
The VLDB Journal (2008) 17:1101–1119
DOI 10.1007/s00778-007-0053-2

REGULAR PAPER

A multi-resolution surface distance model for k-NN query processing

Ke Deng · Xiaofang Zhou · Heng Tao Shen ·
Qing Liu · Kai Xu · Xuemin Lin

Received: 22 February 2006 / Revised: 15 October 2006 / Accepted: 16 April 2007 / Published online: 26 June 2007
© Springer-Verlag 2007

Abstract A spatial k-NN query returns k nearest points in a
point dataset to a given query point. To measure the distance
between two points, most of the literature focuses on the
Euclidean distance or the network distance. For many appli-
cations, such as wildlife movement, it is necessary to consider
the surface distance, which is computed from the shortest
path along a terrain surface. In this paper, we investigate the
problem of efficient surface k-NN (sk-NN) query processing.
This is an important yet highly challenging problem because
the underlying environment data can be very large and the
computational cost of finding the shortest path on a surface
can be very high. To minimize the amount of surface data to
be used and the cost of surface distance computation, a multi-
resolution surface distance model is proposed in this paper
to take advantage of monotonic distance changes when the
distances are computed at different resolution levels. Based

K. Deng (B) · X. Zhou · H. T. Shen · Q. Liu
School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, QLD 4072, Australia
e-mail: dengke@itee.uq.edu.au

X. Zhou
e-mail: zxf@itee.uq.edu.au

H. T. Shen
e-mail: shenht@itee.uq.edu.au

Q. Liu
e-mail: qing@itee.uq.edu.au

K. Xu
National ICT Australia, Australian Technology Park,
Eveleigh, NSW 1430, Australia
e-mail: kai.xu@nicta.com.au

X. Lin
School of Computer Science and Engineering,
University of New South Wales, NICTA, Sydney,
NSW 2052, Australia
e-mail: lxue@cse.unsw.edu.au

on this innovative model, sk-NN queries can be processed
efficiently by accessing and processing surface data at a just-
enough resolution level within a just-enough search region.
Our extensive performance evaluations using real world data-
sets confirm the efficiency of our proposed model.

1 Introduction

Efficient processing of k-NN queries in large spatial data-
bases has been investigated extensively in the past. Given a
point data set D, a distance function d and a query point q,
a k-NN query finds S ⊆ D such that |S| = k and for any
point p ∈ S and p′ ∈ D − S, d(q, p) ≤ d(q, p′). Different
distance functions can be used. Most of the spatial database
literature focuses on the Euclidean distance [18,19]. The net-
work distance has been considered for the applications where
object movement is constrained to a pre-defined underlying
network, such as a road network or drainage system [14,17].
In this paper, we consider the applications where objects can
only move on the surface. For example, an environment sci-
entist to identify animal groupings often uses k-NN queries
to study animal inhabitation areas (shapes and positions),
their relationships with the environment (their nearest forag-
ing and water sources and human settlement activities) and
migration trends (speed and distances). For such studies in
mountain areas, the surface distance is a more accurate and
realistic proximity measure. Other examples include rover
path planning [23], military and utility planning, emergency
scene coordination (e.g., to fight bush fires) and low-altitude
flight simulation. This new type of k-NN queries using the
surface distance is called surface k-NN query (denoted as
sk-NN). Note that the surface distance between two points
is computed from the shortest path between two points on
the surface (see Fig. 1 for example).

123

1102 K. Deng et al.

Fig. 1 An example of surface distance

A variety of techniques have been developed for efficiently
processing k-NN queries. The existing techniques could be
divided into two categories: (1) constraint-free k-NN queries
and (2) constraint-based k-NN queries. For a constraint-free
k-NN query, the distance between two points is calculated
only based on the coordinates of the two points. Therefore,
techniques for processing this type of query focus on mini-
mizing the number of points to be fetched and checked from
D. In other words, I/O cost caused by accessing data in D is a
major issue to be considered. In the case of high dimensional
space or with a complex distance function, CPU cost should
also be minimized.

For a constraint-based k-NN query, the distance between
two points is calculated not only from their coordinates but
also based on the underlying environment data. For example,
to find the nearest water source (gas station) for a group of
animals (a car) in mountain area (road network), we have to
find the shortest path along the surface (network) which leads
the animals (car) from the current position to the position of
water source (gas station). Here the key efficiency issues to
be considered are not only the I/O cost caused by accessing
data in D but also the I/O cost caused by fetching the under-
lying environment data. The size of environment data could
be several orders of magnitude larger than that of D. The
distance calculation, which is a frequent operation for any
k-NN query processing, also incurs a high computational
cost. Therefore, the cost of finding the shortest path in a

constrained space is intrinsically high in terms of both I/O
cost and CPU cost.

A surface can be represented by a series of discrete digital
elevation samples. The U.S. Geological Survey (USGS) Dig-
ital Elevation Model (DEM) data files, for example, consist
of a sampled array of elevation measurement for a number
of ground positions at regularly spaced intervals. We call
these sampled data as terrain data. Based on these samples,
a surface mesh can be constructed using various data struc-
tures. The most popular one is Triangular Irregular Network
(TIN). Figure 2a shows an example of the sampled data where
each point represents the elevation of the sampled position.
Figure 2b shows its corresponding terrain model at its original
resolution represented by TIN. In most cases, the number of
original sampled data can be very large. To reduce the storage
space and improve online visualization performance, a lower
resolution terrain model can be produced from a simplifica-
tion process (see Fig. 2c). In this paper, we use the term of
terrain model and terrain mesh interchangeably.

There are three main challenges to efficient sk-NN query
processing.

– A digital surface model can consist of millions of ter-
rain data points even for an area of moderate size. For
example, in Fig. 1, within a region of 10 km × 10 km
using 10 m sampling interval, there are about 1.3 mil-
lion points. Clearly, a k-NN query processing method
that only considers organizing the spatial objects to opti-
mize the I/O cost will not be efficient for sk-NN queries
because they do not give a careful consideration to the
underlying terrain data.

– Traditional pruning techniques for k-NN query process-
ing can be inefficient for sk-NN queries. Typically, the
Euclidean distance is used as a lower bound to prune the
search space. We found that the ratio of the surface dis-
tance over the Euclidean distance between the same pair
of points can vary from 200 to 300% for rugged mountain
areas, to just 20–40% for some other areas. This could
lead to using an unnecessarily large search area for some
cases, or repeated search area enlargement (and shortest
path calculations) for others.

Fig. 2 An example of terrain
model

Sample Interval

(a) DEM (c) Lower resolution TIN(b) Original TIN

123

A multi-resolution surface distance model for k-NN query processing 1103

– The cost of computing the surface distance is extremely
high. For some moderately large areas (a few square
kilometers), the most efficient surface shortest distance
algorithms [1] can take tens of minutes on a modern PC
machine to find the shortest distance between one pair
of points on the surface, and one of the most efficient
approximate surface shortest distance algorithms [11]
still takes several minutes. Note that distance calcula-
tion is a fundamental operation that is frequently used in
any sk-NN query processing.

In this paper, we investigate the problem of efficient
sk-NN query process. We approach the problem from two
angles: (a) building a multi-resolution terrain model such
that the estimated distances using lower resolution data can
be used as a guide to restrict the search region where higher
resolution data is needed (for more accurate distance estima-
tion); (b) developing fast algorithms for distance ranking by
considering lower and upper bounds instead of using accu-
rate surface distances that are costly to compute. The com-
bined advantage is that a sk-NN query can be processed by
accessing and processing the data at a just-enough level of
details (LOD) from a just-enough region of interest (ROI),
often without computing surface shortest paths. To facili-
tate these, we propose a multi-resolution surface distance
model comprising two data structures: Distance multi-reso-
lution mesh (DMTM) and multi-resolution support distance
network (MSDN). DMTM is a multi-resolution terrain model
with distance information. It can be used to derive a terrain
model at various resolution levels from a lower-than-original
resolution level (for those applications that do not need high
resolution levels) to a higher-than-original resolution level
(for surface shortest distance calculation, as explained later
in this paper). It can also be used to estimate the upper bound
of the shortest distance at a particular resolution. On the other
hand, MSDN contains a set of support distance networks
(SDN) at different resolution levels. An SDN consists of a
set of selected points from the original surface model, and is
used to estimate the lower bound of the shortest distance at
a given resolution.

Based on DMTM and MSDN, a novel sk-NN query
processing algorithm called multi-resolution range ranking
(MR3) is proposed using the filter-and-refine optimization
strategy. Our experiments using real terrain data show that
MR3 outperforms the benchmark algorithm by up to an order
of magnitude in all cases.

A preliminary version of this paper appeared in [3]. There
we stressed the multi-resolution data structures and algo-
rithm MR3. Here in this paper, we extend the work with
more analysis for the related work and a comprehensive per-
formance analysis (including a new cost model) for our meth-
ods to provide significant insights into the behavior and the
superiority of our approach. The algorithm reported in the

preliminary version requires to fetch and use all terrain data
(within an identified ellipse area) for network distance cal-
culation. The step is now further optimized by integrating a
connectivity-encoding scheme into the traditional disk-based
storage scheme for the multi-resolution data structures to
further reduce the I/O overhead. We also provide a new res-
olution selection scheme that concerns how to decide the
initial resolution and the steps for a series of intermediate
resolutions during query processing. New experiments are
conducted to justify these new features.

The remainder of this paper is organized as follows. After
a review of related work in Sect. 2, we present our multi-
resolution surface distance model in Sect. 3. Section 4
describes our query processing algorithm, which are ana-
lyzed in Sect. 5. A comprehensive empirical performance
study is reported in Sect. 6. We conclude this paper and briefly
discuss future directions in Sect. 7.

2 Related work

In this section, we will briefly introduce the related work in
the areas of k-NN query processing, surface distance com-
puting and multi-resolution terrain modeling.

2.1 k-NN query processing

k-NN query processing has been extensively investigated in
Euclidean space and spatial networks [7,14,18,20], and in
high dimensional space (e.g., for content-based information
retrieval where an object is transformed into a feature vec-
tor and object similarity is measured using a distance func-
tion) [9,25]. Many variations of the basic k-NN problems
have also been investigated.

Constraint-free k-NN query processing focuses on min-
imizing the number of object data accessed. Typically, a
hierarchical spatial index (such as the R-tree) is used to
prune the search space by either depth-first or best-first
traversal. The former one only visits the index entries with
distance smaller than the current kth NN [18] while the lat-
ter one only visits entries with the smallest distance of all
visited [7]. In a high dimensional space, the VA-file based
k-NN query processing [25] proposes to use a distance rank-
ing method. This method uses approximation data to estimate
lower bound (lb) and upper bound (ub) of the distances for
all objects to the query point q. Let the (k+1) nearest neigh-
bors of q be {p1, p2, . . . , pk, pk+1}. The search terminates
if ub(pk) ≤ lb(pk+1). Otherwise, a refinement using more
object data is required to improve the accuracy of the distance
estimation.

One type of constrained k-NN query, network k-NN query,
has received some attention recently [14,17,20]. In [14],
a network Voronoi diagram for objects is pre-computed to

123

1104 K. Deng et al.

Fig. 3 Terrain model with
different resolutions

facilitate the online query processing. However, the cost of
updating a Voronoi diagram can be high if the network con-
dition changes frequently (e.g., when dealing with moving
objects such as vehicles and animals). In the approach pro-
posed by [17], a Euclidean distance based k-NN query is per-
formed first, and the network distance from each Euclidean
k-NN point to the query point is then computed. The maxi-
mum network distance found during this process is used as
a threshold T . If any object p has Euclidean distance to the
query point shorter than T , p is deemed as a candidate of the
final solution, and its network distance to the query point will
be computed to remove false hits. Clearly, the performance of
this approach largely depends on whether the Euclidean dis-
tance can accurately indicate the network distance. Another
approach in [17] gradually expends the search region on the
network from the query point. The object reached earlier
is closer to the query point. [20] proposes a method that
can return an approximate answer to meet the application
requirements.

Although a terrain model can be considered as a net-
work, the existing network k-NN techniques cannot process
sk-NN queries since the surface distance is not network dis-
tance. Moreover, terrain data is much larger and more com-
plex than road networks. For example, while the main road
networks of entire North America contain around 0.179 mil-
lion edges (road segments) (www.maproom.psu.edu/dcw), a
small terrain mesh (10 km×10 km with 10 m elevation sam-
ple interval) may contain more than 2.6 million edges (1.3
million points). Therefore, it is very hard (or impossible) to
directly process a k-NN query on the original terrain model.
To address the challenge caused by the huge terrain data, our
solution is inspired by using low-cost distance estimation
to restrict the search area [17] and ranking objects without
finding the exact surface distances.

2.2 Multi-resolution terrain model (MTM)

A high resolution terrain model consists of millions of
points. As not all applications require the same LOD,

multi-resolution terrain modelling has been used to dynam-
ically reduce the number of points so that the terrain can
be approximated with maximum similarity at a lower res-
olution tailored for an application, such as realtime display.
The work in [5] provides a comprehensive introduction to the
multi-resolution terrain modelling techniques. Figure 3 illus-
trates four lower resolution approximations of the original
terrain model shown in Fig. 1. From (a) to (d), the simplified
terrain models contain 75 to 5% points of the original terrain
model. Note that the major geographical characters of the ter-
rain are maintained even at a very lower resolution. One of
the main challenges of multi-resolution database indexing is
to efficiently retrieve terrain data with just-enough LOD from
a just-enough ROI according to application requirements.

Progressive meshes (PM) [8] is a popular multi-resolution
terrain model, where the data at any required LOD and ROI
can be derived on-the-fly from database by following a tree
structure progressively. Direct mesh (DM) [26] improves the
query processing performance of PM by allowing partially
materialized surface information using a low-overhead con-
nectivity-encoding scheme. As a result, DM does not need
to fetch all internal nodes from the root of the mesh tree
in order to obtain the connectivity information. The exist-
ing multi-resolution terrain models, however, are designed
only for the visualization purpose and contain no distance
information. They are not capable to support sk-NN query
processing.

2.3 Surface distances computing

Computing the shortest path on a polyhedral surface repre-
sented by a triangular mesh is a well-studied problem. The
Chen and Han’s algorithm [1] computes exact surface dis-
tance in O(n2) time, where n is the number of points in
the terrain model. The idea of this algorithm is to unfold
all the faces of the polyhedral surface model to the same
plane. Figure 4 shows an example to compute the surface
distance between point a and b. The triangular face �cbd
is unfolded to the same plane as the triangular face �acd.

123

A multi-resolution surface distance model for k-NN query processing 1105

a

b

a

b

unfold path

(a) Original Polyhedral (b) After Unfolding the

c

d

c

d

Triangular Face Surface

Fig. 4 An example of polyhedral surface unfolding

The surface shortest path is the straight line between a and
b as illustrated in Fig. 4b. During the unfolding process, a
sequence tree structure is built in memory. Each node of the
tree represents a set of shortest paths which all have the same
edge sequence and angularly continuous at the query point.
The very large size of the tree structure means that the Chen
and Han’s algorithm is not feasible for large and high-res-
olution terrain surfaces. In addition, it is not easy to extend
this algorithm to use multi-resolution terrain models because
the surface distance between the same pair of objects is not
same on the terrain models of different resolution levels and
cannot change in a monotonic manner (i.e., the exact dis-
tance on a lower resolution terrain model is not always longer
or shorter than the exact distance between the same pair of
points on a higher resolution terrain model). In [16], the Chen
and Han’s algorithm is implemented and the performance is
discussed. Its running time is improved by Kapoor [13] to
O(n log2 n), but the improved algorithm is too complex to
be implemented [12].

There are several approximate algorithms for surface dis-
tance computing [11,24] where the surface distance is
approximated by a computational efficient network distance.
The Kanai and Suzuki algorithm is popular due to its sim-
plicity and efficiency [11]. A so-called pathnet, which is
created by inserting Steiner points into the original surface
model, is used. The network in Fig. 5a is a part of the origi-
nal terrain model, and Steiner points split the edges (shown
in Fig. 5b). The links among these points and the origi-
nal vertices in the same triangular face create new edges
in the original surface model (shown as the dashed lines in

a
b

e

c d

(a) Original Terrain Model (b) Pathnet by Inserting Steiner Points

Fig. 5 An example of pathnet

Fig. 5b). For two given vertices, the network shortest path
search operation is performed repeatedly on the pathnet with
increasing level of resolutions (i.e., more Steiner points are
inserted and more connections are available) in a selectively
refined region until reaching the required accuracy. This algo-
rithm enjoys a high level of accuracy in practice.

A recent study [2] proposes an accurate surface shortest
path algorithm by introducing an early termination condition
and a method to select the initial search area coupled with a
network expansion strategy, such that the problem of finding
the shortest path between two points can be completed in a
local region, instead of checking the entire surface as other
algorithms do.

3 Multi-resolution surface distance model

The multi-resolution surface distance model is proposed to
estimate the surface distance by a distance range in order to
minimize the surface data access and avoid expensive exact
surface distance computation. Base on this model, the dis-
tance can be estimated more accurately on higher resolution
data. The multi-resolution surface distance model consists of
two data structures, distance multi-resolution mesh (DMTM)
and multi-resolution support distance network (MSDN), to
compute the distance upper bound (ub) and lower bound (lb).

In this section, we first introduce the ranking scheme and
then two data structures of this model are presented.

3.1 Ranking by distance range

The key idea of our approach is to use an MTM such that the
surface distance (dS) can be estimated efficiently at an as low
as possible LOD. For any two points a and q on a terrain sur-
face, dS(q, a) is estimated at resolution r by lbr (q, a) and
ubr (q, a) such that the condition lbr (q, a) ≤ dS(q, a) ≤
ubr (q, a) is held. Therefore, dS(q, a) can be represented by
a distance range

dS(q, a) = [lbr (q, a), ubr (q, a)].
Obviously, the smaller the difference between two bounds is,
the more accurate the dS(q, a) estimation is.

sk-NN query processing can sometimes be done by only
using the distance ranges, without using computationally
very expensive surface shortest distance algorithms. In Fig. 6,
point a, b, c and d are candidates and each line segment is
the corresponding distance range to the query point q:

dS(q, a) = [lbr (q, a), ubr (q, a)]
dS(q, b) = [lbr (q, b), ubr (q, b)]
...

123

1106 K. Deng et al.

ba c

q

d

lbr(a,q) ubr(a.q)

Fig. 6 Distance ranges

To rank any two objects g and h by the distance range, the
rules are:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if [lbr (q, g), ubr (q, g)] ∩ [lbr (q, h), ubr (q, h)] = ∅

dS(q, h) < dS(q, g), if lbr (q, g) > ubr (q, h)

dS(q, h) > dS(q, g), if ubr (q, g) < lbr (q, h)

else
cannot rank.

In the example of Fig. 6, c (d) can be ranked as the 3rd
(4th) nearest neighbor of q. However we cannot rank a and
b since [lbr (q, a), ubr (q, a)] ∩[lbr (q, b), ubr (q, b)] �= ∅.
Therefore, such distance range estimations are sufficient for
answering a k-NN query from q where k ≥ 2 but not suf-
ficient for k = 1 query, as the distance ranges of a and b
are overlapped. In this case, the actual distance dS(q, a) and
dS(q, b) may need to be computed, using the highest LOD
data for accurate surface distance computing (this is often
called the refinement step, referring the previous step of dis-
tance estimation as the filtering step which can typically be
done very efficiently).

We argue that, using an MTM, it is often sufficient to
refine distance ranges on the next level of LOD instead of
the highest LOD. To support this, an MTM must support
fast distance range estimation, as well as allow progressive
improvement of the accuracy of estimated distance ranges
when data with a higher LOD is used. Although some net-
work-based approximate surface shortest distance algorithms
(e.g., [11,24]) can be used to estimate the upper bound and the
Euclidean distance (in either 2D or 3D) can always be used as
a lower bound, they do not satisfy the property of continuous
improvement. The distance computed by the network-based
algorithms on MTM may not monotonically decrease when
higher LOD data is used; and the Euclidean distance does
not change with LOD.

Next, we introduce the data structure DMTM and MSDN
which support fast and monotonic distance range estimation.

3.2 Distance multi-resolution mesh

DMTM is a multi-resolution data structure from which an
approximate terrain model can be constructed at variable
resolutions. Essentially, it contains a distance direct mesh
(DDM) which is proposed in this paper on the basis of direct
improves direct mesh (DM) [26] by selectively recording dis-
tance information, plus a pathnet which is obtained by insert-
ing Steiner points into the original terrain model (as in [11]).

DDM and the pathnet are unified into a single tree structure
where those nodes from the DDM are of lower-than-original
LOD and used to support progressive upper bound estima-
tion; and those from the pathnet are of higher-than-original
LOD and used to support approximate surface distance com-
puting.
• Distance direct mesh (DDM)

DDM is based on DM by introducing distance informa-
tion. It follows the DM’s construction process and connec-
tivity encoding scheme to efficiently derive an approximate
terrain model of any ROI and LOD. We give a brief intro-
duction of DM below to make this paper self-contained. To
build a DM from an original triangular mesh Mn , a sequence
of simplifications (ecoln−1, ecoln−2, . . ., ecol0) are applied.

Mn ecoln−1−−−−→ Mn−1 ecoln−2−−−−→, . . .
ecol0−−−→ M0.

where ecol refers to the operation “edge collapse”. Each
simplification step produces a simpler mesh, i.e. Mi−1

(results from Mi ecol−−→ Mi−1) has fewer vertices than Mi .
Thus, the sequence of meshes have a monotonically reduc-
ing number of vertices. The inverse of the simplification is
the refinement.

M0 vspli t0−−−−→ M1 vspli t1−−−−→, . . .
vspli tn−1−−−−−→ Mn .

where vspli t refers to the operation “vertex split”. By apply-
ing a sequence of refinements, the mesh of any resolution
level (including original one) can be rebuilt from the sim-
plest mesh M0. In DM, the simplest mesh M0 and refinement
R = {vspli t0, vspli t1, . . ., vspli tn−1} form the multi-
resolution representation of the original mesh Mn . In Fig. 7,

the simplification step M7 ecol−−→ M6 is by collapsing edge

v1v2 and refinement step M7 vspli t←−−− M6 is by splitting
vertex v9.

DM is organized by a binary tree (see Fig. 7b). All the
leaf nodes form the original terrain mesh, and each non-
leaf node represents a lower resolution approximation of its
descendants. DM construction is a bottom-up process. Each
vertex in the original terrain mesh is represented by a leaf
node. Then, a pair of connected nodes are selected to col-
lapse to form their parent node if the resultant terrain after
the collapse causes minimum approximation error according
to some error measure (e.g., the quadric error matrices [6]).
Such approximation error e is recorded by every non-leaf
node. This process continues until a tree is formed (so the
entire terrain is approximated by one point). Figure 7a shows
the process to simplify a mesh M7 to M6 by collapsing edge
v1v2 and this process is recorded in the DM tree structure
(Fig. 7b). Through a series of similar edge collapses, the
mesh M7 is eventually simplified to a single point v15. In this
paper, a higher LOD means a high resolution and smaller
approximation error.

123

A multi-resolution surface distance model for k-NN query processing 1107

Fig. 7 An example of terrain
mesh simplification

(a) Terrain Mesh Simplification
(b) Tree Recording the

Simplification Process

V1
V2

V8V7

V4
V5

V3

V9

V8

V6

V7

V4V5
V3 V3

V1

V6

V7 V8 V2

V4V5

V10

V12

V11

V14

V13

V15

V9

V6

edge v1v2
collapse to v9

vertex v 9
splits to v1,v2

V12

V3

V13

V3

V10

V6

V10

V3

V9

V8

V6

V7

V10

V3

V9

V11

V6

V10

V14
V3 V15

M7 M6

The process of reconstructing a terrain model for a given
LOD and ROI is a top-down process. It starts from the root
and expands by following the tree until the required LOD and
ROI conditions are met. DM implements a compact connec-
tivity-encoding scheme, to let each node v record a list of
identities (IDs) of the nodes to which v may connect and
they have a similar LOD. Two nodes are said to have a sim-
ilar LOD if their LOD intervals overlap, where the LOD
interval of node v is [v.children.e, v.parent.e) (the approx-
imation errors of v’s children and parent node). This con-
nectivity encoding scheme used in DM abolishes the need
of level-by-level tree expansion starting from the root of an
MTM tree (in order to obtain connectivity information among
the nodes), and the concept of similar LOD is used to limit
the number of nodes to which a node needs to record con-
nectivity information.

Now, we introduce our approach to add the distance infor-
mation to built DDM. Note that DM is designed for terrain
visualization only. It does not support (1) fast distance esti-
mation, (2) monotonic change when distances are computed
at increasing (or decreasing) LOD. DDM can support both
of them, by adding distance information to each edge based
on the same DM connectivity-encoding scheme. A distance
is recorded during DM tree construction. If two leaf nodes a
and b are connected (i.e., from the original mesh), the length
of the edge in the original mesh is the distance and is recorded
in both node a and b. Each node’s representative node in the
original mesh, is itself. Every node in DDM has a representa-
tive node in the original mesh. The importance of this prop-
erty will be discussed later. Let N (v) represent the neighbors
of node v. When the edge linking node a and b is selected
by the DM construction algorithm to collapse into c, N (c) =
N (a)∪ N (b) (same as the DM construction algorithm). The
representative node of c is set to be the representative node
of either a or b (say, a). For each node w ∈ N (c), d(c, w) is

defined as:

d(c, w) =
{

d(a, w) if w ∈ N (a)

d(b, w)+ d(a, b) if w ∈ N (b)− N (a).

• Pathnet The second part of DMTM is a pathnet, which
is created by inserting Steiner points into the edges of the
original terrain model as shown in Fig. 5. Pathnet provides
passageways crossing the inside of the triangular face, which
are not traversable before. If more Steiner points are inserted,
the network distance can approach the exact surface distance
to a very high level of accuracy.
•Property of DMTM Assume that both DM and a pathnet are
necessary to support multi-resolution terrain applications, the
extra storage overhead of DMTM is very small (just adding
a distance value to each stored edge in DM).

Next, we discuss the property of DMTM which supports
monotonically improvable upper bound computation (i.e.,
upper bound decreases when computing on higher resolu-
tion data). A terrain mesh of a given LOD and ROI can be
derived from DDM, just as in DM (or directly from pathnet).
A derived terrain model is a network. Therefore, Dijkstra’s
shortest path algorithm [4] can be used to compute the net-
work distance between a pair of object points. If an object
point is not on a vertex of the derived terrain model, it needs
to be transformed to be a network vertex in order to com-
pute the network distance. On the original terrain model or
pathnet, if an object p locates on a triangular face (called
local face), say �ABC , we can simply connect p to each
end point of �ABC using a straight line and the Euclid-
ean distance between them is recorded. For simplicity, in
this paper, we suppose all objects are located on the network
vertices of the original terrain model. If the terrain model res-
olution is lower than the original level, the transformation of
p identifies the local triangular face on this simplified model,
say �DE F , and p is linked to each end point of �DE F .

123

1108 K. Deng et al.

Different from the case of original terrain model and path-
net, the distance between p and each end point is the network
distance between their representatives on the original terrain
model. Next, we prove that such network distance is the upper
bound of their surface distance.

Property 1 The network distance between two object points
a and b on the terrain model of LOD level r derived from
DMTM is the upper bound of their surface distance on the
original terrain model.

Proof For any two vertices a and b on the derived terrain
model from DDM, the network shortest path between them
is a sequence of edges. Note that the length of each edge in
this model is the distance of a path on original terrain model
from the representative of one end (of the edge) to the repre-
sentative of another end (of the edge). Therefore, the shortest
path between a and b corresponds to an actual network path
on the original terrain model from the representative of a to
the representative of b. It must be longer than or equal to
the surface distance between a and b on the original terrain
model, i.e. the upper bound of the surface distance.

On the pathnet, it is obvious any network distance between
a and b is longer than their surface distance. �

The following property proves that the upper bound
monotonically decreases when computing on higher reso-
lution data.

Property 2 For two object points a and b on the terrain
model of LOD level r derived from DMTM, let the upper
bound be denoted as ubr (a, b). It can be guaranteed that for
LOD level r ′ > r > r ′′, ubr ′(a, b) ≤ ubr (a, b) ≤ ubr ′′(a, b)

is held.

Proof The higher resolution terrain model has more extra
edges based on the lower resolution terrain model (i.e., all
edges of the lower resolution model form a subset of the
edges of the higher resolution model). Since there are more
path choices, the shortest path from a to b found on higher
resolution terrain model must be shorter than or equal to that
found on lower resolution terrain model. That is, the upper
bound decreases along with the increase of LOD.

When the resolution level increases over the original ter-
rain model resolution (pathnet), this property can be proved
in the similar way. �

Figure 8 shows an example of Properties 1 and 2. The
length of edge ab is the distance of the path a′b′ on the
original terrain model, so do the other edges. Suppose the
network shortest path from a to b on the terrain model in
(a) is the edge ab. In the higher resolution terrain model (b),
more edges are added and the network shortest path from a
to b may be changed if ad + db < ab where ad + db cor-
responds to a′d ′ + d ′b′ which is on original terrain model.
Therefore, the upper bound of the surface distance between
a and b increases when computing on higher resolution data.

Edge dc Collapse to c

Vertex c Split to c, d

a

b c

a

b c
d

a'

b'
c'

d(a, c) = d(a’,c’)

a', b', c', d': representative of a, b, c, d on original surface

(a) Lower resolution (b) Higher resolution

a'

b'

c'd'

Fig. 8 An example of upper bound finding on different resolution ter-
rain models

3.3 Multi-resolution support distance network

MSDN, inspired by the plane-sweep algorithm, is designed
to support fast and progressively improvable lower bound
estimation (i.e., lower bound increases when computing on
higher resolution data). It consists of a set of support distance
networks (SDN) at different resolutions.

We explain the intuition behind SDN first. While dE (a, b)

can be used as a safe lower bound of dS(a, b), it is not tight
and its accuracy cannot be improved by using higher LOD
environment data. Consider a terrain in 3D space, where the
z-axis represents the height. Assume a.y < b.y. By using
a 2D plane y = y0 (a.y < y0 < b.y) to cut through the
terrain, a polyline l (called a crossing line) can be obtained
by intersecting the plane with the terrain surface. Then, any
surface path from a to b must pass l at least once. For a point
p on l, if dE (a, p) + dE (p, b) ≤ dE (a, p′) + dE (p′, b)

for any other point p′ on l, then dE (a, p) + dE (p, b) is a
better lower bound of dS(a, b) since it is much tighter than
dE (a, b). The accuracy of lower bound estimated in this way
can be improved when more y-planes are used. Clearly, a
y-plane is not useful if a.y = b.y; and in this case, x-planes
should be used. To cater for arbitrarily positioned points, both
x- and y-planes need to be prepared, and the angle between
the projection of (a, b) on the (x ,y)-plane and the x-axis is
used as a heuristics to choose which set of planes to be used.
If the angle is less than 45◦, a set of y-planes will be used;
x-planes otherwise. Figure 9 is an example where one 2D
plane y = y0 cuts through the original terrain model. On the
crossing line, p is the point from which the summation of
the Euclidean distances to a and b is minimum. Therefore,
dE (a, p) + dE (p, b) can be used as the lower bound of the
surface distance of a and b.

Denote the crossing line obtained by intersecting the ter-
rain (at the original resolution) and plane y = y0 as ly0 . ly0 is

123

A multi-resolution surface distance model for k-NN query processing 1109

y =y
0

a

b

p

pí

surface shortest path

ap + pb is the lower bound of the surface shortest path

x

y

Fig. 9 Lower bound finding by using one 2D plane y = y0

a polyline with a sequence of points {(x , y0, z)}. We define its
resolution as 100%. A polyline can be approximated by fewer
points using some line simplification algorithms, such as [15]
which can reduce the number of points while maintaining a
maximum level of similarity between the lines before and
after simplification. However, such an algorithm needs to
be modified to ensure that MSDN can be used to estimate
the lower bound with monotonic increase of accuracy with
higher resolution data. We consider two consecutive points
in a crossing line (a polyline) as an MBR. Our modification
is to ensure that the MBR of the simplified line segment must
fully enclose the MBRs of every line segment from the line
segment before simplification. If l ′y0

is an approximation of
ly0 using r% points of ly0 , we say the resolution of l ′y0

is r .
By placing a set of x- and y-planes in the space, the set of
crossing lines obtained form a SDN (with 100% resolution).
An SDN at resolution level r is obtained from simplifying
every crossing line in the 100% resolution SDN by using
r% points for each crossing line. MSDN is then defined as a
collection of SDNs with different resolutions.

Using a SDN at resolution r to estimate lbr (a, b) needs
to use Dijkstra’s network shortest distance algorithm. A net-
work is constructed from the SDN by treating each line seg-
ment as a node. For each node, there is an edge to link each
of the nodes which are line segments from the neighbor-
ing crossing lines. The length of an edge is the minimum
Euclidean distance between the MBRs of the two line seg-
ments. Point a and b also need to be transformed into the
network by connecting them with the nodes from the first
crossing line on the plane they encounter when moving one
point to another along a straight line. Note that only the SDN
in a restricted area is required for lower bound computa-
tion for two given points (see the next section for detailed
discussions), and not all planes need to be used for low res-
olution estimation. Therefore, it is unnecessary to material-
ize the connection information for the entire SDN, which

can be very large; they are computed on-the-fly when they
are retrieved for lower bound estimation. It is easy to see
that, when more planes are used, or higher resolution SDN
is used, such an estimated lb is getting longer and further
approaching the shortest surface distance. In summary, SDN
has the following properties.

Property 3 The network distance between two object points
a and b on a SDN network at resolution level r is the lower
bound of their surface distance on the original terrain model.

Proof For any two objects a and b on the terrain model, the
shortest network path dN (a, b) between them in SDN must
pass through a series of crossing lines. The surface shortest
path, corresponding dS(a, b), must pass through these cross-
ing lines as well and a path path can be created by connecting
a through these passing points to b using straight line seg-
ments. It is clear that path ≤ dS(a, b). Note that the path
is actually a path in SDN. Its distance must be longer than or
equal to the network shortest path between a and b in SDN,
dN (a, b) ≤ path. Therefore, dN (a, b) is the lower bound of
dS(a, b). �

In the following property, we prove the lower bound
increases when computing on higher resolution data.

Property 4 For two object points a and b on a SDN net-
work of resolution level r , let the lower bound be denoted
as lbr (a, b). It can be guaranteed that for resolution level
r ′ > r > r ′′, lbr ′(a, b) ≥ lbr (a, b) ≥ lbr ′′(a, b) is held.

Proof For every crossing line in the SDN at lower resolu-
tion level, each point is an MBR which approximates several
points in the SDN at higher resolution. Since the distance
between two MBRs is shorter than or equal to that of any
pair of their children points (each from one MBR), the net-
work shortest path between a and b found in the SDN at lower
resolution must be longer than or equal to that found in the
SDN at higher resolution. That is, the lower bound found in
SDN increases when the resolution of SDN increases. �.

The planes used to generate MSDN can be placed strategi-
cally according to terrain roughness (i.e., more dense planes
for more rugged region). To ensure an estimated distance
using MSDN can be as close as to dS , the planes can be
placed at the highest density for some regions with the inter-
val that is equal to the average length of edges in the original
terrain mesh.

3.4 Multi-resolution disk storage scheme

The multi-resolution surface distance model is stored sepa-
rately from the data objects. There are three advantages by
doing this. First, the data management is independent from
each other. Second, there are normally different types of data

123

1110 K. Deng et al.

collected from the same region for various purposes. One
separately stored surface model can uniformly provide topog-
raphy of this region for different applications. Finally, while
a large number of surface approximations of different LODs
can be derived from the multi-resolution terrain model, only
a few of them are used in query processing. In this situation,
it is not wise to map data objects into all resolution level ter-
rain models. In our method, the location of each candidate is
found on-the-fly after the terrain model of a required LOD
has been derived.

As discussed before, the upper and lower bound of the
surface distance are network distances and Dijkstra’s algo-
rithm is used for network distance computation due to its
efficiency and simplicity. In Dijkstra’s algorithm, a “wave-
front” expands from the source vertex until the destination
vertex is reached. A heap is used to keep the frontier nodes
on the “wavefront” together with the distance to the source
vertex. In large network, the secondary-memory version of
Dijkstra’s algorithm is used to just keep frontier nodes in
memory to minimize the memory requirement [10,21]. The
“wavefront” is expanded by deleting the frontier node with
minimum distance to the source vertex in the heap and insert-
ing all adjacent vertices of the deleted one. Therefore, by
clustering network vertices based on network connectivity,
the adjacent vertices of each frontier node can be retrieved by
one (few) disk page access [22,17,27]. In this network stor-
age scheme, the I/O of the Dijkstra’s algorithm can be mini-
mized. However, the existing storage schemes only consider
single resolution network. They need to be adapted for the
multi-resolution surface distance model in order to minimize
the memory requirement as well as I/O.

• Storage scheme for upper bound
First, we discuss the situation of DMTM, the model for upper
bound computation. In traditional network storage scheme,
if two vertices are linked by an edge, they are adjacent each
other. In case of a single resolution network, all adjacent ver-
tices of each vertex are sequentially stored in the same disk
page. If current page is full next page will be used. Let Lv be
the adjacent list of a vertex v. Each adjacent vertex v′ ∈ Lv

is in the form

<v′, dist (v, v′), Lv′>.

where Lv′ is a pointer referring to the adjacent list of v′ and
dist (v, v′) is the distance of the edge linking v and v′. In
DMTM, the situation becomes more complex since, for each
vertex, its adjacent vertices belong to different resolution
levels. We introduce the connectivity-encoding scheme pro-
posed in Direct Mesh into the traditional storage scheme. The
connectivity-encoding scheme decides whether two adjacent
nodes are in the same resolution level by recording LOD for
each node. Each v′ ∈ Lv is in the form

<v′, v′.children.e, v′.parent.e, Lv′ , dist (v, v′)>.

P
 a

 g
e

1

...

P
 a

 g
e

2

...

MTM tree storage

Adjacent List Storage

v
5

v
6

v 1

v1

v
7

v
2

v
4

v 1

v
6

v
8

...

v
6

(x, y)

..

..

..

..

..

..

..

..

..

..

v 7 (x, y)

v 5 (x, y)

Adjacent list of v 5

v
15

v14

v
3

...

v
13

v
10

v
6

v12

v
11

v
7

...

v
9

v1

p
v 14

pv13

-

...

p
v3

pv10

-

...

p
v12

p
v5

-

p
v6

p
v4

-

pv9 p V11

p
v7

p
v8

- -

... ...

p
v1

p
v2

- -

..

..

..

..

..

..

..

..

..

..

..

..

..

P
 a

 g
e

3

DMTM Tree Storage

...

children.e parent.e dist children.e parent.e MBR p
adj

v12 's child node v 9

v12 ‘s child node v 11

Adjacent list of v 7

Adjacent
list of v 6

(b)(a)

Fig. 10 Storage scheme of DMTM

where [v′.children.e, v′.parent.e) is the LOD interval of v′
(see Sect. 3.2). When the upper bound is searched at a res-
olution r using Dijkstra’s algorithm, the frontier node with
the minimum distance to the source in the heap is replaced
by those of its adjacent nodes with proper LOD interval, i.e.
children.e ≤ r < parent.e. Figure 10 (a) is the adjacent list
storage scheme for the multi-resolution network data struc-
ture in Fig. 7.

Recall the object needs to be transformed to be a network
vertex in order to compute the network distance as described
in Sect. 3.2. In the transformation, the local triangular face
can be identified by browsing the DMTM tree. In DMTM
tree, each node keeps a 2D minimum bound rectangle (MBR)
of its adjacent nodes on the (x, y)-plane. Given the candidate
p and resolution lever r , the tree traverse starts from root node
and only the entries whose MBRs enclose the projection of
p on (x, y)-plane are visited until the node of required res-
olution is reached (i.e. for a node v, v.children.e ≤ r <

v.parent.e). After the local triangular face of p is found, the
distance from p to its three end nodes are computed on the
original terrain model using Dijkstra’s algorithm. Although
DMTM tree is not necessary to be balanced, the difference of
the heights in the tree (the number of middle nodes between
root node and a leaf node) for large terrain model is similar
in most cases [26]. Therefore, in average, log2 n nodes are
accessed to find a network vertex where n is the number of
nodes in DMTM.

DMTM tree is clustered on the disk based on the connec-
tivity to minimize the disk page access. For any node v, it is
stored in the same page as its parent node; if the page is full,

123

A multi-resolution surface distance model for k-NN query processing 1111

it will be assigned a new disk page. Thus, nodes in DMTM
tree having the same parent node are most likely to be stored
in the same disk page. In Fig. 10b, the storage scheme of the
example in Fig. 7 is shown. The root node of the tree is stored
in page 1 and a new page is assigned to v9 and v11 separately.
Each node of DMTM tree is in the form

<v, v.children.e, v.parent.e, M B Rv, pc1, pc2, pad j>

where pc1, pc2 and pad j are pointers referring to v’s child
nodes and adjacent list. The proposed multi-resolution stor-
age scheme supports following essential functions.

– rep(v); v’s representative on the original terrain model
is returned.

– transform(p, r): at resolution level r , the local trian-
gular face of p is identified and the distance from each
end point v of this triangular face to p is computed on
the original terrain model (Note both p and rep(v) are
vertices of the original terrain model).

– dN(s, t, r): on the terrain model of resolution level r , the
network distance from object s to t is returned. First, s
and t are transformed as vertices of the terrain model by
invoking function transform. Then, s and t are treated
as two normal vertices of the terrain model and dN (s, t) is
computed by using secondary-memory version of
Dijkstra’s algorithm.

• Storage scheme for lower bound
Next, we discuss the storage scheme of MSDN for lower
bound computation. In MSDN, the resolution levels are dis-
crete and evenly fixed from low level to high level. At each
level, the crossing lines are stored on disk pages one by one.
For each crossing line, the nodes are stored in an ascendant
order of x value for y-planes (or y value for x-planes). Each
node v is in the form <v, M B R, padj> where padj refers
to v’s adjacent list. v’s adjacent list is consisted of vertices
of neighboring crossing lines. The other nodes on the same
crossing line as v have the same adjacent list. As indicated in
Sect. 3.3, the lower bound computation between two objects
is conducted within a region guided by the upper bound (dis-
cussed in details in next section). Therefore, only part of the
SDN needs to be accessed. To minimize the I/O, the crossing
lines of each SDN are clustered on the disk and referenced by
an index-tree (see Fig. 11). By traversing the tree, we can effi-
ciently identify the disk pages containing the crossing lines
which are within the search region of SDN at resolution r .

4 sk-NN query processing

In this section, we present algorithm multi-resolution range
ranking (MR3), an efficient algorithm for sk-NN query

.

.

.

first node
of page 1

first node
of page 2

...

.

.

.

crossing
line 1

crossing
line 2

...

LOD level 1

LOD level 2

...

SDN

v
1
, MBR

v
2
, MBR

...

Page 1

first node
of page 2

... .
.

.

vn+1, MBR

vn+ 2 , MBR

...

Page 2

To neighboring
crossing lines

v
n,

MBR

first node
of page 1

Fig. 11 Index for MSDN

processing based on multi-resolution surface distance model.
We first give an outline of the algorithm. Then we discuss in
details for optimizing search regions and how upper bound
(ub) increases and lower bound (lb) decreases by using higher
resolution data but in a reduced search region. At the end of
this section, the resolution selection scheme is discussed.

4.1 Algorithm MR3

Given a set of object data D, a terrain surface S, a query
point q on the terrain, and an integer k, our task is to find
the k nearest neighbors of q on the terrain from D. In order
to perform this task, Algorithm MR3 needs to use the fol-
lowing data structures of Multi-resolution Surface Distance
Model: (1) a DMTM; and (2) an MSDN (at a pre-determined
number of resolutions). Both DMTM and MSDN are derived
from S. The major procedure of algorithm MR3 is outlined
in Fig. 12.
This algorithm can be sketched in four steps as below. For
the sake of description, let Dxy be a set of points which are
projections of all points in D on the (x ,y)-plane.

1. 2D k-NN Query (line 1): Perform a 2D k-NN search
in Dxy to find C1[1..k] ⊆ D whose projections on the
(x ,y)-plane are the k nearest neighbors to q.

2. Surface distance calculation (line 2–9): The k points in
C1 will be ranked to find the kth neighbor of q on S,
using the algorithm described in the next section, based
on multi-resolution surface distance model (DMTM and
MSDN). Let this point be b and the estimated distance
upper bound is ub(q, b).

3. 2D range query (line 10–11): A normal range query
will be performed on Dxy using q as the center and
ub(q, b) as the radius, and all the points retrieved are in
set C2 ⊆ D.

4. Surface distance ranking (line 12–19): All the points in
C2 will be ranked, using the same algorithm as in step 2,
such that the estimated upper bound of the kth neighbor

123

1112 K. Deng et al.

Fig. 12 MR3 algorithm

of q is not greater than the lower bound of the (k+1)th
neighbor of q in C2.

The first 3 steps are illustrated in Fig. 13. Note that steps 1
and 3 are 2D spatial queries, which can be processed effi-
ciently. For example, for 2D k-NN query, it can be performed
using one of several 2D k-NN query processing methods
(e.g., [7,9,18]) if |Dxy | is very large. Note that the first and
third step can be done in 3D (i.e., to perform a 3D k-NN query
using the Euclidean distance). In the case where the height
difference of an object to the query point is very large, it is
better to use the Euclidean distance in 3D. The processes for
steps 2 and 4 are the same, except that step 2 needs an extra
step to calculate an as tight as possible upper bound for the
kth neighbor. This distance will be used as the search radius
in step 3, which in turn supplies the points that need to be
ranked in step 4.

c

q
b

a

a

q

(a) xy-plane Projections (b) sk-NN Query Processing (k=2)

q

Surface

xy - plane

ub(q, b)
a

Fig. 13 An example of surface k-NN query

The correctness of MR3 is straightforward. Any points
not selected in C2 must have their Euclidean distance to q
longer than ub(q, b), and there are already k points found
which have their upper bound distance less than ub(q, b).

4.2 Surface distance ranking

Now we describe the process of surface distance ranking
to rank a set of candidate points by their estimated distance
ranges, based on the multi-resolution surface distance model.
This is used in both steps 2 and 4 in MR3. First, the initial
resolution levels of MSDN and DMTM are determined. The
lower bound for each candidate point is set to be the Euclid-
ean distance between q and the point. The search region
(ROI) for each point is the area from which the environ-
ment data needs to be retrieved for distance range estimation.
The search region is set to the entire terrain (we will further
discuss this in the next two subsections). Then DMTM and
MSDN are retrieved according to the values of ROI and LOD.
From here, the upper and lower bounds are estimated alter-
nately for each candidate point until the kth neighbor of q
can be safely identified. Details of estimating the upper and
lower bound using DMTM and MSDN, and the way to embed
q, have already been described in Sect. 3. If the kth neigh-
bor cannot be determined by the current set of estimated
distance ranges, a higher resolution data (for both DMTM
and MSDN) is required, but with potentially few number of
remaining candidates (i.e., those points which can be ranked
safely as in or out of the final solution set can be dropped),
and the search region for them will be reduced again (the
details in refining the search region for DMTM and MSDN
will be discussed in the next two subsections). The algorithm
terminates either when the kth neighbor has been identified,
or the highest resolutions of both DMTM and MSDN have
been used.

4.2.1 Estimating upper bound

For each candidate, the upper bound estimation starts from
the initialized resolution. In order to find the first global opti-
mum upper bound (corresponding to the global optimum

123

A multi-resolution surface distance model for k-NN query processing 1113

q

Vertex's MBR

(a) Search Region (b) Refined Search Region

Search region for next upper
bound computation Refined Search Region

Current upper
bound

q

pp

Fig. 14 An example of search region refinement

shortest network path) on this resolution, we use the entire
DMTM terrain model as the search region.1 If a candidate
cannot be ranked, the upper bound estimation process con-
tinues to use the next higher resolution of DMTM data (at a
pre-determined interval; see Sect. 5 for the impact of choos-
ing such intervals). The search region will be reduced to the
area whose projection on the (x , y)-plane is an ellipse-like
area instead of the entire surface (as in [2]). This is shown in
Fig. 14a. The ellipse’s foci are the projections of q and the
candidate point p on the (x ,y)-plane. The ellipse’s constant
is the current estimated upper bound value. Therefore, as
the DMTM terrain model resolution increases, the estimated
upper bound becomes more accurate (i.e., smaller), and then
leads to a reduced search region.

Although the ellipse-like search region is a fraction of
the entire surface, it might be still very large considering the
Dijkstra’s O(n2) complexity, in particular when the ellipse is
approximated by its MBR. We observe that the terrain model
with low resolution retains the major geographical character-
istics of the original as shown by examples in Fig. 3. There-
fore, given two objects, it is more likely that the shortest
surface path on the higher resolution terrain model follows
the similar track on the lower resolution terrain model. Moti-
vated by this observation, without losing the DMTM’s prop-
erty, the ellipse-like search region can be further pruned to
a selectively refined search region. In Fig. 14b, the refined
search region is a set of MBRs. Each MBR is consisted
of nodes which are the descendants in the DMTM tree of
the vertices on the path. The refined search region gradually
becomes narrower. If it is too narrow to compute the short-
est network path, its area will be expanded by doubling each
vertex’s MBR. Note that, when using a collection of smaller
MBRs instead a large MBR for the ellipse, the CPU and I/O
costs can be reduced but the estimated ub may be not as tight
as the case when all the data from the ellipse area is used.

1 The first global optimum upper bound can also be found by using
method proposed in [2]. For description clarity, we use the entire sur-
face as the initial search region. Notice that the computation cost is
not high, as the initial resolution is very low (e.g. 0.5% of the original
one).

Nonetheless, any ub estimated in this way remains as a valid
upper bound.

4.2.2 Estimating lower bound

As already mentioned, the lower bound is initially set to
the Euclidean distance. If an object’s rank cannot be identi-
fied using the initialized one, the computation starts at a low
resolution SDN and iterates at a higher resolution until this
object’s rank is identified. For each candidate, its ellipse-like
upper bound search region can also serve as its lower bound
search region. However, for the purpose of lb estimation, the
ellipse area cannot be reduced as what we did for estimat-
ing ub. Thus, our optimization focus is to reduce the CPU
costs (recall that we use Dijkstra’s shortest path algorithm to
find the shortest path for lb estimation in a SDN). Once a lb
is estimated for a candidate point from the lower resolution
SDN, the following process will be used to reduce the CPU
cost. We propose a concept of dummy lower bound, which is
estimated using a small part of the ellipse-like search region.
This can be done by building an envelope which extends the
lb path identified from the previous round (i.e., by making
it “thicker”), and use those SDN nodes (and edges) that are
enclosed by the envelope. The rational is that a lb estimated in
this way is greater than or equal to the lb estimated using the
entire ellipse-like search region of SDN. Thus, if the distance
range using the estimated ub with this lb cannot differentiate
this candidate point, a true lb (estimated by using the entire
ellipse-like search region SDN) is not possible to differenti-
ate either (as it can only increase the extent of distance range
overlapping). But if such the distance range can do that, the
true lb needs to be computed in the entire ellipse-like search
region on SDN at this resolution level in order to confirm
the result of the dummy lower bound. If it is confirmed, lb
computation stops. Clearly, the first lb needs to be computed
in the entire ellipse-like search region (but with very low
resolution SDN).

4.3 Resolution selection scheme

Next, we discuss the resolution scheme which concerns the
optimal initial and intermediate resolution selections in the
query processing. Table 1 lists the symbols used in the rest
of this paper.

First, we discuss the selection criteria of resolution scheme
of DMTM for upper bound computation. As described in
Sect. 3.4, for two data objects s, t on a terrain model of
resolution r (derived from DMTM), the network distance
computation includes two steps: (1) the object transforma-
tion (2) the shortest path searching. In the first step, function
transform(s,r) is invoked to compute the network distances
on the original terrain model between the representatives of
s and each end point of s’s local triangular face, so does t .

123

1114 K. Deng et al.

Table 1 Symbol and definition

Symbol Definition

λ Object density: the number of objects whose

projections in one unit area on (x ,y)-plane

No The number of vertices on the entire original

terrain model

Nr The number of vertices on the entire terrain

model at resolution level r

A Area of entire terrain model

|C | Cardinality of dataset C

max(dS(C, q)) The maximum of dS(C[1], q),..,dS(C[m], q),

C is the dataset {C[1]..C[m]}
dxy

E (s, t) The Euclidean distance between the

projections of s, t on (x, y)-plane

δ dS/dxy
E

Then, function dN (s, t) computes the network distance on
terrain model of resolution r .

For the initial upper bound computation, let n1 be the
network vertices of original terrain model accessed in one
object transformation. n1 can be estimated by:

n1 = S1 · No

A =
A
Nr
· No

A =
No

Nr
. (1)

where S1 is the search region in the object transformation and
can be estimated by the average area of each triangular face
on terrain model of resolution r , i.e. A

Nr
. For all objects in the

candidate set C and a query point q, the total network verti-
ces accessed for transformation is n1 · (|C | + 1) since each
object as well as q need to be transformed. In the second step
of initial upper bound computation, the Dijkstra’s algorithm
expands the “wavefront” from q until the network shortest
paths to all objects in C are reached. Thus, the search region
can be approximated by a spherical region and the area is:

S2 = π ·max(dS(C, q))2. (2)

Then, at the second step, the number of vertices accessed is

n2 = S2 · Nr

A . (3)

The total number of network vertices accessed in two steps
for computing initial upper bound is a function of Nr

ninitial = n1 + n2 = No

Nr
+ S2

A Nr . (4)

From this formula, the minimum ninitial can be derived by

d(ninitial)

d(Nr)
= 0 �⇒ Nr =

√
A
S2
·√No. (5)

The above formula can be directly expanded for a number of
candidates in C and the query point q,

d(ninitial)

d(Nr)
= 0 �⇒ Nr =

√

(|C | + 1) · A
S2
·√No. (6)

Nr indicates the number of vertices on the initial terrain
model and this resolution level is optimal in term of per-
formance.

If all candidates can be ranked by the initial upper bounds
(together with the lower bounds, discussed later), MR3 ter-
minates; otherwise, next higher resolution level needs to be
selected to compute more accurate upper bounds for the
candidates not ranked yet. To do that, one straightforward
approach is to select next resolution level in a fixed step for all
remaining candidates. On the terrain model of this resolution
level, the “wavefront” from the query point expands within
the search region until all targeting candidates are reached.
Since the upper bound computations for all candidates are
conducted on single resolution terrain model, the network is
traversed once. But, this approach processes all candidates
equally even some of them are not in the final solution. To
solve this problem, we proposed another approach motivated
by the observation that k-NN query concerns the first k near-
est neighbors ranking only. The candidates closer to the query
point (i.e. their upper bounds are smaller based on previous
computations) are more likely to be in the final solution and
therefore they should be processed on a higher resolution
terrain model in subsequent rounds of computation. In this
approach, k candidates with minimum upper bound based on
previous computation are processed first and called working
candidates, collaboratively denoted as WC A. At the same
time, other candidates are not processed until they are moved
into WC A. That is, the more computing resource assigned
in next round of iteration to the candidates which are more
likely to be in the final solution, the less (or no) computing
resource to other candidates. By doing this, the total perfor-
mance in each round of iterations keeps same\similar. We
call this scheme as “Equal Performance Scheme”.

Since the initial round of computation is optimal in
performance, we keep the performance in subsequent round
not worse than it. To do that, the number of network vertices
processed for next round is:

nnext =
k∑

i=1

Si
next

N i
next

A = ninitial.

where N i
next is the total number of vertices on the next

terrain model for candidate C[i] and Snext
i is the refined

search region derived from the result of last iteration as
described in Sect. 4.2.1.

For simplicity, the cost for transforming objects to be
network vertices is ignored in the following analysis since
the area of the triangular face keeps decreasing along with

123

A multi-resolution surface distance model for k-NN query processing 1115

the increase of the terrain model resolution. For candidate
C[i], the next resolution can be estimated by:

N i
next

A · Si
next =

ninitial

k
.

Considering non-linear computation complexity of Dijkstra’s
algorithm, k can be ignored. Replacing n with Eq. (3), we
have

N i
next =

S2

Si
next

·Nr . (7)

Since the search region is refined in each round of iterations,
the overall network access doesn’t change while the resolu-
tion level increases. For C[i], more and more accurate upper
bound will be computed until C[i] is identified in the final
solution. If C[i] cannot be identified using the highest accu-
rate upper bound (i.e., on pathnet), C[i] is replaced by the
candidate with (k+1)th smallest upper bound in WC A.

For lb, the MSDN resolution level is usually discrete and
evenly fixed at several levels for storage efficiency and sim-
plicity. Although, for each iteration of lb computation, the
search region is determined by the result of the current ub
as described in Sect. 4.2.2, the application of dummy lower
bound makes the lb computation cost trivial. Therefore, by
starting from very low resolution, we compute dummy lb
on all available MSDN resolutions until the minimal proper
resolution is found.

5 Analysis

A cost model is constructed to estimate the candidate size in
MR3. For the purpose of our algorithm analysis, we assume
that objects are uniformly distributed on surfaces, and we also
assume that, given a large region, there are numerous small
mountains that are uniformly distributed and similar, i.e.,
each mountain has similar surface area and ground area (area
on (x, y)-plane). Note that for the objects that are uniformly
distributed on an individual mountain, it is obvious that their
projections on (x, y)-plane may not be uniformly distributed.
But from the view of the entire region (containing numerous
mountains), the global distribution of all objects’ projections
on (x, y)-plane can be approximated to be uniform. These
assumptions are reasonable and makes algorithm analysis
possible. In MR3, all candidates are found in two steps. In
the first step, given an object data set D and a query point q,
let C1[1..k] be the set of first k nearest neighbors of q based
on dxy

E (Euclidean distance between their projections on the
(x, y)-plane) and C1[i] is the ith nearest neighbor. Clearly,
C1 is exclusively determined by the object coordinates (i.e.
their locations on the (x, y)-plane). In C1, the maximum dxy

E
can be estimated by:

dxy
E (C1[k], q) = √

k/(π · λ) (8)

where λ is the number of objects whose projections in a unit
area on (x, y)-plane as defined in Table 1. In the second step,
the complete candidate set, denoted as C2, can be found
based on C1. In C1, the maximum surface distance to the
query point, max(dS(C1, q)), is used as the candidate filter-
ing threshold. If dxy

E of an object p (p ∈ D−C1) to the query
point is not longer than this threshold, p is a candidate since
p may be closer to q than some objects in C1 when measured
by surface distances (see Fig. 13b) for an example). Because
the candidate filtering threshold is a surface distance, the car-
dinality of C2 depends not only on the coordinates of objects
but also on the topography of the underlying surface around
the query point. We use the following formula to estimate the
complete candidate set:

|C2| = π ·max2(dS(C1, q)) · λ. (9)

where max(dS(C1, q)) can be estimated by:

max(dS(C1, q)) = dxy
E (C1[k], q) · δ. (10)

thus, (9) can be transformed as:

|C2| = π · dxy
E (C1[k], q)2 · δ2 · λ

= k · δ2 (11)

where δ is the ratio between the maximum surface distance
and the maximum Euclidean distance in C1. Equation (11)
depicts that the complete candidate set increases when k and
δ increase. If the surface is quite plain, the surface distance
dS ≈ dxy

E such that δ ≈ 1 and C1 ≡ C2. But, if there are
many mountains, the surface distance gets longer if the sur-
face shortest path is affected by these obstacles. In this case,
once the maximum surface distance in C1 gets longer, it
is straightforward that δ increases and more candidates are
contained in C2. On the other hand, if the maximum surface
distance in C1 is not affected by these obstacles, C2 doesn’t
change.

6 Performance evaluation

In this section, we measure MR3 algorithm from several
aspects: the response time, CPU time and the number of
I/O, with varying values of k, object density λ and reso-
lution scheme s (i.e., the resolution difference between two
consecutive iterations).

6.1 Experiment Setup

The experiments are conducted on a PC (ADM Athlon XP
2400+ CPU, 1.3 GB memory). Two real world large scale ter-
rain models, BH and EP, are created from USGS DEM files
(data.geocomm.com) for two regions: Bearhead Mountain
(WA) and Eagle Peak area (WY), USA. Both datasets cover

123

1116 K. Deng et al.

an area around 10.7 km × 14 km and contain about 1.5 and
1.4 million elevation sample points respectively. The Bear-
head area has more mountains than Eagle Peak. The object
points are approximately uniformly distributed on the sur-
face with varying object densities by setting 1 ≤ λ ≤ 10 per
km2. DDM is built as previously described and the pathnet
is created by inserting one Steiner point into each edge of
the original terrain model. The MTM tree structure and the
adjacent list of DDM are stored on the disk in the way as
described in Sect. 3.4. Similarly, the MSDN is created and
stored on the disk as well.

6.2 The benchmark algorithm

To calculate the surface distance, one can either use the
exact algorithm or an approximate algorithm, as discussed
in Sect. 2. The Chen and Han’s algorithm is the only feasible
exact surface distance algorithm. This algorithm can be used
on the original terrain model to directly compute the surface
distance. We test this approach (denoted as CH) using the
implementation by Kaneva and O’Rourke [12]. An alterna-
tive approach is to use the Kanai and Suzuki algorithm for
ub estimation where it starts from the original terrain model
and continues to the pathnet level, and the 100% resolu-
tion SDN is used for lb estimation. We call this approach as
the Enhanced Approximation Surface Distance Algorithm
(EA). We allow 3% error in surface distance calculation
(i.e., shortest surface distance range computation terminates
once it reaches 97% accuracy). Figure 15 shows the perfor-
mance of EA and CH. Clearly, CH is not scalable with the
number of surface points. When a surface contains 10,000
vertices (that covers about 1km2 in a 10 m elevation sam-
ple interval), this approach is practically not useable. Thus,
EA is used as the benchmark algorithm in our experiments.
For fair comparison, the methods used for finding the first
global optimal shortest path and the search region refinement
in the benchmark algorithm are the same as those used by

0

500

1000

1500

2000

2500

3000

3500

0 5000 10000 15000 20000 25000 30000

Vertices number

R
es

po
ns

e
Ti

m
e

(s
ec

)

Chen & Han's algorthm

Enhanced Approximation

Fig. 15 Algorithm CH versus Algorithm EA

MR3. Moreover, to highlight the effect of multi-resolution on
sk-NN query processing, the benchmark algorithm also
applies the same filtering techniques as MR3.

6.3 Distance range accuracy

A good indication of the effectiveness of multi-resolution sur-
face distance model is how accurate the estimated lb and ub
converges with the increase of LOD. Define accuracy ε = lb

ub ,
0 ≤ ε ≤ 1. A larger ε indicates a higher level of accuracy of
lb and ub estimation. Figure 16 reports the accuracy with a
range of MSDN and DMTM resolutions, where MSDN is
represented as the percentage of the highest SDN resolution
while the DMTM resolution is represented by the percentage
of points comparing to that in the original resolution. Note
that DMTM resolution 200% implies that a pathnet with one
Steiner point per edge is used. At this level, dN = dS by
definition. The Euclidean distance is included as a way of
estimating lb to show the effectiveness of ub estimation (i.e.,
with static lb). We observe that the best accuracy achieved is
about 78% if the Euclidean distance is used as lb estimation.
This is insufficient in most cases to differentiate the ranges
of candidate points. On the other side, estimation accuracy
can be improved rapidly and steadily when a higher LOD
DMTM is used, for all SDNs. In the case of SDN resolu-
tion is 100%, MR3 eventually achieves 97% accuracy. With
only 50% of DMTM used, the estimation accuracy already
reaches 87%. Using the MR3 approach, a query like “what is
the surface distance between a and b within accuracy 95%”
can be directly processed. This level of accuracy is sufficient
for most applications we consider. It is possible to achieve
an even higher level of accuracy (by simply inserting more
Steiner points into the highest LOD terrain model to generate
DMTM at higher resolution). But the cost is too high.

In Sect. 6.4 and 6.5, we test equal performance scheme
and three sets of fixed step length resolution scheme as given
below:

30

40

50

60

70

80

90

100

0 25 50 75 100 125 150 175 200

DMTM resolution

A
cc

ur
ac

y
(%

)

Euclidean distance

SDN resolution 25%
SDN resolution 37.5%
SDN resolution 50%

SDN resolution 75%

SDN resolution 100%

Fig. 16 Distance range accuracy

123

A multi-resolution surface distance model for k-NN query processing 1117

0

1000

2000

3000

4000

5000

6000

7000

8000

0 3 6 9 12 15 18 21 24 27 30

K

P
ag

e
A

cc
es

se
d

0
20
40
60
80

100
120
140
160
180
200
220

0 3 6 9 12 15 18 21 24 27 30

K

T
ot

al
 T

im
e

(s
)

0

20

40

60

80

100

120

140

0 3 6 9 12 15 18 21 24 27 30

K

C
P

U
 T

im
e

(s
)

0

1000

2000

3000

4000

5000

6000

7000

0 3 6 9 12 15 18 21 24 27 30

K

P
ag

e
A

cc
es

se
d

0
20
40
60
80

100
120
140
160
180
200

0 3 6 9 12 15 18 21 24 27 30

K

T
ot

al
 T

im
e

(s
)

0

20

40

60

80

100

120

0 3 6 9 12 15 18 21 24 27 30

K

C
P

U
 T

im
e

(s
)

(a)

(f)(e)(d)

(c)(b)

 MR3 (s=5) MR3 (s=4) MR3 (s=3) MR3 (s=EPS) Benchmark EA

Fig. 17 Effect of k, using dataset BH (a–c) and EP (d–f) where λ = 4

1. s = 5: DMTM: 0.5%, 25%, 50%, 75%, 100%, 200%;
MSDN: 25%, 37.5%, 50%, 75%, 100%;

2. s = 4: DMTM: 0.5%, 50%, 100%, 200%; MSDN: 25%,
50%, 100%;

3. s= 3: DMTM: 0.5%, 100%, 200%; MSDN: 25%, 100%;
and

4. s = EPS: equal performance scheme

The fixed resolution levels are used in s = 5, s = 4, s = 3.
For example, s = 3 means the experiment for the upper
bound computation begins from 0.5% of the original resolu-
tion and next higher resolution is 100% of that. After that, the
pathnet is used. At the same time, the resolution of MSDN
starts from 25%, then jumps to 100%. s = EPS means the
equal performance resolution scheme is used as described in
Sect. 4.3. For each object, the initial resolution is estimated
by Eq. (6) and the following resolutions are estimated by
Eq. (7) for working candidates.

6.4 Effect of k

This set of experiments is to test the performance of MR3
with varying k value (from 3 to 30) with λ = 4.

Figure 17a–c illustrate the experiment results for data-
set Bearhead (BH) which has more mountains than that of
dataset Eagle Park (EP) whose experiment results are pre-
sented in Fig. 17d–f. As we discussed in Sect. 5, the effect
of obstacles in the vicinity of the query point on the ter-
rain surface may impact the parameter δ. Generally, more
mountains lead to a longer surface distance. So, the BH has

a greater δ than EP in average. By Eq. (11), the cardinality of
the candidate set is decided by the value of k and δ. When k is
fixed, the greater δ means more objects need to be processed.
Figure 17a–c shows a better performance than that of
Fig. 17d–f under the same circumstances.

The comparison of performance between MR3 and bench-
mark EA is also depicted in Fig. 17. Despite the impact of
the varying resolution scheme, the overall test results of MR3
outperform the benchmark remarkably in total time and CPU
time. As depicted in Fig. 17a, the total time of EA increases
very rapidly so that it is not practical when k ≥ 12. On the
other side, MR3 shows a much slow increase rate when k
increases from 1 to 30. When s = EPS, MR3 outperforms
EA by almost one order of magnitude. When s = 3, MR3
has a performance increase pattern more similar to EA com-
paring to the others. This is because the case of s = 3 is
less multi-resolution supported (this simulates the traditional
filter-and-refine approach that jumps to the full resolution
data after one filtering step).

To compare the different resolution schemes, we need to
understand how the performance is affected by the selection
of the resolutions. In general, a large jump to higher res-
olution implies less iteration needed for sk-NN query pro-
cessing. However, this also means less opportunity to use
tighter distance bound estimation (1) to reduce the size of
search region and (2) to terminate the search earlier. Since
the search region of next iteration is decided by previous
computation, if higher resolution is selected, this region will
contain more surface data need to be accessed and processed.
Due to the O(n2) time complexity of Dijkstra’s algorithm,

123

1118 K. Deng et al.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 T

im
e

(s
)

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9 10

C
P

U
 T

im
e

(s
)

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9 10

P
ag

e
A

cc
es

se
d

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 T

im
e

(s
)

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10

C
P

U
 T

im
e

(s
)

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9 10

P
ag

e
A

cc
es

se
d

 MR3 (s=5) MR3 (s=4) MR3 (s=3) MR3 (s=EPS) Benchmark EA

(a)

(f)(e)(d)

(c)(b)

Fig. 18 Effect of object density using dataset BH (a–c) and EP (d–f) where k = 10

if the number of network vertices is, for example, doubled,
the cost to compute the network distance will increase non-
linearly. In the cases of s = 4 and s = 5, since the search
regions keep refined before a high resolution terrain model is
used, the number of network vertices processed in this higher
resolution level is smaller than that in s = 3. That is a major
reason why the s = 3 is the worst case in terms of both CPU
and total time. Another reason is that s = 3 loses chance
to identify the ranking of some objects in lower resolution
levels. In the situation of small resolution jump step, the total
network vertices processed may be reduced as s = 4 (shown
in Fig. 17c–f). However, too small jump step (implies too
many iterations) will increase the total number of network
vertices accessed and processed, e.g., s = 5. Note that there
is one more iteration from s = 4 to s = 3 and two more iter-
ation from s = 5 to s = 4, but the performance improvement
in former situation is much more significant than the latter
case. This is due to the increase of the total network vertices
accessed and processed in s = 5 when more iterations are
applied (see Fig. 17c–f).

We observe that s = EPS outperforms all the fixed reso-
lution schemes. This superiority is a result of the application
of equal performance scheme where the computing resource
is only assigned to the candidates more likely in the final
solution.

6.5 Effect of λ

Now we test the effect of object density, by fixing k = 10.
In general, the cost reduces as the object density increases.

That is, on the same terrain model for a given k, high object
density λ leads to a small search region so that less surface
data will be retrieved and processed. This is proved by the
experiment results in Fig. 18. We observe that the bench-
mark EA illustrates a quick increase when λ decreases. This
is because EA starts sk-NN processing from the original
terrain model, by which the search and I/O region are not
fully optimized by any multi-resolution technique. In the con-
trary, benefited from using multi-resolution surface distance
model, the overall performance of MR3 for all resolution
schemes is significantly better than that of EA; and the best
case is when s = EPS. More detailed explanation about the
effects of different resolution schemes are the same as that in
Sect. 6.4.

6.6 Candidate size

Finally, we examine the candidate size in various settings
for k and δ (dS/dxy

E). Figure 19a shows the increase rate
of the candidate size against δ is non-linear while Fig. 19b
illustrates the candidate size is proportional to the value of k.
Clearly, these results comply with the analysis result in
Eq. (11).

7 Conclusion

This paper is a first in-depth study on efficient sk-NN query
processing. A multi-resolution surface distance model is pro-
posed to guarantee the monotonic distance change property
when distances are computed at different resolution levels.

123

A multi-resolution surface distance model for k-NN query processing 1119

Fig. 19 a Candidate size versus
δ (k = 10), b Candidate size
versus k (δ = 1.4)

10

12

14

16

18

20

22

24

1 1.1 1.2 1.3 1.4 1.5
0

10

20

30

40

50

60

70

0 10 20 30

(a) (b)

K

N
 u

m
 b

e
r

o f
 C

 a
 n

d
i d

 a
t e

 s

N
 u

m
 b

e
r

o f
 C

 a
 n

d
i d

 a
t e

 s

This important property makes it possible to minimize the
amount of surface data access as well as the cost for surface
distance computation. Our sk-NN query processing algo-
rithm, MR3, can therefore access and process the terrain data
in a just-enough manner. Our experiments using large scale
real terrain data have shown that our approach outperforms
the benchmark algorithm in all cases by up to one order of
magnitude.

Our previous work on developing MTMs for efficient
visualization [26] has been extended to support surface k-NN
query processing. The new multi-resolution surface distance
model is a framework capable of supporting other types of
spatial queries that require distance comparison as part of its
query processing strategy, such as range queries and closest
pair queries. The idea of progressive accuracy increase of sur-
face distance estimation is also applicable to other types of
surface-based queries with a specified target ROI and LOD.
Next on our research agenda, we will investigate the mod-
elling and query processing techniques towards efficient sk-
NN query processing with obstacle constraints, which can be
found in many real-life sk-NN applications, such as energy
consumption and vehicle stability considerations for rovers,
and general traversability constraints.

Acknowledgements The work reported in this paper has been
partially supported by grant DP0345710 from the Australian Research
Council.

References

1. Chen, J., Han, Y.: Shortest paths on a polyhedron. In: 6th ACM
Symp. Comput. Geometry, pp. 360–369 (1990)

2. Deng, K., Zhou, X.: Expansion-based algorithms for finding sin-
gle pair shortest path on surface. In: Proc. of W2GIS, pp. 254–271
(2004)

3. Deng, K., Zhou, X., Shen, H.T., Xu, K., Lin, X.: Surface k-NN
query processing. In: ICDE (2006)

4. Dijkstra, E.W.: A note on two problems in connection with
graphs. Numer. Math. 1, 269–271 (1959)

5. Garland, M.: Multiresolution modeling: survey and future oppor-
tunities. In: Eurographics, pp. 111–131 (1999)

6. Garland, M., Heckbert, P.S.: Surface simplification using quadric
error metrics. In: 24th Int’l Conf. on Comput. Graphics and Inter-
active Tech. pp. 209–216 (1997)

7. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databas-
es. TODS 24(2), 265–318 (1999)

8. Hoppe, H.: Progressive meshes. In: SIGGRAPH (1996)
9. Jagadish, H., Ooi, B., Tan, K.L., Yu,C., Zhang, R.: iDistance: an

adaptive B+-tree based indexing method for nearest neighbour
search. TODS (2005)

10. Jiang, B.: I/O efficiency of shortest path algorithms: an analysis.
ICDE (1992)

11. Kanai, T., Suzuki, H.: Approximate shortest path on polyhedral
surface based on selective refinement of the discrete graph and its
applications. Geom. Model. Process. 241–250 (2000)

12. Kaneva, B., O’Rourke, J.: An implementation of Chen & Han’s
shortest paths algorithm. In: Proc. of 12th Canadian Conf. on Com-
put. Geom. pp. 139–146 (2000)

13. Kapoor, S.: Efficient computation of geodesic shortest paths. In:
31st Annual ACM Symp. on Theory of Computation, pp. 770–779
(1999)

14. Kolahdouzan, M.R., Shahabi, C.: Voronoi-based k nearest neigh-
bor search for spatial network databases. VLDB (2004)

15. Li, Z., Openshaw, S.: Algorithms for automated line general-
ization based on a natural principle of objective generalization.
J. GIS 6(5), 373–389 (1992)

16. Mitchell, J.S.B.: Geometric shortest paths and network optimi-
zation. In: Handbook of Computational Geometry, Sack, J.-R.,
Urrutia, J. (eds) pp. 633–701 (2000)

17. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing
in spatial network databases. VLDB (2003)

18. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor que-
ries. SIGMOD (1995)

19. Seidl, T., Kriegel, H.P.: Optimal multi-step k-nearest neighbor
search. SIGMOD (1998)

20. Shahabi, C., Kolahdouzan, M.R., Sharifzadeh, M.: A road net-
work embedding technique for k-nearest neighbor search in mov-
ing object databases. In: ACM GIS, pp. 94–100 (2002)

21. Shekhar, S., Kohli, A., Coyle, M.: Path computation algorithms for
advanced traveler information system (atis). ICDE (1993)

22. Shekhar, S., Liu, D.: A connectivity-cluster access method for
networks and network computations. TKDE 19(1), 102–119
(1997)

23. Tompkins, P., Stentz, T., Whittaker, W.: Mission planning for the
sun-synchronous navigation field experiment. In: IEEE Int’l Conf.
on Robotics and Automation, pp. 3493–3500 (2002)

24. Varadarajan, K.R., Agarwal, P.: Approximating shortest paths on an
nonconvex polyhedron. In: Proc. 38th Annu. IEEE Symp. Found.
Comput. Sci. pp. 182–191 (1997)

25. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and per-
formance study for similarity-search methods in high-dimensional
spaces. VLDB (1998)

26. Xu, K., Zhou, X., Lin, X.: Direct mesh: a multiresolution approach
to terrain visualisation. ICDE (2004)

27. Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate nearest neigh-
bor queries in road networks. TKDE 17(6), 820–833 (2005)

123

	A multi-resolution surface distance model for bold0mu mumu kkRawkkkk-NN query processing
	Abstract
	1 Introduction
	2 Related work
	2.1 k-NN query processing
	2.2 Multi-resolution terrain model (MTM)
	2.3 Surface distances computing

	3 Multi-resolution surface distance model
	3.1 Ranking by distance range
	3.2 Distance multi-resolution mesh
	3.3 Multi-resolution support distance network
	3.4 Multi-resolution disk storage scheme

	4 sk-NN query processing
	4.1 Algorithm MR3
	4.2 Surface distance ranking
	4.3 Resolution selection scheme

	5 Analysis
	6 Performance evaluation
	6.1 Experiment Setup
	6.2 The benchmark algorithm
	6.3 Distance range accuracy
	6.4 Effect of k
	6.5 Effect of
	6.6 Candidate size

	7 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

