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Abstract. Nowadays, we have witnessed the widely recognized phenom-
enon of high speed data streams. Various statistics computation over data
streams is often required by many applications, including processing of
relational type queries, data mining and high speed network manage-
ment. In this paper, we provide survey for three important kinds of ag-
gregate computations over data streams: frequency moment, frequency
count and order statistic.

1 Introduction

In recent years, we have witnessed the widely recognized phenomenon of high
speed data streams. A data stream is a massive real-time continuous sequence
of data elements. The typical applications include sensor network, stock tickers,
network traffic measurement, click streams and telecom call records. The main
challenge of these applications is that the data element arrives continuously and
the volume of the data is so large that they can hardly be stored in the main
memory (even on the local disk) for online processing, and sometimes the system
has to drop some data elements due to the high arriving speed. The data in the
traditional database applications are organized on the hard disk by the Database
Management System(DBMS) so the queries from the users can be answered by
scanning the indices or the whole data set. Considering of the characteristics
of the stream applications, it is not feasible to simply load the arriving data
elements onto the DBMS and operate on them because the traditional DBMS’s
are not designed for rapid and continuous loading of individual data element
and they do not directly support continuous queries that are typical of data
stream applications [6]. Therefore, in order to support the emerging data stream
applications, many works on data stream systems and related algorithms have
been done by researchers in various communities and it still remains an active
research area nowadays.

As mentioned in [6], following characteristics make data streams different from
the conventional relational models :

– The data elements in the stream arrive online and the system has no control
over the order in which data elements arrive to be processed, either within a
data stream or across data streams. Moreover, the system can not predicate
the arriving rate of the data elements.

– Data streams are potentionally unbounded in size. The stream elements are
usually relational tuples, but sometimes might be semi-structured data like
XML and HTML documents or more complex objects.
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– Once an element from data streams has been processed, it is discarded or
archived. Then it can not be retrieved easily unless it is explicitly stored in
the main memory, which typically is small relative to the size of the data
stream.

there has been tremendous progress in building Data Stream Manage Sys-
tems(DSMSs) as evidenced by many emerging DSMSs like NiagaraCQ [17],
STREAM [86,6], statStream [98], Gougar [94], Aurora [14], Telegraph [59], Bo-
realis [2], Gigascope [32] etc.

Besides the works of building Data Stream Manage Systems (DSMS’s), vari-
ous data stream algorithms have been proposed from various communities like
database, network, computation theory and multimedia. Among various compu-
tations over data streams, the aggregate computation plays an important role
in many realistic applications such as network traffic management system and
sensor network. Following are some important aggregate queries studied in the
network traffic management system:

– How much HTTP traffic went on a link today from a given range of IP
address? This is an example of a slice and dice query on the multidimensional
time series of the flow traffic log [81].

– Find out the number of flows ( with or without aggregation ) which exceed
a threshold T [39]. In many applications, the knowledge of these large flows
is suffice.

– What are the 1 − φ,1 − φ2, 1 − φ3 . . . 1 − φk (0 < φ < 1) quantiles of the
TCP round trip times to each destination? This is important information to
gauge the performance of the network in details [26].

– Identifying the superspreaders in the network. A superspreader is defined
to be a host that contacts at least a given number of distinct destinations
within a short time period. Superspreaders could be responsible for fast worm
propagation, so it is important to detect them at early stage [91].

The rest of the paper is organized as follows. Section 2 presents the compu-
tational model of the data stream algorithms. Then three important aggregate
computations over data stream are introduced in sections 3,4 and 5. Particularly,
section 3 and section 4 give survey on the frequency moment and frequency count
computation over data streams respectively. In section 5, we first introduce the
rank computation over data stream with uniform and relative error metrics. Then
the top-k computation follows. Some future work on the aggregate computation
over data streams are proposed in section 6.

2 Computation Model of Data Stream Algorithms

Because of the unique characteristics of data stream applications, following issues
are critical for data stream algorithms:

2.1 Processing Time

In many data stream applications, data elements arrive at a high speed so it is
essential for the system to reduce the per record processing time. Otherwise the
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system might get congested and many elements will be dropped without being
processed since usually there is no enough space to keep all of the elements. The
arriving rate might burst in some applications, so the consideration of buffering
and load-shedding is also required. Likewise, the query response time is another
critical issue as a short response time is one of key requirements in many real
time data stream applications like network monitoring and stock data analysis.

2.2 Space Usage

Since the size of the data stream is potentially unbounded, it is infeasible to
keep all of the stream data elements. Moreover, although the processing time
of secondary storage device has been significantly improved in recent years, it
might be unacceptable even the system simply keeps every incoming stream
element. So many steam algorithms are confined to the main memory without
accessing the disk. Consequently, only a synopsis of the data stream can be kept
to support user queries. Usually the space used is at most poly-logarithmic in the
data size. Sampling, histogram, wavelet and sketch are widely used techniques
to summarize the stream data.

2.3 Accuracy

It has been shown that in order to get exact answers for some important com-
plex statistics like median and the number of distinct value, a linear space is
required. As the synopsis maintained by the system must be very small in size,
usually poly-logarithmic in the size of the data stream, the approximation is a
key ingredient for stream algorithms. In many applications the exact answer is
not crucial, so an approximate answer is sufficient. The system needs to make a
trade-off between accuracy and storage space. Hopefully, the algorithm’s perfor-
mance in terms of accuracy will decrease gracefully when there is less memory
available.

3 Frequency Moment Computation

Suppose a data stream consists of elements {a1, a2, . . . , am} which arrive se-
quentially and aj is a member of U = {1, 2, . . . , n}. Let fi denote the number of
occurrences of i in the data stream. The k-th frequency moment of the data set,
denoted by Fk, is defined by

∑n
i=1 fk

i . Frequency moments play an important
role in many applications as they can capture the demographic information of
the data set. Particularly, F0 is the number of distinct elements appearing in
the data sequence and F1 is the length of the sequence. While F2 is the self-join
size (also called surprise index) of the data set and F∞ is the maximal fi. In [4],
Alon et al. present the seminal work to study the problem of frequency moment
computation against data streams. It is shown that the exact computation of
Fk ( k �= 1 ) needs space linear to the data set size. A general frame work is
proposed to estimate the Fk in [4] and many works [21,62,47] have been done in
the literature to improve the space(time) efficiency and theoretical bounds. The
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range efficient computation of frequency moment is studied in [11] and their
result is improved by Buriol et al. in [13]. The problem of frequency moment
computation over sliding window is studied in [35].

Compared with other Fks, much more attention has been given to the com-
putation of F0 because of its wide applications. Flajolet and Martin [46] develop
the well known FM algorithm to estimate the F0 of the dataset with one scan.
A new algorithm is proposed by Durand and Flajolet [37] to improve the space
complexity. As algorithms in [46, 37] assume the existence of hash functions
with some ideal properties which are hard to construct in practise, Alon et al.
build on similar technique but only require random pairwise independent hash
functions. An adaptive distinct sampling technique is developed by Gibbons et
al. in [49, 48]. In [10], three new algorithms are proposed to improve the space
and time efficiency of previous work. In the context of graphic theoretic applica-
tions, Cohen [18] develops a size-estimation framework to explore the closure and
reachability of a graph. The linear counting algorithm is proposed by Whang et
al. in [92] based on the bitmap counting technique to estimate the cardinality
in the database applications. The result is further improved in [41] based on an
adaptive bitmap technique. Moreover, range efficient algorithm for estimating F0
on stream data is proposed by Yossef et al. in [11]. Recently, [1] improves the
time efficiency of the algorithm. And the same problem is investigated under
sliding window model by [35] and [50].

4 Frequency Counting

Frequency counting is one of the most basic statistics of a data set because
it can mark the most influential part of elements, especially in the skewed data
distribution. It has many applications including network monitoring, traffic man-
agement, click stream monitoring, telephone call recording and sensor readings.
Ideally, we would like to keep track of the top k elements with the highest fre-
quency for desired value of k (top-k elements) or the elements with frequency
exceeding a pre-given threshold (heavy hitters). For simplicity, we call them fre-
quent elements. Exact computation of frequent elements against data stream
in a small space (sub-linear to N) is infeasible. Rather, various approximate
algorithms are proposed to address this problem in the context of data streams.

Misra et al. [78] present the first deterministic algorithm for finding ε-
approximate frequent elements, which uses O(1

ε ) space and O(1) amortised
processing time. Recently [36] and [65] improve the algorithm by reducing the
processing time to O(1) in the worst case. Their algorithms guarantee to find all
of the frequent candidates in the first pass, but the second pass is required to
identify real frequent ones from the candidates. In many data stream applica-
tions, it is infeasible to rescan the data. By combining the hashing and sampling
techniques, Estan and Verghese [40] present a novel algorithm to identify flows
which exceed a pre-defined threshold. In [74], a deterministic algorithm called
lossy counting is presented for ε-approximate frequency elements. Only one pass
is required in their algorithm and the worst working space used is O(1

ε log(εN)).
An adaptive sampling algorithm called sticky sampling is also proposed in [74].
Although stick sampling only uses O(1

ε ) space in the worst case, it is shown
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in [74] that lossy counting is more space efficient in practise. Metwally et al. [77]
present space saving algorithm which can support approximation of top-k ele-
ments and heavy hitters with a unified data structure called Stream Summary.

Recently, [53] investigates how to efficiently compute the frequent elements
in the data stream with the graphics processors. And Bandi et al. [9] study
the problem under a special networking architectures called Network Processing
Units(NPUs). Base on the lossy counting [74] and space saving [77] techniques,
two TCAM-conscious algorithms are proposed to provide efficient solutions.

The algorithms above can not work under Turnstile Model. Consequently some
sketch based algorithms are proposed to address this problem. As a variance of
AMS sketch in [4], the count sketch technique is introduced by Charikar et al. [16]
to find k elements whose frequencies are at least (1−ε) times the frequency of the
k-th most frequent elements, with probability at 1 − δ and space O( 1

ε2 log n
δ ).

In [28], a novel algorithm called group test is proposed by Cormode et al. to
further reduce the space requirement by re-examining the previous algorithm
in [16]. Based on the main idea of the bloom filter, which is a classical data
structure to support membership queries with certain probabilistic guarantees,
[39, 19] extend the bloom filter to find frequent elements in the data stream.
The Minimal Increase and Recurring Miminum techniques are introduced to
improve the accuracy of their algorithm. Recently, following the basic idea of
previous algorithms, a new count min sketch is presented by Cormode et al.
in [29]. Their algorithm significantly improve theoretical space efficiency of the
previous results by reducing a factor of O(1

ε ). Their essential idea is to estimate
the frequency of each element in the domain by maintaining hash based multiple
counters. A similar sketch called hCount is independently developed by Jin et
al. in [63].

The problem has been studied in various applications and many new algo-
rithms are introduced to support different scenarios.

– As the hierarchy structure is widely employed in various online applications
such as network management, text mining and XML data summarisation,
Cormode et al. [24] develop novel algorithm to find out the hierarchical heavy
hitters(HHHs) based on a layered structure. In [25], the algorithm is extended
by the same authors to support identifying the HHHs for the hierarchical
multidimensional data. The lower bound of the space complexity for this
problem is studied in [60].

– [52] proposes an efficient algorithm to find the frequent elements against the
sliding windows over online packet streams. Based on a layered structure,
new algorithm with bounded space is introduced by Arasu and Manku in [5].
Recently, improvement work is done by Lee and Ting in [68]. Both [5] and [68]
study the problem over the variable sliding window as well.

– With the development of the sensor network, various efficient algorithms
have been proposed to collect or monitor the frequent elements with tree
model [85, 73, 72] as well as multipath model [20, 72, 58]. One of the major
concern of these work is the communication cost(total cost and maximal
cost between any two nodes) for the computation. In addition to finding fre-
quent elements in a snapshot fashion, the problem of continuous monitoring
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frequent elements in the network also attracts much attention in the litera-
ture [7, 23, 66, 31].

– In some applications, it is desirable to find the distinct frequent elements. For
instance, in order to identify the potential attacks in the network system such
as the Distributed Denial of Service(DDoS) and warm, one of the important
approaches is to find out the sources that contact many distinct destinations,
which is called superspread. This problem has been studied in a number of
papers [41, 91, 30, 8].

5 Order Statistic Computation

Among various statistics, order statistics computation is one of the most chal-
lenging, and is employed in many real applications, such as web ranking ag-
gregation and log mining [3, 38], sensor data analysis [55], trends and fleeting
opportunities detection in stock markets [6, 71], and load balanced data parti-
tioning for distributed computation [76, 84].

In this section, we will introduce existing works on two kinds of order statistic
oriented queries: rank queries and top-k ranked queries. Although the top-k
ranked query can be regarded as a special case of rank query where the rank is
limited between 1 and k, they have different focuses. For the rank query, we can
only provide approximate solution in the context of data stream while the exact
solution is required for the top-k ranked query. Moreover, the rank function is
pre-given for the rank query problem while usually we need to support ad-hoc
rank function for the later problem.

5.1 Rank Query

A rank query is essentially to find a data element with a given rank against
a monotonic order specified on data elements. And it has several equivalent
variations [57,30]. Rank queries over data streams have been investigated in the
form of quantile computation. A φ-quantile (φ ∈ (0, 1]) of an ordered set of N
data elements is the element with rank �φN�.

Rank and quantile queries have many applications including query optimiza-
tion, finding association rule, monitoring high speed networks, trends and fleeting
opportunities detection in the stock markets, sensor data analysis, webranking
aggregation, log mining and query visualisation etc. Simple statistics such as the
mean and variance are both insufficiently descriptive and highly sensitive to data
anomalies in real world data distributions, while quantiles can summarize the
distribution of massive data more robustly. Several applications employ quantile
algorithms as a foundation, like counting inversions [57] and maintaining reverse
nearest neighbour aggregates [67] in the context of data streams.

It has been shown in [80] that the space required for any algorithm to compute
the exact rank query with p passes is Ω(N

1
p ), where N is number of elements.

Clearly, it is infeasible to do the exact rank computation in data stream appli-
cations where data is massive in size and fast in arriving speed. Consequently,
approximate computation of rank queries over data stream has receive a great
attentions in the recent years [80].
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In this subsection, we will introduce the space and time efficient techniques of
continuously maintaining data summaries to support the rank(quantile) queries
in various data stream models.

Suppose an element x may be augmented to (x, v) where v = f(x) (called
“value”) is to rank elements according to a monotonic order v and f is a pre-
defined function. Without loss of generality, we assume v > 0 and the monotonic
order is always an increasing order. We study the following rank queries over a
data stream S.

Rank Query: given a rank r, find the rank r element in S.

Suppose that r is the given rank in a rank query and r′ is the rank of an
approximate solution. We could use the constant-based absolute error metric,
say |r − r′| ≤ ε for any given ε. It is immediate that such an absolute error
precision guarantee will lead to the space requirement Ω(N) even for the an
offline computation where N = |S|. So two kinds of error metrics have been
used in the recent works.

Uniform Error. r′−r
N ≤ ε.

Relative Error. r′−r
r ≤ ε.

An answer to a rank query regarding r is uniform ε-approximate if its rank r′

has the precision |r − r′| ≤ εN . And it is relative ε-approximate if its rank r′ has
the precision |r−r′| ≤ εr. In the following part, we will introduce the techniques
of continuously maintaining a synopsis over data stream S such that at any
time, the synopsis can provide a (relative or uniform) ε-approximate answer
for a given rank query. The focus of the techniques is to minimize the maximal
memory space required in such a continuous synopsis maintenance procedure.
The processing time per element and query response time are also important
issues.

Uniform Error Techniques. In [80], Munro and Paterson present a one pass
algorithm to provide the uniform εN approximate answer for quantile query. A
binary tree structure is employed in their paper and the work space required is
O(1

ε log2(εN)). Manku et al. [75] improve the previous algorithm in terms of the
working space. They reduce the constant factor significantly by applying a more
sophisticated merge strategy. Then they propose a space efficient randomized
algorithm in [76] to further reduce the space bound to O(1

ε log2 1
εδ ) by applying

an adaptive sampling approach. Then with probability at least 1 − δ, their al-
gorithm can achieve εN approximation. Moreover, their algorithm can compute
the quantiles without the advanced knowledge of the length of the data stream.
They also show that further space deduction can be achieved by feeding the
sample set to any deterministic quantile algorithm.

Greenwald and Khanna [54] propose the best known deterministic quantile
algorithm, called GK algorithm, for the Cash Register Model, with O(1

ε log(εN))
working space in worst case. Following the space reduction framework of [76],
a randomized algorithm with space O(1

ε log( 1
εδ )) can be immediately developed.

The GK algorithm has been widely employed as a building block in many quan-
tile related works [67, 69, 5, 55].
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As to the Turnstile Model, Gilbert et al. [51] propose the first algorithm to
ε-approximate the rank query with probability at least 1 − δ. Their algorithm
is based on estimating range-sums of the data stream over dyadic intervals with
O( 1

ε2 log2 |U | log log |U|
δ ) working space, where U is the size of the element domain.

The data structure they used for estimating range-sums of the data stream
is called Random subset sums sketch, which can be directly replaced by the
Count-Min sketch proposed in [29]. Then an immediate improvement over the
space complexity follows with O(1

ε log2 |U | log log |U|
δ ), which is the currently best

known space bound in the Turnstile model. Applications of their algorithms
include the telecommunication transaction monitoring and query optimization
in the DBMS.

Lin et al. [69] propose the first space and time efficient algorithm to contin-
uously maintain order statistics against the count-based sliding window model.
Their techniques are based on a combination of GK-algorithm [54] and expo-
nential histogram technique in [35]; They considered the rank queries over fixed
sliding windows as well as variable sliding windows. And their space bound is
O( log ε2N

ε + 1
ε2 ) and ( 1

ε2 log2(εN)) for fixed sliding windows and variable sliding
windows respectively. Based on a more sophisticated interval-tree like structure,
Arasu and Manku [5] improve the space bound in [69].

With the development of the sensor network, various statistic computation
algorithms on the sensor network have been developed by various communities.
Greenwald and Khanna [55] study the problem of power-conserving computation
of order statistics in sensor networks. They show that the tree model of the sensor
network model is at least as hard as stream model. Their algorithm enforces that
the largest load difference between any two nodes will not exceed O(log(εN)) in
order to achieve ε-approximation. The maximal load for each node is bounded
by O( log2 n

ε ). Shrivastava et al. [85] improve the maximal load to O( log n
ε ) based

on a novel Q-digest data structure.
Instead of answering rank queries against a snapshot of the data set

like [55, 85], Cormode et al. [22] investigate the problem of continuous track-
ing of complex aggregates (e.g quantile) and data-distribution summaries over
collections of distributed streams. In order to achieve highly communication-
and space-efficient solutions, they combine a local tracking at remote sites and
simple prediction models for local site behaviour.

In [70], novel techniques are proposed to efficiently process a massive set
of continuous rank queries where the Continuous Queries are issued and run
continuously to update the query results along with the updates of the underlying
datasets.

In [56], Guha et al. investigate the importance of the ordering of a data stream,
without any assumptions about the actual distribution of the data. The quantile
computation is used as a sample application. They prove some theoretical space
bounds for the quantile algorithm over the data streams with adversary and
completely random order. And their space efficient technique enforces a finer
rank error guarantee |r − r′| = O(r0.5+ε). [53] shows how to efficiently compute
the quatiles over the data stream with the graphics processors.
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Relative Error Techniques. Using the relative error metric to measure ap-
proximation is not only of theoretical interest but also very useful in many ap-
plications. For instance, as shown in [26], finer error guarantees at higher ranks
are often desired in network management. This is because IP traffic data of-
ten exhibits skew towards the tail and it is exactly in the most skewed region
where user wants relative rank error guarantees, to get more precise informa-
tion about changes in values. Relative error is also motivated by the problem of
approximately counting inversions of a data stream [57].

The problem of finding approximate quantiles with relative error guarantee
is first studied by Gupta and Zane [57], who develop a one-scan randomized
technique with O( 1

ε3 log2 N) space requirement for approximately counting in-
versions, by maintaining an order sketch with the relative rank error guarantee ε.
However, their technique requires advanced knowledge of (an upper bound on)
N to do one-scan sampling. This potentially limits its applications. Cormode
et al. [26] study the related problem of computing biased quantiles, that is, the
set of quantiles Φ = {φi = φi

0 : 1 ≤ i ≤ k}, for a fixed k and some φ0, which
are estimated with precision εφiN . [26] gives an algorithm to approximate such
biased quantiles with deterministic error guarantees which performs very well
against many real data sets. While the problem of computing biased quantiles
focuses on the relative rank error guarantee bounded by a minimum quantile
φk

0N , the rank query addresses relative error guarantees at all ranks, no matter
how small φ is. As shown in [26], the application of their technique to the arbi-
trary rank queries leads to a linear space requirement Ω(N) in the worst case;
this can render the deterministic technique impracticable in applications where
small space usage is imperative.

In [96], We developed a novel, one-scan randomized algorithm (“MR”) which
guarantees the precision ε of relative rank errors with confidence 1− δ and requires
O( 1

ε2 log 2
δ log ε2N) space. We also develop an effective one-scan space compression

technique. Combined with the above one-scan randomized technique, it leads to a
more space-efficient one-scan randomized algorithm (“MRC”) which guarantees
the average space requirement O(1

ε log(1
ε log 2

δ ) log2+α εN
1−1/2α ) (for α > 0), while the

worst case space requirement remains O( 1
ε2 log 2

δ log ε2N). Recently, Cormodeet
al. [27] develop a novel deterministic algorithm to approximate the rank queries
with relative error. The Q-digest structure in [85] is extended in their work, and
the space required by their algorithm is O( log |U|

ε log εN). As shown in [27], their
algorithm outperforms the randomized algorithms. However, their solution is re-
stricted to a fixed value domain U . The space efficient deterministic algorithmwith
relative error guarantee remains open for the applications where the domain size
of the data elements is unlimited.

Duplicate-insensitive. In many data stream applications, duplicates may often
occur due to the projection on a subspace if elements have multiple attributes. For
example, in the stock market a deal with respect to a particular stock is recorded
by the transaction ID (TID), volume (vol), and average price (av) per share. To
study purchase trends, it is important to estimate the number of different types of
deals (i.e. deals with the same vol and the same av are regarded as the same type of
deal) with their total prices (i.e. vol*av) higher (or lower) than a given value. It is



Aggregate Computation over Data Streams 19

also interesting to know the total price (of a deal) ranked as a median, or 25th per-
centile, or 10th, or 5th percentile, etc. among all different types of deals. These two
types of rank queries are equivalent [27,57]; To accommodate such queries, we need
to project each deal transaction (TID, vol, av) on (vol, av) and then summarize the
distribution ofdistinct(vol, av)s according to a decreasing (or increasing) order of
vol*av. In this application, the data elements to be summarized are mapped from
(TID, vol, av) to (vol, av) by the projection. Consequently, any generated dupli-
cates (vol, av) must be removed to process such rank queries. Moreover, relative
(or biased) rank error metrics need to be used to provide more accurate results to-
wards heads (or tails depending on which monotonic order is adopted). Note that
the generality of rank queries (quantiles) remains unchanged in this application
since two different types of deals (i.e., (vol, av)s) may also have the same values
of vol*av. The unique challenge is to detect and remove the effect of duplicates
without keeping every element.

Duplicates may also occur when data elements are observed and recorded
multiple times at different data sites. For instance, as shown in [26,30] the same
packet may be seen at many tap points within an IP network depending on
how the packet is routed; thus it is important to discount those duplicates while
summarising data distributions by rank queries (quantiles). Moreover, to deal
with possible communication loss TCP retransmits lost packets and leads to the
same packet being seen even at a given monitor more than once. Similarly, in
order to achieve high fault-tolerance against communication errors in a sensor
network a popular mechanism is to send data items by multi-paths [20, 72, 82]
which will create duplicates.

In such distributed applications, continuously maintaining order sketches for
processing rank queries may be conducted either centrally at one site or at a set of
coordinating sites depending on the computing environment and the availability
of software and hardware devices. Nevertheless, in those situations a crucial issue
is to efficiently and continuously maintain a small space sketch with a precision
guarantee at a single site, by discounting duplicates.

The FM technique [46] has been first applied in [12, 20, 82] to develop
duplicate-insensitive techniques for approximate computing sum, count (num-
ber of sensor nodes), average to achieve high communication fault-tolerance.

In [82], Nath et al. present a duplicate-insensitive in-network quantile com-
putation algorithm to cope with multi-path communication protocol. For each
element, a random number between [0, 1] is drawn, which determines if the el-
ement will remain in the quantile sample; this combines with the element ID
to remove duplicates generated by the multipass communication. As the uni-
form sampling technique does not guarantee to draw the same random number
for the duplicated element, the technique in [82] can only handle the duplicates
generated in communication rather than duplicates in data streams.

In [72], Manjhi, Nath and Gibbons propose an effective adaption paradigm for
in-network aggregates computation over stream data with the aim to minimize
communication costs and to achieve high fault-tolerance. A duplicate-insensitive
technique for approximately computing quantiles can be immediately obtained
by a combination of their tree-based approximation technique and the existing
distinct counting technique in [10]. It can be immediately applied to a single
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site, where a data stream has duplicated elements, with the uniform precision
guarantee |r′−r| ≤ εn by confidence 1−δ and space O(1/ε3 log 1/δ log m), where
m is the maximal possible number of distinct elements.

In [30], Cormode and Muthukrishnan present a Distinct range sums technique
by applying the FM [46] technique on the top of their count-min sketch [29].
The technique can be immediately used to approximately process rank query
with the uniform precision guarantee |r′ − r| ≤ εn, confidence 1 − δ, and space
O( 1

ε3 log 1
δ log2 m). Independently, Hadjieleftheriou, Byers and Kollios [58] de-

velop two novel duplicate-insensitive techniques based on [85] and [29] to ap-
proximately compute quantiles in a distributed environment. Applying their
techniques to a single site immediately leads the uniform precision guarantee
|r′ − r| ≤ εn by confidence 1 − δ and space O( 1

ε3 log 1
δ log m).

Very recently, we develop the first space- and time- efficient, duplicate-
insensitive algorithms [97] to continuously maintain a sketch of order statis-
tics over data stream to enforce relative ε-approximation. They not only im-
prove the existing precision guarantee ( from uniform ε-approximation to rel-
ative ε-approximation ) but also reduce the space from O( 1

ε3 log 1
δ log m) to

O( 1
ε3 log 1

δ log m) where m is the element domain size.

5.2 Top-k Ranked Query

Instead of finding records with arbitrary rank, in many applications users are
typically interested in the k records with highest ranks, where k � N and N
is the number of records. Moreover, the ranking( preference ) function might
be proposed by users at query time. Providing efficient answers to such top-k
ranked queries has been a quite active topic and has many important applications
involving multi-criteria decision making.

In many applications the volume of the dataset is extremely large while users
are usually only interested in a limited number of answers regarding to their
preference functions, so it becomes necessary to pre-process the data to speed
up the performance. Many related works have been done in the literature, and
they can be classified into three categories: distributed index [42,43,44,45], view
based index [61,95,34] and minimal space index [15,90,87,93,64,79,89]. However,
only a few work [79,88,33] investigate the problem in the context of data streams.

In [79], Mouratidis el al. study the problem of continuous monitoring of top-k
queries over sliding windows. Based on the concept of K-skyband introduced
in [83], it is shown that only the tuples in the K-skyband can be answers for any
top-k ranked query with monotonic preference function where k < K. In [79],
elements are indexed by a regular grid in main memory. Two algorithms, TMA
and SMA, are proposed to continuously monitor the top-k answers for those
queries. In [79], a tuple can be regarded as a two dimensional data point. One
dimension is the score of the tuple (the rank function is pre-given) and an-
other is its timestamp. The SMA algorithm is proposed to continuously main-
tain the K-skyband against the stream data. The K-skyband of a dataset is the
points which can be dominated by at most K-1 other points, Clearly skyline is a
special instance of skyband with K=1. The basic idea of SMA is to maintain a
dominance count(DC ) for each tuple t where the DC is the number of tuples
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which dominate t, One tuple can be immediately discarded once its DC exceeds
K since it will not be touched by any top-k query with k ≤ K.

In [88], Tao et al. show how to continuously maintain the K-skyband against
multidimensional data indexed by the R Tree, and the concept of dominance
count is also employed in [89] as well. With a branch-and-bound search strategy
proposed in [88], [89] can efficiently retrieve answers for the top-k ranked queries.

Recently, based on the novel concept of the geometric arrangement, Das et
al. [33] further improve the efficiency of the top-k algorithms over data streams.
Instead of continuously maintaining the K-skyband of the stream data, new
tuple pruning algorithm is proposed in the paper such that the cost of minimal
candidate set maintenance is significantly reduced.

6 Future Work

Although there are still many problems remaining open for the data stream
algorithms, recently a great attention is given to the aggregate computation
over probabilistic data streams. In many important applications such as envi-
ronmental surveillance, market analysis and quantitative economics research,
uncertainty is inherent because of various factors including data randomness
and incompleteness, limitations of measuring equipments, delayed data updates,
etc. Meanwhile, those data are created rapidly so it is worthwhile to investigate
various computations over the probabilistic data streams. The main challenge is
to design space and time efficient algorithms to handle the uncertain data which
might arrive rapidly.
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