
Similarity Search with Implicit Object Features

Yi Luo1 Zheng Liu1 Xuemin Lin1 Wei Wang1 Jeffrey Xu Yu2

1 The University of News South Wales, Sydney, Australia
{luoyi, zliu, lxue, weiw}@cse.unsw.edu.au

2 The Chinese University of Hong Kong, Hong Kong, China, yu@se.cuhk.edu.hk

Abstract. Driven by many real applications, in this paper we study
the problem of similarity search with implicit object features; that is,
the features of each object are not pre-computed/evaluated. As the ex-
isting similarity search techniques are not applicable, a novel and efficient
algorithm is developed in this paper to approach the problem. The R-tree
based algorithm consists of two steps: feature evaluation and similarity
search. Our performance evaluation demonstrates that the algorithm is
very efficient for large spatial datasets.

1 Introduction

Similarity search is fundamental to many applications involving spatial data
analysis. Many research results [1, 4, 6, 8, 7, 10] have been published in the last
decade, where the most popular similarity model is based on a feature vector
for each data object. In such a model, each data object, available for similarity
search, is represented as a vector, and the similarity between objects is measured
by the distance between the vectors. Such applications include image similarity
retrieval [4, 10], shape similarity search [6, 8] and similarity search on spatio-
temporal trajectories [1, 7].

KNN (the k-nearest neighbor search) is one of the most important similarity
search queries. For a query object q and a query parameter k, KNN is to find
the k objects that are most similar to q [5, 11].

Consider that in many applications, objects for similarity search are not pre-
defined; consequently, the feature vector for each object is not pre-computed and
stored in a database.

For instance, ornithologists may want to identify similar bird communities
for selecting a future research target or for behavior predication. A cluster of bird
nests is an object. In the application, nest positions are changing regularly and
definition of a cluster may vary from time to time because of difference research
orientation. Feature groups are represented as groups of polygons. For example,
the open water map is a feature group, including lakes, rivers and springs as poly-
gons. Other feature groups are the vegetation map including forests of specific
vegetation, the predator distribution map including communities of predatory
birds, and man-made structure map including towns, high ways and villages.
Moreover, maps of rainfall precipitation and temperature should also be consid-
ered; but in these contour maps, each value range could correspond to a feature

group. In the application, a cluster of bird nests can be evaluated based on the
distances to the nearest feature in each feature group, such as the nearest open
water place and the nearest town. Figure 1 illustrates a cluster of nests and a
nearby lake represented as a feature polygon.

Lake

Cluster of Nests

Fig. 1. Ornithology Study

Similar applications lie in road traffic analysis, urban development, crime
analysis, etc.

Motivated by the above applications, in this paper we study the problem
of a non-conventional KNN, where the feature vector of an object is not pre-
computed, namely SSIOF (Similarity Search with Implicit Object Features). In
particular, we study the KNN problem where each object is a set of points in
2-dimensional space, and each object is evaluated against d groups of features
to obtain a d-dimensional feature vector.

By effectively characterizing the results’ properties, we develop an efficient
and novel R-tree based algorithm to evaluate features of each object. Then,
an effective filtering technique is developed to prune away objects (clusters) as
many as possible before a precise computation. These are the contributions of
the paper. Our performance study demonstrates that our techniques are very
efficient to process large spatial datasets.

The remaining paper is organized as follows. Section 2 presents the prelim-
inaries. Section 3 and 4 presents our algorithms and the analysis. Experiment
results are reported in section 5. This is followed by conclusions.

2 Preliminaries

In this section, we start with formally defining the problem and then introduce
some necessary background.

2.1 Statement

In a 2-dimensional space, given n clusters C1, C2, . . . , Cn and d categories/groups
of features π1, π2, . . . , πd. Each cluster Ci is a set of points and each feature is a
polygon. We use Fj to denote a feature and pt as a point.

Suppose the distance between a cluster Ci and a feature(polygon) Fj , denoted
as d(Ci, Fj), is defined as the average Euclidean distance from each point pt in
C to the polygon. Here, the distance between a point and a feature dist(pt, F)

2

is the minimum distance between the point and the edges of the feature. The
aggregational feature evaluation of a cluster Ci with respect to a feature category
πk is the distance from Ci to its nearest polygon in πk, denoted as φ(Ci, πk).
The problem of Similarity Search in Implicit Feature Space (SSIOF) is to find
k most similar clusters to the given cluster C0 based on the following similarity
measure:

Sim(Ci, C0) = ‖(φ(Ci, π1), . . . , φ(Ci, πd)), (φ(C0, π1), . . . , φ(Ci, πd))‖f (1)

‖.‖f is Euclidean or Manhattan distance function; we use the Manhattan
distance in our paper.

2.2 R-tree index

R-tree is a widely used index for spatial objects based on B+-trees, which or-
ganises geometric objects by recursively grouping neighbouring objects and rep-
resenting them by minimum bounding rectangles(MBRs). A node of R-tree cor-
responds to a disk page. An intermediate node maintains a set of MBRs and
pointers which represent the children nodes, while a leaf node contains a set of
spatial objects with their positions in the database. Fig. 2 shows an instance of
R-tree.

d e f j k

m nl

e4
d

f

g

n

x
O

i

a

kj e6
e3 e4

e0

e5 e6 e7

c g ih

h

e5

m

e1

c

e

b
e3

e2

e7

l

y

e6

e7

e1 e2

e1 e2

a

e3

b

e4

e5

R3

Fig. 2. R-Tree Example

In this paper, we choose one of the most popular variations R∗-tree to index
each feature categories and perform our evaluations. Each polygon is represented
by its MBR first, then those MBRs is indexed by R∗-tree.

3 Evaluation and Search (ES) Algorithm

Our proposed algorithm ES for solving the SSIOF problem contains two major
steps:

1) Feature Evaluation: in this step, we try to find all possible feature candi-
dates for each pair of cluster and feature group.

2) Similarity Search: this step is to compute the k most similar clusters to
the query C0, based on the candidates outputted in the previous step.

3

3.1 Feature Evaluation

Let NCi
be the MBR of a cluster Ci with 4 edges r1, r2, r3 and r4; and NFj

be
the MBR of a feature polygon Fj with 4 edges s1, s2, s3 and s4. We assume that
NCi and NFj do not overlap. We will first define some useful metrics between
MBR’s for later discussion.

L(rk, sl) denotes the minimum distance between two points falling on rk and
sl, and U(rk, sl) denotes the maximum distance between two points falling on rk

and sl[2]. Thus the minimum of distance between two points contained in NCi

and NFj
can be expressed as:

minL(NCi , NFj) = min{L(rk, sl)} (2)

Similarly, we have:

minU(NCi
, NFj

) = min{U(rk, sl)} (3)

We also define the following distance. For the cluster C and polygon F ,

maxminU(NCi
, NFj

) = max
k
{min

l
{U(rk, sl)}} (4)

Figure 3 shows the different metrics.

C

C

C

C

LB

minL(,)

minU(,)

maxminU(,)/UB
NFj

iN

N i

N i

N i N jF

N jF

N jF

b(C)i

Fig. 3. Distance Matrices

Pruning With the Lower and Upper Bounds
In the SSIOF problem, the similarity isn’t measured between points but

clusters and polygons, so it’s too expensive to compute precise distances on
pairs of clusters and features, which makes it necessary to use relatively tight
lower and upper bounds for pruning. Then precise distances could be computed
only on a small set of clusters and features.

Consider a cluster Ci bounded by MBR NCi and a feature Fj in MBR NFj ,
the lower and upper bounds of the distance between these two are :

dLB(Ci, Fj) = L(b(Ci), NFj) (5)

and
dUB(Ci, Fj) = maxminU(NCi , NFj). (6)

4

b(Ci) in the Equation 5 is the centroid of the cluster Ci computed by the av-
erage coordinates of all points in Ci on each dimension. We use L(b(Ci), NFj) to
denote the minimal distance between b(Ci) and a point in rectangle N(Fj). The
lower and upper bounds are illustrated in Figure 3 as LB and UB respectively.

The correctness of lower bound is proved in [9]. By definition, d(C,F) is the
average of dist(pt, F) for all pt ∈ C. Based on the inequality:

K∑

i=1

√
x2

i + y2
i ≥

√√√√(
K∑

i=1

xi)2 + (
K∑

i=1

yi)2

d(C, F) is no less than the distance from b(C) to some points inside NC ,
which is no less than L(b(C), NF).

Lemma 1 shows the correctness of the upper bounds.

Lemma 1. For a cluster Ci in MBR NCi
and a feature Fj in MBR NFj

, the
upper bound of d(Ci, Fj) is maxminU(NCi , NFj).

Proof. Suppose that NFj
is bounded by sl (l = 1..4). Since NFj

is the minimal
bound rectangle of Fj , there must be at least a point of Fj on each sl. Thus the
upper bound of dist(pt, Fj) equals minl U(pt, sl). Consider all points on NCi ,
the upper bound of d(Ci, Fj) is maxpt∈Ci dist(pt, Fj), which is no larger than
maxminU(NCi , NFj). ut

When NFj and NCi overlaps, it can be immediately verified that the above
bounds hold. When a feature group is indexed by an R-tree, the lemma still holds
if we change NFj to the MBR of an R-tree node. This gives us the opportunity
to prune features while traversing the index.

R-tree Based Pruning
Making use of the index on each feature group could speed up the process of

feature evaluation. Next we will introduce the pruning technique for a feature
group πk indexed by an R-tree Tπk

, as shown in Algorithm 1. Each node of Tπk

corresponds to a disk page. To lower the disk I/O cost, we traverse Tπk
using

the following strategy which allow us to visit each R-tree node at most once.
The goal is to find a set of candidate features for each cluster. For each

cluster Ci, we maintain a candidate list L(Ci, πk), implemented as a heap. Each
list entry e is either the MBR of an non-leaf R-tree node or the MBR of a
feature polygon, corresponding the intermediate levels and the leaf level in the
R-tree. As mentioned above, the lower and upper bounds hold on both kinds
of MBRs, denoted as dLB(Ci, e) and dUB(Ci, e). For any pair of entries in the
list, their bounds overlap. φLB(Ci, πk), φUB(Ci, πk) and q(Ci, πk) are used to
record the minimum of dLB(Ci, e), the minimum of dUB(Ci, e) and the maximum
of dLB(Ci, e) for each list, respectively. φLB(Ci, πk) = φUB(Ci, πk) = ∞ and
q(Ci, πk) = 0 initially.

At the beginning of Algorithm 1, we assume the root of Tπk
is a candidate for

all clusters, and insert it in all lists. In each iteration from Line 2 to Line 10 in

5

Algorithm 1 Feature Evaluation
Input: clusters Ci (i = 0..n), R-tree of πk Tπk .
Output: φLB(Ci, πk), φUB(Ci, πk), feature list L(Ci, πk).
Description:
1: repeat
2: for each cluster Ci do
3: let e be the non-leaf entry in L(Ci, πk) with minimal dLB(Ci, e);
4: for each cluster Cj containing e do
5: replace e with its children in Tπk ;
6: remove entries er if dLB(Cj , er) ≥ φUB(Cj , πk);
7: update φLB(Cj , πk), φUB(Cj , πk), q(Cj , πk);
8: if q(Cj , πk) ≥ φUB(Cj , πk) then
9: remove entries er if dLB(Cj , er) ≥ φUB(Cj , πk);

10: update q(Cj , πk);
11: until entries in L(Ci, πk) for all i are leaf entries

Algorithm 1, the lists are visited in a round-robin fashion. A non-leaf entry with
the minimum lower bound dLB(Ci, e) is selected for the current list. Here, a non-
leaf entry means the corresponding R-tree node is not a leaf node. We replace it
by its children in the R-tree in all lists. A child er is inserted into Cj ’s list, when
its low bound dLB(Cj , e) isn’t less than φUB(Cj , πk), the minimum upper bound
of all entries in the list. After updating φLB(Cj , πk), φUB(Cj , πk) and q(Cj , πk),
we verify the list and filter those entries whose lower bounds dLB(Cj , e) is greater
than the updated φUB(Cj , πk). This verification could be skipped when q(Ci, πk)
is between φLB(Ci, πk) and φUB(Ci, πk). We repeat these steps until there is not
any non-leaf entry in all lists.

3.2 Similarity Search

In this section, we will discuss how to compute the exact distances between
pairs of clusters and feature groups based on the generated candidate features
for answering the SSIOF queries. Our goal is the find the cluster most similar
to the query C0 while minimising the computation complexity.

Algorithm 2 presents the overview of the similarity search step.
The input parameter L(Ci, πk) is the candidate list for cluster Ci and feature

group πk. Function ComputeExact(Ci, πk) in Line 1 and 5 computes the exact
distance between Ci and feature group πk. Cmin is the cluster with minimal
SimLB(Ci, C0). SimLB(Ci, C0) and SimUB(Ci, C0) denote the lower and upper
bound of similarity between Ci and C0, as computed from the input as follows.

Firstly φ(C0, πk) are pre-computed for all feature groups. Suppose fL =
φLB(Ci, πk)− φ(C0, πk) and fU = φUB(Ci, πk)− φ(C0, πk), then we have

LBi,j =
{

0 fL × fU < 0
min(|fL|, |fU |) otherwise

and
UBi,j = max(|fL|, |fU |).

6

Algorithm 2 Similarity Search
Input: L(Ci, πk) for i = 0..n, j = 1..d, cluster set {Ci(i = 0..n)}
Output: The cluster Ci with minimal Sim(Ci, C0) (i 6= 0).
Description:
1: ComputeExact(C0, πk) for all j; remove C0 from cluster set;
2: result = ∞;
3: while SimLB(Cmin, C0) ≤ result do
4: for all feature groups πk do
5: ComputeExact(Cmin, πk);
6: if SimLB(Cmin, C0) > result then
7: break; //from FOR
8: result = min{result, Sim(Cmin, C0)};
9: remove Cmin from cluster set;

10: return all clusters Ci with Sim(Ci, C0) = result.

Thus,

SimLB(Ci, C0) =
∑

j

LBi,j

SimUB(Ci, C0) =
∑

j

UBi,j

For example, the results of the feature evaluation step, including the lower
bound (φLB(Ci, πk)) and upper bound φUB(Ci, πk) are stored in a 2-dimensional
array as shown in Figure 4. The initial bound of similarity between Ci and C0

are computed as shown on the last column.

π1 π2 π3 Sim(Ci, C0)

C0 6 2 9 [0, 0]

C1 [3, 4] [11, 12] [8, 9] [11, 14]

C2 [8, 12] [1, 11] [9, 14] [2, 20]

C3 [4, 7] [2, 4] [10, 10] [1, 5]

Fig. 4. Similarity Evaluation

The clusters are sorted on lower bound of Sim(Ci, C0) and iteratively com-
puted for precise similarity, until the next lower bound is larger than an already-
found result. This sequence can minimise the number of clusters that is precisely
computed. Also in Line 6, after each calling of ComputeExact, the current lower
bound of similarity is refined using the exact distance returned from the func-
tion, and is compared with the result, which greatly reduce the number of feature
groups need to be computed.

For the example in Fig. 4, the cluster C3 is first chosen since lower bound
of Sim(C3, C0) is the minimal in all clusters. Suppose its precise similarity is 3.
The next cluster is C2. After calling ComputeExact(C2, π1), assume the lower
bound of Sim(C2, C0) is updated to be 4, which is larger than the current result
3. As a result, C2 is dropped as it can not be the result. Also the lower bound

7

of Sim(C1, C0) is larger than the current result 2, and C1 is eliminated as well
and the final result C3 is returned.

Lemma 2. Algorithm 2 gives the correct answer to the similarity search query.

Proof. Consider the case that Algorithm 2 returns Ci as result and the exact
answer is Cj where i 6= j. This is impossible since after Ci is precisely com-
puted, the lower bound of Sim(Cj , C0) must be smaller than Sim(Ci, C0), in
consequence, Cj is chosen to be precisely computed and Cj should be returned
instead of Ci. ut

Also, it is easy to see that Algorithm 2 minimize the number of chosen clus-
ters. Suppose that the cluster returned is Cr with result r, and there exists an
algorithm A which minimizes the number of chosen clusters. In algorithm A, a
cluster Ci such that lower bound of Sim(Ci, C0) is larger than r must not be
visited while all other clusters must be considered for precise computation. This
is exactly the case of Algorithm 2. For a cluster Ci that SimLB(Ci, C0) > r,
SimLB(Ci, C0) > SimLB(Cr, C0). Thus in Algorithm 2, Cr is chosen before Ci.
After processing Cr, result is updated to r and Ci are dropped.

Edge Pruning
ComputeExact(Ci,πk) is used to compute the exact distances between a clus-

ter Ci and a feature group πk. It need to calculate all the distance between the
points in Ci and the candidate features in every feature groups. The brute-force
way is to compute the distance between a point and every edge in some feature
and choose the minimum one as the distance of the point to the feature. We
proposed some techniques that can avoid useless computations and save much
more time than the brute-force way.

p1

p2

a

b

c
d

s1 s2

s4 s3

Fig. 5. Edge Pruning

The optimisation comes from reducing feature edges need to be computed.
As shown in Figure 5, the rectangle is the minimum bounding rectangle of a
certain feature. By extending the four edges of the MBR, we partition the whole
space into 8 areas expect the MBR itself. s1, s2, s3ands4 are vertices of the MBR

8

and a, b, c and d are four edges on the feature. p1 and p2 are points belonging to
some cluster.

Take p1 as an example. It need calculating all the distance between p1 and
all edges of the feature in the brute-force way. In fact, we can found that the
minimum distance from p1 to the feature must be the minimum distance of p1

to one of the four edges a, b, c and d. In case of p2, the minimum distance from
p2 to the feature must be the minimum distance of p2 to one of the two edges c
and d.

To formalise, if the project of a point pk to the closest edge sisj of the MBR
falls in the edge, then we only need to compute such kind of edges that sisj can
be project on. If not, suppose the nearest vertex of MBR to p is si, only the
edges that si can be project on are computed.

To further reduce the time complexity, edge projections of a feature are
computed at most once and then stored in memory for all other points. Also,
when the MBR of a cluster is wholly contained in one of the 8 areas, it is not
necessary to check the position of each point any more.

Extend to k-clusters
The above algorithm is extended to return the k clusters which are most

similar to the given cluster C0. In Line 8 of Algorithm 2, variant result should
be set to the k-th lowest similarity,and k most similar clusters are returned in
Line 13.

4 Discussion

As mentioned in the above section, for a node on the R∗-tree, we visit it at
most once. In each step, the node to be visited is chosen considering only one
cluster while ignoring the preference of other clusters. This searching strategy is
based on an assumption that the number of clusters is relatively small, since the
strategy sacrifices local optimization for each cluster to achieve a better global
I/O cost. Since reading disk is much more costly than in-memory computation,
our algorithm works well when the number of clusters is not too large.

For the case that the number of clusters is so large that the sacrifice of local
computation is unbearable, we can use following divide-and-conquer strategy
which is similar to the Nested Loops Join. We first partition the clusters into
several parts by grouping near clusters. Then we use our proposed algorithm on
each part of clusters. In this case, if there are n groups of clusters, each node of
an R∗-tree is visited for at most n times.

5 Experiments

We implemented our proposed ES algorithm and evaluate its performance on
synthetic data. We use the algorithm CPM (Compute Proximity Matching) as
a benchmark based on [9]. The algorithm CPM solves a problem that is similar

9

to our problem assuming the number of feature polygons is relatively small and
there is no spatial index built on the features. It reads the relevant clusters into
buffer first, then read features batch by batch into buffer and determine their
groups. For each cluster Ci and feature group πj , it computes the approximate
distance between Ci and each feature in πj for filtering out features that are too
far from Ci. Maintain a list of candidate features for computing φ(Ci, πj). Then it
computes the approximate similarity for each cluster and filter out clusters that
are not the solution. Finally it calculates the exact similarities to the remaining
clusters and their associate features, and return the query result.

Suppose the number of cluster is n and the number of features is m. Feature
number is the same in each of the g features groups. The number of points in
each cluster is nc and nf gives the number of edges in each feature polygon. In
the experiments, average nc is 100 and average nf is 15.

To generate data, we firstly generate m + n rectangles that are uniformly
distributed in the 2-dimensional space. The size of rectangles are randomly cho-
sen within a limited range. Number of features in each group is determined such
that the summary is m. Rectangles corresponding to the clusters or a features
group do not intersect with each other. In each of n rectangles, nc points are
uniformly generated, based on which the MBRs are computed. This gives the nc
clusters. In each of the remaining rectangles, nf points are randomly generated.
To generate a simple polygon which is linked by the nf points. We will apply a
Graham’s scan-like algorithm [3].

We use R∗-trees, a variant of R-tree, to index the feature groups. Two al-
gorithms CPM and ES are implemented using C++, Experiments are run on
a Linux machine with 1.8G P4 CPU and 512M memory. For each dataset, we
process extensive queries and get the average result.

5.1 Scalability Comparison

We first compare the algorithms with different number of clusters, ranging from
200 to 1000. 100000 features are clustered in 10 groups. The experiment results
are shown in Figure 6.

The first sub-figure compares the I/O cost, which is the summary of the
number of pages that corresponding to R∗-tree index and features. CPM does
not use index, but reads a large amount of features; ES reads a small number
of index pages in the first step and a few features in the second step. It is clear
that the I/O cost of ES is much smaller than CPM .

User time for precessing a query is compared in the second sub-figure of Fig.
6. For 1000 clusters, ES responds in about 42 seconds while CPM needs nearly
5 minutes to get the result.

We also study the performance of both algorithms with different number
of features. Feature number varies from 5000 to 100000. There are 10 feature
groups and the number of clusters is set to 200. Results are shown in Fig. 6.
Similar with the previous experiments, the first sub-figure shows the I/O cost
while the second compares the precessing time.

10

 0

 50000

 100000

 150000

 200000

 0 200 400 600 800 1000

V
is

it
N

od
e

N
um

be
r

Cluster Number

CPM
ES

(a) I/O

 0

 100

 200

 300

 400

 0 200 400 600 800 1000

U
se

r
T

im
e(

s)

Cluster Number

CPM
ES

(b) Time

Fig. 6. Compare Cluster Number

With 100000 features, our algorithm processes a query in 6 seconds and less
than 6000 disk pages read in memory, compared with large I/O cost and more
than 1 minute processing time of CPM .

 0

 50000

 100000

 150000

 0 50000 100000

V
is

it
N

od
e

N
um

be
r

Feature Number

CPM
ES

(a) I/O

 0

 20

 40

 60

 80

 100

 0 50000 100000

U
se

r
T

im
e(

s)

Feature Number

CPM
ES

(b) Time

Fig. 7. Compare Feature Number

5.2 Dimensionality Comparison

We evaluate our algorithm with different dimensionality of feature space. The
number of feature group varies from 2 to 20. 100000 features are categorised
to the feature groups and number of clusters is 200. Fig. 8 shows the I/O cost
and user time of the two algorithms, which demonstrates the large performance
difference between the two algorithms.

6 Conclusions

In this paper, a similarity search problem which is based on an implicit feature
space is investigated. By making use of the spatial indexes like R-trees built on
the feature categories, we present an effective algorithm for the queries, which
consists two steps: feature evaluation and similarity search. Experiments show
the efficiency of the algorithm on all cases.

For the future work, we will investigate the problem of similarity join, which
joins a set of clusters to itself, with respect of d different categories of features.

11

 0

 50000

 100000

 150000

 20 15 10 5 2

V
is

it
N

od
e

N
um

be
r

Feature Group #

CPM
ES

(a) I/O

 0

 30

 60

 90

 120

 20 15 10 5 2

U
se

r
T

im
e(

s)

Feature Group #

CPM
ES

(b) Time

Fig. 8. Compare Feature Group Number

References

1. Yuhan Cai and Raymond Ng. Indexing spatio-temporal trajectories with chebyshev
polynomials. In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD interna-
tional conference on Management of data, pages 599–610, New York, NY, USA,
2004. ACM Press.

2. Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael Vassi-
lakopoulos. Closest pair queries in spatial databases. In SIGMOD ’00: Proceedings
of the 2000 ACM SIGMOD international conference on Management of data, pages
189–200, New York, NY, USA, 2000. ACM Press.

3. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry - Algorithm and Applications. Springer-Verlag, Berlin, 1997.

4. Christos Faloutsos, Ron Barber, Myron Flickner, Jim Hafner, Wayne Niblack,
Dragutin Petkovic, and William Equitz. Efficient and effective querying by im-
age content. Journal of Intelligent Information Systems, 3(3/4):231–262, 1994.

5. Gı́sli. R. Hjaltason and Hanan Samet. Distance browsing in spatial databases.
volume 24, pages 265–318, New York, NY, USA, 1999. ACM Press.

6. H. V. Jagadish. A retrieval technique for similar shapes. In SIGMOD ’91: Pro-
ceedings of the 1991 ACM SIGMOD international conference on Management of
data, pages 208–217, New York, NY, USA, 1991. ACM Press.

7. Tamer Kahveci, Ambuj K. Singh, and Aliekber Gürel. Similarity searching for
multi-attribute sequences. In SSDBM ’02: Proceedings of the 14th International
Conference on Scientific and Statistical Database Management, page 175, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

8. Hans-Peter Kriegel, Stefan Brecheisen, Peer Kröger, Martin Pfeifle, and Matthias
Schubert. Using sets of feature vectors for similarity search on voxelized CAD
objects. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 587–598. ACM Press, 2003.

9. Xuemin Lin, Xiaomei Zhou, and Chengfei Liu. Efficient computation of a proximity
matching in spatial databases. Data Knowledge Engineering, 33(1):85–102, 2000.

10. Apostol Natsev, Rajeev Rastogi, and Kyuseok Shim. WALRUS: a similarity re-
trieval algorithm for image databases. pages 395–406, 1999.

11. Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. Nearest neighbor
queries. In SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD international
conference on Management of data, pages 71–79, New York, NY, USA, 1995. ACM
Press.

12

