
Subgraph Join: Efficient Processing Subgraph
Queries on Graph-Structured XML Document�

Hongzhi Wang1,2, Wei Wang1, Xuemin Lin1, and Jianzhong Li2

1 University of New South Wales, Australia
wangzh@hit.edu.cn, {weiw, lxue}@cse.unsw.edu.au

2 Harbin Institute of Technology, Harbin, China
lijz@mail.banner.com.cn

Abstract. The information in many applications can be naturally rep-
resented as graph-structured XML document. Structural query on graph
structured XML document matches the subgraph of graph structured
XML document on some given schema. The query processing of graph-
structured XML document brings new challenges.

In this paper, for the processing of subgraph query, we design a sub-
graph join algorithm based on reachability coding. Using efficient data
structure, subgraph join algorithm can process subgraph query with var-
ious structures efficiently.

1 Introduction

XML has become the de facto standard for information representation and ex-
change over the Internet. XML data has hierarchy nesting structure. XML data
is often modeled as a tree. However, XML data may also have IDREFs that add
additional relationship to XML data. With such property, XML data also can
be represented in graph structure. In many applications, data can be modeled
as a graph more naturally than a tree.

Of course, graph structured XML document can be represented in tree struc-
ture by duplicate the element with more than one incoming paths. But it will
result in redundancy.

Query languages are proposed for XML data. XQuery [4] and XPath [6] are
query language standards for XML data. Structure query on graph structured
XML data has more power. Further than branching query on tree structured
XML data, structure query on graph-structured XML data can request sub-
graphs matching the general graph modeled schema described query.

Query processing on graph structured XML data brings new challenges:

– More complex query can be defined on graph-structured XML data. The
query can be also graph-structured to retrieve a subgraph of an XML docu-
ment. The schema of the subgraph can be various, possibly including nodes

� This work was partially supported by UNSW FRG Grant (PS06863), UNSW Gold-
star Grant (PS07248) and the Defence Pre- Research Project of the Tenth Five-
Year-Planof China no.41315.2.3.

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 68–80, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Subgraph Join: Efficient Processing Subgraph Queries 69

with multiple parents or circle. Existing method cannot process such query
efficiently.

– One way to processing structural query on XML data is to encode the nodes
of graph with some labelling scheme. With the code, the structure relation-
ship such as parent-child or ancestor-descendant can be judgment quickly. In
query processing on tree structured XML, it is a well-studied problem. But all
existing labeling scheme of XML representations and query processing meth-
ods are based on tree model. They can not be applied on graph-structured
XML data directly.

– Another kind query processing methods for XML is to use structural index
such as 1-index[15], F&B index[13] to accelerate the query processing. But
the structural index of graph structured XML document has many nodes.
It is not practical to use structural index directly to process query on graph
structured XML. For example, the number of nodes in F&B index of tree
structured 100M XMark document has 436602 nodes while the number of
nodes in F&B index of graph structured 100M XMark document has 1.29M
nodes [13].

Using label to represent the relationship between nodes is a practical method
to process query on graph-structured XML data. With well-designed labeling,
the structural relationship between two nodes can be determined efficiently with-
out accessing any other node. In this paper we use an extension of the code in
[16] as reachability code.

To process the complex queries with a graph schema on graph-structured, we
design a novel subgraph join algorithm based on the reachability code. In order
to support the overlapping of intervals in the coding, we design a data structure
interval stack. Subgraph join algorithm uses a chain of linked interval stacks
to compactly represent partial results. Subgraph join algorithm can be used to
process subgraph query with both adjacent and reachability relationship.

The contributions of this paper can be summarized as follows:

– We use duplication to make the coding possible to be storage in relation or
apply sorted based join algorithms on.

– We present efficient graph structural join algorithms and efficient data struc-
ture, interval stack, to support join.

– We present subgraph query, a novel kind of structure query using general
graph as matching schema. To process subgraph query, we design a novel
subgraph join algorithm. It processes subgraph query efficiently.

The reset of the paper is organized as follows: Section 2 introduces some back-
ground knowledge. Data preprocessing and subgraph join algorithm are pre-
sented in Section 3. We present our experimental results and analysis in section 4.
Related work is described in Section 5. We conclude the paper in Section 6

2 Preliminaries

In this section, we briefly introduce Graph-structural XML model and some
terms used in this paper.

70 H. Wang et al.

2.1 Data Model

XML data is often modeled as a labelled tree:elements and attributes are mapped
into nodes of graph; directed nesting relationships are mapped into edges in the
tree. A feature of XML is that from two elements in XML document, there may
be a IDREF representing reference relationships [23]. With this feature, XML
data can be modeled as a labelled digraph: elements and attributes are mapped
into nodes of graph; directed nesting and reference relationships are mapped into
edges in the graph. An XML fragment is shown in Fig 1(b). It can be modeled
as the graph shown in Fig 1(b). It is noted the graph in Fig 1(b) is not a DAG.

(a) An XML Frag-
ment

(b) XML Graph of
Fig

(c) The Reachibility code of Fig 1(b)

Fig. 1. An Example of Graph-structured XML

In a graph, a node without incoming edge is called source. A node without
outcoming edge is called sink.

2.2 Subgraph Query

In graph-structured XML, the parent-child and ancestor-descendant relationship
should be extended. In [13], the idref edges are represented as ⇒ and ⇐ for
the forward and backward direction, respectively. We define the reachability
relationship as two nodes a and b in the graph model G of XML data satisfy
reachability relationship if and only there is a path from a to b in G. Each edge
in this path can be either edges representing nested relationship or reference
relationship. We represent reachability by �. For example, a � e is to retrieve
all the e elements with a path from a to it. In Fig 1(b), this query will retrieve
d1, d2 and d3.

The combination to reachability restraints may forms subgraph query. Sub-
graph query will retrieve the subgraphs of graph-structured XML matching the
structure given by the query. The graph corresponding to the query is called
query graph. The nodes in query graph represent the tag name of required el-
ements. The edges in query graph represent the relationship between required
elements. If an edge in query graph represents adjacent relationship, it is called
adjacent edge. If an edge in query graph represents reachability relationship, it
is called reachability edge. For an example, the query shown in fig 2(a) on XML
document shown in fig 1(b) represents the query to retrieve all the subgraphs of
it with structure a node connects to a c node, d node reaches to this c node and
this c node reaches a f node. the result is shown in fig 6.

Subgraph Join: Efficient Processing Subgraph Queries 71

2.3 Reachibility Coding

The goal of encoding XML is to represent the structural relationship so that
the relationship between nodes in XML graph can be judged from the code
quickly. With a good code, the query processing of structural query can be
efficient. In this paper, we focus on reachability coding, which is used to judge the
reachability relationship. We use an extension of reachability coding presented in
[16]. In this coding, at first, all strongly connected components in the graph are
contracted. Labeling is done by finding a spanning tree of the DAG generated
in last step and assigning interval labels for nodes in the tree. The coding of the
spanning tree is generated by post-order traversal. Each node is also assigned
the number during traversal. The number is called postid. Next, to capture
reachability relationships through non-spanning-forest edges, we add additional
intervals to labels in reverse topological order of the DAG; specifically, if (u, v)
is an edge not in the spanning forest, then all intervals of v are added to u (as
well as labels of all nodes that can reach u). For an example, the reachability
coding of graph in fig1(b) is shown in Fig 1(c). Using the spanning tree rooted
at a1, we label d2, f1 with [2, 2] and [0, 0]. In addition, d2 receives intervals from
f1, resulting in that b2’s code is [2, 2], [0, 0]. In this coding, a � b if and only if
b.postid is contained some interval associated with a.

3 Subgraph Join

In this section, we discuss the processing of subgraph queries. We present sub-
graph join algorithm and the method of preprocessing query and data to support
subgraph join algorithm.

3.1 Preprocess of the Input

The interval labelling scheme of a graph is different from that of tree. There
may be more than one intervals assigned to one node. The processing unit of
our method is interval. So that we should assign the postid of each node to all
of its intervals. If several intervals associated to nodes with the same tag have
the same x and y value but different postid, they are merged. The result of this
step is a list of intervals, each of which is associated with one or more postids.
The list is called candidate list.

For the convenience of process, we will sort the intervals of all the nodes with
the same tag by the value of x in ascending order and value of y in descending
order. x is prior to y. It means only if two intervals have same x value, their y
values are considered.

3.2 Preprocess for Subgraph Query

In order to apply subgraph join algorithm to process general subgraph query,
some preprocess should be applied on the query when the query graph has circle.

72 H. Wang et al.

If there are some circles in the query graph, a node n in each circle should be
split to na and nb break this circle. na includes all the incoming edges of n. nb

includes all the out edges of n. This node is the nodes related least edges in the
circle.

When subgraph join is finished, the nodes in result corresponding to split
query node are connected. Hash method is used.

Theorem 1. After connection processing in the last step, the splitting of query
node will not affect the final result of subgraph query.

For the efficiency of query processing, before the process of data stated in
Section 3.1, the nodes in the same SCC in each candidate list should be merged
into one node. This node is called stub node. Since the coding of nodes in the
same SCC have same intervals, the new node has these intervals, the number of
the stub node is any of the number of the nodes belonging to the same SCC.
Applying such preprocess is to prevent too large intermediate result during query
processing without affecting the final result. For example, to process query shown
in fig 3, there is a cycle in graph of the XML document with 100 a nodes, 100 b
nodes and 100 c nodes respectively. Since they are reachable to each other, there
will be 106 items in intermediate result after processing these nodes.

Corresponding to the merge, after the join is processed, the result should
be extracted. The process of extraction is, for each result with stub node, from
node set associated each merged nodes, one node is selected for one time to put
on the position of the merged node. With a different combination of the selected
nodes, one result is generated.

Theorem 2. With extraction after all results are generated, the merging of
nodes in the same SCC before query processing will not affect the final result.

3.3 Data Structure for Subgraph Join

In our coding, there may be overlap in the intervals. Therefore, the stack based
join of tree structured XML document can not be applied to our coding directly.
We design a data structure, interval stack, to support efficient graph structural
join. The interval stack is a DAG. Each node represents an interval. Each edge
e = n1 → n2 represents the interval of n1 contains the interval of n2. The child
of each node is sorted by the x values of the intervals.

There are two additional structures of the digraph, top and bottom. Top is
the list of the sinks which are intervals without any interval containing them.
Bottom is the list of sources which are intervals without any interval contained
in them. They are both sorted by x of the intervals.

There are mainly two operators of interval stack, append and trim. The
former is to append an interval to interval stack. The latter is to delete useless
intervals from interval stack. During the performing of these two operations, the
property of interval stack should be kept and top and bottom are maintained.

Subgraph Join: Efficient Processing Subgraph Queries 73

3.4 Subgraph Join Algorithms

With interval stack, we improve stack-based twig join [3]algorithm to support
subgraph queries.

Of compacted interval list, we have following observations:

– The postid of a node is contained one and only one of its intervals.
– If two nodes have reachability relationship, it can and only can be checked

by one interval. That is, if a � b, among all the intervals of the reachability
of a, only one contain the b.number.

Suppose the input query can be visualized as a rooted DAG. The circle in
input query will be broken in preprocess. If there is no root. A dummy root is
added to the query.

The join candidates are a series lists of intervals with a list of nodes it corre-
sponds to.

For each node in query graph, a structure is build which includes an interval
stack(S) and its current cursor(C), the parents and children of it in query graph.
The interval stack has the same function as that in structural join. M is a hash
map, mapping postid of node to its children. The algorithms of subgraph join
are described in Alg 1.

The subgraph join algorithm has two phases. In the first phase, each pair of
nodes satisfying partial reachability relation described in query is outputted. In
the second phase, the nodes in intermediate result unsatisfied the whole query are
trimmed. Such nodes being included in intermediate result is because in the first
phase, when each pair of nodes is outputted, only partial reachability relation
related to these two node is considered. For an example, for query shown in fig 3,
some of the intervals to process are shown in fig 4, the ids in brackets are the
postids corresponding to the interval. Suppose the first number in bracket is in
corresponding interval and others is not in the interval. During query processing,
although a31 and c21 are not in final result, the pair (a31, c21) is still outputted.

During processing the query in fig 3 , interval a1 contains interval c1. Based
on observation 1, only pairs (a11, c11), (a12, c11), (a13, c11) are appended to in-
termediate result. This is because from the containment of these two intervals,
only that c11 is in interval a1 can be determined. So only the reachability of all
nodes in the extent of a1 and c11 is true.

getNext() is to find the next entry to process. It has similar function as
getNext of twigjoin in [3]. First of all, the interval with least x value is chosen.
If some intervals have same x value, the interval with largest y is chosen. If
two intervals have same x and same y and their corresponding query nodes have
reachability relation, the interval corresponding query node as ancestor is chosen.
Otherwise, some result will be lost. For an example, consider query in fig 3. on
the element sets visualized in fig 4, the interval a1 has the same x and y as
interval b1. The nodes corresponding to a1 should be outputted with the nodes
corresponding to b1 and in the interval of b1. But if b1 is chosen former than
a1, these pairs will not be outputted. Since interval a1 contains interval b2, the
nodes corresponding to a1 should be outputted with the nodes corresponding to
b2 and in the interval of b2. But if b2 is chosen former, these pairs will lose.

74 H. Wang et al.

Algorithm 1. GJoin(root)
1: while not end(root) do
2: q = getNext(root)
3: if not isSource(q) then
4: if isSource(q) OR not emptyParent(q) then
5: cleanNodes(q)
6: push(q)
7: advance(q)
8: obtainResult()

1: function end(q)
2: return ∀qi : isSink(qi) ⇒ end(qi.C)

1: procedure clearNodes(q)
2: q.S.Trim(q.C)

1: function emptyParent(q)
2: return ∃pi ∈ qi.parents : pi.C = pi.end

1: procedure push(q)
2: for each node n ∈ q.C.context do
3: if q = root then
4: q.extent.add(n)
5: if n.id > q.C.y then
6: insertEntry(q.M , n)
7: n.type = q
8: else if n.id ≥ q.C.x then
9: for each p ∈ q.parents do

10: pointTo(p,q,n.id)

1: procedure pointTo(p,q,id)
2: for each entry i ∈ p.S do
3: if id ≥ i.x AND id ≤ i.y then
4: for each node n ∈ i.context do
5: M [n.id].child.add(id)

1: procedure obtainResult

2: for each node n ∈ root.extent do
3: b = generateResult(n)
4: if b = FALSE then
5: delete n from root.extent

1: function generateResult(node)
2: if node is visited then
3: return node.isresult
4: b = TRUE
5: for each child c of node do
6: tb = generateResult(c)
7: if tb = FALSE then
8: delete c from node.child
9: b = FALSE

10: else if NOT c.type ∈ node.childtype then
11: node.childtype.add(c.type)
12: if node.childtype.size = node.type.child.size then
13: node.isresult = TRUE
14: return TRUE
15: else
16: node.isresult = FALSE
17: return FALSE

Subgraph Join: Efficient Processing Subgraph Queries 75

Algorithm 2. getNext(q)
1: function getNext(q)
2: if isSink(q) then
3: return q
4: for qi ∈ q.children do
5: ni = getNext(qi)
6: if ni.left < nmin.left then
7: nmin = ni

8: else if ni.left = nmin.left then
9: if ni.right > nmin.right then

10: nmin = ni

11: else if ni.right = nmin.right AND ni is a ancestor of nmin then
12: nmin = ni

13: nmax = maxargni{ni.C.x}
14: while qi.C.y < qmax.C.y do
15: advance(qi.C)
16: if qi.C.x ≤ qmin.C.x AND qi.C.y ≥ qmin.c.y then
17: return q
18: else
19: return nmin

Note the function emptyParent() is to check whether the nodes in current
interval satisfies the restriction of all incoming paths in the query. In out example,
when interval c3 is met, since interval stack of b is empty, it will not be considered.

(a) (b)

Fig. 2. Example Quries Fig. 3. Example
Query

Fig. 4. Element sets for fig 3

Outputted pairs are organized by the ancestors. The main memory may
be not enough to store intermediate results. External memory is used to store
intermediate results. Since each node may have more than one descendant during
query processing, children of one node are stored as a list in disk. The head of
the list associated with a node record the number of the node, the query node
corresponding to the node and the pointer to the first entry of the list. Each of
entries in the list includes a 2-ary,(node, next), where node is the pointer to the
node this entry corresponding to and next is the pointer to next entry of the
list. In the hash map, each entry en corresponds one node n. Each entry contain
the head of the the position of the head and tail of list of n.

76 H. Wang et al.

Theorem 3. The logical I/O number of subgraph join algorithms is linear to
the number to the pair of nodes satisfying the reachability relationship described
in query.

4 Experiments

In this section, we present results and analysis of part of our extensive experiment
of subgraph join algorithms based on reachibility coding.

4.1 Experimental Setup

The Testbed. All our experiments were performed on a PC with Pentium 1GMHZ
CPU, 256M main memory and 30G IDE hard disk. The OS is Windows 2000
Professional. We implemented all the algorithms using Microsoft Visual C++
6.0. We implemented the encoding of graph and subgraph join algorithms. We
use LRU policy for buffer replacement.

For comparison, we also implemented F&B index [13]for graph structured
XML document. F&B index supports all the subgraph queries for XML.

Dataset. The dataset we tested is the standard XMark benchmark dataset[21].
We used scale factor 0.1, 0.2, 0.3, 0.4 and 0.5, which generated XML document
with size 10M, 20M, 30M, 40M and 50M respectively. It has complicated schema,
including circle.

Some statistics information of test XML documents are shown in Table 1.

Table 1. Information of Test Document

Document size 11.3M 22.8M 34.0M 45.3M 56.2M
Node number 175382 351241 524067 697342 870628
Edge number 206129 413110 616228 820437 1024072

Query Set. In order to better test and understand the characteristics of the
algorithms, we designed a set of queries that has different characteristics. We
design three queries. They represent various structures. The query graph of them
are shown in fig 5(a), fig 5(b) and fig 5(c), respectively.

4.2 Changing System Parameters

In this subsection, we investigate the performance of our system by varying var-
ious system parameters. We use physicalI/O and run time to reflect the impact
of different parameter setting.

Subgraph Join: Efficient Processing Subgraph Queries 77

(a) GSQ1 (b) GSQ2 (c) GSQ3

Fig. 5. Test Queries

Scalability Experiment. We test the queries on XML documents with various
sizes. In order to test the scalability of the subgraph join algorithm. We choose
SGQ2 and SGQ3 as test query. We fix main memory 8M and block size 4096.
The results are shown in fig 6(a) and fig 6(b), respectively. SGQ1 is a simple
twig query. The nodes related to SGQ1 in XML document is not in any SCC
and all have single parent. Therefore, the increase trend is nearly linear. SGQ2
is a complex subgraph query. One person node may be reached by more than
one seller nodes and only parts of person nodes are reached by both seller node
and buyer node. The trend of run time is faster than linear but still slower than
square.

Varying Buffer Size. The physicalIO change with block number of SGQ1 is
shown in fig 6(c). From the fig 6(c), we can find that without enough main
memory, the second phase result more physical I/O than the first phase. This is
because in the second phase the whole intermediate result is traversed while in
the first phase, the operation is mainly append.

4.3 Comparison Experiment

We do comparison in 10M XML document. Its F&B-index has 167072 nodes.
We naive implemented the depth first traversal-based query processing by F&B-
index. The reason why we do not compare larger XML document is that when
XML document gets larger, the query processing in F&B-index becomes too
slow.

The result of comparison subgraph query process efficiencies of subgraph join
algorithm and F&B index is shown in Fig 6(d). Y axis is in log scale. subgraph
join algorithm outperforms the efficiency of F&B index. For SGQ1, the efficiency
are similar. It is because the nodes in XML document related to SGQ1 is in tree
structured in Xmark document and the search depth in F&B index is limited.

5 Related Work

With efficient coding, XML queries can also be evaluated on-the-fly using the
join-based approaches. Structural join and twig join are such operators and their
efficient evaluation algorithms have been extensively studied [27,14,8,10,5,25]
[3,11]. Their basic tool is the coding schemes that enable efficient checking of

78 H. Wang et al.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 10 15 20 25 30 35 40 45 50

ru
nt

im
e

data size

SGQ2

(a) Size change of SGQ2

 200

 400

 600

 800

 1000

 1200

 1400

 10 15 20 25 30 35 40 45 50

ru
nt

im
e

data size

SGQ3

(b) Size change of SGQ3

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1 10 100 1000 10000

P
hy

si
ca

lIO

availible memory size

scan
total

(c) Disk change of SGQ1
 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

SGQ3SGQ2SGQ1

ru
nt

im
e(

m
s)

SGJ
F -index

(d) Comparison between SGJ and Query
Process with F&B-index

Fig. 6. Experiment Results

structural relationship of any two nodes. TwigStack [3] is the best twig join
algorithm to answer all twig queries without using additional index. The idea of
these work can be referenced to process query on graph. But these algorithms
can not be applied on the coding of graph directly.

6 Conclusions

Information in some applications can be naturally stored as graph modeled data.
The processing of graph structured XML data brings new challenges. To process
structural query on graph structured XML data, in this paper, we present reach-
ability labelling scheme for graph structured XML. With such labelling scheme,
the reachability relationship between two nodes in graph structured XML can
be judged efficiently. Based on the labelling scheme, we design graph structural
join and subgraph join algorithms of graph structured XML to perform sub-
graph queries. From experiment, our labelling scheme has acceptable size. The
subgraph join algorithm outperforms the query processing with F&B-index.

Our further work includes designing efficient index structure so support effi-
cient query processing on graph structured XML document.

References

1. Introduction to Algorithms. MIT Press, Cambridge MA, 1990.
2. Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick Koudas, and

Divesh Srivastava. Structural joins: A primitive for efficient XML query pattern
matching. In Proceedings of the 18th International Conference on Data Engineering
(ICDE 2002), pages 141–152, 2002.

Subgraph Join: Efficient Processing Subgraph Queries 79

3. Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: Optimal
XML pattern matching. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data (SIGMOD 2002), pages 310–321, 2002.

4. Donald D. Chamberlin, Daniela Florescu, and Jonathan Robie. XQuery: A query
language for XML. In W3C Working Draft, http://www.w3.org/TR/xquery, 2001.

5. Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras, and Carlo
Zaniolo. Efficient structural joins on indexed XML documents. In Proceedings
of 28th International Conference on Very Large Data Bases (VLDB 2002), pages
263–274, 2002.

6. James Clark and Steve DeRose. XML path language (XPath). In W3C Recom-
mendation, 16 November 1999, http://www.w3.org/TR/xpath, 1999.

7. Haim Kaplan Uri Zwick Edith Cohen, Eran Halperin. Reachability and distance
queries via 2-hop labels. In Proceedings of the thirteenth annual ACM-SIAM sym-
posium on Discrete algorithms (SODA ’02), pages 937–946, San Francisco, CA,
USA, January 2002.

8. Torsten Grust. Accelerating XPath location steps. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data (SIGMOD 2002),
pages 109–120, Hong Kong, China, August 2002.

9. Ronen Shabo Haim Kaplan, Tova Milo. A comparison of labeling schemes for
ancestor queries. In Proceedings of the thirteenth annual ACM-SIAM symposium
on Discrete algorithms (SODA ’02), pages 954 – 963, San Francisco, CA, USA,
January 2002.

10. Haifeng Jiang, Hongjun Lu, Wei Wang, and Beng Chin Ooi. XR-Tree: Indexing
XML data for efficient structural join. In Proceedings of the 19th International
Conference on Data Engineering (ICDE 2003), pages 253–263, 2003.

11. Haifeng Jiang, Wei Wang, Hongjun Lu, and Jeffrey Xu Yu. Holistic twig joins on
indexed xml documents. In Proceedings of 29th International Conference on Very
Large Data Bases (VLDB 2003), pages 273–284, 2003.

12. Tiko Kameda. On the vector representation of the reachability in planar directed
graphs. Information Process Letters, 3(3):78–80, 1975.

13. Raghav Kaushik, Philip Bohannon, Jeffrey F. Naughton, and Henry F. Korth.
Covering indexes for branching path queries. In Proceedings of the 2002 ACM SIG-
MOD International Conference on Management of Data (SIGMOD 2002), pages
133–144, 2002.

14. Quanzhong Li and Bongki Moon. Indexing and querying XML data for regular
path expressions. In Proceedings of 27th International Conference on Very Large
Data Base (VLDB 2001), pages 361–370, 2001.

15. Tova Milo and Dan Suciu. Index structures for path expressions. In Proceedings of
the 7th International Conference on Database Theory (ICDE 1999), pages 277–295,
1999.

16. H. V. Jagadish Rakesh Agrawal, Alexander Borgida. Efficient management of
transitive relationships in large data and knowledge bases. In Proceedings of the
1989 ACM SIGMOD International Conference on Management of Data (SIGMOD
1989), pages 253–262, Portland, Oregon, May 1989.

17. Gerhard Weikum Ralf Schenkel, Anja Theobald. Hopi: An efficient connection
index for complex xml document collections. In Advances in Database Technol-
ogy - EDBT 2004, 9th International Conference on Extending Database Technol-
ogy(EDBT04), pages 237–255, Heraklion, Crete, Greece, March 14-18 2004.

18. Ioannis G. Tollis Roberto Tamassia. Dynamic reachability in planar digraphs with
one source and one sink. Theoretical Computer Science, 119(2):331–343, 1993.

80 H. Wang et al.

19. A. Sayed and R. Unland. Indexing and querying heterogeneous xml collections. In
Proceedings of In 14th International Conference on Computer Theory and Appli-
cations, Alex, Egypt, Septempber 2004.

20. Ralf Schenkel. Flix: A flexible framework for indexing complex xml document
collections. In Proceedings of International Workshop on Database Technologies
for Handling XML Information on the Web(DATAX04), Heraklion, Crete, Greece,
March 2004.

21. Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana
Manolescu, and Ralph Busse. XMark: A benchmark for XML data management.
In Proceedings of 28th International Conference on Very Large Data Bases (VLDB
2002), pages 974–985, 2002.

22. Theis Rauhe Stephen Alstrup. Small induced-universal graphs and compact im-
plicit graph representations. In Proceedings of 2002 IEEE Symposium on Foun-
dations of Computer Science (FOCS ’02), pages 53–62, Vancouver, BC, Canada,
November 2002.

23. C. M. Sperberg-McQueen Franois Yergeau Tim Bray, Jean Paoli. Extensible
markup language (xml) 1.0 (third edition). In W3C Recommendation 04 February
2004, http://www.w3.org/TR/REC-xml/, 2004.

24. Michel Scholl Sotirios Tourtounis Vassilis Christophides, Dimitris Plexousakis. On
labeling schemes for the semantic web. In Proceedings of the Twelfth International
World Wide Web Conference(WWW2003), pages 544–555, Budapest, Hungary,
May 2003.

25. Wei Wang, Haifeng Jiang, Hongjun Lu, and Jeffrey Xu Yu. PBiTree coding and
efficient processing of containment joins. In Proceedings of the 19th International
Conference on Data Engineering (ICDE 2003), pages 391–402, 2003.

26. Joseph Gil Yoav Zibin. Efficient subtyping tests with pq-encoding. In Proceedings
of the 2001 ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA 2001), pages 96–107, San Francisco, CA,
USA, October 2001.

27. Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and Guy M.
Lohman. On supporting containment queries in relational database management
systems. In Proceedings of the 2001 ACM SIGMOD International Conference on
Management of Data (SIGMOD 2001), pages 425–436, 2001.

28. Vassilis J. Tsotras Zografoula Vagena, Mirella Moura Moro. Twig query process-
ing over graph-structured xml data. In Proceedings of the Seventh International
Workshop on the Web and Databases(WebDB 2004), pages 43–48, 2004.

	Introduction
	Preliminaries
	Data Model
	Subgraph Query
	Reachibility Coding

	Subgraph Join
	Preprocess of the Input
	Preprocess for Subgraph Query
	Data Structure for Subgraph Join
	Subgraph Join Algorithms

	Experiments
	Experimental Setup
	Changing System Parameters
	Comparison Experiment

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

