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Abstract. The information in many applications can be naturally rep-
resented as graph-structured XML document. Structural query on graph
structured XML document matches the subgraph of graph structured
XML document on some given schema. The query processing of graph-
structured XML document brings new challenges.

In this paper, for the processing of subgraph query, we design a sub-
graph join algorithm based on reachability coding. Using efficient data
structure, subgraph join algorithm can process subgraph query with var-
ious structures efficiently.

1 Introduction

XML has become the de facto standard for information representation and ex-
change over the Internet. XML data has hierarchy nesting structure. XML data
is often modeled as a tree. However, XML data may also have IDREFs that add
additional relationship to XML data. With such property, XML data also can
be represented in graph structure. In many applications, data can be modeled
as a graph more naturally than a tree.

Of course, graph structured XML document can be represented in tree struc-
ture by duplicate the element with more than one incoming paths. But it will
result in redundancy.

Query languages are proposed for XML data. XQuery [4] and XPath [6] are
query language standards for XML data. Structure query on graph structured
XML data has more power. Further than branching query on tree structured
XML data, structure query on graph-structured XML data can request sub-
graphs matching the general graph modeled schema described query.

Query processing on graph structured XML data brings new challenges:

– More complex query can be defined on graph-structured XML data. The
query can be also graph-structured to retrieve a subgraph of an XML docu-
ment. The schema of the subgraph can be various, possibly including nodes
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with multiple parents or circle. Existing method cannot process such query
efficiently.

– One way to processing structural query on XML data is to encode the nodes
of graph with some labelling scheme. With the code, the structure relation-
ship such as parent-child or ancestor-descendant can be judgment quickly. In
query processing on tree structured XML, it is a well-studied problem. But all
existing labeling scheme of XML representations and query processing meth-
ods are based on tree model. They can not be applied on graph-structured
XML data directly.

– Another kind query processing methods for XML is to use structural index
such as 1-index[15], F&B index[13] to accelerate the query processing. But
the structural index of graph structured XML document has many nodes.
It is not practical to use structural index directly to process query on graph
structured XML. For example, the number of nodes in F&B index of tree
structured 100M XMark document has 436602 nodes while the number of
nodes in F&B index of graph structured 100M XMark document has 1.29M
nodes [13].

Using label to represent the relationship between nodes is a practical method
to process query on graph-structured XML data. With well-designed labeling,
the structural relationship between two nodes can be determined efficiently with-
out accessing any other node. In this paper we use an extension of the code in
[16] as reachability code.

To process the complex queries with a graph schema on graph-structured, we
design a novel subgraph join algorithm based on the reachability code. In order
to support the overlapping of intervals in the coding, we design a data structure
interval stack. Subgraph join algorithm uses a chain of linked interval stacks
to compactly represent partial results. Subgraph join algorithm can be used to
process subgraph query with both adjacent and reachability relationship.

The contributions of this paper can be summarized as follows:

– We use duplication to make the coding possible to be storage in relation or
apply sorted based join algorithms on.

– We present efficient graph structural join algorithms and efficient data struc-
ture, interval stack, to support join.

– We present subgraph query, a novel kind of structure query using general
graph as matching schema. To process subgraph query, we design a novel
subgraph join algorithm. It processes subgraph query efficiently.

The reset of the paper is organized as follows: Section 2 introduces some back-
ground knowledge. Data preprocessing and subgraph join algorithm are pre-
sented in Section 3. We present our experimental results and analysis in section 4.
Related work is described in Section 5. We conclude the paper in Section 6

2 Preliminaries

In this section, we briefly introduce Graph-structural XML model and some
terms used in this paper.
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2.1 Data Model

XML data is often modeled as a labelled tree:elements and attributes are mapped
into nodes of graph; directed nesting relationships are mapped into edges in the
tree. A feature of XML is that from two elements in XML document, there may
be a IDREF representing reference relationships [23]. With this feature, XML
data can be modeled as a labelled digraph: elements and attributes are mapped
into nodes of graph; directed nesting and reference relationships are mapped into
edges in the graph. An XML fragment is shown in Fig 1(b). It can be modeled
as the graph shown in Fig 1(b). It is noted the graph in Fig 1(b) is not a DAG.

(a) An XML Frag-
ment

(b) XML Graph of
Fig

(c) The Reachibility code of Fig 1(b)

Fig. 1. An Example of Graph-structured XML

In a graph, a node without incoming edge is called source. A node without
outcoming edge is called sink.

2.2 Subgraph Query

In graph-structured XML, the parent-child and ancestor-descendant relationship
should be extended. In [13], the idref edges are represented as ⇒ and ⇐ for
the forward and backward direction, respectively. We define the reachability
relationship as two nodes a and b in the graph model G of XML data satisfy
reachability relationship if and only there is a path from a to b in G. Each edge
in this path can be either edges representing nested relationship or reference
relationship. We represent reachability by �. For example, a � e is to retrieve
all the e elements with a path from a to it. In Fig 1(b), this query will retrieve
d1, d2 and d3.

The combination to reachability restraints may forms subgraph query. Sub-
graph query will retrieve the subgraphs of graph-structured XML matching the
structure given by the query. The graph corresponding to the query is called
query graph. The nodes in query graph represent the tag name of required el-
ements. The edges in query graph represent the relationship between required
elements. If an edge in query graph represents adjacent relationship, it is called
adjacent edge. If an edge in query graph represents reachability relationship, it
is called reachability edge. For an example, the query shown in fig 2(a) on XML
document shown in fig 1(b) represents the query to retrieve all the subgraphs of
it with structure a node connects to a c node, d node reaches to this c node and
this c node reaches a f node. the result is shown in fig 6.
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2.3 Reachibility Coding

The goal of encoding XML is to represent the structural relationship so that
the relationship between nodes in XML graph can be judged from the code
quickly. With a good code, the query processing of structural query can be
efficient. In this paper, we focus on reachability coding, which is used to judge the
reachability relationship. We use an extension of reachability coding presented in
[16]. In this coding, at first, all strongly connected components in the graph are
contracted. Labeling is done by finding a spanning tree of the DAG generated
in last step and assigning interval labels for nodes in the tree. The coding of the
spanning tree is generated by post-order traversal. Each node is also assigned
the number during traversal. The number is called postid. Next, to capture
reachability relationships through non-spanning-forest edges, we add additional
intervals to labels in reverse topological order of the DAG; specifically, if (u, v)
is an edge not in the spanning forest, then all intervals of v are added to u (as
well as labels of all nodes that can reach u). For an example, the reachability
coding of graph in fig1(b) is shown in Fig 1(c). Using the spanning tree rooted
at a1, we label d2, f1 with [2, 2] and [0, 0]. In addition, d2 receives intervals from
f1, resulting in that b2’s code is [2, 2], [0, 0]. In this coding, a � b if and only if
b.postid is contained some interval associated with a.

3 Subgraph Join

In this section, we discuss the processing of subgraph queries. We present sub-
graph join algorithm and the method of preprocessing query and data to support
subgraph join algorithm.

3.1 Preprocess of the Input

The interval labelling scheme of a graph is different from that of tree. There
may be more than one intervals assigned to one node. The processing unit of
our method is interval. So that we should assign the postid of each node to all
of its intervals. If several intervals associated to nodes with the same tag have
the same x and y value but different postid, they are merged. The result of this
step is a list of intervals, each of which is associated with one or more postids.
The list is called candidate list.

For the convenience of process, we will sort the intervals of all the nodes with
the same tag by the value of x in ascending order and value of y in descending
order. x is prior to y. It means only if two intervals have same x value, their y
values are considered.

3.2 Preprocess for Subgraph Query

In order to apply subgraph join algorithm to process general subgraph query,
some preprocess should be applied on the query when the query graph has circle.
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If there are some circles in the query graph, a node n in each circle should be
split to na and nb break this circle. na includes all the incoming edges of n. nb

includes all the out edges of n. This node is the nodes related least edges in the
circle.

When subgraph join is finished, the nodes in result corresponding to split
query node are connected. Hash method is used.

Theorem 1. After connection processing in the last step, the splitting of query
node will not affect the final result of subgraph query.

For the efficiency of query processing, before the process of data stated in
Section 3.1, the nodes in the same SCC in each candidate list should be merged
into one node. This node is called stub node. Since the coding of nodes in the
same SCC have same intervals, the new node has these intervals, the number of
the stub node is any of the number of the nodes belonging to the same SCC.
Applying such preprocess is to prevent too large intermediate result during query
processing without affecting the final result. For example, to process query shown
in fig 3, there is a cycle in graph of the XML document with 100 a nodes, 100 b
nodes and 100 c nodes respectively. Since they are reachable to each other, there
will be 106 items in intermediate result after processing these nodes.

Corresponding to the merge, after the join is processed, the result should
be extracted. The process of extraction is, for each result with stub node, from
node set associated each merged nodes, one node is selected for one time to put
on the position of the merged node. With a different combination of the selected
nodes, one result is generated.

Theorem 2. With extraction after all results are generated, the merging of
nodes in the same SCC before query processing will not affect the final result.

3.3 Data Structure for Subgraph Join

In our coding, there may be overlap in the intervals. Therefore, the stack based
join of tree structured XML document can not be applied to our coding directly.
We design a data structure, interval stack, to support efficient graph structural
join. The interval stack is a DAG. Each node represents an interval. Each edge
e = n1 → n2 represents the interval of n1 contains the interval of n2. The child
of each node is sorted by the x values of the intervals.

There are two additional structures of the digraph, top and bottom. Top is
the list of the sinks which are intervals without any interval containing them.
Bottom is the list of sources which are intervals without any interval contained
in them. They are both sorted by x of the intervals.

There are mainly two operators of interval stack, append and trim. The
former is to append an interval to interval stack. The latter is to delete useless
intervals from interval stack. During the performing of these two operations, the
property of interval stack should be kept and top and bottom are maintained.
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3.4 Subgraph Join Algorithms

With interval stack, we improve stack-based twig join [3]algorithm to support
subgraph queries.

Of compacted interval list, we have following observations:

– The postid of a node is contained one and only one of its intervals.
– If two nodes have reachability relationship, it can and only can be checked

by one interval. That is, if a � b, among all the intervals of the reachability
of a, only one contain the b.number.

Suppose the input query can be visualized as a rooted DAG. The circle in
input query will be broken in preprocess. If there is no root. A dummy root is
added to the query.

The join candidates are a series lists of intervals with a list of nodes it corre-
sponds to.

For each node in query graph, a structure is build which includes an interval
stack(S) and its current cursor(C), the parents and children of it in query graph.
The interval stack has the same function as that in structural join. M is a hash
map, mapping postid of node to its children. The algorithms of subgraph join
are described in Alg 1.

The subgraph join algorithm has two phases. In the first phase, each pair of
nodes satisfying partial reachability relation described in query is outputted. In
the second phase, the nodes in intermediate result unsatisfied the whole query are
trimmed. Such nodes being included in intermediate result is because in the first
phase, when each pair of nodes is outputted, only partial reachability relation
related to these two node is considered. For an example, for query shown in fig 3,
some of the intervals to process are shown in fig 4, the ids in brackets are the
postids corresponding to the interval. Suppose the first number in bracket is in
corresponding interval and others is not in the interval. During query processing,
although a31 and c21 are not in final result, the pair (a31, c21) is still outputted.

During processing the query in fig 3 , interval a1 contains interval c1. Based
on observation 1, only pairs (a11, c11), (a12, c11), (a13, c11) are appended to in-
termediate result. This is because from the containment of these two intervals,
only that c11 is in interval a1 can be determined. So only the reachability of all
nodes in the extent of a1 and c11 is true.

getNext() is to find the next entry to process. It has similar function as
getNext of twigjoin in [3]. First of all, the interval with least x value is chosen.
If some intervals have same x value, the interval with largest y is chosen. If
two intervals have same x and same y and their corresponding query nodes have
reachability relation, the interval corresponding query node as ancestor is chosen.
Otherwise, some result will be lost. For an example, consider query in fig 3. on
the element sets visualized in fig 4, the interval a1 has the same x and y as
interval b1. The nodes corresponding to a1 should be outputted with the nodes
corresponding to b1 and in the interval of b1. But if b1 is chosen former than
a1, these pairs will not be outputted. Since interval a1 contains interval b2, the
nodes corresponding to a1 should be outputted with the nodes corresponding to
b2 and in the interval of b2. But if b2 is chosen former, these pairs will lose.
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Algorithm 1. GJoin(root)
1: while not end(root) do
2: q = getNext(root)
3: if not isSource(q) then
4: if isSource(q) OR not emptyParent(q) then
5: cleanNodes(q)
6: push(q)
7: advance(q)
8: obtainResult()

1: function end(q)
2: return ∀qi : isSink(qi) ⇒ end(qi.C)

1: procedure clearNodes(q)
2: q.S.Trim(q.C)

1: function emptyParent(q)
2: return ∃pi ∈ qi.parents : pi.C = pi.end

1: procedure push(q)
2: for each node n ∈ q.C.context do
3: if q = root then
4: q.extent.add(n)
5: if n.id > q.C.y then
6: insertEntry(q.M , n)
7: n.type = q
8: else if n.id ≥ q.C.x then
9: for each p ∈ q.parents do

10: pointTo(p,q,n.id)

1: procedure pointTo(p,q,id)
2: for each entry i ∈ p.S do
3: if id ≥ i.x AND id ≤ i.y then
4: for each node n ∈ i.context do
5: M [n.id].child.add(id)

1: procedure obtainResult

2: for each node n ∈ root.extent do
3: b = generateResult(n)
4: if b = FALSE then
5: delete n from root.extent

1: function generateResult(node)
2: if node is visited then
3: return node.isresult
4: b = TRUE
5: for each child c of node do
6: tb = generateResult(c)
7: if tb = FALSE then
8: delete c from node.child
9: b = FALSE

10: else if NOT c.type ∈ node.childtype then
11: node.childtype.add(c.type)
12: if node.childtype.size = node.type.child.size then
13: node.isresult = TRUE
14: return TRUE
15: else
16: node.isresult = FALSE
17: return FALSE



Subgraph Join: Efficient Processing Subgraph Queries 75

Algorithm 2. getNext(q)
1: function getNext(q)
2: if isSink(q) then
3: return q
4: for qi ∈ q.children do
5: ni = getNext(qi)
6: if ni.left < nmin.left then
7: nmin = ni

8: else if ni.left = nmin.left then
9: if ni.right > nmin.right then

10: nmin = ni

11: else if ni.right = nmin.right AND ni is a ancestor of nmin then
12: nmin = ni

13: nmax = maxargni{ni.C.x}
14: while qi.C.y < qmax.C.y do
15: advance(qi.C)
16: if qi.C.x ≤ qmin.C.x AND qi.C.y ≥ qmin.c.y then
17: return q
18: else
19: return nmin

Note the function emptyParent() is to check whether the nodes in current
interval satisfies the restriction of all incoming paths in the query. In out example,
when interval c3 is met, since interval stack of b is empty, it will not be considered.

(a) (b)

Fig. 2. Example Quries Fig. 3. Example
Query

Fig. 4. Element sets for fig 3

Outputted pairs are organized by the ancestors. The main memory may
be not enough to store intermediate results. External memory is used to store
intermediate results. Since each node may have more than one descendant during
query processing, children of one node are stored as a list in disk. The head of
the list associated with a node record the number of the node, the query node
corresponding to the node and the pointer to the first entry of the list. Each of
entries in the list includes a 2-ary,(node, next), where node is the pointer to the
node this entry corresponding to and next is the pointer to next entry of the
list. In the hash map, each entry en corresponds one node n. Each entry contain
the head of the the position of the head and tail of list of n.
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Theorem 3. The logical I/O number of subgraph join algorithms is linear to
the number to the pair of nodes satisfying the reachability relationship described
in query.

4 Experiments

In this section, we present results and analysis of part of our extensive experiment
of subgraph join algorithms based on reachibility coding.

4.1 Experimental Setup

The Testbed. All our experiments were performed on a PC with Pentium 1GMHZ
CPU, 256M main memory and 30G IDE hard disk. The OS is Windows 2000
Professional. We implemented all the algorithms using Microsoft Visual C++
6.0. We implemented the encoding of graph and subgraph join algorithms. We
use LRU policy for buffer replacement.

For comparison, we also implemented F&B index [13]for graph structured
XML document. F&B index supports all the subgraph queries for XML.

Dataset. The dataset we tested is the standard XMark benchmark dataset[21].
We used scale factor 0.1, 0.2, 0.3, 0.4 and 0.5, which generated XML document
with size 10M, 20M, 30M, 40M and 50M respectively. It has complicated schema,
including circle.

Some statistics information of test XML documents are shown in Table 1.

Table 1. Information of Test Document

Document size 11.3M 22.8M 34.0M 45.3M 56.2M
Node number 175382 351241 524067 697342 870628
Edge number 206129 413110 616228 820437 1024072

Query Set. In order to better test and understand the characteristics of the
algorithms, we designed a set of queries that has different characteristics. We
design three queries. They represent various structures. The query graph of them
are shown in fig 5(a), fig 5(b) and fig 5(c), respectively.

4.2 Changing System Parameters

In this subsection, we investigate the performance of our system by varying var-
ious system parameters. We use physicalI/O and run time to reflect the impact
of different parameter setting.
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(a) GSQ1 (b) GSQ2 (c) GSQ3

Fig. 5. Test Queries

Scalability Experiment. We test the queries on XML documents with various
sizes. In order to test the scalability of the subgraph join algorithm. We choose
SGQ2 and SGQ3 as test query. We fix main memory 8M and block size 4096.
The results are shown in fig 6(a) and fig 6(b), respectively. SGQ1 is a simple
twig query. The nodes related to SGQ1 in XML document is not in any SCC
and all have single parent. Therefore, the increase trend is nearly linear. SGQ2
is a complex subgraph query. One person node may be reached by more than
one seller nodes and only parts of person nodes are reached by both seller node
and buyer node. The trend of run time is faster than linear but still slower than
square.

Varying Buffer Size. The physicalIO change with block number of SGQ1 is
shown in fig 6(c). From the fig 6(c), we can find that without enough main
memory, the second phase result more physical I/O than the first phase. This is
because in the second phase the whole intermediate result is traversed while in
the first phase, the operation is mainly append.

4.3 Comparison Experiment

We do comparison in 10M XML document. Its F&B-index has 167072 nodes.
We naive implemented the depth first traversal-based query processing by F&B-
index. The reason why we do not compare larger XML document is that when
XML document gets larger, the query processing in F&B-index becomes too
slow.

The result of comparison subgraph query process efficiencies of subgraph join
algorithm and F&B index is shown in Fig 6(d). Y axis is in log scale. subgraph
join algorithm outperforms the efficiency of F&B index. For SGQ1, the efficiency
are similar. It is because the nodes in XML document related to SGQ1 is in tree
structured in Xmark document and the search depth in F&B index is limited.

5 Related Work

With efficient coding, XML queries can also be evaluated on-the-fly using the
join-based approaches. Structural join and twig join are such operators and their
efficient evaluation algorithms have been extensively studied [27,14,8,10,5,25]
[3,11]. Their basic tool is the coding schemes that enable efficient checking of
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structural relationship of any two nodes. TwigStack [3] is the best twig join
algorithm to answer all twig queries without using additional index. The idea of
these work can be referenced to process query on graph. But these algorithms
can not be applied on the coding of graph directly.

6 Conclusions

Information in some applications can be naturally stored as graph modeled data.
The processing of graph structured XML data brings new challenges. To process
structural query on graph structured XML data, in this paper, we present reach-
ability labelling scheme for graph structured XML. With such labelling scheme,
the reachability relationship between two nodes in graph structured XML can
be judged efficiently. Based on the labelling scheme, we design graph structural
join and subgraph join algorithms of graph structured XML to perform sub-
graph queries. From experiment, our labelling scheme has acceptable size. The
subgraph join algorithm outperforms the query processing with F&B-index.

Our further work includes designing efficient index structure so support effi-
cient query processing on graph structured XML document.
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