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Abstract

Aggregation against distinct objects has been involved in
many real applications with the presence of duplicates, in-
cluding real-time monitoring moving objects. In this pa-
per, we investigate the problem of counting distinct objects
over sliding windows with arbitrary lengths. We present
novel, time and space efficient, one scan algorithms to con-
tinuously maintain a sketch so that the counting can be
approximately conducted with a relative error guarantee
ǫ in the presence of object duplicates. Efficient query al-
gorithms have also been developed by effectively utilizing
the skyband property. Moreover, the proposed techniques
may be immediately applied to the range counting aggrega-
tion and heavy hitter problem against distinct elements. A
comprehensive performance study demonstrates that our
algorithms can support real-time computation against high
speed data streams.

1 Introduction

Many recent applications in real-time monitoring moving
objects require on-line counting of distinct objects. For
instance, in real-time traffic management it is desirable to
monitor the traffic volume of an area over a time frame;
this is usually done by counting the number of distinct ob-
jects. In wireless communication management, the num-
ber of distinct users at a station is a key measurement of
“popularity” of the area covered by the station. Counting
distinct objects is also required in many other applications.
For instance, in a stock market surveillance system, it is
important to monitor the number of distinct clients in real-
time in addition to the total number of transactions, the
prices, etc. Moreover, counting distinct objects is a key
component in an estimation of join results in join process-
ing optimization; consequently on-line counting distinct
objects may be applied to the join processing optimiza-
tion among data streams.

In the above applications, datasets may be massive in
size and fast in update speed. Therefore, in the context of
real-time monitoring regarding the applications above, it is
desirable to read database only once (i.e., one scan). Nev-
ertheless, the challenge is that it is impossible to count the
number of distinct elements by only one-scan of a dataset
unless the whole dataset fits in memory. This makes it im-
practical to exactly counting distinct objects in real-time.

Flajolet and Martin [7] provide the first one-scan tech-
nique to build a sketch so that approximately counting

distinct objects has the precision guarantee |n′−n|
n ≤ ǫ (ǫ-

approximation) with the confidence 1 − δ (δ > 0) and the
space of O( 1

ǫ2 log 1
δ log m) bits where n′ is an approxima-

tion of n distinct elements, and m is the object domain
size. Bar-Yossef et. al. in [1] improves the efficiency of the
technique of [7].

While the techniques cited above have been shown very
space and time efficient to achieve ǫ-approximation, they
do not deal with the concept of aging. They are not ap-
plicable to sliding windows. On the other hand, there are
a broad spectrum of applications where data objects ob-
served early could be outdated and counting the most re-
cently observed (sliding windows) distinct data elements
is more important. For instance, in a real-time traffic
management, counting distinct vehicles over the most re-
cent traffic may provide more accurate prediction towards
traffic volume changes than that over all observed vehicle
movements as traffic changes from time to time. Similarly,
sliding windows are also crucial in the other two applica-
tions above.

Datar et. al. [5] provide the technique of exponential
histogram to approximately counting the number of objects
over sliding windows with variable lengths. It requires the

space O(1
ǫ log w) to enforce ǫ-approximation where w is

the maximum number of objects encountered by a sliding
window. While space and time efficient, the technique is
not applicable to counting distinct elements.

An efficient off-line technique is developed by Tao et.
al. in [16] to build space effective techniques to approxi-
mately count distinct objects against time intervals. In or-
der to accommodate any time interval, it requires to create
a sketch at each time-stamp which has a different sketch
than the last sketch. Consequently, a huge storage space
may still be required if there are massive sketch changes;
thus, the techniques are applicable only to off-line com-
putation against historical data. Gibbon [8] develops a
novel one-scan distinct sampling technique to estimate the
result size of an arbitrary query. Applying it to counting
distinct elements over sliding windows requires a pre-fixed
sample size of O( 1

ǫ2 log 1
δ

√
m) to enforce ǫ-approximation

with (1− δ) confidence, according to Theorem in [8].
Motivated by this, in this paper we present novel, time

and space efficient, one-scan algorithms to continuously
maintain sketches to approximately count the number
of distinct objects against sliding windows of arbitrary
lengths with ǫ-approximation. Our contributions may be
summarized as follows:
1. We develop novel, one-scan, space and time efficient

sketch techniques, based on FM algorithms [7]. Our
techniques guarantee ǫ-approximation by 1 − δ con-
fidence with the space of O( 1

ǫ2 log 1
δ log m) machine

words; this greatly reduces the space requirement in
[8]. Consider that approximately counting distinct ele-
ments over sliding windows is much more sophisticated
than that over whole streams. The space requirement
of our techniques is near optimal as even counting a
whole stream needs the space of O( 1

ǫ2 log 1
δ log m) bits

[1, 7] to ensure ǫ-approximation with 1− δ confidence.
2. The sketch technique above has O( 1

ǫ2 log 1
δ ) subsketches

and a query algorithm has to process every sub-sketch.
Consequently, our query algorithm, against FM-based
sketches above runs in O( 1

ǫ2 log 1
δ log log m) time. To

speed up query processing time, we develop another
time and space efficient sketch techniques based on the
algorithm in [1]. To enforce ǫ-approximation with 1− δ
confidence, our second sketch technique only requires
O(log 1

δ ) subsketches. By converting the sketch prob-
lem to the “k-skyband” problem [14], novel and effi-
cient techniques have been developed to continuously
maintain k-skyband in a 2-d space when k is large. By
effectively utilizing the property of a skyband, we show
that our query algorithm runs in time O(log 1

δ log M)
where M , the maximum size of a subsketch, is (ex-
pected) O( 1

ǫ2 log n). Consequently, our second query

algorithm runs in (expected) O(log 1
δ (log 1

ǫ + log log n))
time.
A comprehensive performance study demonstrates that

our techniques can approximately counting distinct objects
in real-time over high speed data streams (updates) with
high accuracy and a small space requirement.

The rest of the paper is organised as follows. Section 2
presents problem definitions and related work. In Section
3, we present our first contribution of the paper. Section 4
presents the second contribution. In Section 5, we report
our experiment results. Section 6 concludes the paper.



2 Background Information

We first state the problem. Then we present the related
work.

2.1 Problem Statement

We model a set of observations by data streams. Each
observation is treated as an element in a data stream and
is represented by e = (x, t) where x is an object ID and t is
the time-stamp. Note that for two data elements e = (x, t)
and e′ = (x′, t′), t > t′ iff e comes later than e′; that is, e
is younger than e′. Although e 6= e′, x could be the same
as x′; that is, the same object is observed twice at t and
t′, respectively.

In a collection S of data elements, there may be many
elements with the same object ID (e.g., objects are moving
around and observed multiple times). DS denotes the set
of distinct object IDs in S. In this paper, we study the
following counting problem.

Distinct Counting against Sliding Window(DCSW).
For a given t, let St denote the data elements observed after
(inclusive) t and DS,t denote the set of distinct object IDs
contained in St. We compute |DS,t| for any t and denote
|DS,t| by nS,t.

We investigate the problem of answering DCSW queries
with the precision guarantee of ǫ-approximation; that is,

to enforce |n′−n|
n ≤ ǫ where n′ is an approximate solution

of n.
Problem Description. We investigate the problem of
continuously maintaining a sketch (consisting of several
sub-sketches) over a data stream S such that for any given
t, the sketch can be used to return an ǫ-approximate an-
swer to nS,t. The aim is to minimize the maximum memory
space required in such a continuous computation, as well as
to process high-speed data streams in real time.

2.2 Related Work

We briefly overview the techniques in [1, 7, 16]. They are
most closely related to our work.

2.2.1 FM Algorithm

Suppose that S is a collection of elements whose domain
is D. FM algorithm [7] proceeds as follows.

Let B be a bitmap of length k with subindexes [0, k−1].
Suppose that h() is a randomly generated hash function
D → B, such that ∀x ∈ D, 1) for each bit, h(x) has the
equal opportunity to have 0 or 1, 2) h(x) is enforced to
have one and only one bit with value 1, and 3) h(x) assigns
the last bit (the bit with subindex k − 1) with value 1 iff
the first k − 1 bits (from left) take value 0. To enforce
property 2), h(x) may be interpreted as a serial binary
hash functions that start from the first bit and terminate
once the current bit is assigned by value 1. It can be
immediately shown [2] that on average, h() runs in time
O(1) (two calls of a binary hash function) per data element
and the probability of having the ith bit with value 1 is

1
2i+1 . In our implementation, we use the public code from
Massive Data Analysis Lab [11] to randomly generate such
hash functions.

A FM sketch on S is defined as FM(S) =
∨

x∈S h(x),
where FM(S) is a bitmap with length k and the ith bit of
FM(S) takes value 1 iff ∃x ∈ S such that h(x) assigns the
value 1 to the ith bit. We define FMmin(S) as follows:
• If i is the least bit (from left) with value 0, FMmin(S)

is defined as i.• Otherwise, FMmin(S) is defined as∞ (in our implemen-
tation, we define FMmin(S) as k).
To improve the accuracy of FM algorithm, multiple

copies (say, l) of FM sketches are constructed. Therefore,
each data element is hashed into l FM sketches, FM1(S),

FM2(S), ... , FMl(S), respectively. The number nS of
distinct elements in S is estimated by:

AS =
1

ϕ
2
∑

l

i=1
FMi,min(S)/l. (1)

Here, ϕ
def
= 2E(FM1,min(S))/nS ,1 and each FMi,min(S) re-

lated to FMi(S) is defined in the same way as FMmin(S)
related to FM(S). As shown in [7], E(FMi,min(S)) =
E(FMj,min(S)) (1 ≤ i < j ≤ l). From the insight in Sec-
tion 3.2 in [4], Theorem 2 in [7], and the Central Limit
Theorem (pp 229 in [6]), the following lemma can be im-
mediately verified using the independence assumption.
Lemma 1 Suppose that AS is returned by FM algorithm
as shown in (1). Then, P (|AS − nS | < ǫnS) ≥ 1 − δ,
for any given 0 < δ < 1 and 0 < ǫ < 1, if nS > 1

ǫ ,

k = O(log m + log ǫ−1 + log δ−1), and l = O( 1
ǫ2 log δ−1),

where m = |D|.
2.2.2 BJKST algorithm

In [1], a novel variation of FM algorithm, BJKST algo-
rithm, has been proposed to speed-up the computation,
while the accuracy and the space-efficiency can be retained.
It proceeds as follows. First, we pick at random a pairwise
independent hash function h to hash D to [1, m3] where
D is the domain of data elements x and |D| = m. The
following Lemma has been shown as folklore.

Lemma 2 If m ≥ δ−1 then h is injective over S with
probability at least 1− δ.

Based on this, BJKST algorithm always keeps the k
smallest elements (i.e. with the k smallest distinct hash
values) and uses the following AS to estimate nS

AS =
k ×m3

fk min
. (2)

Here, fk min is the kth smallest distinct hash value. If
there are less than k distinct values, then AS =∞ (in our
implementation, we assign AS as k′ (k′ ≤ k) if there are
only k′ distinct values). To improve the accuracy, BJKST
algorithm picks at random l pairwise independent hash
functions hi (hashing D to [1, m3]), and outputs Ai,S for
each hi where Ai,S (for 1 ≤ i ≤ l) related to hi is defined
in the same way as AS related to h. BJKST algorithm
outputs AS as the median of these Ai,S to estimate nS.
BJKST algorithm keeps only k elements with the k small-
est distinct hash values. The following Lemma 3 has been
proved in [1].

Lemma 3 Suppose that 0 < ǫ, δ < 1. If m ≥ δ−1, k =
O( 1

ǫ2 ), l = O(log δ−1), and nS ≥ k, then P (|AS − nS | <
ǫnS) ≥ 1− δ.

2.2.3 Spatio-Temporal Aggregation

Regarding counting distinct spatial objects intersecting a
spatial region, Tao et. al. [16] observe that the space re-
quired to exactly count distinct spatial objects intersecting
a spatial region is Ω(N) where N is the number of observa-
tions. To reduce space, they proposed to use FM algorithm
to build space-efficient sketches to approximately conduct
the computation.

To support an arbitrary time interval, an FM sketch is
constructed against a batch of new observations with the
same time stamp. A sketch at time-stamp t2 is kept if it is
different than that generated at time t1 where t1 is largest
time-stamp but smaller than t2 (i.e. t1 and t2 are con-
secutive). Consequently, O(N ) FM sketches are required
to be maintained with the total space O(N 1

ǫ2 log 1
δ log m)

1As E(FM1,min(S)) cannot be explicitly represented and nS is un-
known, in our implementation we approximately choose ϕ as 0.775351
according to the approximate results in [7].
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to guarantee ǫ-approximation where N is the number of
observation batches. To support efficient off-line compu-
tation, an aRB like [13] index is developed in [16]. Clearly,
it is quite space efficient when N ≪ N . Nevertheless, the
technique is not applicable to data streams where N often
equals O(N).

3 FM-based Sketches

Our techniques are based on the following observation. For
a dataset S, if we first select the data elements from S with
time-stamp values not smaller than a given t (the result is
denoted by S|t+) and apply FM Algorithm on S|t+ , then
the obtained estimation AS,t of the number nS,t of distinct
objects in S|t+ follows Lemma 1.

Below, we first present a novel, space-efficient data struc-
ture (sketch) by using FM algorithm. Then, we present
space- and time-efficient algorithms to continuously main-
tain such sketches to achieve an ǫ-approximation.

3.1 The Framework

The following example illustrates the basic idea in our
framework based on FM algorithm.

0 10 0 0 00 1 0 00 1 1 00 0 1 00 0

(x2, 5)(x3, 2) (x3, 3) (x4, 4)(x1, 1)

(a): by first hash function

(x1, 1)

0 01 0 1 00 0 1 00 0 0 1 00 0

(x3, 2) (x3, 3) (x4, 4)

0 01

(b): by second hash function

(x2, 5)

Figure 1: An Example

As shown in Figure 1, there are 5 data elements (x, t)
where the second and the third represent two occurrences
of the same object x3. Suppose that in FM algorithm l = 2
and k = 4. Two hash functions h1 and h2 are randomly
picked to hash each element, respectively. The total 10
bitmaps with length 4 are generated, respectively, by h1

and h2, as depicted in Figure 1(a)-(b).
To effectively keep values information, we map a bitmap

into an array by replacing the bit with value 1 by its cor-
responding time-stamp. Figure 2 shows the corresponding
arrays converted from the bitmaps in Figure 1.

0 10 0 0 00 2 0 00 3 4 00 0 5 00

(x3, 2) (x3, 3) (x4, 4)(x1, 1)

(a): by first hash function

(x1, 1)

0 01 0 2 00 0 3 00 0 5 00 0

(x3, 2) (x3, 3) (x4, 4)

0 04

(b): by second hash function

(x2, 5)

(x2, 5)

0

0

Figure 2: Transformed from Figure 1

For a time t and a hash function j (jth subsketch), to es-
timate nS,t (number of distinct elements arriving no earlier
than t) by using FM algorithm we first select the arrays
generated by hj such that their corresponding non-zero
values not smaller than t, then find the left-most common
element with value 0 and return its subindex as fj,t.

Example 1 Let t = 2 and j = 1. Regarding Figure 2
(a), the 2nd array, 3rd array, 4th array, and 5th array are
selected. Then, f1,2 = 0 (i.e. the subindex of the left-most
common element, 1st element, in these arrays). Here, the
2nd and 4th arrays are redundant.

Clearly, computing fj,t, by this way, is equivalent to
what have been discussed in the beginning of this section;
that is, we do a selection on S to output S|t+ ; then apply
hj on S|t+ and use FM Algorithm to get FMj,min(S|t+)
(= fj,t). Moreover, this example also demonstrates that if

two arrays have non-zero values allocated in the same po-
sition, the one with smaller time-stamp value (older) will
never be used in any query (i.e., regarding any t); conse-
quently, this redundant array should be removed. There-
fore, in the worst case we only keep k arrays where k is
the length of bitmaps in the hash functions. Furthermore,
after removing redundant arrays the remaining arrays gen-
erated by hj can be merged into one array with non-zero
values remain in the same positions, respectively.

Example 2 Regarding the example in Figure 2(a), 2nd
and 4th arrays are redundant and thus, are removed. The
merged result is depicted in Figure 3(a). For the example
in Figure 2(b), 2nd and 3rd arrays are redundant. The
merged result is depicted in Figure 3(b).

(a): result by 1st hash function (b): result by 2nd hash function

0 5 3 1 1 5 4 0

Figure 3: Compressed from Figure 2

Below, we present our continuous sketch construction
and maintenance algorithm in Algorithm 1. We maintain
l arrays {si : 1 ≤ i ≤ l} each of which is generated, as de-
scribed above, by a randomly picked hash function hi, and
has k elements with subindexes from 0 to k− 1. Note that
the time-stamp of an element takes a positive value. Thus,
each array si can be initialized to (0, 0, ..., 0). For every
hi(x) (1 ≤ i ≤ l), ρ(hi(x)) denotes the position (subindex)
of the bit, with value 1, in hi(x). Note that si[ρ] is the
ρ-th element in si. Moreover, to ensure ǫ-approximations
for sliding windows with the number of distinct objects
less than 1

ǫ precise answers are the only possibility; con-
sequently, we always keep the L most recent “distinct”
objects (i.e., with the largest time-stamp values) in L in
addition to {si : 1 ≤ i ≤ l}, so that counting the number
of most recent distinct objects, which is smaller than L,
can be answered exactly. We use tsml to denote the small-
est time-stamp value in L and xsml is the element with
the time-stamp. Note that in L we keep each element
(x, t).The following theorem is immediate.

Algorithm 1 Space-Efficient Sketches (SE-FM)

Input: l, k, L, a stream S of (x, t).
Output: L: the set of L most recent distinct objects;
{si : 1 ≤ i ≤ l}: each si is an array with k elements.

Description:
1: Initialize {si : 1 ≤ i ≤ l}; L ← ∅; j ← 0;
2: Generate l hash functions {hi() : 1 ≤ i ≤ l};
3: for each new (x, t) do
4: if ∃(x1, t1) ∈ L s.t. x1 = x then
5: replace (x1, t1) by (x, t);
6: else
7: if j < L then L ← L ∪ {(x, t)}; j ← j + 1;
8: else remove (xsml, tsml) and add (x, t) in L;
9: for i = 1 to l do

10: ρ← ρ(hi(x));
11: si[ρ]← t;
12: Return L & {si : 1 ≤ i ≤ l}.

Theorem 1 Algorithm 1 requires the space of L + l × k
elements.

To estimate nS,t for a given t, our query algorithm pro-
ceeds as follows. If t > tsml then we only query L. Oth-
erwise, in the light of earlier discussions we first select the
elements in si with positive time-stamps (corresponding to
objects in S|t+) not smaller than t; the result is denoted
by si|t+ . Then, we return the location of the left-most ele-
ment in si that is not included in si|t+ . If such a left-most
element does not exist, we return k (corresponding to the
situation ∞ when we presented FM Algorithm). Let Π
denote a subset of elements in an array and I(Π) denote
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the set of subindexes of the elements in Π. Our query
algorithm is presented in Algorithm 2.

Algorithm 2 Approximating nS,t

Input: t, L, {si : 1 ≤ i ≤ l} generated by Algorithm 1;
Output: AS,t;
Description:

1: get tsml from L;
2: if tsml < t then
3: AS,t ← |L|t+ |;
4: else
5: for i = 1 to l do
6: if [0, k − 1]− I(si|t+) 6= ∅ then
7: fi,t ← min{j : j ∈ [0, k − 1]− I(si|t+)};
8: else
9: fi,t = k;

10: AS,t ← 1
ϕ2

∑
l

i=1
fi,t/l;

11: Return AS,t.

Similar to Lemma 1, the following Lemma holds for ev-
ery pair of AS,t and nS,t if L = 1

ǫ .
Lemma 4 For a given t, ǫ, and δ, AS,t returned by Algo-
rithm 2 against the output of Algorithm 1 has the prop-
erty that P (|AS,t − nS,t| < ǫnS,t) ≥ 1 − δ if L = 1

ǫ ,

l = O( 1
ǫ2 log 1

δ ), and k = O(log m + log δ−1 + log ǫ−1).

Proof 1 If AS,t is returned from only counting L, it is the
exact answer. The lemma is immediate.

Consider that AS,t is returned from {si : 1 ≤ i ≤ l}. It
can be immediately verified that Algorithm 2, in this case,
is equivalent to: 1) doing a select on S to output S|t+ ,
and then 2) applying FM algorithm on S|t+ , 3) nS,t > 1

ǫ .
According to Lemma 1, this lemma is also immediate.

Lemma 4 and Theorem 1 together imply that Algorithm
1 and Algorithm 2 guarantee the ǫ-approximation with
probability (confidence) 1− δ if O( 1

ǫ2 log 1
δ log m) space is

allocated when m > ǫ−1 and m > δ−1.

3.2 Time Complexity

Suppose that we treat an element with value 0 in an si as
having the time-stamp 0. The query algorithm (Algorithm
2), to compute fi,t for each i and a given t, selects the
sub-index of the left-most element, from si, with the time-
stamp smaller than t. Below we show it can be conducted
in a logarithmic time if a min-heap is maintained.

As illustrated in Figure 4, each si is organized by a min-
heap [3] built against the time-stamp values on a binary
balanced tree. Then, we search the heap according to the
order of depth first following the left-most path from the
root satisfying the criterion - the search key value is smaller
than t. For instance, for t = 3 the search returns the first
element; thus, fi,t = 0 (the subindex of 1st element). It
can be immediately verified that such a search can be done
in O(logk). Consequently, Algorithm 2 can run in time
O( 1

ǫ2 log 1
δ log log m) if m > ǫ−1 and m > δ−1 since there

are O( 1
ǫ2 log 1

δ ) subsketches and k = O(log m).

2 0513476

2 4 1 0

2
0

0 t = 3

si

0 54321 76

subindexes of si

Figure 4: Min-Heap on si

Algorithm 1 runs in time O(log 1
ǫ ) per element to dy-

namically maintain L if we maintain a search tree on L.

As discussed earlier, each hj() (1 ≤ j ≤ l) takes constant
time on average to hash a data element. Thus, Algorithm 1
runs in time O( 1

ǫ2 log δ−1 log log m) on average per data el-

ement, given there are O( 1
ǫ2 log δ−1) such arrays and main-

taining such a min-heap takes O(log log m) time.

3.3 PCSA-like Algorithm

While Algorithm 1 is space-efficient and guarantees a prob-
abilistic relative ǫ-approximate, each element is hashed
into Ω( 1

ǫ2 log δ−1) arrays (subsketches). This potentially
makes the algorithm less efficient. Our performance study
in Section 6 demonstrates it can only handle a medium
speed data stream in real-time.

Consider that in many recent applications, to support
on-line computation of high speed data streams is a cru-
cial requirement. In this subsection, we propose a time-
efficient algorithms following the framework in the last sec-
tion. It retains the space requirement but there is no theo-
retical guarantee of accuracy with confidence 1− δ though
the expected accuracy is ǫ-approximate. Our performance
study, nevertheless, indicates the algorithm is practically
very space-efficient and highly accurate, and it is able to
support on-line computation of high-speed data streams.

The algorithm is an immediate application of PCSA
technique [7] to our algorithm, Algorithm 1. The basic
idea is to hash each data element randomly to ζ arrays
(subsketches) among the l arrays (subsketches). Algorithm
1 may be modified as follows.
• First, we pick at random another ζ hash functions: {Hi :

1 ≤ i ≤ ζ} besides the l hash functions in Algorithm 1,
where each Hi hashes the element domain D to [1, l].
• Then, in Algorithm 1 instead of the iteration (in line

9) from i = 1 to l, we do the iteration for each i ∈
{H1(x), H2(x), ..., Hζ(x)}. The others in Algorithm 1
remain the same.
We call such a modified Algorithm 1 “Algorithm SE-

PCSA”. Suppose that all the parameters are selected as
those in Lemma 4. It is immediate Algorithm SE-PCSA
runs in time O(ζ log log m) for each data element.

In the light of PCSA technique, Algorithm 2 is modified
accordingly as follows to estimate a nS,t. We change line

10 in Algorithm 2 to AS,t ← l
ζϕ2

∑
l

j=1
fj,t/l

. It can be im-

plemented in the same way as what we described in Section
3.2 with the same time complexity. These, together with
the facts in [7], immediately imply that the expected accu-
racy of Algorithm SE-PCSA is ǫ-approximate. Note that
in our implementation, we use a pairwise independent hash
function for Hi and our experiment indicates that when ζ
approaches 100, its accuracy remains quite stable.

4 K-skyband Technique

While the PCSA-like algorithm speeds up the sketch main-
tenance algorithm by hashing each element into a small
number ζ (ζ ≤ 100 in our implementation) of randomly
selected FM-based subsketches, it still retains O( 1

ǫ2 log 1
δ )

subsketches to pursue ǫ-approximation. Consequently, the
query algorithm runs in O( 1

ǫ2 log 1
δ log log m) time; it is not

very efficient when ǫ is small. This prevents us from pro-
cessing a large number of queries simultaneously in real-
time.

Our second sketch technique is based on BJKST algo-
rithm since BJKST requires only O(log 1

δ ) sub-sketches
to achieve ǫ-approximation with 1 − δ confidence. We
will show that applying BJKST algorithm to our problem
DCSW leads to the k-skyband problem. Consequently, we
show our sketch technique requires the (expected) space
O( 1

ǫ2 log 1
δ log n). Our experiment indicates that in prac-

tice, it requires much less space than that required by SE-
FM (Algorithm 1) or PCSA-like technique. Moreover, this
sketch technique enables us to develop an efficient query
algorithm with O(log 1

δ (log 1
ǫ +log log n)) (expected ) time

in contrast to O( 1
ǫ2 log 1

δ log log m).
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The rest of the section is organized as follows. We first
outline the algorithm. Then, we provide the details to-
wards space minimization, querying k-skyband, and effi-
cient maintenance techniques of a k-skyband.

4.1 Outline

We maintain l subsketches. Without loss of generality, we
assume the domain D of object IDs is [1, m]. For each
sketch i, a randomly generated pairwise hash function hi

hashes [1, m] to [1, m3] so that each data element (x, tx) is
hashed to si by the form (x, hi(x), tx) for all i.

Query. Similar to our FM-based algorithm, we may divide
a query algorithm logically into two parts. For a given t, we
first select all elements with time-stamps not smaller than
t; that is, get S|t+ . Then, we apply BJKST algorithm to
S|t+ . More specifically, in each si we choose the set si|t+
of elements with time-stamps not smaller than t. Then, we
apply the BJKST query method, as described in (2) and
the last paragraph of Section 2.2.2 on all si|t+ for 1 ≤ i ≤ l.

To address the accuracy guarantee not covered by
Lemma 3 when nS,t < k (e.g. a sliding window with the
number of distinct objects less than k), we globally main-
tain a L to store the most recent k distinct objects, that
is, the k distinct objects with the largest time-stamp val-
ues. Then, for each t we first find out if t > tsml where
tsml is the smallest time-stamp (oldest object) among the
elements in L. If t > tsml, then query L; otherwise query
all si as above.

Let the query result obtained above be denoted by AS,t.
We have the following Theorem - ǫ-approximation.

Theorem 2 Suppose that 0 < ǫ, δ < 1. If m ≥ δ−1, k =
O( 1

ǫ2 ), l = O(log δ−1), then P (|AS,t−nS,t| < ǫnS) ≥ 1−δ.

Proof 2 If AS,t is obtained from L, then it is the exact
solution. The Theorem holds.

If AS,t is obtained from si, then it can be viewed as if we
applied BJKST algorithm on S|t+ . Therefore, the theorem
holds according to Lemma 3.

Sketch Maintenance. As with Algorithm 1, once a new
element comes we first examine if an element (x, tx) in L
needs to be replaced by the new element. Meanwhile, we
hash the new element (x, tx) into {si : 1 ≤ i ≤ l} by the
form (x, h(x), tx).

Below, we show that in each si, we do not have to keep
every element. We only need to keep “k-skyband”.

4.2 Space Minimization

A hashed data element (x, hi(x), tx) is kept in the sketch of
si (for 1 ≤ i ≤ l) if si does not “k-dominate” (x, hi(x), tx).
An si k-dominates (x, hi(x), tx) iff there are k data ele-
ments in si with distinct hash values not greater than hi(x)
and their time-stamp values not smaller (not older) than
tx.

The distinct value based k-skyband of si is the set, de-
noted by SK(si), of data elements in si that are not k-
dominated by si.

2 In our sketch algorithm, we maintain
the distinct value based k-skyband SK(si), instead of si,
for 1 ≤ i ≤ l. To simplify the notation, we abbreviate “dis-
tinct value based k-skyband” to “k-skyband” hereafter in
this paper.

Theorem 3 Each current SK(si) for 1 ≤ i ≤ l has the
following properties.
P1: If si currently k-dominates an element e (∈ si), e will

never be used by our query algorithm above for any t.
P2: For each element e = (x, hi(x), tx) ∈ SK(si), either

2The problem is the same as “k-Skyband” in [14] if we focus on
(h(x), tx) only, except we enforce distinct values.

P2a: there is a t0 such that h(x) is the kth smallest
among the elements in Dsi,t

+

0

where Dsi,t
+

0

denotes

the set of elements in si with distinct hash values and
time-stamp values at least t0, or

P2b: h(x) is one of the k − 1 smallest distinct hash
values in si.

Proof 3 We prove P1 and P2 as follows.
Proof of P1. According to the definition, if e =
(x, hi(x), tx) is k-dominated by si then we have the prop-
erty that there are at least k elements in si with distinct
hash values not greater than hi(x) and come after (inclu-
sive) t. This property will be retained regardless how many
new elements come. Consequently, our query algorithm
will never choose hi(x). Thus, P1 holds.

Proof of P2. If (x, hi(x), tx) does not belong to category
P2b, then there are λ (λ > k − 1) elements in si with
distinct hash values smaller than hi(x).

Let t0 is the time-stamp of the element with the (k−1)th
largest time-stamp value among these λ elements. Since e
is in SK(si), among these λ elements there are only λ1

(λ1 ≤ k − 1) elements with time-stamp values larger than
tx. Therefore, t0 ≤ tx; that is, e belongs to category P2a.

Note that P1 in Theorem 3 implies that we only need to
maintain SK(si). Clearly, an element in the category P2a
will be used in a DCSW query with time t0. Moreover,
any element with one of the k− 1 smallest distinct hashed
values (category P2b) may be used in processing DCSW
for the whole stream once future elements have hashed
values smaller than the current k−1 smallest values; thus,
it needs to be kept. Therefore, Theorem 3 implies that
SK(si) is the minimum number of elements we should keep
to achieve ǫ-approximation. In fact, we can also show that
SK(si) (for 1 ≤ i ≤ n) has the following (expected) space.

Theorem 4 In a 2-d set s = {(xi, yi) : 1 ≤ i ≤ n}
with n elements, assume all x and y values are unique,
x and y are independent, each x follows a same distribu-
tion, and each y also follows a same distribution. Then,
the k-skyband SK(s) has the expected number of elements
O(k ln(n

k )) where xi corresponds to a hashed value and yi

corresponds to a time-stamp.

Proof 4 Without loss of generality, we assume that yi >
yj if i < j.

For 1 ≤ i ≤ n, let the random variable Xi = 1 if
(xi, yi) is a k-skyband element, otherwise, Xi = 0. The
expected number of k-skyband elements is E(

∑n
i=1 Xi) =∑n

i=1 P (Xi = 1) where P denotes the probability.
Clearly, the value (0 or 1) of each Xi (for 1 ≤ i ≤ n)

depends on {(xj , yj) : 1 ≤ j ≤ i− 1} as yj is decreasingly
ordered and any element (xj , yj) for j > i does not domi-
nate (xi, yi).

3 Note that every element (xi, yi) when i ≤ k
belongs to SK(s); thus, P (Xi = 1) = 1 when i ≤ k.

For i > k, (xi, yi) is a k-skyband element iff xi is one of
the k smallest values in {yj : 1 ≤ j ≤ i}. Note that each yj

has the same probability to fall into the k smallest values as
each yj follows the same distribution, and we assume the
independence among all yj and between x and y. Thus,

P (Xi = 1) = k
i .

It can be immediately verified

E(

n∑

i=1

Xi) = k +

n∑

i=k+1

P (Xi = 1) = k × (1 + H1,n −H1,k).

Here, H1,n = ln(n), the Theorem immediately follows.

3(x, y) dominates (x′, y′) iff x ≤ x′ and y ≥ y′.
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From Theorems 2 and 4, it follows that to achieve ǫ-
approximation we need (expected) O( 1

ǫ2 log 1
δ log n) space

with the high probability (confidence) 1 − δ if all time-
stamps are unique, objects and time-stamps are indepen-
dent, object ID of each element follows the same distri-
bution, and the time-stamp of each element follows the
same distribution. Our experiment demonstrates that in
practice, this algorithm requires a smaller space than the
FM-based techniques in Section 3.

4.3 Query Algorithm

Keeping only SK(si) (1 ≤ i ≤ l) not only minimize the
information kept but also enables us to develop an efficient
query algorithm. Below, we show that querying each si for
t by searching SK(si) takes O(log |SK(si)|) time only.

For a given t, si has two cases: A) si has at least k ele-
ments with distinct hashed values and time-stamp values
not smaller than t; B) not A). The theorem below is a key.

Theorem 5 For a given t and i, suppose that e1 is the
element in SK(si) with the smallest time-stamp among all
elements arriving no earlier than t, and the time-stamp of
e1 is the r1th smallest in SK(si). Then, si belongs case A)
if and only if the element e2 with the (r1 +k−1)th smallest
hashed values in SK(si) has the kth smallest hashed values
among the elements in SK(si) coming no earlier than t.

Proof 5 First, we can show that for any element e ∈
SK(si) its hashed value always falls in the (r + k − 1)th
smallest values of all hashed values in SK(si) where e has
the rth smallest time-stamp in SK(si). This can be imme-
diately shown by mathematic induction from the element
with the smallest time-stamp in SK(si) based on the fact
that e is not k-dominated by SK(si).

The above fact immediately implies that in SK(si) if we
remove from SK(si) all elements (r1 − 1 in total) with
the time-stamp values smaller than t1 then e2 has the kth
smaller values among the remaining elements.

Based on Theorem 5 and in the light of our BJKST-
based query algorithm, for any t we only need to find such
an e1 against time-stamps to determine r1 and then find e2

against hashed values. If such e2 does not exist (i.e., less
than k elements in SK(si) with time-stamps not smaller
than t), then we return (n− r1 + 1) according to BJKST
query algorithm in Section 2.2.2.

To speed-up the search, we continuously maintain a bi-
nary search tree eT on t and a binary search tree eV
on h(x) with the information of the number of elements
in each subtree, respectively, for the elements in SK(si)
for 1 ≤ i ≤ l. It is clear with such search trees, the
query algorithm above can be done in O(log |SK(si)|)
time. Regarding the expected size of SK(si), to achieve ǫ-
approximation with confidence 1− δ, our query algorithm
runs in (expected) time O(log 1

δ (log 1
ǫ +log log n)) as there

are O(log 1
δ ) subsketches.

Below we describe our query algorithm in Algorithm 3.

4.4 Sketch Maintenance

We present our techniques to continuously maintain each
SK(si) for 1 ≤ i ≤ l, as well as eTi and eVi. Clearly,
if we have determined which element should be added or
removed from SK(si), the eTi and eVi can be updated (in-
sertion or deletion) in time O(log |SK(si)|) per element by
using the standard tree rebalancing technique in [3]. While
every new element has to be added into SK(si), below we
present an efficient technique, by effectively utilizing eVi,
to determine whether or not elements in SK(si) should be
removed.

An immediate way is to compute the total dominance
count for each element e; that is, count the number
of elements in SK(si) that dominate e. Nevertheless,

Algorithm 3 Query Algorithm
Input: Query time t, {SK(si), eTi, eVi : 1 ≤ i ≤ l};
Output: AS,t;
Description:
1: get tsml from L;
2: if t > tsml then
3: return |L|t+|;
4: else
5: for i = 1 to l do
6: compute r1 regarding t against eTi;
7: if r1 + k − 1 ≤ |si| then
8: compute the (r1+k−1)th smallest hashed value vi against

eVi;

9: Ai ←
k×m3

vi
;

10: else
11: Ai ← (|si| − r1 + 1);
12: return the median of {Ai} as As,t;

in our problem setting there may be many elements in
each SK(si) since k has to be O( 1

ǫ2 ) to guarantee ǫ-
approximation. In addition, an element may dominate
many other elements. Therefore, simply computing domi-
nance count for each element is too expensive; our experi-
ment in Section 6 confirms this.

In fact, we do not have to count dominance for each
element; instead, many times we can record the dominance
count for a group of elements.
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Figure 5: Example for two kind of dominate

Example 3 Let k = 2 and l = 1. As depicted in Fig-
ure 5(a), suppose the elements e1, e2, · · · , e8 have been
hashed into s1 where x-coordinators are hashed values
h(ei) and y-coordinators are time-stamps (the larger, the
younger). It can be verified that before e9 arrives, these 8
elements form 2-skyband SK(s1). Once e9 is in, according
to the definition it dominates the elements from e4 to e8.
Instead of updating dominance count of each element from
e4 to e8, it is possible to group them into several groups
and then adding dominance counts on each group to avoid
visit each individual element.

Below, we first present an augmentation of eVi to speed-
up our computation of continuously maintaining SK(si)
for 1 ≤ i ≤ l.

4.4.1 Dominance Aggregation Search Tree

We augment an eVi (1 ≤ i ≤ l) tree to a dominance ag-
gregation search tree (dAs-tree). As depicted in Figure 6,
a balanced binary search tree is maintained on hashed val-
ues over the 8 elements from e1 to e8. Since the number
of elements in a subtree is irrelevant to this part and they
can be maintained in a similar way as search keys, we omit
them in our discussions here.

To simplify the presentation, we enforce the constraint
that all elements are at the leaf-levels, and each intermedi-
ate node has two children; that is, an AVL-like tree but all
elements allocated at leaf nodes. At each node, we keep
5 search values h, α, β, tmin, and tmax. Here, h stores
the search key value built on all hashed values, tmin stores
the minimum time-stamp, and tmax stores the maximum
time-stamp in the subtree. In addition, at each node j, αj
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denotes the captured dominance count of this node,4 βj is
defined as follows.

βj = max{
∑

e∈p

αe : ∀p ∈ Pj} (3)

Here, Pj is the set of all paths from node (exclusive) j to
a leaf, and p is such a path. At leaf-node, we do not need
to count β (thus it is omitted in our implementation), and
tmin = tmax = t where t is the time-stamp of the element
kept there. It can be immediately verified that if EL and
ER are the two children of node j, then

βj = max{(αEL
+ βEL

), (αER
+ βER

)} (4)

Note that the dominance relationship of “e dominating e′”
is captured either at e′ or at an ancestor of e′.
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Figure 6: a dAs-tree

In Figure 6, we assume that the dAs-tree is built by the
bulk-loading technique [15] once e8 comes and all domi-
nance counts have been done on each node. Note that e6
dominates both e4 and e5 as e6 comes later with smaller
hashed values. In this case, we could record either α = 1
at node E5 or α = 1 at both e4 and e5. Later option is
used in Figure 6.

A dAs-tree is balanced if it satisfies the criteria for an
AVL-tree. In the next section, we will show how a dAs can
be rebalanced by applying standard rebalancing technique
in [3].

4.4.2 Algorithm

Our algorithm to continuously maintaining SK(si) is out-
lined in Algorithm 4. Below we describe the 3 steps in
Algorithm 4 in details.

Algorithm 4 Continuously Maintaining k-Skyband

Input: k, l hash functions {hj : 1 ≤ j ≤ l},
dAs-trees eVj for 1 ≤ j ≤ l;

Output: SK(sj) for 1 ≤ j ≤ l;
Description:

1: for a new (x, tx) do
2: for i = 1 to l do
3: STEP 1. Update dominance counts in eVi

against (x, hi(x), tx);
4: STEP 2. (Possibly) delete the nodes

not in SK(si) from eVi and eTi;
5: STEP 3. Insert (x, h(x), tx) into eVi and eTi;

Step 1: Update Dominance Counts. There are two
cases once (x, hi(x), t) is obtained.

Case 1. There is no element in the current SK(si) with
the same hashed value as (x, hi(x), t).

Case 2. There is an element in the current SK(si) with
the same hashed value as (x, hi(x), t).

Case 1. Regarding the example in Figure 5(a), no element
dominates e9 as e9 is the most recent element; nevertheless,
e9 dominates the elements from e4 to e8. In this example,
we need to increase the α at e6 by 1. In addition, the
dominance counts of e4, e5, e7, and e8 can be “globally”
updated at E2 by increasing its α by 1 without having to

4A dominance count at a node e is the number of other elements
captured that dominate all elements in the subtree with root e.

visit any of its descendants to save computation costs. We
can immediately verify that at each node i,
Max-Count. (βi + αi +

∑
j∈πi

αj) is the maximum total
dominance count among elements in its subtree, where
πi is the set of ancestors of node i.

This, together with (3), require that in our algorithm, any
update of the dominant count α at a node e has to be prop-
agated to its root by updating all β values, by using (4), on
the path. We describe our algorithm below in Algorithm
5.

Algorithm 5 UpdatedAs (eVi, (x, hi(x), tx))

Input: eVi and (x, hi(x), tx);
Output: Updated eVi;
Description:

1: get the root E of eVi;
2: if E is a leaf then
3: if h(x) < E.h then E.α := E.α + 1
4: else
5: if h(x) < E.h then
6: E2.α := E2.α + 1; (E2 is the right-child)
7: UpdatedAs (dAs.E1,(x, hi(x), tx));

(E1 is the left-child)
8: else
9: UpdatedAs (dAs.E2,(x, hi(x), tx));

10: E.β := max{E1.α + E1.β, E2.α + E2.β};
In Algorithm 5, E.h denotes the search key value of the

tree at node E, E.α and E.β denote the α and β values,
respectively at E, dAs.E1 denotes the subtree with root
E1. It can be immediately verified that the algorithm visit
at most two nodes at each level; thus the algorithm runs
in O(log |SK(si)|) (= O(log |eVi|)) time per element.
Example 4 Regarding the example in Figure 5(a), once
e9 arrives, the updates to dominance counts of the tree in
Figure 6 follow the arrows as illustrated. In Figure 7, we
illustrate the result that only contains the nodes with some
changes.
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Figure 7: Updates of a dAs-tree: Case 1

Case 2. Regarding the example in Figure 5(b), the hashed
value h(x) of e9 is the same as that of e6. Thus e6 has to be
removed. In this case, if we update the existing dAs-tree
in Figure 6 in the same way as Case 1. We over-count the
dominance count of e4 and e5 as they have already counted
by e6. To resolve this issue, we only update the dominance
count of elements with time-stamp values greater than 6 -
the time-stamp of e6.

The algorithm has the same traversal paradigm as that
in Case 1 (Algorithm 5) except we need to add the con-
straint - the time-stamps greater than t′ where t′ is the
time-stamp of the element with the same hashed value as
a new element. We can modify Algorithm 5 as follows.
• For the situation at line 3, we add the constraint t′ ≤

E.tmin.• For the situation at line 5, we also add the condition
t′ ≤ E2.tmin. Then, we do line 7 if another condition
t′ ≤ E1.tmax.• We change the whole “else part” at line 8 and line 9
to “UpdatedAs (dAs.E1,(x, hi(x), t)) if h(x) < E.h and
E1.tmin < t′ ≤ E1.tmax, UpdatedAs (dAs.E1,(x, hi(x),
t)) if t′ ≤ E2.tmax”.
Note that after adding these constraints, the algorithm

no longer guarantees logarithmic time complexity and runs
in O(TR) where TR is the size of the tree spanning the
nodes visited. Although the algorithm may require linear
time for one new element in the worst case, our experiment
demonstrates that it is very efficient in practice.
Example 5 Regarding the example in Figure 5(b), once
e9 arrives, the updates of dominance counts of the tree in
Figure 6 are illustrated in Figure 8 where only the nodes
with some changes are shown.
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Figure 8: Updates of a dAs-tree: Case 2

Step 2: Removal Element. Removing an element from
eTi for each i can be done in O(log |eTi|). Below we mainly
focus on removing an element from each eVi.

An element needs to be removed if either Case A: its
hashed value is the same as that of the new element, or
Case B: its total dominance count reaches k after the new
element comes.

We can immediately verify that in both cases, we do
not need to discount dominance counts at other elements
in SK(si) due to the removal of a new element. This is
because for Case A, when we update the the dominance
counts of other elements for the new element, we already
discount the dominance counts caused by e. For Case B,
any element dominated by e has been already removed in
earlier rounds; this is because the total dominance count
of e must be k−1 (for its to reach k) before a new element
arrives.

Nevertheless, once an element e removes in both cases
we may need to fix the β value of at its parent if the
dominance count of e was larger than its sibling; conse-
quently, it may be propagated to the root. Clearly, this
takes O(log |SK(si)|) time. Moreover, once e removes from
eVi, we also remove its parent and connect its sibling to the
grand parent to enforce the constraint that every internal
node has two children nodes (noting all elements are kept
at leaf level); meanwhile we also pass the α value at the
original parent of e to e’s sibling. Next, we may need to
re-balance eVi from the leaf-level. The AVL-tree balancing
technique is to iteratively re-balance the tree from the leaf-
part where the node is deleted; it is based on the following
4 cases as depicted in Figure 9 where in each case a, b, c, d
are the subtrees. In each case, while re-balancing the tree,
we also need to recalculate α and β. Specifically, we pass
the α values of x, y, and z to their decedents a, b, c, and
d respectively. Then after rebalancing the tree, we recal-
culate β values at x, y, z from a, b, and c in a bottom-up
fashion, while α value at x, y, and z are assigned to zero.
Clearly, this takes constant time.
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Figure 9: Rebalance

Example 6 Regarding Case (d) in Figure 9, we give the
α value at x to the roots of trees a, b, c, and d, respectively.
Pass the α value at y to the roots of b, c, and d, and pass
the α to the roots of b and c.

After rebalancing, we calculate the β value at x, the β
value at y, and the β at z iteratively by using (4).

Regarding the example in Figures 5 and 6, after remov-
ing the elements e4, e5, and e7, the dAs-tree has been
updated to the one as depicted in Figure 10 by the rebal-
ancing technique.

In our implementation, we combine the update of dom-
inating counts due to the removal of e with the rebalanc-
ing by one-pass bottom-up. The total time-complexity is
O(log |SK(si)|). Finally, it should be clear that if the to-
tal dominance count at an element (leaf) is k, then at the
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Figure 10: after removing e4, e5, and e7

root α + β = k according to Max-Count property in the
last section. Then, iteratively using the Max-Count prop-
erty from the root we can reach an a leaf with the total
dominance count k; this also runs in time O(log |SK(si)|).
Step 3: Insert an element. Clearly, inserting a new
element into each eTi can be done in O(log |SK(si)|). We
focus on the corresponding update of each eVi.
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Figure 11: after inserting e9

Recall that a new element e is not dominated by any
existing elements. Therefore, after inserting e into eVi,
the α values at the ancestors of e should be 0. On the
other hand, the original α values contributed to comput-
ing the maximum dominance count of the elements rooted
at those ancestors (i.e. Max-Count property in Section
4.4.2); thus we iteratively update the β values to enforce
the Max-Count property on the path p from the root to e
while changing α to 0. We also need to pass the α of each
node in p to its child which is not on p. Then, we use the
above rebalancing technique to balancing eVi, if necessar-
ily. Clearly, the complexity per element is O(log |SK(si)|).

Regarding the example in Figure 10, after inserting 9
the dAs-tree becomes the one in Figure 11.

4.4.3 Remarks

To save computation costs, when we remove an element
from eVi with the same value as that of the new element,
we just replace it by the new element to save possible re-
balancing for insertion and deletion. Finally, according to
the above time complexity analysis, the time complexity to
maintain each SK(si) is O(log |SK(si)|+TRi) (1 ≤ i ≤ l)
per element where TRi is the spanning tree size to cover
the nodes visited in Case 2 of Step 1.

Note that to achieve the ǫ-approximation with confi-
dence, l = O(log 1

δ ) and |SK(si)| has the (expected) size

O( 1
ǫ2 log n).
In [10, 17], efficient techniques have been developed to

continuously maintain skyline over sliding windows. Nev-
ertheless, these techniques are not applicable to continu-
ously maintain SK(si). This is because that in continu-
ously maintaining skyline, an element is immediately re-
moved if it is dominated by another element. The main
challenge in continuously maintaining k-skyband is to ef-
ficiently computing the dominance counts. In [12], it pro-
poses to use k-skyband to answer top-k queries over slid-
ing windows. The technique is to simply re-compute the
dominance count for each element once a new element ar-
rives. It is efficient when k is small (a typical situation
in top-k queries); nevertheless, it is inefficient when k is
large - a typical situation in our problem to guarantee ǫ-
approximation for a small ǫ. Thus, the technique in [12]
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are not applicable to our problem setting where we need
to process data streams in real time.

5 Performance evaluation

We present the evaluation results of a comprehensive per-
formance study. As mentioned earlier, the techniques in
[8, 16] are the only 2 existing techniques which may be
immediately applied to counting distinct elements against
sliding windows. Nevertheless, the sketch technique in [8]
requires a pre-fixed sample space Ω( 1

ǫ2 log 1
δ

√
m), and the

technique requires space O(N 1
ǫ2 log 1

δ log m) in the worst
case, to achieve ǫ-approximation with (1 − δ) confidence.
In fact, our experiment shows that for the datasets used
below in our performance study, an application of the algo-
rithm in [16] into our problem always requires tens of times
more than the dataset size, while the technique in [8] re-
quires at least tens of times more space than our technique.
Therefore, we only present the performance evaluation of
our techniques presented in this paper. We summarize
them below.
SE-FM Algorithm 1: the space-efficient sketch

construction algorithm in Section 3.1.

SE-PCSA The sketch construction technique in
Section 3.3.

k-SKB Algorithm k-Skyband in Section 4:
sketch construction techniques.

We evaluate their space and time efficiency, as well as

accuracy in terms of the relative errors; that is,
|As,t−ns,t|

ns,t
.

The corresponding query algorithms are also implemented.
In our experiments, two synthetic datasets are gener-

ated, Random and Zipf. In a Random dataset, time-
stamps of data elements are randomly generated following
a uniform distribution, while time-stamps in a Zipf dataset
follow a Zipf distribution. We assume that data elements
arrive according to their time-stamps. We use duplication
ratio, α = N−n

N , to control the total number of duplicated
objects, where n is the number of distinct objects and N
is the total number of data elements. For each synthetic
dataset, we first generate n distinct objects, then each ob-
ject pairs one of the N time-stamps randomly according
to a uniform model. Each of the remaining (N − n) time-
stamps randomly pair one of the n distinct objects accord-
ing to a uniform model.

The following real dataset WCH (World Cup 98’s HTTP
request data) is used in our performance study. It is
downloaded from the Internet Traffic Achieve [9] and con-
sists of 20 million records of requests made to the 1998
World Cup Web site on June 10, 1998. Each record con-
tains time-stamp, clientID, URLID, serverID, and package
size (PSIZE). In the dataset, we treat 〈clientID, URLID,
serverID, PSIZE〉 as an object. In the dataset, we found
there are totally more than 1.97M duplicated data objects
and the maximum duplication number of an object is 566.

All algorithms are implemented by C++ and the ex-
periments have been carried out on a PC with Intel P4
2.8GHz CPU and 1G memory under the operation system
- Debian Linux. Table 1 below lists the parameters that
potentially have an impact on our performance study. In
our experiments, all parameters use default values unless
otherwise specified.

Notation Definition (Default Values)
d Dataset Model (Random)
N (syn. data) Dataset Size (10M)
α (syn. data) Duplication Ratio (0.2)
ζ (SE-PCSA) Number of times to hash an item (100)

ǫ Guaranteed Precision (0.02)
1− δ Confidence (0.95)

Table 1: System Parameters

To “discount” O notation in space requirements of SE-
FM, SE-PCSA, and k-SKB, respectively, we adopt the

same constant factor 2. That is, l = 2
ǫ2 log δ−1 in SE-FM

and SE-PCSA, and k = 2
ǫ2 in k-SKB. In SE-FM and SE-

PCSA, we choose k = 32 because we use the public code
from Massive Data Analysis Lab to generate hash func-
tions [11] and 232 is large enough to accommodate massive
number of distinct data elements; we also choose L = 1

ǫ .

In k-SKB, we choose L = k, l = log 1
δ . We also modify the

code in [11] to generate hash functions in k-SKB.
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Figure 12: Space Efficiency against Different Dataset

5.1 Space Efficiency

We record the maximal size (i.e. the maximal number of
elements) of sketch, by each algorithm, during the contin-
uous processing of a dataset. The ratio of such sketch size
to the total number of elements processed is called space
ratio. We study possible impacts from dataset models,
dataset sizes, ǫ and (1 − δ). Note that the space require-
ment in SE-FM and SE-PCSA are the same and fixed for
given m, ǫ, and δ, while the space ratio changes when data
size changes. The space required in k-SKB is “opportunis-
tic”.
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Figure 13: Impact of Sizes, ǫ, and δ

The first experiment results are presented in Figure 12.
They demonstrate that k-SKB requires the smallest space.
The second experiment evaluate the possible impacts from
data sizes, ǫ, and δ. The evaluation results against the
real dataset (WCH) are presented in Figure 13 where the
experiments regarding Figures 13(b) and 13(c) are against
the whole dataset. Again, they demonstrate that k-SKB
requires the smallest space.
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Figure 14: Accuracy of SE-PCSA Variants

5.2 Evaluating Accuracy

The results of the first experiment, against the dataset
Random and WCH, are reported in Figure 14. We study
an impact of different values of ζ (i.e., the number of
subsketches an element will be hashed in SE-PCSA).5 As
demonstrated by Figure 14(a), when ζ = 100 the num-
ber of query results exceeding the relative error guarantee
is 0, and an improvements of relative errors becomes less
significant after ζ ≥ 100.

The second experiment is conducted against the 3 dif-

5In SE-PCSA, different values of ζ will not make any difference in
space requirement if the other parameters are the same.
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ferent datasets and is reported in Figure 15. It shows that
SE-FM provides the highest accuracy, while k-SKB is the
second. The numbers (0 or 1) above those “bar figures”
are the numbers of answers exceeding their corresponding
probabilistic (with confidence at least 0.95) relative error
guarantees.
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Figure 15: Accuracy against Different Dataset

The third experiment evaluates possible impacts from
data sizes, ǫ, and (1 − δ). The experiment is conducted
against real dataset WCH and is reported in Figure 16. It
shows that SE-FM always provides the highest accuracy
and k-SKB is the second accurate. We also report that
all answers obtained against the sketches by SE-FM or
k-SKB satisfy the corresponding probabilistic error guar-
antees while SE-PCSA leads to 8 answers exceeding a des-
ignated relative error guarantee ǫ for the setting - ǫ = 0.02
and (1− δ) = 0.8
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Figure 16: Effect of Sizes, ǫ, and (1− δ)

5.3 Time Efficiency

The cost of processing one data element may be too small
to be recorded accurately (especially for SE-PCSA and
k-SKB), we record the average time for processing every
batch of 1K elements as the delay of one element. In addi-
tion, we also record the maximum value of such delay per
data element time as the maximal delay of each element.

avg. delay / element max. dealy / element
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Figure 17: Time Evaluation over Different Datasets

The first experiment is conducted against the 3 datasets
Random, Zipf, WCH. The experiment results are reported
in Figure 17. They indicate that SE-FM can only process
a medium speed data stream online - 200-400 elements per
second when ǫ = 0.02 and about 2500 elements per second
when ǫ = 0.05. However, both k-SKB and SE-PCSA can
process high speed data streams. They can process at least
20, 000 data elements per second even with ǫ = 0.02. We
also tested the naive technique to maintain each SK(si)
regarding BJKST-based sketches; that is, we update the
total dominance count of each data element once a new
element comes (we first find the left-most element with
hashed value smaller than that of the new element and
then do a linear scan from the element). Our experiment
shows that the naive algorithm can only process about 100
elements per seconds; thus it can support very slow data
streams only.

The second experiment set evaluates possible impact of

SE−FM SE−PCSA k−SKB

10-5

10-4

10-3

5x10-3

00.20.40.60.8

P
ro

ce
ss

in
g 

T
im

e 
(s

)

SE-FM
SE-PCSA

k-SKB

Figure 18: Various α

10-5

10-4

10-3

5x10-3

0.10.080.060.040.02

P
ro

ce
ss

in
g 

T
im

e 
(s

) SE-FM
SE-PCSA

k-SKB

Figure 19: Query Time

duplication ratios. As we cannot change duplication ratios
in real dataset, the dataset Random is used for this pur-
pose. We record the average delay of an element. Figure 18
shows the experiment results. They demonstrate that our
techniques are not very sensitive to different duplication
ratios.

Finally, we evaluate the 3 query processing algorithms
against the real dataset WCH. 1K queries are randomly
generated as before. We vary ǫ from 0.02 to 0.1 and other
parameters adopt default values. The average response
time of the 1K queries for each algorithm, is reported
in Figure 19, respectively. As expected, SE-FM and SE-
PCSA have the similar performance as they use the same
sketch structure for query; both of them require much more
time than k-SKB does, especially when ǫ is small.

6 Conclusions

In this paper, we investigated the problem of approx-
imately counting distinct elements against sliding win-
dows (DCSW). Novel space and time efficient techniques
are developed for continuously maintaining sketches so
that a DCSW can be processed with the guarantee of ǫ-
approximation. This is the first work providing the space
and time efficient data stream techniques to approximately
counting distinct objects over sliding windows. The space
required by our techniques is near optimal. Besides proven
accuracy and space guarantees, our algorithms are also
efficient enough to support on-line computation of very
high speed data streams with an element arrival rate up
to 20K/second. Moreover, we showed that our techniques
may be immediately extended to cover other problems,
such as heavy hitters, fault-tolerant distributed computa-
tion, etc.
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