
An Optimal Deadlock Resolution Algorithm in Multidatabase
Systems

Xuemin Lin
Department of Computer Science

The University of Western Australia
Nedlands, Perth, WA 6907, Australia

lxueecs .uwa.oz .au

Abstract
In th is paper, we propose a novel deadlock resolu-

t i o n algorithm. In the presence of global deadlocks in
a multidatabase sys tem, th i s algorithm always selects
a n optimal set of v ic t ims for removing deadlocks. I t
makes the use of network f low techniques, and runs in
t i m e O(n3) , where n is the number of the deadlocked
global transactions. Furthermore, the proposed dead-
lock resolution algorithm dose not have livelock and
transaction processing starvation problems.

Keywords: Deadlock, Multidatabase, Concurrency
Control, Optimization.

1 Introduction
A multidatabase sys tem (MDBS) is a federation of

independently developed component database systems
through a communication network. These component
database systems are also called local database sys tems
(LDBSs) in contrast to an MDBS. There are two types
of transactions in an MDBS:

e Local transactions - that execute in a single LDB-

e Global transactions - that execute on several

S.

LDBSs.

One major issue in transaction management in an
MDBS is concurrency control. The current devel-
opments in concurrency control techniques in multi-
database systems can be classified into two families:
one is deadlock free [3,9], and another requires dead-
lock detection [5,10]. Discussions about advantages
and disadvantages of these two approaches are outside
the covera e of this paper. The interested reader may
refer to [la for details. Usually, a concurrency control
approach without forcing deadlock free can potentially
provide a greater concurrency degree. However, this
should co-operate with an efficient and effective dead-
lock resolution.

In this paper, we assume that the currency control
technique used in a multidatabase management sys-
tem may cause the existence of deadlocks. Particular-
ly, we employ the multidatabase management system
and the concurrency control mechanism from [5,6]:

Jian Chen
Department of Software Development

Monash University
Melbourne, Australia

iianchen@insect .sd.monash.edu.au

1. At the global level: the global transaction
manager (GTM) has no access to local DBMS;
each global transaction can have at most one sub-
transaction a t each LDBS; each subtransaction
may consist of several operations; the GTM sub-
mits the operations of a global transaction one
by one; and the GTM submits an operation of
a transaction T to an LDBS only if the previous
submitted operation of T has been completed.

2. At the local level: each local database man-
agement system uses a two-phase locking proto-
col [a] for local serializability, and has a mecha-
nism for ensuring freedom from local deadlocks;
no changes can be made to local database sys-
tems in order to preserve local autonomy; a local
database management system is not able to dis-
tinguish between local global transactions which
are active at the LDBS, that is, it treats a sub-
transaction decomposed from a global transaction
as a local transaction; and a local database man-
agement system is not able to communicate di-
rectly with other local DBMSs to synchronize the
execution of a global transaction active a t several
LDBSs.

Consequently, a global transaction may wait, at
most, a t one LDBS each time; and we can assume
that each local schedule is serializable and that local
deadlocks can be resolved through a local concurrency
control approach. However, global deadlocks (that is,
the deadlocks among global transactions) may still ex-
ist due to possible conflicts among global transactions.
These conflicts may even be indirect conflicts [5,10].

Two deadlocks resolution algorithms have been re-
cently reported [6,7]. Due to indirect conflicts un-
known to a GTM, these two algorithms cannot over-
come all of the following drawbacks: 1) unnecessarily
increase transaction abortion costs, 2) create livelock
problem, and 3) create transaction processing starva-
t i o n problem.

In this paper, we will present a novel deadlock res-
olution algorithm, which can avoid all of the above
drawbacks. The algorithm presented in this paper us-
es the network flow techniques. Particularly, we apply
the algorithm for solving the maximum flow problem.
As the outcome, the proposed algorithm can always

516
O-S186-7267-6/96 $05.00 0 1996 IEEE

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:22 from IEEE Xplore. Restrictions apply.

choose a set of victims with the minimum overall abor-
tion costs to remove deadlocks in combining with a
time-out technique.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief overview of the algorithms in [6,7],
and the problems inherent in them. Section 3 presents
our deadlock resolution algorithm, together with its
performance analysis. Section 4 concludes the paper.

2 An Overview of Related Works
To detect global deadlocks, the information about

the conflicts among global transactions is required.
However, indirect conflicts cannot be detected due to
site autonomy. To resolve this situation, a potential
conflict graph has been introduced in [5] to give an
approximation description of conflicts.

A global transaction % has a server a t a site Sj
(LDBS) if the transaction contains a subtransaction to
be processed at Sj . The sever of at S . is responsible
for the communication between Sj and the GTM for
processing T i . A transaction Ti is active at site Sj if
it has a server a t Sj, and if the server is performing
the operation of Ti a t the site or has completed the
current operation of Ti and is ready to receive the
next operation of E. A transaction that is not active
a t site Sj is said to be waiting at site Sj , provided that
it has a server at the site and a t least one operation of
the transaction was submitted to the site. A potential
conflict graph (PCG) is described as a directed graph
G = (VIA) whose vertex set V consists of the global
transactions. An arc Tj + Ti is in A if there is a site
a t which T j is waiting and Ti is active.

A time-out mechanism BLS has been proposed by
Breibart, Litwin and Silberschatz in [6] which cooper-
ates with the potential conflict graph to remove global
deadlocks. The algorithm BLS initially issues a times-
tamp and sets up a timer to each global transaction.
Once the time-out expires on a waiting transaction TI
BLS implements the following two steps:

BLS1: If there is a cycle containing T in the poten-
tial conflict graph a t that time, determine the set
of all transactions which are active at the waiting
site of T and involved in a cycle through T . If T is
older (with respect to timestamp) than all trans-
actions in the set, T continues waiting; otherwise,
T aborts.

BLS2: If there is no cycle in the potential graph, T
continues waiting.

Another time-out mechanism PPCG is outlined in
[7]. Once the time-out expires on T , PPCG carries
out the following two steps:

PPCG1: If there is at least one cycle in PCG contain-
ing T , find the set g of the transactions involved
in a number of cycles equal to or greater than
the number of cycles in which T is involved, such
that each transaction in g is involved in a cycle
through T . If T is the youngest in g, then abort
T . Otherwise choose the least expensive transac-
tion ? from g; if the expense of T is the same as
that of ?, then abort T.

PPCGB: Otherwise T continues to wait with a re-
initiated time-out.

Note that in the presence of expensive transaction-
s (longtime running transactions), it is believed that
some abortions are more expensive than waiting, and
unnecessary abortions result in waste of system re-
sources.

BLS is eflicient, and simple to be implemented. One
problem of BLS has been reported in [7] from their
implementations: BLS may abort expensive transac-
tions.

PPCG can avoid this problem, but may cause the
other problems. The first problem is the computation-
al efficiency issue. The computation of g at PPCGl
involves the computation of &he number of cycles in a
directed graph. There is no polynomial time bounded
algorithm, so far, which may compute the number of
cycles in a directed graph. So, PPCG can only ap-
ply to applications where small number of deadlocks
are involved. Another problem is that if it is decided
not to abort T , it is possible that there is a cycle in
the potentiad conflict graph through T which is a re-
al deadlock and may not be broken a t that time. At
the next time-out, the potential conflict graph may be
changed (ex tended), and this remaining deadlock may
again fail to be broken. Thus, this deadlock may exist
forever (that is, in case that the new global transac-
tions are coiitinuously issued, the transactions in the
deadlock may have to wait forever). Thus, the live-
lock occurs, that is, a transaction cannot proceed for
an indefinite period of time. Further, PPCG may also
cause transaction processing starvation problem, that
is, the same transaction is repeatedly selected as a
victim, thus causing it to abort and never finish exe-
cution. One can easily construct examples to demon-
strate these llivelock and starvation problems in PPCG
for a cheap global transaction.

Consider that the potential conflict graph only ap-
proximately provides the deadlock information. A cy-
cle in a potential conflict graph (PCG) could be ei-
ther a false or a real deadlock. This results in uncer-
tainty about the information of global deadlocks. To
solve this uncertainty problem, a time-out mechanism
is useful.

Meanwhile, we would like to have a quick response
for processing each transaction, that is, the avoidance
of livelock and starvation problems. Furthermore, we
should avoid unnecessary abortion of expensive trans-
actions. In the next section, we will present our dead-
lock resolutilon algorithm, which can solve the prob-
lems in BLS and PPCG.

3 A New Deadlock Resolution Algo-
rithm

Since the combination of a PCG and time-out can
confirm deadlock situation among global transactions
a t some level, we should abort all cycles through a
transaction T in the potential conflict graph once the
time-out expires on T . There are two ways to break
those cycles through T : one is to abort T , another is
to abort a set of other transactions which are through
all these cycles. To avoid the three problems listed

517

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:22 from IEEE Xplore. Restrictions apply.

in Section 1, we should treat them as an integrated
whole. To do this, we suggest that

once the time-out expires on a transaction T
and if there is at least one cycle in the PCG
through T , instead of aborting T we may find
a set of other transactions such that the abor-
tion cost is minimized and the abortion will
break all cycles through T .

After aborting a transaction T , all those submitted
operations of T should be re-submitted for computa-
tion. Obviously, the system resources are wasted for
the abortion of operations, which include the commu-
nication cost. So, we use t8he number N(T of current-
ly submitted operations in the execution o i transaction
X as the abortion cost. If we use only this to measure
the abortion cost, it may cause the livelock and star-
vation problems for cheap transactions. Thus, we also
record the time t (T) from the first issuing time of T
up to now as another measure. The abortion cost of
transaction T , denoted by a c (T) is measure by

+ Pt(T), (1)
where (Y and P give respectively the means of N(T)
and t (T) , and a + ,b = 1. The abortzon cost of a set
M of transactions, denoted by a c (M) , is the sum of
the abortion cost of each transaction in M . We use
the following example to illustrate the necessity of our
consideration.
Example 1. Suppose that when time-out expires
on transaction T , the execution status of the global
transactions and the potential conflict graph are illus-
trated by Figure 1. The abortion costs are listed as fol-

ac(T4) = 3, and ac i ’ , T5 = 2 . Further, suppose that
T is not older than either TI or T2. Then according
to the algorithm BLS, T will be aborted. Clearly, the
abortion cost of {TI, Tz, T 4) is smaller than a c (T) , and
this abortion will also break all cycles through T . The
smallest abortion cost for breaking all cycles through
T is 2 which is required to abort T3. 0
3.1 An Outline of the New Algorithm

Below, we outline our global deadlock removal al-
gorithm OVS. Once the time-out expires on a trans-
action T , our algorithm OVS consists of the following
two steps:
Stepl: Determine whether or not there are cycles

containing T in the current PCG. If there are no
such cycles, T continues to wait with a re-initiated
time-out. Otherwise, find the set X of the trans-
actions which are in such cycles, and go to Step
2.

Step%: Find a subset M of other transactions from
X which have the smallest abortion costs such
that the abortion of the transactions in M will
break all cycles through T . If a c (T) is smaller
than a c (M) , then abort T . Otherwise abort M ,
starts to process T , and re-initiates a time-out on
T .

In next subsection, we present an efficient imple-

lows: UC(T) = 8, uc Ti = 2 , U C (T ~) = 2 , U C (T ~) = 2 ,

mentation of this algorithm.

3.2 Efficiently Implementing Step 1
Step 1 corresponds to find the “strongly connected

component” X of PCG containing T . This can be
done by a standard algorithm in time O (m) [14] where
m is the number of the arcs in the PCG.

A strongly connected component in a directed graph
G is a subgraph 6 such that:

1. For each pair of vertices U and v in G, there are
at least two directed paths - one is from U to v
and another is from v to U .

2 . For each pair of vertices U and v with U in G and
v not in 6, there are no such two paths.

Note that any potential conflict graph has no arc that
connects the same vertex. Consequently, the poten-
tial conflict graph has a t least one cycle through T if
and only if the strongly connected component X con-
taining T has at least two vertices. Furthermore, any
transaction are in a cycle containing T must be in X .
So, if X contains only T , then there is no cycle in the
PCG through T . Otherwise, output X and goto Step
2. Thus, Step 1 can be implemented in O(m).

In the next subsection, we show that by using net-
work flow techniques, Step 2 can be implemented in
0(n3) , where n is the size of the vertex set of the
strongly connected component X.
3.3 Efficiently Implementing Step 2

overview the basic knowledge in network flows.
Before presenting the implementation, we first

3.3.1 Networks
An s - t network is an arc weighted directed graph
N = (V, A , c) with two distinguished vertices s and t
such that c : A -+ I where I is the positive integer
set, and all the arcs attached to s must be the going-
out arcs from s and all the arcs attached to t are the
incoming arcs to t . The vertex s is the source of N ,
and t is the sink of N . The function c is the capacity
func t ion of N and its value on an arc a is the capacity
of a.

A flow in an s-t network N is a mapping f : A -+ I
such that:

a for each a E A , 0 5 f (a) 5 ~ (a) , and

e for each vertex U other than s and 1,
CaEA$ f (a) = CaEA; f (u) , where A,f is the set
of the arcs going-out from U, and A; the set of
arcs coming to U .

The m a x i m u m flow problem of an s - t network N is
to find a flow f in N such that

a a t taches t o s

is maximized.
A cut (V,, V,) in an s - t network N = (V, A , c) is

a partition on V , that is, V = Vs U V,, Vs n V, = 0,

518

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:22 from IEEE Xplore. Restrictions apply.

m

Ti

T
pointing-down arrow: waiting state
pointing-up arrow: active state

Figure 1: Example 2

and t E V, and s E V,. The capacity of a cut (V, , V,),
denoted as c ((V , , K)), is defined as the sum of the
capacities of the arcs from V, to V,. The m i n i m u m
cut of an s - t network N is a cut (K, V,) such that
e((V, , K)) is minimized.

We use V (G) to denote the vertex set of a graph
G, and A(G) the arc set of G.

3.3.2 A Transformation

Step 2 corresponds to solving the following problem.
M i n i m u m Vertex C u t Problem (MVCP)
Instance: Given a vertex weighted directed graph G =
(V,A,ac) which is strongly connected and where ac
is a mapping from V to the positive integer set I , a
vertex v E V .
Question: How can we find a subset M of V such that
the deletion of M removes all cycles through T in G,
and CuEM a c (u) is minimized?

Thanks to the developments in the maximum flow
problem [14,13], MVCP can be solved in polynomial
time. Below, we translate MVCP to the maximum
flow problem.

For a given strongly connected and vertex weighted
directed graph G = (V, A , ac) and a given vertex v , we
may first modify G into a s - t network G,, named
by the auxiliary network of G with respect to v, as
follows.

0 For each arc a in G, assign the capacity C (U) =
Cu,v44 + 1.

0 Split v into two vertices s and t’. All incoming
arcs to v are moved to attach t1 with the same
capacity as that in G, and all outgoing arcs from
v are moved to attach s with the same capacity.
Add one vertex t and an arc t’ + t with the
capacity c (t l i t) = ac(v) .

Based on Example 2, the auxiliary network of the po-
tential conflict graph with respect to T is illustrated
in Figure 2.

Obviousl,y, the auxiliary network G, of G with re-
spect to v has the vertex set size 2)V) + 1, and the arc
set size IAl-t-IVI, and G, is an s-t network. Below, we
prove the fu.ndamenta1 Theorem in this paper. Clear-
ly, a vertex set M , which breaks all the cycles through
v and has the minimum overall weight, either contains
only vertex v or does not contain v .

Theorem I1 Suppose that a vertex weighted directed
graph G = V,A,ac) is strongly connected, and v is
a vertex. 2’ (il en there is a subset M C V such that
the removal of M breaks all the cycles through v and
CuEM ac(u:) achieves the man imum value if and only
if in the auxiliary network G,, of G with respect v, any
m i n i m u m cvt (V, &) has the properties:

0 the capacity c((K1 6)) of the cut is equal t o
C U E M l Z C (U) , and

0 the set of arcs f r o m V , t o & is either {ul i
iM} or {t’ -+ t } i n case

Proof: We first prove the “if’ part by the approach
of a reduction to absurdity. Suppose that there is a
subset 1M of V such that the removal of k breaks all
the cycles th.rough v and Cue* a c (u) < CuEM a c (u) .
Assume that a does not contain v. (If I@ contains v ,
then the cut, (a/.s = V(G,) - {t},e = { t }) is against
the minimal property of M ; thus “if” part holds.) Fur-
ther, let 2 == {U’ -+ U’ : U E fi]. Now we construct
V, and fi in G, as follows:

0 6 = V(G,) - %, and

U’ : U E M where v
that M contains only v.

0 For each other vertex U E V , split it into two
vertices u1 and u2. All incoming arcs to U are
moved to attach u1 with the same capacity as
that in G, and all outgoing arcs from U are moved
to attach U’ with the same capacity. Add one arc
u1 + U’ with the capacity C(U’ -+ U‘) = a c (u) .

0 = { u1 : U E k} U { s } IJ VI , where VI consists of
vertices which are on a path, including none arc
from A, in G, from s to a vertex in : u E a).

From the constructions of G,, p, and e, it imme-
diately follows that for each pair of vertices U’ and

519

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:22 from IEEE Xplore. Restrictions apply.

Figure 2 : the auxiliary network - an s-t network

u2 such that U 6 M , either they are all in e, or
none of them is in V, (because, there is only one ar-
c from U' to U ') . Clearly, t E g , since the removal
of 2 breaks all the cycles, in G, through v. Also,
each u2 for U E k is in G . From the above fact-
s and the constructions of p, and fi, it follows that
(esi%) is a cut, and the set of the arcs from v, to e
is A. Thus c ((~ , , %)) = CUEn;r ac(u). It follows that
c &, '& < c((K, G)) . This contradicts the fact that
c il V,, V, 11 is the minimum cut of G, .

Again, we prove the "only if" part through the
approach of a reduction to absurdity. We may as-
sume that M dose not contain v (If M contains v ,
a counter example can be immediately constructed).
First, it is clear, from the above proof, that from
M we may construct a cut (Vs, &) of G, such that
c((V,, V,)) = CuEM ac(u) . Suppose that there is a
cut (q', V,') ofG, such that e((&' , V,')) < e ((& , Vs)) ,
and the set R of arcs from x' to V,' either contains
only t1 4 t or does not contain t' .+ t . Without loss
of generality, we may assume that R does not contain
t' + t .

From constructions of G, and the cut (Vs, G) , it
follows that R is a subset of {U' -+ U' : U E V (G) }
(noting that the weight of each other arc is larger than
e((V, , V,))). Clearly, the removal of T means that there
is no path left from s to t . From these two facts, it
can be seen that the removal of M I will break all the
cycles in G through v, where M1 = { U : for a u1 -+

u2 E TI. From the construction of G,, it follows that

3.3.3

According to Theorem 1, the implementation of Step
2 corresponds to finding a minimum cut from an s - t
network. The following Lemma from [14] says that
we may apply the algorithm for solving the maximum
flow problem to find a minimum cut.

Detailed Implementation of Step 2

Lemma 1 For any s - t network N = (V, A , e) , the
value of the maximum flow equals the capacity of the
minimum cut, and a f low f and cut (V,, &) are jointly
optimal if and only af

1. f(u t U) = 0 for U c v E A and U E V,, v E V,;
and

2. f(u 4 v) = C (U -+ w) for U -+ w E A and U E V,,
v E v,.

Based on Theorem 1 and Lemma 1, we may carry
out Step 2 in the following 4 stages.

sl : With respect to T , obtain the auxiliary network
GT of the strongly connected graph X where each
vertex has been assigned a weight corresponding
to the abortion cost. Go to s2.

s2:

s3:

Find a maximum flow f in GT. Go to s3

In G T , let VI = t and VO = V(GT) - V I . Then
we apply breadth-first search to iteratively extend
VI and reduce V , (that is, we iteratively carry out
the following two operations until no changes on
VI and VO):

0 for an arc U -+ v E A(GT), if U E VO, v E VI
and f(u 4 U) < c(u -+ U), then remove U
from Vo to V I ; and

0 for an arc v -+ 21 E A(GT) , if U E Vo, v E VI
and f(v -+ U) > 0 , then remove U from Vo
to VI.

Go to s4.

s4: From Theorem 1 and Lemma 1, it follows that
(Lb, V I) is a minimum cut of GT, and the set of
arcs from VO to VI is in the form of either:
{U' -+ U' : U E M for some subset M of V (X) }
or {t' -+ t } .
(In the later case, let M = {T}.) Abort the trans-
actions in M .

520

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:22 from IEEE Xplore. Restrictions apply.

Because all the cycles through T in the potential
conflict graph must be included in the strongly con-
nected component X containing T , by combining this
with Theorem 1 and Lemma 1, it follows that

the implementation of the above four steps s l - s4
can find a subset M of the global transactions such
that the abortion of M will break all cycles through T,
and ac (M) is minimized.

Clearly, s l can be implemented in linear time
with respect to I A (X) (. The most efficient algo-
rithm for solving maximum flow problem takes time
O (l V (G ,) l l A (G T) l l o g ~) [13], which is slightly
better than the algorithm O(lV13) in [14] for sparse
graphs. But the algorithm in [14] is much easier
to implement. We suggest applying this algorithm.
Thus, s2 can run in time O (I V (G T) ~ ~) = O(lV(X)13).
Note that s3 and s4 can be implemented together, and
take O (~ A (G T) I) = 0] A X I) (time for breadth-first

Theorem 2 Step 2 in the algorithm OVG can be im-
plemented in O(n3) where n is the number of vertices
in X .

3.4 Properties of the New Deadlock De-
tection Algorithms

From the preceding discussion, it follows that our
deadlock detection algorithm OVS runs in time O(m+
n3) where m is the number of arcs in a current PCG,
and n is the number of the transactions in the dead-
locks containing a given global transaction T .

The algorithm OVS will always select less expen-
sive transactions to be aborted among the transactions
whose first issuing times are the same. Furthermore,
the choice of abortion cost in (1) will avoid the occur-
rence of livelock and starvation problems, because:

0 If a transaction T is uncommitted for a very long
period due to repeated abortions of TI then the
abortion cost of T will be increased every time.
Eventually, the abortion of T will never occur,
and T will be exclusively executed.

0 Every time after the other transactions deadlock-
ing T are aborted, we can at least execute one
more operation of T before new deadlocks occur
on T .

search). So, we have t h l l ' e 01 owing Theorem.

4 Conclusions
In this paper, we provided a novel deadlock reso-

lution algorithm in multidatabase systems. It always
chooses less expensive victims to be aborted, and does
not have livelock and transaction processing starvation
problems. By using the network flow techniques, the
algorithm runs in cubic time.

References
[l] R. Argrawal, M. Carey and L. McVoy, The

Performance Alternative Strategies for Dealing
with Deadlocks in Database Management System-
s , IEEE Transactions on Software Engineering,
12, Sep. 1987.

P. Bernstein, V. Hadzilacos and G. Goodman,
Concurrency Control and Recovery in Database
Systems, Addison-Wesley, 1987.

R. K. Batra, M. Runsinkiewicz and D. Geor-
gakopoulos, A Decentralized Deadlock-free
Concurrency Control Method for Multidatabase
Transactions, 12th International Conference on
Distribuifed Computing Systems, 1992.

Y. Breibart, W. Litwin and A. Silberschatz, Multi-
database Concurrency Control Systems, Technical
Report, 1.54-89, Department of Computer Science,
University of Kentucky, 1989.

Y. Breibart, A. Silberschatz, and G. Thompo-
son, Reliable Transaction Management in a Mul-
tidatabase System, SIGMOD Record, 1990.

Y. Breibart, W. Litwin and A. Silberschatz, Dead-
lock Problems in a Multidatabase Environment,
IEEE Daka Engineering, ;January 1991.

0. Bukhires, J. Alm and N . Boudriga, A Priority-
Based PiCG Algorithm for Global Deadlock De-
tection and Resolution in Multidatabase Systems,
First International Workshop on Interoperability
in Multidatabase Systems, IEEE CS press, 1993.

S. Ceri and G. Pelagatti, Distributed Database
Principles and Systems, McGraw Hill, 1984.

A. K. Elmagarmid and W. Du, A Paradigm for
Concurrency Control in Heterogeneous Distribut-
ed Database Systems, LEEE Proceedings of the
6th International Conference on Data Engineer-
ing, 1990.

[lo] D. Georgakopoulos, M. Runsinkiewicz and
A. Sheth, On Serializability of Multidatabase
Transactions Through Forced Local Conflicts,
IEEE Proceedings of the 7th International Confer-
ence on Data Engineering, 1991.

[ll] V. Gligor and R. Popescu-Zeletin, Concurren-
cy Control Issues in Di,stributed Heterogeneous
Database Management Systems, Tutorial: Dis-
tributed]Database Management, 1985.

[12] S. Mehrotra, R. Rastogi, Y. Breibart, H. F. Ko-
rth and A.. Silberschatz, The Concurrency Control
Problem in Multidatabases: Characteristics and
Solutions, ACM SIGMOD, 1992.

[13] B. M. E. Moret and H. D. Shapiro, Algorithms
from P to NP, Volume 1: Design and Eficiency,
Benjamin/Cummings, 1990.

[14] C. H. Papadimitriou and K. Steiglitz, Combina-
torial Optimization: Algorithms and Complexity,
Prentice-IMl Publish.

52 1

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:22 from IEEE Xplore. Restrictions apply.

