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Abstract. Spatial data mining recently emerges from a number of real
applications, such as real-estate marketing, urban planning, weather fore-
casting, medical image analysis, road traffic accident analysis, etc. It de-
mands for efficient solutions for many new, expensive, and complicated
problems. In this paper, we investigate a proximity matching problem
among clusters and features. The investigation involves proximity rela-
tionship measurement between clusters and features. We measure prox-
imity in an average fashion to address possible nonuniform data distri-
bution in a cluster. An efficient algorithm, for solving the problem, is
proposed and evaluated. The algorithm applies a standard multi-step
paradigm in combining with novel lower and upper proximity bounds.
The algorithm is implemented in several different modes. Our experiment
results do not only give a comparison among them but also illustrate the
efficiency of the algorithm.

Keywords: Spatial query processing and data mining.

1 Introduction

Spatial data mining is to discover and understand non-trivial, implicit, and pre-
viously unknown knowledge in large spatial databases. It has a wide range of ap-
plications, such as demographic analysis, weather pattern analysis, urban plan-
ning, transportation management, etc. While processing of typical spatial queries
(such as joins, nearest neighbouring, KNN, and map overlays) has been received
a great deal of attention for years [2,3,4,28], spatial data mining, viewed as ad-
vanced spatial queries, demands for efficient solutions for many newly proposed,
expensive, complicated, and sometimes ad-hoc spatial queries.

Inspired by a success in advanced spatial query processing techniques [2,3,4],
[11,12,28], relational data mining [1,26,30], machine learning [9,10,22], compu-
tational geometry [27], and statistics analysis [17,29], many research results and
system prototypes in spatial data mining have been recently reported [2,5,6,13],
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[15,18,19,21,24]. The existing research does not only tend to provide system so-
lutions but also covers quite a number of special purpose solutions to ad-hoc
mining tasks. These include efficiently computing spatial association rules [20],
spatial data classification and generalization [13,15,21,24], spatial prediction and
trend analysis [6], clustering and cluster analysis [5,7,18,25,32], mining in image
and raster databases [8], etc.

Clustering has been proven one of the most useful tools to partition and
categorize spatial data into clusters for the purpose of knowledge discovery. A
number of efficient algorithms [5,7,25,31,32] have been proposed. Consider that
the clustering technique might be too expensive to apply to approaching ad-hoc
spatial data mining tasks. In [18,19], special purpose mining algorithms have
been developed, as alternatives to clustering, for solving two ad-hoc problems.
The first problem is to find the k closest features surrounding a set of points in
two dimensional space. Such a set of points may be either a cluster obtained by
a clustering algorithm or an existing spatial object (e.g. a residential area) in the
database, while a feature is a polygon. The second problem in [18] is to compute
the commonality among n sets of points (e.g. n residential areas), provided that
their k closest features are pre-computed.

To complement the research in [18,19], in this paper we study the following
ad-hoc proximity matching problem (PM) among n sets of points:

Suppose that in two dimensional space, n sets of points and m sets of
polygons are given. Regarding to a specific set C of points, find the
sets of points such that each cluster C′ meet the proximity matching
condition - the “shortest distance” from C′ to each set π of polygons is
not greater than that between C and π. Further, if no sets of points meet
the proximity matching condition then the “best” approximate solution
is computed.

PM problem has a number of useful real applications. For instance, in real-
estate spatial data, a set of points represent a residential area where each point
represents a land parcel; a polygon corresponds to a vector representation of
feature, such as a lake, golf course, school, motor way, etc. In this application,
a house buyer or a real-estate developer may want to purchase a property in a
well-known area C because of the proximity relationships to certain surround
features but may not be able to do it due to either no property available in C or
a budget limit. Therefore, the purchaser has to alternatively choose the available
and affordable residential areas most similar to C with respect to these proxim-
ity relationships. Other applications include road traffic accident investigation,
criminal analysis, etc.

PM will be formally defined in the next session. In PM, we assume that the
“shortest distance” between a set of points and a set of polygon has not been
pre-computed, nor stored in the database. Further, such a shortest distance will
be defined in average sense to reflect non-uniform data distribution. These dif-
ferentiate PM with KNN [2,13], the problem of searching commonalities among
n sets of points [18], and incremental distance join problem [16].
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A naive way to solve PM is to first precisely compute the distance informa-
tion between each set of points and each set of polygons, and then to solve PM.
However, in practice there may be many sets of points far from being part of
solution to PM. Motivated by this, our algorithm adopts a standard multi-step
technique [2,4,18,20] in combining with novel and powerful pruning conditions to
filter out uninvolved features and sets of points. The algorithm has been imple-
mented in several different modes for performance evaluation. Our experiments
clearly demonstrates the efficiency of the algorithm.

The rest of the paper is organized as follows. In section 2, we present a precise
definition of PM as well as brief an adopted spatial database architecture. Section
3 presents our algorithm for solving PM. Due to the length limitation, in this
paper we sketch only the proofs of our theoretical results, and the interested
readers may refer to our full paper [23] for the detailed proof. Section 4 reports
our experiment results. In section 5, a discussion is presented regarding various
modifications of our algorithm. This is followed by the conclusions and remarks.

2 Preliminary

In this section we precisely define the PM problem. A feature F is a simple
and closed polygon [27] in the 2-dimensional space. A set C of points in the
two dimensional space is called cluster for notation simplicity. Following [18],
we assume that in PM a cluster is always outside [27] a feature. Note that this
assumption may support many real applications. For instance, in real-estate
data, a cluster represents a set of land parcel, and a feature represents a man-
made or natural place of interest, such as lake, shopping center, school, park,
entertainment center, etc. Such data can be found in many electronic maps in a
digital library.

To efficiently access large spatial data (usually tera-bytes), in this paper we
adopt an extended-relational and a SAND (spatial-and-non-spatial database)
architecture [3]. That is, a spatial database consists of a set of spatial objects
and a relational database describing non-spatial properties of these objects. For
instance, a set of electronic data describing Sydney metropolitan area may be
organized as follows.

– SUBURB (name, #houses, #units, average price, ..., g des),
– GOLF COURSE (name, #holes, ..., g des),
– SCHOOL (name, type, ... , g des),
– BEACH (name, type, ..., g des).

In the above database schemata, the attribute g des represents a spatial
object, which is either a set of points or a polygon in PM. In order to achieve
efficient access, in SAND the attribute g des stores only a pointer in the relational
table, pointing to the actual spatial object description. Below shows an example
of PM:
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Example 1. select s.*
from SUBURB s, SUBURB s1, GOLF COURSE g,

BEACH w, SCHOOL sc
where s1.name = ’Randwick’ and s.name 6= ’Randwick’ and
s.average price ≤ 400, 000 and g.#holes = 9 and sc.type = ’private’
proximity-matching between (s.obj, s1.obj) regarding
their shortest distances to g, sc, and w 2

Example 1 is to find the suburbs with area average house price less than
$400,000, such that their individual shortest distances to the golf courses with
9 holes, to private schools, and to beaches are respectively smaller than those
between the suburb Randwick and the features. If such suburbs do not exist
then the suburbs most approximately meet the proximity matching conditions
will be reported.

Taking the above query as an example, we now formally define PM. In PM,
the input consists of:

– a cluster C0 (e.g. the suburb Randwick in Example 1),
– a set S of clusters (e.g. the suburbs with average price not greater than

$400,000 in Example 1),
– a set Π = {πj : 1 ≤ j ≤ m} of groups of features (e.g. in Example 1, m = 3,

π1 is the set of golf courses with 9 holes, π2 is the set private schools, and
π3 is the set of beaches).

Given a feature F and a point p outside F , the length of the actual (working
or driving) shortest path from p to F is too expensive to compute in the presence
of tens of thousands of different roads. In PM, we use the shortest Euclidean
distance from p to a point in the boundary of F , denoted by d(p, F ), to reflect the
geographic proximity relationship between p and F . We believe that on average,
the length of an actual shortest path can be reflected by d(p, F ). We call d(p, F )
the distance between p and F . Note that if F degenerates to a point p′ then
d(p, p′) means the Euclidean distance between them; and F may also degenerate
to a line. Moreover, for the purpose of computing lower and upper proximity
bounds in Section 3, we need to extend the definition of d(p, F ) to cover the case
when p is inside or on the boundary of P ; that is, d(p, F ) = 0 if p is inside P .

A proximity value between a cluster C and a feature F can be defined in a
number of ways. We may define it by the shortest distance between the “bound-
ary” of C and the boundary of F . However, as points in C admit an arbitrary
distribution, such a proximity value may not be the majority consensus from C;
this was shown in [18]. We use the following average proximity value to quanti-
tatively model the proximity relationship between F and C:

AP (C, F ) =
1
|C|

∑
p∈C

d(p, F ) (1)

Consider that in PM a set π of features normally means a set of the same
kind of features. We define the distance between a set π of features and a cluster
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C to be the smallest average proximity between C and a F ∈ π, and it is denoted
by D(C, π). That is,

D(C, π) = min
F∈π

{AP (C, F )} (2)

As mentioned earlier, if in PM no cluster meets the above requirements, then
the proximity matching needs to find clusters that achieve the requirement most;
in this case, we rank the importance of a set πj of features by a positive value
wj . The more important a feature πj is, the larger wj is. The wj can be assigned
by either a user or the system default. Therefore, a set {wj : 1 ≤ j ≤ m} of
positive values is also part of the input of PM. PM can now be modeled as to
find the clusters C in S such that the following goal function is minimized.

PMC0(C, Π) =
m∑

j=1

wj pm(D(C, πj), D(C0, πj)) (3)

where,

pm(D(C, πj), D(C0, πj)) =
{

0 if D(C, πj) ≤ D(C0, πj)
D(C, πj)−D(C0, πj) otherwise

(4)

3 Algorithms for Solving PM

In this section, we present an efficient algorithm for solving PM. The algorithm
is denoted by CPM, which stands for Computing the Proximity Matching.

An immediate way (brute-force) to solve PM is to 1) compute AP (C, F )
firstly for each pair of a cluster C and a feature F , 2) secondly compute D(C, πj)
for every pair of a C and a πj , 3) thirdly compute PMC0(C, Π) for each cluster C
in S, and 4) finally find the clusters C with the smallest values of PMC0(C, Π).
Note that AP (C, F ) can be easily computed in O(|C||F |) according to the defini-
tion of AP (C, F ); and it is the dominant cost. Though the brute-force approach
runs in quadratic time regarding the input size, there may be hundreds clusters
and tens of thousands features involved in the computation. Moreover, each clus-
ter (feature) may have a number of points (edges). This makes the brute-force
approach computationally prohibitive in practice; and our experiment results in
Section 4 confirm this.

An alternative way to approach PM is to adopt a multi-step paradigm [2,4],
[18,20]. That is, we firstly apply a coarse and fast computation. Instead of com-
puting the actual value of AP (C, F ) in quadratic time, we may compute a lower
bound and an upper bound for AP (C, F ) in a constant time O(1). By these
bounds, for each cluster C in S we can rule out the features in a πj , which are
definitely not closest to C; and thus we do not have to precisely compute the
average proximity values between these eliminated features and C. Secondly, we
can deduce a lower bound and an upper bound for each PMC0(C, Π) from the
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bounds of AP ; and then filter out uninvolved clusters. This is the basic idea of
our algorithm. In our algorithm CPM, we have not integrated our algorithm into
a particular spatial index, such as R-trees, R+-trees, etc, due to the following
reasons:

– There may be no such a spatial index built.
– The PM problem may involve many features from different tables/electronic

thematic maps; and thus, spatial index built for each thematic map may be
different. This brings another difficulty to make use of spatial indices.

– A feature or a cluster, which is qualified in PM, may be only a part of a
stored spatial object; for instance, user can be interested in only certain
part of a residential area. This makes a possible existing index based on the
stored spatial objects not applicable.

– The paper [18] indicates the existing spatial indexing techniques do not nec-
essarily support well the computation of aggregate distances; the argument
should be also applied to average distance computation.

The algorithm CPM consists of the following 5 steps:

Step 1: Read the relevant clusters into buffer.
Step 2: Read features batch by batch into buffer and determine their groups by

validating the selection conditions against the relational tables.
Step 3: For each feature F in a πj , compute lower and upper bounds of AP (C, F )

for a cluster C. Then determine whether or not F should be kept for the
computation of D(C, πj).

Step 4: For each πj and each cluster C, compute lower and upper bounds for
D(C, πj); and then derive lower and upper bounds for (4). Filter out clusters
which will not be part of the solution to PM.

Step 5: Apply the above brute-force method to the remaining clusters and their
associated features to solve PM.

In the next several subsections we detail the algorithm step by step. Clearly,
a success of the algorithm CPM largely relies on how good the lower and upper
bounds of AP are. The goodness of lower and upper bounds means two things:
1) the bounds should be reasonably tight, and 2) the corresponding computation
should be fast. We first present the lower and upper bounds.

Note that for presentation simplicity, the algorithms presented in the paper
are restricted to the case when features and clusters qualified in PM are stored
spatial objects in the database. However, they can be immediately extended to
cover the case when a feature or a cluster is a part of a stored object.

3.1 Lower and Upper Bounds for Average Proximity

In this subsection, we recall first some useful notation. The barycenter (centroid)
of a cluster C is denoted by b(C). A convex [27] polygon encompassing a feature
F is called a bounding convex polygon of F . The smallest bounding convex
polygon of F is called the convex hull [27] of F and is denoted by PF . An
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isothetic rectangle is orthogonal to the coordinate axis. The minimum bounding
rectangle of F refers to the minimum isothetic bounding rectangle of F and is
denoted by RF . Similarly, we denote the convex hull of a cluster C by PC and
denote the minimum bounding rectangle of C by RC . The bounds presented
in the subsection are based on either minimum bounding rectangles or convex
hulls.

Given a RC and a RF , an immediate idea is to use the shortest distance
and the longest distance between RC and RF to respectively represent a lower
bound and an upper bound of AP (C, F ). However, this immediate idea has two
problems. The first problem is that when two rectangles intersect with each
other (note that in this case C and F do not necessarily have an intersection),
the shortest and longest distances between RC and RF are not well defined.
The second problem is that the bounds may not be very tight even if the two
rectangles do not intersect. These also happen similarly for convex hulls. Below,
we present new and tighter bounds.

Our lower bound computation is based on the following Lemma.

Lemma 1.
∑K

i=1

√
x2

i + y2
i ≥

√
(
∑K

i=1 xi)2 + (
∑K

i=1 yi)2

Proof: It can be immediately verified that the inequality holds when K = 2. By
mathematical induction, we can prove the Lemma. 2

From Lemma 1, Theorem 2 immediately follows.

Theorem 2. Suppose that C is a cluster, F is a feature, and P is either the con-
vex hull or the minimum bounding rectangle of F . Then, AP (C, F ) ≥ d(b(C), P );
in other words d(b(C), P ) is a lower bound of AP (C, F ).

Figure 1 gives an example, and shows that our lower bound is tighter than
the shortest distance between two rectangles.

(b(C), R  )
F

RF

C

RC

b(C)
F d 

Fig. 1. A lower bound

The RF of a feature F has four edges: the left boundary, right boundary,
bottom boundary, and top boundary. Note that each boundary edge x is divided
into several line segments (at least two). The two end points of such a line
segment are either a) a pair of two adjacent intersection points between F and
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RF , or b) a vertex of RF and an intersection point between F and RF . We use
HRF,x to denote the maximal segment length among these line segments in the
boundary edge x, where x ∈ {l, r, b, t} respectively represents either the left, or
right, or bottom, or top boundary. For each boundary edge x, we use V RF,x to
denote the maximal length of the perpendicular line segment from a vertex of
an edge of F , which faces [27] x. Figure 2(a) illustrates these concepts.

R F

VRF,r

HRF,r

HRF,bVRF,b

(p, R C )λ
F

p

C

RC

(a)
(b)

Fig. 2. Examples

Suppose that P ′ is either the convex hull or the minimum bounding rectangle
of a cluster C, and p is a point inside P ′. We use λ(p, P ′) to denote the maximal
distance between p and a point contained in P ′. Clearly, λ(p, P ′) is the maximal
distance from p to one of the vertices of P ′. Figure 2(b) illustrates this concept
for the minimum bounding rectangle.

Below we present two upper bounds respectively for convex hulls, and mini-
mum bounding rectangles.

Theorem 3. Suppose that PC is the convex hull of a cluster C, p is a point
inside PC , and F is a feature. Then AP (C, F ) ≤ d(p, F ) + λ(p, PC).

Sketch of the Proof: The theorem can be verified according to the definitions
of AP , d, and λ. 2

It is clear the right hand side in the inequality of Theorem 3 can be used
as an upper bound of AP . However, the computation of d(p, F ) runs in time
O(|F |). The lower bound presented below in Theorem 4 is based on the minimum
bounding rectangles and can be computed in constant time, though it is not as
tight as that in Theorem 3. First we should note that Theorem 3 also holds if
we replace PC by RC .

Theorem 4. Suppose that RC of C is given, RF of F is given, and p is a point
contained in RC . Then

d(p, F ) + λ(p, RC) ≤ min
x∈{l,r,b,u}

{min{HRF,x, V RF,x}+ d(p, x)} + λ(p, RC). (5)

Here x a boundary edge of RF .
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Proof: From the definition of HR and V R, the theorem can be immediately
verified. 2

Theorem 4 together with Theorem 3 imply the right hand side in the inequal-
ity of Theorem 4 is another upper bound of AP . Further, it should be clear that
this upper bound can be computed in constant time, provided that HRF,x and
V RF,x are obtained and λ(RC , p) is computed for a given p.

R

F F

(b)

p p

(a)

R

C C

C
P C

F

Fig. 3. Upper bounds

The total lengths of the thick dotted lines in Figure 3(a) and Figure 3(b)
respectively show the upper bounds in Theorems 3 and 4. They also show that
our bounds may be tighter than the longest distance between the convex hulls
or between the minimum bounding rectangles. However, we cannot generally
prove this because the tightness of the bounds depends on the choice of p. In
our algorithm, we will choose the centroid of a cluster C in the upper bound
computation since it has to be used to obtain a lower bound.

In the next several subsections, we present first the algorithm CPM based
on the minimum bounding rectangles.

3.2 Read in Clusters

In Step 1, we first read in the clusters, specified in the query by a user, into
buffer by execution of the data retrieval method [3]; for instance, regarding the
query in Example 1 the suburbs with average house price less than $400,000 are
read into the database by querying the SUBURB table. Then, we compute RC ,
b(C), and λ(b(C), RC) for each cluster C. Clearly, this step takes linear time
with respect to the total size of clusters.
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3.3 Read In and Filter Out Features

This subsection presents Step 2 and Step 3. Consider that the number of the fea-
tures to be processed may be very large, and each feature may have many edges.
It may be impossible to keep all features in buffer all the time. Consequently,
features should be read into buffer batch by batch. Once a batch of features
are read in, they are first assigned group IDs against users specifications; for in
stance, in Example 1 three feature groups are retrieved.

After a feature is assigned a group ID, the algorithm CPM invokes the filter-
ing process in Step 3. It is based on the following lemma.

Lemma 5. Suppose that C is a cluster, and π = {F1, F2, ..., Fk} is a group of
features. For 1 ≤ j ≤ k, let LBAP (C, Fj) and UBAP (C, Fj) be a lower bound
and an upper bound of AP (C, Fj). Then:

min
1≤j≤k

{LBAP (C, Fj)} ≤ D(C, π) ≤ min
1≤j≤k

{UBAP (C, Fj)}.

Proof: The lemma immediately follows from the definition of D. 2

For notation simplicity, we extend S to include the given C0; that is, S =
{Ci : 0 ≤ i ≤ n}. With respect to each pair of Ci and πj , we use LBi,j to record
the minimum value of the lower bounds of AP (Ci, F ) for each F ∈ πj , and use
UBi,j to record the minimum values of the upper bounds. Lemma 5 says that
LBi,j and UBi,j are relatively a lower and an upper bound of D(Ci, πj).

In our algorithm, we initially set both LBi,j and UBi,j to ∞, and then
gradually update them when a new feature in πj is processed. We use a dynamic
array Ai,j to store the candidate features in πj for computing AP (Ci, πj). Each
element in Ai,j stores the identifier FID of a feature F , the obtained lower
bound of AP (Ci, F ), and the pointer g des that points to the spatial description
of the cluster.

Specifically, to process a F ∈ πj , CPM firstly computes RF and the values
of V F and HF for RF ; this can done easily by scanning F only once. Secondly,
for each Ci, we check if F should be included in Ai,j . According to Lemma 5, we
add F to Ai,j if the obtained lower bound of AP (Ci, F ) is less than the current
value of UBi,j . Further, we should update LBi,j and UBi,j each time after F is
added to Ai,j ; and then check Ai,j to determine if some features in Ai,j should
be removed due to an update of UBi,j . To prevent unnecessary scan of Ai,j each
time after UBi,j is updated, we also record the maximum value of the lower
bounds of AP (Ci, F ) among the features F in the current Ai,j ; it is recorded by
qi,j (qi,j is initially zero).

For example, suppose that the features F1, F2, F3, and F4 are in π1. Their
lower and upper bounds of AP values against a cluster C1 are (4, 5) for F1,
(6, 7) for F2, (3, 6) for F3, and (3, 3.5) for F4; see Figure 4. Initially, LB1,1 =
UB1,1 = ∞, and q1,1 = 0. Suppose that F1 is first processed. We add F1 to
A1,1 by recording its ID and the lower bound; and then LB1,1 = 4, UB1,1 = 5,
and q1,1 = 4. Next, F2 is processed. F2 should not be included in A1,1 because
6 > UB1,1. However, when F3 is processed thirdly, F3 should be added in A1,1.
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Consequently, LB1,1 = 3, UB1,1 = 5, q1,1 = 4. While processing F4, we find that
F4 should be added to A1,1. Accordingly, LB3,3 = 3, UB1,1 = 3.5, and q1,1 = 4.
Then, since q1,1 > UB1,1 we should check A1,1 to delete F1 from A1,1.

C  ,  F1 1 C  ,  F1 2

C  ,  F1 3

C  ,  F1 4

3 4 5 6 7

AP (              ) AP (              )

AP (              )

AP (              )

Fig. 4. Filter Out Features

More precisely, to process a feature F ∈ πj , the above processes can be
presented by the following pseudo codes:

compute RF , V FR,x and HFR,x; /* x = {l, r, b, t} */
for each cluster Ci do {

LBAP (Ci, F ) → a1 (the lower bound); UBAP (Ci, F ) → a2 (the upper bound);
if a1 < UBi,j then {
F → Ai,j ;
min{a1, LBi,j} → LBi,j;
min{a2, UBi,j} → UBi,j ;
max{qi,j, a1} → qi,j ;
if qi,j ≥ UBi,j then {
remove features F from Ai,j if LBAP (Ci, F ) ≥ UBi,j ;
re-compute qi,j from the remaining features in Ai,j ; }

}
}

Once a batch of features are processed by the above procedure, we do not
keep them in buffer if no space is left for the next batch of features. In this
situation, we will need to read in again the features not filtered out after Step
4, so that we can process Step 4; this is why we want to keep the pointer g des
for each feature object.

3.4 Filter Out Clusters

This subsection describes Step 4. After the computation in last subsection, we
obtained LBi,j and UBi,j for each pair of Ci and πj . By Lemma 5, we have:

LBi,j ≤ D(Ci, πj) ≤ UBi,j . (6)



Efficiently Matching Proximity Relationships in Spatial Databases 199

Note that from the definition, pm(D(Ci, πj), D(C0, πj)) = 0 if D(Ci, πj) ≤
D(C0, πj). This immediately implies that pm(D(Ci, πj), D(C0, πj)) = 0 if one of
the following two conditions applies:

1. UBi,j ≤ LB0,j, or
2. UBi,j ≤ D(C0, πj)

Thus, intuitively pm(D(Ci, πj), D(C0, πj)) is bounded by UBi,j−LB0,j. Further,
it cannot be smaller than the minimum distance between the two closed intervals:
[LBi,j , UBi,j ] and [LB0,j, UB0,j ]. The intuition can be immediately verified and
is stated in Lemma 6. Let

P i,j =
{

UBi,j − LB0,j if UBi,j > LB0,j

0 otherwise

and let

αi,j =
{

LBi,j − UB0,j If LBi,j > UB0,j

0 otherwise

Lemma 6. pm(D(C, πj), D(ci, πj)) ≤ P i,j, and pm(D(C, πj), D(ci, πj)) ≥ αi,j

for each pair of Ci and πj,

Sketch of the Proof: Prove the theorem by applying (6) and the above two
conditions. 2

Lemma 6 gives us a lower and upper bound of PMC0(Ci, Π) for each Ci:

m∑
j=1

wjα
i,j ≤ PMC0(Ci, Π) ≤

m∑
j=1

wjP
i,j . (7)

In Step 4, we firstly compute the lower and upper bounds for each cluster Ci

(i 6= 0), as given in (7). Secondly, we compute the minimum value τ of the upper
bounds among the clusters Ci in S but i 6= 0. Thirdly, we scan S to filter out
clusters Ci if

∑m
j=1 wjα

i,j > τ . This procedure runs in time O(nm).

3.5 Precise Computation

This subsection describes Step 5. After pruning the clusters, the information of
remaining features for solving PM is kept in each Ai,j . We need to read in these
features again to perform the precise computation. Since two different Ai,js may
keep a same feature as a candidate, to efficiently read in required features we
use a hashing method. A hash table H is created against feature ID - FID. We
scan Ai,j one by one to execute the following two steps.

Step 1: For each feature F ∈ Ai,j , hash its FID into an H entry and then
determine if its spatial description is already in H .
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Step 2: If the spatial description of F is not in H , then read it into buffer using
g des and store it in H . Then, compute AP (Ci, F ) for each remaining Ci.

After computing all AP values, we apply the remaining step of the brute-force
method to the existing clusters to solve the problem. Note that before starting
Step 5, we also check a special case - if αi,j = P i,j for all remaining clusters and
features then CPM does not have to process Step 5 but outputs the remaining
clusters as the solution.

3.6 Complexity of CPM

In this subsection, we analyze the complexity of CPM. Step 1 takes linear time
with respect to the total sizes of clusters; that is O(

∑n
i=0 |Ci|). Step 2 and Step

3 take time O(n×∑m
j=1 |πj |). Step 4 takes time O(nm), while step 5 takes time

O(
∑

∀Ci,∀F∈Ai,j
|Ci||F |) for the remaining clusters Ci.

Note that the brute-force algorithm runs in time O(
∑

∀C,∀F |C||F |). It should
be clear that in practical, the time complexity of the brute-force method is much
higher than that of CPM. This is confirmed by our experiment results in Section
4.

3.7 Different Modes of CPM

The above mode of CPM uses only the minimum bounding rectangles; and it is
denoted by CPM-R.

An alternativemode to CPM-R is to use a multiple-filtering technique [2,13,18]:

– first the minimum bounding rectangles are used in Steps 3 and 4, and then
– the convex hulls for features and clusters are adopted to repeat Steps 3 and

4 before processing Step 5.

It is denoted by CPM-RH. In CPM-RH, we employ the divide and conquer
algorithm [27] to compute convex hulls for clusters. To compute a convex hull
for a feature (simple polygon), we employ the last step in Graham’s scan [27],
which runs in linear time. We use the upper bound of AP in Theorem 3 to
implement the procedure in Section 3.3 for convex hulls.

Another alternative mode to CPM-R is to use only the convex hulls instead
of the minimum bounding rectangles. We denote this mode by CPM-H.

In next section, we will report our experiment results regarding the perfor-
mances of the brute-force algorithm, CPM-R, CPM-RH, and CPM-H.

4 Experiment Results

The brute-force algorithm and the three different modes of CPM have been im-
plemented by C++ on a Pentium I/200 with 128 MB of main memory, running
Window-NT 4.0. In our experiments, we evaluated the algorithms for efficiency
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and scalability. Our performance evaluation is basically focused on Step 3 on-
wards, because the methods [3] of reading in clusters and features are not our
contribution. Therefore, in our experiment we record only the CPU time but
exclude I/O costs.

We developed a program to generate a benchmark. In the program, we first
use the following random parameters to generate rectangles, such that a rectangle
may intersect with at most another rectangle:

– M gives the number of rectangles, and
– widR controls the width of a rectangle R and hR controls the height of R.

More specifically, we first generate M rectangles R with a random width widR

and a random height hR, where 1 ≤ widR, hR ≤ 1000. The generated rectangles
are randomly distributed in the 2-dimensional space, and intersect with at most
another rectangle. To generate n clusters, we randomly divide the whole region
into n disjoint sub-regions and choose one rectangle from each region. We use a
random parameter NC to control the average number of generated points in each
rectangle among the chosen n rectangles. These give n clusters. The remaining
M − n rectangles correspond to features. We use another random parameter
NF to control the average number of the vertices (points) generated in each
remaining rectangle.

Note that if R intersects with R′, we actually generate the points respectively
in R and R′ − R if R′ is not included in R. Further, in each rectangle R corre-
sponding to a feature, we apply a Graham’s scan-like algorithm [27] to produce
a simple polygon connecting each vertex in R; the generated simple polygon is
used as a feature. Therefore, in our benchmark we have two kinds of spatial
objects - clusters and features.

In the experiments below, we adopt a common set of parameters: 1) a feature
has 150 edges on average, 2) a cluster has 300 points on average, and 3) the
features are grouped into 20 groups.

In our first experiment, we generate a database with 10 clusters and 1000
features. The experiment results are depicted in Figure 5, where the algorithm
CPM-R, CPM-H, and CPM-RH are respective abbreviated to “R”, “H”, and
“R-H”.

From the first experiment, we can conclude that the brute-force is practically
very slow. Another appearance is that H is slower than R and R-H due to the fact
that in H, the computation of lower and upper bounds for each pair of cluster
and feature does not take constant time. Intuitively, H should be significantly
slower than R and R-H when the number of clusters and features increases; this
has been confirmed by the second experiment.

The second experiment has been undertaken through two “dimensions”:

– Fix the number of features to be 1000, while the number of clusters varies
from 5 to 20. The results are depicted in Figure 6.

– Fix the number of clusters to be 200, while the number of features varies
from 1000 to 10000. The results are depicted in Figure 7.
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Note that in the second experiment, we run R, H , and R −H 40 times against
each database. This experiment, together with the first experiment, also demon-
strates that R−H is faster than H on average.

In the third experiment, to test the scalability we vary the database size from
1000 features to 50000 features but fix the the number of clusters to be 200. For
each database, we run both R and R-H 40 times against each database. Figure
8 illustrates our experiment results.

The three conducted experiments suggest that our algorithm is efficient and
scalable. Secondly, we can see that though an application of convex hulls to our
filtering procedures is more accurate than an application of minimum rectangles,
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but it is too expensive to use directly. The best use of convex hulls should follow
an application of minimum bounding rectangles.
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5 Discussion

The problem PM and the algorithm CPM may be either generalized or con-
strained according to various applications. In this section, we present a discussion
on these issues.

A slight modification of the algorithm CPM can be applied to the case where
we specify the proximity matching conditions directly use the shortest distances
instead of specifying a given cluster. For instance, in Example 1 we may directly
specify that such suburbs are within 5 km away from a private school, 6 km
away from a beach, and 2 km away from a golf course, instead of comparing to
the suburb Randwick.

Another modification of the problem is to define pm(D(C, πj), D(C0, πj)) as
|D(C, πj) −D(C0, πj)|. It can be shown [33] that our algorithms can be imme-
diately modified accordingly to resolve this.

Our results and discussions, so far, are limited to the Euclidean distance.
Note that the upper bounds presented in Section 3.1 are based on a triangular
inequality in the Euclidean distance; that is d(p1, p2) ≤ d(p1, p3) + d(p3, p2).
Since the triangular inequality is part of the definition of any metric distance,
the upper bounds can be applied to any metric space. We should also note that
the lower bound presented in Section 3.1 can be obtained in such a metric space
that the metric distance γ follows the two constraints below:

– γ(p1, p2) + γ(p3, p4) ≥ γ(p1 + p3, p2 + p4), and
– γ(c× p1, c× p2) = |c|γ(p1, p2) for any constant c.

Consequently, we can extend the problem PM and the algorithm CPM to any
metric space where the above two constraints are satisfied. For instance, we can
verify that the Manhattan distance [27] satisfied the two constraints; and thus
our algorithm can be extended to 2-dimensional Manhattan distance space.

6 Conclusions

In this paper, we formalized a new problem (PM) in spatial data mining from real
applications. We presented an efficient algorithm based on several novel pruning
conditions, as well as various different modes of the algorithm. Our experiment
results showed that the algorithm is very efficient and can support a number of
real applications where data with huge volume are present.

Further, in Section 5, we showed that our work in this paper can be extended
to many other metric spaces.

Note that the PM problem and the algorithm CPM are restricted to the
case where a cluster is outside a feature. This restriction may be not generally
applicable to some applications; we are now identifying such applications. Be-
sides, we are currently working on the development of indexing techniques to
support CPM. Further, a modification of PM to cover the applications where
the distance from a cluster to a set of features is not necessarily restricted to
one feature in the set seems more complicated; this is our another future study.
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