|cescor503 «— po will have score 1.13, which still makes it ranked as the first
aggregation function. More specifically, we assign an IRsul.

teT

=p~1-1I(1 _pw(Rj))

Other Ranking Factors
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coordinate value on a dimension, if it has high relevaneach component score reflects the quality of the answer in
to the corresponding keyword. As we prefer documentifferent perspectives, we obtain the final score of the JTT,
containing all the keywords, thileal answer should be score(T, @), as the product of all the three scores:

located at the positiorP,jca; = [1,...,1]. In our virtual
—— score(T, Q) = score, (T, Q) - scorep(T, Q) - score.(T, Q)

document model, a JTT is a document and can be projected

into this m-dimensional space just as a normal document. IV. Two Topr-k JOIN ALGORITHMS
We thus use the distance of a document to the ideal

position, P, 4..;, as thecompleteness valud the JTT. More
specifically, we use thé,, distance and normalize the valu
into [0, 1]. The completeness factaiores, is then defined
as:

While effectiveness of keyword search is certainly the
dnost important factor, we believe that the efficiency of
qguery processing is also a critical issue. Query execution
time will become prohibitively large for large databaseés, i
. the query processing algorithm is not fully optimized for
Zlgigm(l — T.i)p> g @) the ranking function and top-queries.

In this section, we propose two efficient query processing

gorithms for our newly proposed ranking function. The
irst algorithm carefully constructs a minimal group of
potential solutions by observing the score dominance re-

tfw,(T) . idfw, lationship between candidates solutions. This resultbeén t

maxi<j<m tfw; (I) Mmaxi<j<m idfw, Skyline Sweeping algorithm which is optimal in terms of
number of database probes. The second algorithm partitions
(5'?? tuples in a CN into blocks according to their signatures
0 and can effectively alleviate the inefficiency inherent ir o
complex, non-monotonic scoring function. Yet another al-
gorithm that further exploits computational sharing betwe
Ns will be given in Section V.

m

scorep(T,Q) =1 — <

whereT.i denotes the normalized term frequency of a JT,
T with respect to keyworay,, i.e.,

T =

In Equation (2),p is a tuning parametep can smoothly
switch the completeness factor biased towards the
semantics to the AND semantics, wheimcreases from 1.
to co. To see that, consider— oo, the completeness factor
will essentially becomenin;<;<», 7.4, which essentially
gives 0 score to a result failing to match all the searc%
keywords. In our experiment, we observed that\alue of
2.0 is already good enough to enforce the AND-semantigs Dealing with Non-monotonic Scoring Function
for almost all the queries tested.

o 2?,5::2; r%r;w\tlzznnﬁﬁshz%etgg E(;(r)npaer:zgzl i;hz 22::2(%?5 with the non-monotonic scoring function (mainly the

feature to query processing. It enables a unified framewor orea(r) and scorey(-) functions) used in our rankllng_
optimized for topk query processing for both AND andmethod. To the best of our knowledge, none of the existing

OR semantics. In contrast, previous approaches are eithO r_k query processing methods deals with non-monotonic

optimized for the AND semantics [2] or for the oRr>¢0rnng function. We use the smgl_e pipeline aIgo_nthm [7]
semantics [7]. to illustrate the challenge and motivate our algorithms.

Size Normalization Factor:The size of the CN or P P

The technical challenge of query processing mainly

JTT is also an important factor. A larger JTT tends to
have more occurrences of keywords. A straightforward
normalization bywlczv) [7] usually per_walizes too much  p[j 41 - R,
for even moderate-sized CNs.We experimentally found that m v A
the following size normalization factor works well in the ' ? I ZA,, :
experiment: LY : I éyf’ﬁ-—-—»@: A
L x [e] a :
score. = (14 s1 — s1 - size(CN)) tz o o9
P C
(1 + 59 — 59 - size(CN™)) 3) ci] cli +1] S C
(a) Single Pipeline (b) Skyline Sweeping

wheresize(CN™) is the number of non-free tuple sets for
the CN. In our experiments, we found that= 0.15 and
s2 = mﬁ yielded good retrieval results for most of th
queries.

eFig. 2. Query Evaluation Strategies

Example 4.1:Figure 2(a) illustrates a snapshot of run-
_ ) ) ning the single pipeline algorithm on the CN — P.
D. The Final Scoring Function Assume that we have processed the light gray area marked
In summary, our ranking method can be conceptuallyith “I” (i.e., the rectangle up tdc[i], p[j])). We use the
thought as first merging all the tuples in a JTT into aotationc[i] to denote the-th tuple in the non-free tuple
virtual document, and then obtaining its IR ranking scorgetC¥ in descending order of their scores.
(Equation (1)), the completeness factor score (Equatipn (2 In the figure, hollow circles denoteandidatesthat we
and the size normalization factor score (Equation (3))c&inhave examined but did not produce any result, filled circles
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denote joined results, and hollow triangles denote candi-Theorem 4.1:
dates that have not been examined.
<

Assume that a user asks for top-2 results, and we have score(T, Q) < uscore(T’, Q), where )
already found two results: and y. The single pipeline uscore(T’, Q) = uscoreq(T, Q) - uscores(CN(T), Q)
algorithm needs to decide whether to continue the query - score.(CN(T), Q)
executing (and check more candidates) or stop and return . : .
{z,y} as the query result. DISCOVER2 needs to bound tr‘?‘é‘d for a givenC’, the upper bound score faonotonic

: : ievell respect towatf (t;) (t; € T).
maximum score that any unseen candidate can achieve. : . .
his result immediately suggests that we should sort all

the last seen candidatedB] — p[j], then the upper boundthe twples €) in the non-free tuple set of a CN by the

is max(score(p[l], cli+1], score(p[j+1], c[1]). This is true decreasing order of theivatf (¢;) values (rather than their

because DISCOVER2 uses a monotonic scoring functi?n . .
ocal IR scores as used in previous work), such that we can

(SUM and thereforecore(p[1], c[i+1]) > score(p[u], c[v]) ) .
(w > Lv > i+ 1) and score(plj + 1],c1]) > obtain an upper bound score of all the unseen candidates.

. = Example 4.2:Continuing the previous example, assume
score(plul, c[v]) (u 2 j + 1,v > 1); the combination of "\ E]ave ordered all tguplesi?\ C? and P? apccording
the right-hand sides in the above two inequalities covefs : .
. . . 10 the descending order of theiratf (t) values. Then the
all the unseen candidates (i.e., those marked as tnangleg%ore of the unseen candidates in the GN= @ — PQ
We note_ that, with our new ranking method, the scogg bounded byl - uscorey(X, Q) - score(X,Q), where
of a JTT is not monotonic with respect to the score ofy; max(uscoreq (cli+ 1], p[1]), uscorea(c[1], plj + 1]))
its constituent tuples. For example, consider the last two “ ’ ’ “ ’ '
JTTs in Table IV. If we assumeédfyetvista > idfnaxtor . i )
then score(ca) = score(cq) but score(pz) > score(pr). B. Skyline Sweeping Algorithm
However, we havescore(ca — p2) < score(c; — p1), Based on Theorem 4.1, we could modify the existing
even if we do not impose the penalty from the completenesigigle or global pipeline algorithm such that it will cortigc
factor. Consequently, previous algorithms on foguery compute the tog: answers for our new ranking function.
processing cannot be immediately applied, and a naik@wever, single/global pipeline algorithm may incur many
approach would have to produce all the results to find th#@necessaryoin checking. Therefore, we design a new
top-k results. algorithm,skyline sweepinghat is guaranteedot to incur
Our solution, which underlies both of our propose@ny unnecessary checking and thus has the minimal number
algorithms, is based on the observation that if we can fifd accesses to the database.
a (preferably tight)monotoni¢ upper boundingfunction ~ Example 4.3:Consider the single pipeline algorithm
to the actual scoring function, we can stop the quefdnning on the example in Figure 2(a). Assume that the
processing earlier too. We derive such an upper boundiglgorithm has processedl]...c[i] on non-free tuple set
function for our ranking function in the following. C® andpl[1]...p[j] on P¥. If the algorithm cannot stop,
Let us denote a JTT ag’, which consists of tu- it Will pick up eitherc[i+1] or p[j + 1]. If it picks c[i + 1,
ples ty,...,t,. Without loss of generality, we as-J Probing queries will be sent to verify whethefi + 1]
sume everyt;, is from a non-free tuple set; other-Ioins with p[k], wherel <& < j. o
wise, we just ignore it from the subsequent formulas. It iS obvious that some of thes¢ queries might be
Let sumidf = Y ,conimngidfu and watf(t;) = unnecessary, if, e.g., ifli + 1] joins with p[1] and its real
S weting (tfolti) -idfu) _ score is higher than the upper bound scores of the rest of the
sumidf (i.e., pseudo weighted averatfe candidates, then the ot_hﬁr— 1 prc_>bes will b(_a unnecessary.
of tuple t;). Then we have the following lemmé. we propose an algonthm de5|gne_d to minimize th? num-
Lemma 4.1:scoreq(T,Q) (Equation (1)) can be ber of join checking operations, which typically dominates

bounded by a functiomscore, (T, Q) — ﬁ “min(A, B), the cost Qf the algorithm. Our intuition is that if there are
where two candidatest andy and the upper bound score of

is higher than that of;, ¥ shouldnot be checked unless

A— df (141 (141 (s x has been checked. Therefore, we should arrange all the
sumidf ( n( . (ZtiGTﬁQ watf( )))) candidates to be checked according to their upper bound

B = sumidf - Z watf (t;) . scores. A naive strategy is to calculate the upper bound
feTne scores for all the candidates, sort them according to the
In addition, the bound is tight. upper bound scores, and check them one by one according

A tight upper bound for the completeness factor (denoté@ this optimal order. This will incur excessive amount of
asuscore,) can be determined given the keywords matchddinecessary work, since not all the candidates need to be
in each non-free tuple sets of a CN. The size normalizatihecked.
factor is also a constant for a given CN. Therefore, we have\We take the following approach. We definelaminance
the following theorem to upper bound the score of a JTTelationship among candidates. Denoate; as the order

(i.e., according to theiwatf values) of candidate on the

6Sinceidf,, is monotonically decreasing with the size of CNs, we carmon'free tuple setl;. If z.d; < y.d; for a!l non-free tuple
use the maximunidf,, value for all size-1 CNs here. setd;, thenuscore(z) < uscore(y). This enables us to
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compute the upper bound score and check candidates in &eneralizing to Multiple CNsThe skyline sweeping al-
lazyfashion: immediately after we check a candidateve gorithm can be easily generalized to support more than one
push all the other candidates directly dominatedzbinto CN. The only modification is to change the initialization
a priority queue by the descending order of their uppstep: we just push the top candidate of each CN to the
bound scores. It can be shown that the candidates in fhority queueq.

gueue form askyline [20] and the skyline sweeps across

the Cartesian space of the CN as the algorithm progressgs,Block Pipeline Algorithm

hence the name of the algorithm. We present another algorithm to further improve the

performance of the skyline sweeping algorithm. We observe

Algorithm 1: Skyline Sweeping Algorithm that the aggregation function we used is non-monotonic,
™ ™ yet, in order to stop execution earlier, wave touse a

1 Q.push((T,1,.., 1), calc_uscore((T, 1,..., D)); monotonic upper bounding function to bound it. As such,
2 top-k «— 0; the upper bounding may be rather loose at places.

3 while top-k[k].score < Q.head().uscore do Large gaps between the upper bound scores and the
4 | head — Q.pop_max(); _ corresponding real scores cause two problems in the skyline
2 . :;);‘tialc::}tgr?QL(foeruery(head)), sweeping algorithm: () it is harder to stop the executisn, a

7 | top-k.push(r, score(r)); the upper bound of unprocessed candidates may be much
8 for i — 110 m do higher than their real score, and consequently higher than
9 t — head.dup(): the real score of the tofp-th result, and (b) the order of the
10 ti—ti+1; probes is not optimal, as the algorithm will perform large
11 Q.push(t, calc_uscore(t)); /+* According to number of probes and only obtain candidates with rather

Equation (4) */; low real score, which cannot contribute to the final fop-

12 if head.i > 1 then ANSWET.
13 |_ break;

In order to address the above problems, we propose a
14 return top-k: novel block pipelinealgorithm. The central idea of the

algorithm is to employ anothdocal non-monotoniupper
bounding function that bounds the real score of JTTs more
The algorithm is shown in Algorithm 1. A result list,accurately. As such, we will check the most promising
top-k, contains no more thai results ordered by the candidates first and thus further reduce the number of
descending real scores. The main data structure is a priofifobes to the database.
queue®, containing all the candidates (which are mapped To illustrate the idea, we define several concepts first.
to multi-dimensional points) according to the descendirfgonsider a non-free tuple sek“ and a queryQ =
order of their upper bound scores. The algorithm alsovs, .., wm}. We define thesignatureof a tuplet in
maintains the invariant that the candidate at the head of th& as an ordered sequence of term frequencies for all the
priority queue has the highest upper bound score amo#dery keywords, i.e.(tfu, (), ..., tfw,, (t)). Then, we can
all candidates in the CN. The invariant is maintained bgartition eachR® into a number ofstrata such that all
(a) pushing the candidate formed by the top tuple frotdples within the same stratum have the same signature
all dimensions into the queue (Line 1), and (b) whenever(@lso calledthe signature of the stratimFor a given
candidate is popped from the queue dtacentcandidates CN, the partitioning of its non-free tuple sets naturally
are pushed into the queue together with their upper bouriiguces a partitioning of all the join candidates. We call
(Lines 8-13). The algorithm stops when the real score of te@ch partition of the join candidateskbdock The signa-
current topk-th result is no smaller than the upper bounéires of the strata that forms a bloékcan be summed
score of the head element of the priority queue; the lattep as(>_; ¢ tfu, (ti), -+, D; e tfuw,, (ti)), to form the
is exactly the upper bound score of all the unprocessgignature of the block (denoted asy(b)).
candidates. If two candidates in the same block both pass the join
A technical point is that we should avoid inserting®St: they should haveimilar real scores, as they agree on
the same candidate multiple times into the queue. Doifge term frequencies of all the query keywords (and thus the
duplicate checking is inefficient in terms of time and spacgompleteness wrt. the query), and the size of the resuls. Thi
We adopt a space partitioning method to totally aVoigbse_rvatlon helps to derive a much _tlg_hter upper bounding
generating duplicate candidates. This is implemented fMﬂCtlon,bscore_, for any candidat&” within the same block
Lines 12-13 using the same ideas as [12]. For examptéa the block signature:
in Figure 2(b), assume the order of the dimension®js 1+ In(1 + In(sigy, (b))

C. Both 2 and 2" are the adjacent candidates tpbut  5core(b; Q) = > 1_s - In(idf.)
only 2’ will be pushed intoQ whenz is examined by the weRnd
algorithm. -scorep(b, Q) - scorec(CN(T),Q)  (5)

Theorem 4.2:The skyline sweeping algorithm has theye note that this new bounding function, albeit being
minimal number of probing to the database. tighter (as it is no larger thamscore(T, Q) defined in
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Lemma 4.1)cannotbe directly used to derive the stoppingsignature is2, 0). Similarly, block Il and Ill have the same
condition for topk query processing algorithms, as it is noblock signature asl, 1).

monotonic with respect to any single computable measureWe assumeln(idf,,,) = 1.1, In(idf,,) = 1.0, the
of its non-free tuple sets. completeness factoscorey, is 0.5, the size normalization
factor, score,, is 1.0, ands is 0.2. We calculate théscores
Algorithm 2: Block Pipeline Algorithm anduscores for each block in the following table:
InpUt(]) : CN is the set of CNs Block bscore uscore
1Q «—0;
2 forall n € A’ do s 2n
3 b « the first block ofcn; ) )
. I 2.63 2.63
4 b.status — USCORE; _ Y, 0.95 550
5 Q.push(b, calc_uscore(d)); [+ According to
Equation (4) */; The skyline sweeping algorithm will inspect tuples in
6 while top-k[k].score < Q.head().getScore() do Block | first, then Block Il and Ill, as tuples in Block | all
7 head +— Q.pop_max(); have highemscores than those in Block Il or Ill. However,
g8 | if hehad-ztafi;s = Usé:g?c(%?n all answers in Block |, if any, will have rather low scores
9 eaa.status <— y H H
0 0.push(head, calc_bscc;re(head)); I+ based (no higher than 1.05), and are not likely to become &op-
on Eq. (5) */: results. _ o _
11 forall the adjacent blocks b’ to head enumerated In contrast, in the block pipeline algorithm, even though
in a non-redundant way do Block | is pushed into the queue first (Lines 3-5), it is
12 L b'.status «— USCORE; re-inserted with it$score (calculated bycalc_bscore) as
13 Q-push(v’, calc_uscore(t")); 1.05. Blocks Il and 11l will go through the same process,
14 else if head.status = BSCORE then but they will both be associated withbacore of 2.63. Thus
15 R — executeSQL(formQuery(b)); they will both be checked against the database before any
13 fora!;;iﬁfé%cg%; candidate in Block I. Furthermore, ¥ results are found
18 L Q.push(r, calc_score(head)); /+ conpute  after evaluating candidates in Blocks Il and IIl and the real
the real score #/: score of the tope-th result is higher than.05, the block
19 | else pipeline algorithm can terminate immediately.
20 | Inserthead into top-k; ) )
L D. Discussion

21 retum top-k; Instance optimality is a notion proposed by Fagih

al. [11] to assert that the cost of an algorithm is bounded

We introduce a solution using lazy block calculatiomy a constant factor of any other correct algorithms on
and integrate it with the monotonic upper bounding scoegl database instances. This notation is widely studied and
function (Equation (4)) seamlessly. Algorithm 2 describegdopted in most tog-query processing work.
the pseudo-code of tH#ock pipelinealgorithm. Intuitively, We note that although the skyline sweeping algorithm
the algorithm is “unwilling” to issue a database probingan be shown to be instance-optimal, this notion of op-
query if the current top-ranked item in the priority queueémality is not helpful in our problem setting. Consider
is only associated with its upper bound scotecpre), as a single CN. If the skyline sweeping algorithm accesses
the score might not be close enough to its real score. Qijr tuples from the each of then non-free tuple sets,
non-monotonic bounding function plays its role here by reand letd = max;<;<,, d;, we can show that any other
inserting the item back to the priority queue, but with italgorithm must at least access at le@stiples. Therefore,
bscore (Lines 9-10). the total cost in terms of tuple accesses of the skyline

Theorem 4.3:The block pipeline algorithm will never sweep algorithm can be bounded by @anfactor of other
be worse than the skyline sweeping algorithm in terms afgorithms. However, the dominant cost in our problem
number of probes to the database. When the score aggsétting is the cost of probing the database. For a large CN
gation function is non-monotonic, there exists a databaggth a number of free and non-free tuple sets, each probe
instance such that the block pipeline algorithm will checls a complex query involving joins of multiple relations. In
fewer candidates than the skyline sweeping algorithm. contrast, sequentially accessing tuples in the non-frele tu

Example 4.4:Consider the example in Figure 2(a) andets is practically an inexpensive in-memory operation.
assume that we have only- 1 tuples in the non-free tuple Consider the sketch of proof of the instance-optimality
setC? andj + 1 tuples in P9. Further assume that bothabove, it is possible that the skyline sweeping algoriths ha
c[l],...,cli andp[1]..., p[j] are tuples matching the sameo probe the databagi(d™) times, while another algorithm
keyword, wi, once (and thus form two strata), and botldynly needs to probe the database fd) times. As a

cli+1] andplj + 1] matchw, once (and form another two result, the cost ratio cannot be bounded by a constant factor
strata). Assume theédf values ofw; is higher than that

of wy, and hence the strata containing matchesvefis V. TREEPIPELINE ALGORITHM
ranked above those matching. This gives us four blocks. It is observed that there are substantial sharing of
E.g., block I is[c[1]...¢[¢]] x [p[1]...p[j]], and its block common join expressions among CNs. Hence substantial
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computational efforts can be saved if multiple CNs cashort). A CN node corresponds tovalid CN with respect
be executed/probed in a calculated way that maximiz&s the given query. A partitioning node denotes a binary
the sharing of intermediate results; in addition, an emppartitioning from a valid CN (with incoming edge) to two
intermediate result is useful in pruning any other CN thamaller valid CNs (with outgoing edges). A large CN node
contains it. usually can be partitioned in several different ways and
Example 5.1:Consider a particular block in CN, = hence connected to several partitioning nodes. For a given
C?® — PQ «— C@? with tuple signaturesy, 3, andy on P-nodeP, we useP.child to denote its child CN (with
the non-free tuple set'@, P?, andC¥, respectively. Now incoming edge), and.parents to denote its parents CNs
considerCN; = P9 « C®. It comprises of a block’ (with outgoing edges). Note that both the two parent#of
which has the same signature for every non-free tuple see sub-CNs ofP.child.
asb, e.g.,b/ also has signature af on C? (V' is called a  Example 5.2:The partitioning graph for CNs in Table I
projection ofb). We have the following observations: is shown in Figure 3. As an exampl€/N; has two
1) Pruning If b’ has been executed and the result idecompositions (namelys and F).
empty, we knowb will have empty result. In fact, any
other block that has as the projection will have empty
result too.
2) Reusing Partial Resultdf ' has been executed and
the result is not empty and has beeached we can
use the result for executing bloékather than starting <~
from scratch. :

In the rest of this section, we propose the Tree Pipeline
Algorithm (TPA). We first introduce the notation of the ¢ oN:

g i : ; 02— P2
partitioning graph which captures the sharing relatlonshlp o=
among CNs. We then propose query processing algorithmg 3. Partitioning Graph
that efficiently utilizes the intermediate results.

CONeg
[c@ U —c?][c?=P—cq]

A. Partitioning Graph B. Query Processing

We introduce the concept opartition graph which We now show the join execution of the Tree Pipeline
capturesall the binarydecomposition®f CNs. Algorithm in Algorithm 3.

Assume that’N; andC'N; are two valid CNs. We say | the Block Pipeline algorithm, a block is in a state
that CN, is asub-CNof C'N; if the graph representation it either its uscore or its sscore. In TPA, a block

of C'Ny is a sub-graph of that af'N,; or we can saf’Na  myust be in one of thefive states: 1)NOT IN_QUEUE,
containsC N;. We useb.C'N to denote the CN the blodk 2)  NOT_EXECUTED USCORE, 3) NOT_EXECUTED_BSCORE,

belongs to. Given a CN'Ns, its sub-CNC'N; and a block 4) EXecUTEDNOT_EMPTY, and 5) EXECUTED_EMPTY.

bin C'Ny, theprojectionof b on C'NV, is a blockb’ in C'Ny NOT_EXECUTED_USCORE (NOT_EXECUTED_BSCORE) Corresponds
such that on each common non-free tuple set'df; and 4 yscore (sscore) in the Block Pipeline Algorithm. The
CNy, the S|gn§tures_oﬁ’ andb are th? same. EXECUTED (EXECUTED_EMPTY) indicates that a block has been
Next, we define dinary decompositionf a valid CN.  eyecyted and has non-empty results (has empty results).
Two valid CNsCN; andCN, are a binary decompositionpyring the execution, the status of a block moves only

of CN if and only if from a lower level to a higher level as shown in Figure 4.
e bothCN; andCN, is contained inC N, and

« the set of nodes i’ N; andC N, do not overlap, and
« the union of non-free tuple sets i@ N; and C' N,
equals to the set of non-free tuple setsiiV.

For exampleCN; = C? — U « C? — P% can be
decomposed to two valid CN€? and C? — P?. Note
that since the nod& is not a non-free tuple set, it is not
included in any of the two sub-CNs.

A CN can have more than one binary decomposition. F6i9- 4- Relationships Between States

example, there are two binary decompositiong’g¥; = o ) .
C? - U « C? — P? as {C?,C?° — P9} and The initialization procedure of the TPA algorithm is

{P?,C° — U «— C?}. We can capture all such binaryShown in Algorithm 4. All blocks in all CNs are marked
decompositions in a partitioning graph. Rartitioning &SNOT_IN_QUEUE, except blocks that are the first block of a

Graph is a directed acyclic graph containing two kind&N- In addition, when the CN is a single non-free node,

of nodes:CN nodesand partitioning nodes(P nodes for W& mark the block as executed, since the result is simply
the corresponding tuples of the block in the non-free tuple

7i.e., CNs that satisfy Rules 2 and 3 in Section II-B. set. (Lines 9-11). Otherwise, since there must be at least
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Algorithm 3: Tree Pipeline Algorithm

Input : CN is the set of CNs
1 Initialize; [+ see Alg. 4 */;
2 while top-klk].score < Q.head().getScore() do

3 Q.emptyhead «— Q.pop_max();
4 if head.status = NOT_EXECUTED_USCORE then
5 head.status < NOT_EXECUTED_BSCORE;
6 Q.push(head, calc_bscore(head));
7 AddNeighbors(head);
8 else if head.status = NOT_EXECUTED_BSCORE then
9 plan «— FindExecPlan(head);
10 forall curP € plan (in that order) do
11 curC «— head.projectTo(cur P.child);
12 AddNeighbors(curC);
13 curC.resultset «—

executeSQL (formQuery(cur P));
14 if curC.resultset # () then
15 curC.status «— EXECUTED,;
16 forall resultt € curC.resultset do
17 | Q.push(t, calc_score(t));
18 else
19 curC.status < EXECUTED_EMPTY,

/* need to propagate this to
ot her rel evant bl ocks */
20 forall rest of the P-nodes, curP, in plan
do
21 of the blockscurC «
head.projectTo(cur P.child);

22 AddNeighbors(curC);
23 curC.status < EXECUTED_EMPTY;
24 break;
25 else
26 |_ Inserthead into top-k;

27 return top-k;

Algorithm 4 : Initialize
Input : CN is the set of CNs

Q<0
all blocks in all CNs are marked asOT_IN_QUEUE;
forall cn € CN do
b « the first block ofen;
if size(cn) > 1 then
b.status « NOT_EXECUTED_USCORE;
Q.push(b, calc_uscore(b));
else
b.status < EXECUTED;
forall resultt € b do
| Q.push(t, calc_score(t));

T
P O © 0 ~NO O A WNPRE

a join in the CN, we will only compute thescore of the
block and push it into the priority queue (Lines 6-7).

The overall flow of TPA algorithm (Algorithm 3) is

similar to that of the Block Pipeline Algorithm. At each

step of TPA, the first itemHAead) of the priority queue is
popped out (Line 3). If its state iSoT_EXECUTED_USCORE
(Lines 5-7), we calculate it$score, upgrade its state

11

block might have already been added to the queue and have
already been executed).

The main difference between the TPA algorithm and the
Block Pipeline Algorithm is when the current head block
is in the state ofnor_executep_Bscore (Lines 9-24 in
Algorithm 3). In TPA, rather than directly executing the
SQL query corresponding to the block, we find an appro-
priate execution plan to exploit the possibility of sharing
computation or pruning. An execution plan is essentially
a sequence of binary decompositions arranged from fine
to coarse granularities, i.e., the last decomposition is fo
the current CN. The plan is found by Algorithm 6 (to be
covered shortly in Section V-C) and is implemented as a
sequence of partitioning nodes. For each partitioning spde
we form an SQL query that joins the intermediate results
of its two parent nodes to obtain the result for its child
node (Lines 11-13). If the result is non-empty, it is pushed
into the queue with their actual scores (Lines 15-17).
Otherwise, we know the current block is empty, and more
importantly, we need tpropagatesuch information to other
relevant blocks. Hence we iterate through the rest of the
partitioning nodes and mark the projections of the current
EXECUTED_EMPTY block asexecutep_empTy (Lines 19-23).
An subtle yet important issue is that we need to invoke
AddNeighbors on projected blocks (Line 22) and on the
current block (Line 12), as otherwise we may miss some
blocks and hence potentially some query results.

Example 5.3:Consider running the TPA algorithm to a
state when the current bloékis from C'N; and its state is
alreadynot_executep_Bscore. Assume thd=indExecPlan
procedure returng Py, Ps), which essentially means the
best plan to acquire the result of the current block in
C N7 is to first execute the corresponding SQL query to
obtain b’s projection onC'N3 (due to P;) and then join
the intermediate results (if not empty) witfs projection
on CN, (due to Fg). If none of the intermediate results
(i.e., b's projection on any of the CNSs) is empty, we not
only obtain the result for the current blodk in CNy,
but also the result ob’s projection in C N5 (namedb’).
Note that the latter will also reduce the cost of obtaining
other blocks, e.g., the block” in CN, such thatd’s
projection onC' N3 is b'. On the other hand, i is empty,

b's state will be directly marked asxecutep_empTy and a
costly four-way join is avoided (as required by all other
algorithms). Note that we won't propagate the fact thiat
is empty to CNs not involved in the current execution plan
(e.g.,CN,). However, when the corresponding blagkin
CN,4 becomes the head of the queue, BirdExecPlan
procedure (See Section V-C) will notice thidtis in the
state ofexecutep_empTy and will pruneb” directly without
sending any query to the database.

C. Find An Execution Plan

Given a blockB of the current CNC'N,.., we can utilize

to NoT_ExecuTED_Bscorg, and push its neighbors into thethe partition graph to either prune the block or compute
gueue with theiruscore. The last step is implemented inthe result of B from some intermediate results (i.e., query
Algorithm 5. Note that théf test is necessary (e.g., someesults cached for some blocks belonging to other CNs).
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Algorithm 5: AddNeighbors(B)

1 forall neighboring block B,, of block B do
2 if Bn.state = NOT_IN_QUEUE then

3 Q.push(By,, calc_uscore(B));

4 L B,,.state «— NOT_EXECUTED_USCORE;

12

EXECUTED_EMPTY.

Example 5.4:Consider a simplified example on the par-
titioning graph in Figure 3. Assume the curréintad is
a block B in CN; and we first consider the partitioning
node Ps. Since CN, is a size-1 CN, all its blocks are

in the executep state. If the corresponding block @niv;
has been executed, the returned execution plan wilPhe
otherwise,FindExecPlan will recursively find execution
Since a CN node may have multiple parent P-nodes, itjigan for the corresponding block afiN,. The recursive
desirable to find thexecution plarthat has the lowest cost. call will return plan(P;) (as both of its parent nodes are
size-1 CN node and all blocks are éecuTep state), and
the final execution plan for the block on C' N7 will be
(P1, Ps). The rest of the partitioning nodes 6fN;, P; in
our example, will be considered in a similar fashion; it will
return (P, P;). Finally, the execution plan with the least
cost will be selected and returned.

Algorithm 6: FindExecPlanB)

Input : A block B; the Partitioning GraptP
Output : The best execution sequence to compute the
current blockB. Return@ if the current block is
pruned.
1 BestP «— (;
2 if B.status € {EXECUTED, EXECUTED_EMPTY} then
3 | return §;

4 forall P € B.parents() do
forall CN € P.parents() do
B’ — B.projectTo(CN);
B’.plan «— FindExecPlan(B’);
if B'.status # EXECUTED_EMPTY then

| Pplan — P.plan U B’ .plan;
else

B.status < EXECUTED_EMPTY; / * Prune B

D. Discussion

Although the idea of sharing common sub-expressions
is a well-known topic [21] in query optimization, DIS-
COVER [6] is the only work to apply this idea to the key-
word search problem in relational databases. Our sharing
method has the following major differences from theirs:

« Basic Sharing Unitsthe basic sharing unit in the DIS-
COVER system is a join expression involving at least

if any of its parent node has ) ) ) o .
enpty resul tset +/; two relations, while the sharing unit in our method is a
12 return (; block in a candidate network, which is typically much

t he
* [

[+ recursively pruning till

smaller than a join expression in most practical fop-
out most CN

settings. This design choice also guarantees that the
TPA algorithm only caches potential keyword query
results (which might not be among the tépresults)
while the DISCOVER method may cache many results
not belonging to the keyword query.

Integration into topk algorithms The sharing method

in DISCOVER can be easily integrated into the Sparse
algorithm [7]. However, it is hard to be integrated into

13
14
15

P.plan «— P.plan U P;
if cost(P.plan) < cost(BestPlan) then
|_ BestPlan < P.plan;

return BestPlan,;

The FindExecPlan algorithm (Algorithm 6) is designed
to perform this task. It will return an execution plan in the  algorithms such as Global Pipeline, Skyline Sweeping,
form of an ordered list of P-nodes. We have the invariant or Block Pipeline, as they operate on a tuple basis. Our
that the corresponding blocks in the two parents of the P- TPA algorithm results from integrating our sharing
nodes in the execution plan must have been executed and idea with the Block Pipeline algorithm to further
has non-empty results. Therefore, the plan is always viable improve its performance.
in the sense that the result of the current block can be
obtained by forming and executing SQL queries for each

P-nodes in the execution plan. The algorithm may return . -
ST In order to evaluate the effectiveness and the efficiency
an empty set, which indicates that the current blétkan )
of proposed methods, we have conducted extensive ex-

be safely prune as one of its projection is found to have_:
periments on large-scale real datasets under a number of
empty result, configurations
The algorithm searches the best execution plan by 9 |

%The datasets we used include: the Internet Movie
breadth-first search of all the possible partitioning of th 8 | i
current block B. This is achieved by a loop through a"BatabaseIMDB) , DBLP data DBLP) [22], and Mon

the P-nodes (Line 5) and recursively call thindExec- dial °. All are real datasets. Schema and statistics of the
! Ursively X %:wo datasets can be found in Tables Vi(a) and VI(b).

BestPlan variable (Line 15) and will be returned at last. or the lMDB data}set, we converted 2 s_ubset of its raw
text files into relational tables. Mondial is a very small

Lin_e 12 impleme_nts aull-basedpruning strategy. W_hen d%taset consisting only around 10K tuples about geographic
a projected block is executed yet has empty result, instea

of returning directly, we still maintain the iteration but shttp://www.imdb.com/interfaces
prune the rest of the blocks by setting their status to®http://www.dbis.informatik.uni-goettingen.de/Montlia

VI. EXPERIMENTS
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TABLE V
Top-1 RESULT FORDQ1 (NI KOS CLI QUE) ON DBLP

Method Size  Top-1 Result

[7] 1 InProceeding Clique-toCligue Distance Computation Using a Specific Architecture
InProceeding Maximum Cligue Transversals

[10] 6 Person Nikos Karatzas— Proceeding— Series « ProceEdi”g‘:lnProceeding On ... Cligue-Width and ...
Ours 3 Person Nikos Mamoulis — RPI — InProceeding Constraint-Based Algorithms for Computir@glique Intersection Joins

information. But its schema is much more complex than th&fithout this optimization, the original GP algorithm would
other two datasets, which consists 28 relations. We will ubave sent an excessive number of queries to the database
Mondial only for evaluating CN Generation efficiency. and incurred significant overhead. Unless specified explic-
We manually picked a large number of queries for eagtly, all algorithms ran using OR semantics.
dataset. We tried to include a wide variety of keywords All algorithms were implemented using JDK 1.5 and
and their combinations in the query sets, e.g., selectivilpBC. All experiments were run on a PC with a 1.8GHz
of keywords, size of the most relevant answers, number GPU and 512M memory running Debian GNU/Linux 3.1.
potential relevant answers, etc. The complete list of gseriThe database server and the client were run on the same
used in the experiment can be found in [23]. We focus dPC. All algorithms were run in warm buffer mode and Java
a subset of the queries here. There are 22 queries for (h€ was enabled.
IMDB dataset (IQ1 to 1Q22) with query length ranging To measure the effectiveness, we adopt two metrics used
from 2 to 3. There are 18 queries for the DBLP datasét the previous study [10]: (a) number of top-1 answers that
(DQ1 to DQ18) with query length ranging from 2 to 4. are relevant#Rel), and (b) reciprocal rankR-Rank). In
order to select the relevant answer, we ran all the algogthm
for the same query and merged their top-20 results. Then we
manually judged and picked the relevant answer(s) for each
qguery. The relevant answer(s) must satisfy two conditions:
it must match all the search keyword and its size must be

TABLE VI
DATASET STATISTICS (TEXT ATTRIBUTESARE UNDERLINED)

(a) IMDB Dataset

Relation Schema #Tuples  the smallest. For example, the manually marked relevant
movies(mID,name) 833,512 answer for the queryrii kos cl i que” is a paper named
direct(miD, dID) 561,173  “Constraint-Based Algorithms for Computir@ i que In-
directors(diD, name) 121,928 tarsection Joins” written by Ni kos Mamoulis”. When
actressplay(aslDeharactor, miD) 2,262,149 paasuring the reciprocal rank, we search for the first
actresses(asIDname) 445,020 .
relevant answer in the top-20 results. In case none of the
actorplay(atlD, charactor, mID) 4,244,600 . .
actors(atlD, name) 7414249 tOP-20 answers is relevant, we upper bound its R-Rank
genres(miD genre) 629,195 value_ bym, where#uniq_score is the num_b_er
Total Number of Tuples 9,839,026 of unique scores in its top-20 results. _To measure efflcggncy
we measure the average elapsed times of the algorithms
(b) DBLP Dataset over several runs.
Relation Schema # Tuples
InProceeding(InProceedingld,Title, Pages, URL, Pro- 212,273 A. Effectiveness
ceedingld) We show thereciprocal ranks of [7], [10], and our
Person(PersonldName) _ 174,709 hroposed method on the DBLP dataset in Table VII. For
RelationPersoninProceeding(InProceedingld, Personld) 491,777 o
. . : : . [10], we used all four normalizations, but not the phrase-
Proceeding(Proceedingld, Title, Editorld, Publisherlge- 3,007 . . .
riesld, Year, Url) based ranking. For our ranking method, we vary the tuning
Publisher(PublisherldName) 86 parametep from 1.0 to 2.0, thus representing the change of
Series(Series|dTitle, Url) 24  preference from the OR-semantics to the AND-semantics.
Total Number of Tuples 8s1,867 The results show that our R-Rank is higher than other

methods, as our method returns the relevant result as the
top-1 result for 16 out of the 18 DBLP queries when
We used two popular relational database servers, bgth= 1.0. While [7] and [10] methods have a tie in #Rel
with their default configurations. Indexes were built on alneasure, [10] actually performs better than [7], because it
primary key and foreign key attributes. For most of theften returns relevant answer(s) within the top-5 results,
queries, similar results were obtained on the two systemshile [7] method often fails to find any relevant answer
We implemented th&parse and global pipeline GP) in the top-20 results. This is reflected in their R-Rank
algorithms, and our skyline swee®9, block pipeline measures. Similar results were obtained on the IMDB
algorithms BP) and tree pipelineTP). Note that we can dataset too.
lower bound the execution time of th&ybrid algorithm [7] Manual inspection of the top-20 answers returned by
as the minimum of the running times of Sparse and Gfhe algorithms reveals some interesting “features” of the
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ranking methods. Due to the inherent bias in [7]'s ranking .,
aggregation method and extremely harsh penalty on the i
CN sizes, it tends to return results that have only partialgmoo
matches to the query or small-sized results. [10] proposed
using a soft CN size normalization and a non-linear rank

aggregation method. Consequently, it tends to return darge

sized results that match most of the keywords. Our method

seems to strike a good balance between the completeness
of the matches and size of the results. For instance, wezw
show the top-1 results returned by all ranking methods for

DQ1 on DBLP in Table V.

TABLE VI
EFFECTIVENESS ON THEDBLP DATASET BASED ONTOP-20 RESULTS

[7] p=10 p=14 p=20
#Rel 2
R-Rank <0.243 0.935
TABLE VI
p’'SIMPACT ON R-RANK
Dataset QuerylD p=1 p=14 p=20
DBLP DQ9 1/3 1/2 1
DBLP DQ17 1/3 1/3 1
IMDB 1Q10 1 1 1
IMDB 1Q17 1/3 1/3 1
IMDB 1Q19 1/2 1 1
IMDB 1Q21 1/2 1/2 1/2

We also conducted experiments by varyindgrom 1.0
to 2.0. This should inject more AND semantics into our
ranking method. As the defauft = 1.0 already returns
relevant results for most queries, we only list queries wehos
result qualities (R-Rank values) are affected by the varyin
p in Table VIII. With an increasing value qf, the R-Rank
values for most such queries increase. This is because we *
start to penalize more on results that does not match all
the keywords. For example, when= 1.0, the relevant
answer for DQ9 is only ranked as the third. The top-1
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answer matches all but one keyword. Wheimcreases to Frig. 5. Evaluation of Query Processing Performance — |
1.4, the relevant answer moves up to the second. Finally,

when p reaches 2.0, it is successfully ranked as the top

answer.

B. Efficiency

We show running time for all queries on the DBLP and
IMDB datasets in Figures 5(a) to 5(e) fér= 20, k = 10
and k£ = 1. Note that the y-axis is in logarithm scale. We

can make the following observations:

« BP and TP are usually the faster algorithm on both

e On hard queries, TP usually outperforms BP. While
on easyqueries or smalk , performance of BP and
TP are similar. The reason is that tégesults can be
retrieved from small number of CNs, and TP can not
take advantage by sharing computation among CNs.
Also note that on DQ8 query, TP fails to return top-
10 results, due to the limitation of the number of
temporary relations allowed to be created in MySQL.

DBLP and IMDB datasets. The speedup is most sub- e SS usually outperforms Sparse and GP, with only a

stantial onhard queriese.g., DQ7, DQ13, and DQL17.

few losses to Sparse, even for= 20. Whenk is

BP can achieve up to two orders of magnitude speedup small, SS shows more performance advantages. SS can
against the better algorithm of Sparse and GP (thus the achieve up to one order of magnitude speedup against

lower bound of Hybrid algorithm). BP can return top-

the better algorithm of Sparse and GP.

10 answers within 2 seconds for 89% of the queries « There is no sure winner between Sparse and GP. In

on the DBLP dataset and 77% queries on the IMDB

dataset which is 10 times larger.

general, while Sparse might lose for smaNalues or
easyqueries, its performance does not deteriorate too
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Fig. 6. Evaluation of Query Processing Performance — II We also run all the algorithm using the AND semantics
for top-1 results on DBLP. All algorithms can find the
relevant results as the top-1 results, so we focus on the
execution time, which is plot in Figure 7(a). It is obvious
« All algorithms are more responsive for smallér that similar conclusions can be drawn about the relative
values. We note that since our ranking function usualg,erformance of the algorithms. ,
returns the relevant answer as the top-1 answer, the ex:rh(,3 fundamental reason Pf superior performances of our
ecution time for top-1 answer is an important indicato?lgor'thms is that they avoid many unnecessary database

of system performance from the user’s perspective.p_mbes' To verify t_h's' we recorded the rjumber of can-
didates each algorithm has checked against the database

We plotted the execution times with differehtvalues (QSize) and the number of queries sent to the database
for all queries. We selected three representative figuoes fr (QNum) and plot them in Figures 7(b) and 7(c), respec-
the DBLP query set and show the results in Figures 6(&ely. Specifically, we choose SS as the baseline algorithm
to 6(c). In general, the costs of all algorithms increasé wi{since it has the minimal QSize without utilizing a second
the increasing: value, as more candidate answers need tgpper bounding function) and calculate the ratio of probes
be found and compared. Some of the queries are amenatfleother algorithms over this baseline number. We can
to top+ optimized algorithms (e.g., DQ11), where the othesbserve from Figure 7(b) that Sparse usually has to examine
four algorithms all perform significantly better than Sgars many candidates, as it cannot stop earlier until the comaplet
There are also queries where BP and TP perform better tiiarery of a CN has been executed. GP is only slightly
the others (e.g. DQ9). DQ14 shows an example that whbatter than Sparse, partly because we specify a rather
k grows large, TP takes advantage by sharing intermediddege & value, hence GP’s performance drops quickly. BP
results, while all other algorithms jump to a large runninglgorithm makes use of additional upper bounding functions
cost. and delays probing the database as much as possible. As

much for largek or hard queries.
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a result, it usually examines fewer candidates than S&ploit the schema information and leverage the DBMS
The number of candidates examined by TP is extremdiyr query processing. Early work includes DBXplorer [2].
small, and for many queries, the TP bar can not been sé&ihen data schema is used for query processing purpose,
in the plotted graph. But somehow the measurement @gisting approach is mainly based on Candidate Network
unreasonable, as TP patrtitions the search space into low@N) generation, Different query processing techniques ar
dimensions, and the number of candidates is countedtiren applied immediately [2], [6], [7], [35], [36] or in an
the low dimensional space. In terms of query numbers, ederactive way [29], [37]. Data schema is also used for
expected, Sparse always sends a small number of queriedexing [16], ranking [10], and data browsing and user
Interestingly, SS sends the largest number of queries in miterface design [24], [38].
the cases compared to GP, BP and TP. The reason is tha{39] provides a comprehensive survey on recent survey
the three algorithms can examine a number of candidates/ering keyword query on both structured and semi-
together in one single query using our range parametstructured databases.
guery optimization; in contrast, SS exams candidates in anBesides the common definition of keyword search, stud-
ad-hoc manner and such optimization cannot be appliedes have also been performed on identifying entities that

We broke down the elapsed time for all the four algodo not match keywords directly, but implicitly relevant or
rithms. We summed up time used by the RDBMS to proce4sear” the occurrence of search keywords [5], [40], [41].
queries and divided them over the total elapsed times §éyword search can also be an idea means to associate
the queries. The result for the DBLP dataset is shown #tructured data with unstructured data [42], [43].
Figure 7(d). Overall speaking, the dominant cost for aRanking and Searching Quality Keyword searches
algorithms is the DBMS query processing time. GP’s cost &e inherently ambiguous, and not all query results are
mostly dominated by DBMS query processing time, as Ggyually relevant to a user. Most work focuses on bringing
only needs to keep a few data structures (the current tuptere effective ranking from IR literatures. Various rarkin
in each of the non-free tuple set of the CNs) and does resthemes have been proposed to order the query results into
have expensive calculation and data structure maintena@aceorted list so users can focus on the top results. Various
overhead. Among the other algorithms there is no cleesanking schemes are used in existing work, which consider
winner. Sparse’s overhead mainly comes from the nebdth the properties of data nodes/tuples such as TF*IDF,
to calculate the IR scores fall results returned by its node weight, or page-rank style ranking, and inter-tuple
large-sized queries. SS needs to spend time on maintainingglobal properties such as number of edges, weights on
the priority queue. TP needs to maintain the partitioningdges, size normalization, or redundancy penalty. Some
graph and to find the best plan. Overall speaking, the Bfelvanced features, such as schema term awareness and
algorithm is still dominated by DBMS query processinghrase-based ranking, are also proposed [10], [24], [25],
time (averaged about 71%), but to the least extent. TH&7], [28], [30], [32], [33], [35], [38], [44]-[49].
is because, intuitively, BP spends more time in its internal Keyword search has been studied under a few generalized
calculation (of upper bounding scores) to avoid expensigentexts too [45], [46], [50]. In order to help users to find
database probes. interesting results and to improve search quality, tealasq
of result browsing and clustering [24], [51], [52], query
cleaning and suggestion [53]-[55] are also developed.
Rank Aggregation Given a set of objects, each being
Keyword Search Systems The main goal of a keyword scored according to some aggregate function on its at-
search system is to find a set of closely inter-connectatbutes, the rank aggregation query considers the problem
tuples that collectively match the keywords. of retrieving thek objects with the highest scores.

One type of approaches is based on modeling data afRank aggregation query processing has also been exten-
a graph, and the results as subtrees or sub-graphs. Elely studied in the literature. Fagiet al. [11], [56] in-
keyword search problem can be shown to be an instarteeduced a set of novel algorithms, assuming sorted access
of the Group Steiner tree problem, which is NP-hardnd/or random access of the objects is available on each
Exhaustive search based on dynamic programming is dgtribute. A number of improvements have been suggested
veloped [24], [25], which is capable to find the optimaafter Fagin’s seminal work, for example, minimizing com-
solution of minimum group Steiner tree problem wittputational cost [57], and minimizing the 10 cost [58]. Some
polynomial time when the number of keywords(groupsjther approaches to attack the problem include building
is fixed. Most other work relax the definition or adapindexes [59] or building materialized views [60].
a heuristic approach to attain reasonable efficiency. EarlyA generalized version of rank aggregation problem is
work in this category includes RUI [26] and the BANKSto consider more general or expensive predicates as the
systems [3], [8]Q-subtree [27] combines the technique ofinderlying ranked objects. Expensive predicates checking
BANKS and [28]. More recently, re-computing [29] andor top-k query has been studied [13], [61]-[63] to support
indexing approaches [30]-[34] are also developed for thser-defined functions, external predicates, fuzzy jcis,
efficiency propose. As the bottleneck of proceeding these queries comes from

Another type of approaches is based on relationstore predicates rather than finding object candidatesethe
databases where structured data are stored. As such, thagers focus on reducing the number of predicates to be

VIl. RELATED WORKS
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made.

[12] studied finding topk joined objects and proposed
a J* algorithm, which is based on thé&* class of search
algorithms. A similar probing mechanism can be foun
in the work from Changet al. [13], where an optimal
algorithm, MPro, was proposed based on thecessary

probing principle A number of approaches were suggested

by liyaset al.[64], includingnested-loop rank-joiiNRJIN)

andhash rank-join(HRJN), which can be viewed as varianf¥!

of the ripple join algorithm [14]. More recently, [65] gives

a more general problem statement for the rank join query,

analyzes existing techniques, and studies the theoreti
aspects of the problem.

VIIl. CONCLUSIONS

In this paper, we studied supporting effective and
ficient top4 keyword queries over relational database

monotonic ranking functions. Three algorithms were pr

imize computational sharing. We have conducted extensi

experiments on large-scale real databases. The expeaaime[ﬁf1
results confirmed that our ranking method could achieve
high precision with high efficiency to scale to databasé#]

with tens of millions of tuples.
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