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Abstract 
In th is  paper, we  propose a novel deadlock resolu- 

t i o n  algorithm. In the  presence of global deadlocks in 
a multidatabase sys tem,  th i s  algorithm always selects 
a n  optimal set of v ic t ims  for removing deadlocks. I t  
makes  the  use of network f low techniques, and runs  in 
t i m e  O(n3) ,  where n is the  number  of the  deadlocked 
global transactions.  Furthermore, the  proposed dead- 
lock resolution algorithm dose not  have livelock and 
transaction processing starvation problems. 

Keywords: Deadlock, Multidatabase, Concurrency 
Control, Optimization. 

1 Introduction 
A multidatabase sys tem (MDBS) is a federation of 

independently developed component database systems 
through a communication network. These component 
database systems are also called local database sys tems  
(LDBSs) in contrast to an MDBS. There are two types 
of transactions in an MDBS: 

e Local transactions - that execute in a single LDB- 

e Global transactions - that execute on several 

S. 

LDBSs. 

One major issue in transaction management in an 
MDBS is concurrency control. The current devel- 
opments in concurrency control techniques in multi- 
database systems can be classified into two families: 
one is deadlock free [3,9], and another requires dead- 
lock detection [5,10]. Discussions about advantages 
and disadvantages of these two approaches are outside 
the covera e of this paper. The interested reader may 
refer to [la for details. Usually, a concurrency control 
approach without forcing deadlock free can potentially 
provide a greater concurrency degree. However, this 
should co-operate with an efficient and effective dead- 
lock resolution. 

In this paper, we assume that the currency control 
technique used in a multidatabase management sys- 
tem may cause the existence of deadlocks. Particular- 
ly, we employ the multidatabase management system 
and the concurrency control mechanism from [5,6]: 
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1. At the global level: the global transaction 
manager (GTM) has no access to local DBMS; 
each global transaction can have at most one sub- 
transaction a t  each LDBS; each subtransaction 
may consist of several operations; the GTM sub- 
mits the operations of a global transaction one 
by one; and the GTM submits an  operation of 
a transaction T to an LDBS only if the previous 
submitted operation of T has been completed. 

2.  At the local level: each local database man- 
agement system uses a two-phase locking proto- 
col [a]  for local serializability, and has a mecha- 
nism for ensuring freedom from local deadlocks; 
no changes can be made to local database sys- 
tems in order to preserve local autonomy; a local 
database management system is not able to dis- 
tinguish between local global transactions which 
are active at the LDBS, that is, it treats a sub- 
transaction decomposed from a global transaction 
as a local transaction; and a local database man- 
agement system is not able to communicate di- 
rectly with other local DBMSs to  synchronize the 
execution of a global transaction active a t  several 
LDBSs. 

Consequently, a global transaction may wait, at 
most, a t  one LDBS each time; and we can assume 
that each local schedule is serializable and that local 
deadlocks can be resolved through a local concurrency 
control approach. However, global deadlocks (that is, 
the deadlocks among global transactions) may still ex- 
ist due to possible conflicts among global transactions. 
These conflicts may even be indirect conflicts [5,10]. 

Two deadlocks resolution algorithms have been re- 
cently reported [6,7]. Due to indirect conflicts un- 
known to a GTM, these two algorithms cannot over- 
come all of the following drawbacks: 1) unnecessarily 
increase transaction abortion costs, 2 )  create livelock 
problem, and 3) create transaction processing starva- 
t i o n  problem. 

In this paper, we will present a novel deadlock res- 
olution algorithm, which can avoid all of the above 
drawbacks. The algorithm presented in this paper us- 
es the network flow techniques. Particularly, we apply 
the algorithm for solving the maximum flow problem. 
As the outcome, the proposed algorithm can always 
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choose a set of victims with the minimum overall abor- 
tion costs to  remove deadlocks in combining with a 
time-out technique. 

The rest of the paper is organized as follows. Sec- 
tion 2 gives a brief overview of the algorithms in [6,7], 
and the problems inherent in them. Section 3 presents 
our deadlock resolution algorithm, together with its 
performance analysis. Section 4 concludes the paper. 

2 An Overview of Related Works 
To detect global deadlocks, the information about 

the conflicts among global transactions is required. 
However, indirect conflicts cannot be detected due to  
site autonomy. To resolve this situation, a potential 
conflict graph has been introduced in [5] to give an 
approximation description of conflicts. 

A global transaction % has a server a t  a site Sj 
(LDBS) if the transaction contains a subtransaction to 
be processed at Sj . The sever of at S .  is responsible 
for the communication between Sj and the GTM for 
processing T i .  A transaction Ti is active at site Sj if 
it has a server a t  Sj, and if the server is performing 
the operation of Ti a t  the site or has completed the 
current operation of Ti and is ready to receive the 
next operation of E. A transaction that is not active 
a t  site Sj is said to  be waiting at site Sj ,  provided that 
it has a server at the site and a t  least one operation of 
the transaction was submitted to  the site. A potential 
conflict graph (PCG) is described as a directed graph 
G = (VIA) whose vertex set V consists of the global 
transactions. An arc Tj + Ti is in A if there is a site 
a t  which T j  is waiting and Ti is active. 

A time-out mechanism BLS has been proposed by 
Breibart, Litwin and Silberschatz in [6] which cooper- 
ates with the potential conflict graph to remove global 
deadlocks. The algorithm BLS initially issues a times- 
tamp and sets up a timer to each global transaction. 
Once the time-out expires on a waiting transaction TI 
BLS implements the following two steps: 

BLS1: If there is a cycle containing T in the poten- 
tial conflict graph a t  that time, determine the set 
of all transactions which are active at the waiting 
site of T and involved in a cycle through T .  If T is 
older (with respect to  timestamp) than all trans- 
actions in the set, T continues waiting; otherwise, 
T aborts. 

BLS2: If there is no cycle in the potential graph, T 
continues waiting. 

Another time-out mechanism PPCG is outlined in 
[7]. Once the time-out expires on T ,  PPCG carries 
out the following two steps: 

PPCG1: If there is at least one cycle in PCG contain- 
ing T ,  find the set g of the transactions involved 
in a number of cycles equal to or greater than 
the number of cycles in which T is involved, such 
that each transaction in g is involved in a cycle 
through T .  If T is the youngest in g, then abort 
T .  Otherwise choose the least expensive transac- 
tion ? from g; if the expense of T is the same as 
that of ?, then abort T.  

PPCGB: Otherwise T continues to wait with a re- 
initiated time-out. 

Note that in the presence of expensive transaction- 
s (longtime running transactions), it is believed that 
some abortions are more expensive than waiting, and 
unnecessary abortions result in waste of system re- 
sources. 

BLS is eflicient, and simple to be implemented. One 
problem of BLS has been reported in [7] from their 
implementations: BLS may abort expensive transac- 
tions. 

PPCG can avoid this problem, but may cause the 
other problems. The first problem is the computation- 
al efficiency issue. The computation of g at PPCGl  
involves the computation of &he number of cycles in a 
directed graph. There is no polynomial time bounded 
algorithm, so far, which may compute the number of 
cycles in a directed graph. So, PPCG can only ap- 
ply to applications where small number of deadlocks 
are involved. Another problem is that if it is decided 
not to abort T ,  it is possible that there is a cycle in 
the potentiad conflict graph through T which is a re- 
al deadlock and may not be broken a t  that time. At 
the next time-out, the potential conflict graph may be 
changed (ex tended), and this remaining deadlock may 
again fail to  be broken. Thus, this deadlock may exist 
forever (that is, in case that the new global transac- 
tions are coiitinuously issued, the transactions in the 
deadlock may have to wait forever). Thus, the live- 
lock occurs, that is, a transaction cannot proceed for 
an indefinite period of time. Further, PPCG may also 
cause transaction processing starvation problem, that 
is, the same transaction is repeatedly selected as a 
victim, thus causing it to abort and never finish exe- 
cution. One can easily construct examples to  demon- 
strate these llivelock and starvation problems in PPCG 
for a cheap global transaction. 

Consider that the potential conflict graph only ap- 
proximately provides the deadlock information. A cy- 
cle in a potential conflict graph (PCG) could be ei- 
ther a false or a real deadlock. This results in uncer- 
tainty about the information of global deadlocks. To 
solve this uncertainty problem, a time-out mechanism 
is useful. 

Meanwhile, we would like to have a quick response 
for processing each transaction, that is, the avoidance 
of livelock and starvation problems. Furthermore, we 
should avoid unnecessary abortion of expensive trans- 
actions. In the next section, we will present our dead- 
lock resolutilon algorithm, which can solve the prob- 
lems in BLS and PPCG. 

3 A New Deadlock Resolution Algo- 
rithm 

Since the combination of a PCG and time-out can 
confirm deadlock situation among global transactions 
a t  some level, we should abort all cycles through a 
transaction T in the potential conflict graph once the 
time-out expires on T .  There are two ways to  break 
those cycles through T :  one is to  abort T ,  another is 
to abort a set of other transactions which are through 
all these cycles. To avoid the three problems listed 
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in Section 1, we should treat them as an integrated 
whole. To do this, we suggest that 

once the time-out expires on a transaction T 
and if there is at least one cycle in the PCG 
through T ,  instead of aborting T we may find 
a set of other transactions such that the abor- 
tion cost is minimized and the abortion will 
break all cycles through T .  

After aborting a transaction T ,  all those submitted 
operations of T should be re-submitted for computa- 
tion. Obviously, the system resources are wasted for 
the abortion of operations, which include the commu- 
nication cost. So, we use t8he number N(T of current- 
ly submitted operations in the execution o i transaction 
X as the abortion cost. If we use only this to measure 
the abortion cost, it may cause the livelock and star- 
vation problems for cheap transactions. Thus, we also 
record the time t (T)  from the first issuing time of T 
up to now as another measure. The abortion cost of 
transaction T ,  denoted by a c ( T )  is measure by 

+ Pt(T), (1) 
where (Y and P give respectively the means of N(T)  
and t (T) ,  and a + ,b = 1. The abortzon cost of a set 
M of transactions, denoted by a c ( M ) ,  is the sum of 
the abortion cost of each transaction in M .  We use 
the following example to  illustrate the necessity of our 
consideration. 
Example 1. Suppose that when time-out expires 
on transaction T ,  the execution status of the global 
transactions and the potential conflict graph are illus- 
trated by Figure 1. The abortion costs are listed as fol- 

ac(T4)  = 3, and ac i ’ ,  T5 = 2 .  Further, suppose that 
T is not older than either TI or T2. Then according 
to the algorithm BLS, T will be aborted. Clearly, the 
abortion cost of {TI, Tz, T 4 )  is smaller than a c ( T ) ,  and 
this abortion will also break all cycles through T .  The 
smallest abortion cost for breaking all cycles through 
T is 2 which is required to  abort T3. 0 
3.1 An Outline of the New Algorithm 

Below, we outline our global deadlock removal al- 
gorithm OVS. Once the time-out expires on a trans- 
action T ,  our algorithm OVS consists of the following 
two steps: 
Stepl: Determine whether or not there are cycles 

containing T in the current PCG. If there are no 
such cycles, T continues to wait with a re-initiated 
time-out. Otherwise, find the set X of the trans- 
actions which are in such cycles, and go to Step 
2. 

Step%: Find a subset M of other transactions from 
X which have the smallest abortion costs such 
that the abortion of the transactions in M will 
break all cycles through T .  If a c ( T )  is smaller 
than a c ( M ) ,  then abort T .  Otherwise abort M ,  
starts to  process T ,  and re-initiates a time-out on 
T .  

In next subsection, we present an efficient imple- 

lows: UC(T)  = 8, uc Ti = 2 ,  U C ( T ~ )  = 2 ,  U C ( T ~ )  = 2 ,  

mentation of this algorithm. 

3.2 Efficiently Implementing Step 1 
Step 1 corresponds to find the “strongly connected 

component” X of PCG containing T .  This can be 
done by a standard algorithm in time O ( m )  [14] where 
m is the number of the arcs in the PCG. 

A strongly connected component in a directed graph 
G is a subgraph 6 such that: 

1. For each pair of vertices U and v in G, there are 
at least two directed paths - one is from U to v 
and another is from v to U .  

2 .  For each pair of vertices U and v with U in G and 
v not in 6, there are no such two paths. 

Note that any potential conflict graph has no arc that 
connects the same vertex. Consequently, the poten- 
tial conflict graph has a t  least one cycle through T if 
and only if the strongly connected component X con- 
taining T has at least two vertices. Furthermore, any 
transaction are in a cycle containing T must be in X .  
So, if X contains only T ,  then there is no cycle in the 
PCG through T .  Otherwise, output X and goto Step 
2. Thus, Step 1 can be implemented in O(m).  

In the next subsection, we show that by using net- 
work flow techniques, Step 2 can be implemented in 
0(n3) ,  where n is the size of the vertex set of the 
strongly connected component X. 
3.3 Efficiently Implementing Step 2 

overview the basic knowledge in network flows. 
Before presenting the implementation, we first 

3.3.1 Networks 
An s - t network is an arc weighted directed graph 
N = (V, A ,  c) with two distinguished vertices s and t 
such that c : A -+ I where I is the positive integer 
set, and all the arcs attached to  s must be the going- 
out arcs from s and all the arcs attached to  t are the 
incoming arcs to t .  The vertex s is the source of N ,  
and t is the sink of N .  The function c is the capacity 
func t ion  of N and its value on an arc a is the capacity 
of a.  

A flow in an s-t network N is a mapping f : A -+ I 
such that: 

a for each a E A ,  0 5 f (a )  5 ~ ( a ) ,  and 

e for each vertex U other than s and 1, 
CaEA$ f ( a )  = CaEA; f ( u ) ,  where A,f is the set 
of the arcs going-out from U, and A; the set of 
arcs coming to U .  

The m a x i m u m  flow problem of an s - t network N is 
to find a flow f in N such that 

a a t taches  t o  s 

is maximized. 
A cut (V,, V,) in an s - t network N = (V, A ,  c) is 

a partition on V ,  that is, V = Vs U V,, Vs n V, = 0, 
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m 

Ti 

T 
pointing-down arrow: waiting state 
pointing-up arrow: active state 

Figure 1: Example 2 

and t E V, and s E V,. The capacity of a cut (V, ,  V,), 
denoted as  c ( ( V , ,  K)), is defined as the sum of the 
capacities of the arcs from V,  to V,. The m i n i m u m  
cut of an  s - t network N is a cut (K, V,) such that 
e( (V, , K)) is minimized. 

We use V ( G )  to  denote the vertex set of a graph 
G,  and A(G) the arc set of G. 

3.3.2 A Transformation 

Step 2 corresponds to  solving the following problem. 
M i n i m u m  Vertex C u t  Problem (MVCP) 
Instance: Given a vertex weighted directed graph G = 
(V,A,ac)  which is strongly connected and where ac 
is a mapping from V to  the positive integer set I ,  a 
vertex v E V .  
Question: How can we find a subset M of V such that 
the deletion of M removes all cycles through T in G, 
and CuEM a c ( u )  is minimized? 

Thanks to  the developments in the maximum flow 
problem [14,13], MVCP can be solved in polynomial 
time. Below, we translate MVCP to the maximum 
flow problem. 

For a given strongly connected and vertex weighted 
directed graph G = (V, A ,  ac )  and a given vertex v ,  we 
may first modify G into a s - t network G,, named 
by the auxiliary network of G with respect to v, as 
follows. 

0 For each arc a in G, assign the capacity C ( U )  = 
Cu,v44 + 1. 

0 Split v into two vertices s and t’. All incoming 
arcs to v are moved to attach t1  with the same 
capacity as that in G, and all outgoing arcs from 
v are moved to  attach s with the same capacity. 
Add one vertex t and an arc t’ + t with the 
capacity c ( t l  i t )  = ac(v ) .  

Based on Example 2, the auxiliary network of the po- 
tential conflict graph with respect to T is illustrated 
in Figure 2. 

Obviousl,y, the auxiliary network G, of G with re- 
spect to v has the vertex set size 2)V)  + 1, and the arc 
set size IAl-t-IVI, and G, is an s-t network. Below, we 
prove the fu.ndamenta1 Theorem in this paper. Clear- 
ly, a vertex set M ,  which breaks all the cycles through 
v and has the minimum overall weight, either contains 
only vertex v or does not contain v .  

Theorem I1 Suppose that a vertex weighted directed 
graph G = V,A,ac)  is strongly connected, and v is 
a vertex. 2’ (il en there is  a subset M C V such that 
the removal of M breaks all the  cycles through v and 
CuEM ac(u:) achieves the  man imum value if and only 
if in the auxiliary network G,, of G with respect v, any 
m i n i m u m  cvt (V, &) has the properties: 

0 the capacity c((K1 6)) of  the cut is equal t o  
C U E M  l Z C ( U ) ,  and 

0 the set of arcs f r o m  V ,  t o  & is  either {ul  i 
iM} or {t’ -+ t }  i n  case 

Proof: We first prove the “if’ part by the approach 
of a reduction to absurdity. Suppose that there is a 
subset 1M of V such that the removal of k breaks all 
the cycles th.rough v and Cue* a c ( u )  < CuEM a c ( u ) .  
Assume that a does not contain v. (If I@ contains v ,  
then the cut, (a/.s = V(G,)  - {t},e = { t } )  is against 
the minimal property of M ;  thus “if” part holds.) Fur- 
ther, let 2 == {U’ -+ U’ : U E fi]. Now we construct 
V,  and fi in G, as follows: 

0 6 = V(G,)  - %, and 

U’ : U E M where v 
that M contains only v. 

0 For each other vertex U E V ,  split it into two 
vertices u1 and u2. All incoming arcs to U are 
moved to attach u1 with the same capacity as 
that in G, and all outgoing arcs from U are moved 
to attach U’ with the same capacity. Add one arc 
u1 + U’ with the capacity C(U’ -+ U‘) = a c ( u ) .  

0 = { u1 : U E k} U { s }  IJ VI ,  where VI consists of 
vertices which are on a path, including none arc 
from A, in G, from s to a vertex in : u E a). 

From the constructions of G,, p, and e, it imme- 
diately follows that for each pair of vertices U’ and 
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Figure 2 :  the auxiliary network - an s-t network 

u2 such that U 6 M ,  either they are all in e, or 
none of them is in V, (because, there is only one ar- 
c from U' to  U ' ) .  Clearly, t E g ,  since the removal 
of 2 breaks all the cycles, in G, through v. Also, 
each u2 for U E k is in G .  From the above fact- 
s and the constructions of p, and fi, it follows that 
(esi%) is a cut, and the set of the arcs from v, to e 
is A. Thus c ( ( ~ , ,  %)) = CUEn;r ac(u). It follows that 
c &, '& < c((K, G)) .  This contradicts the fact that 
c il V,, V, 11 is the minimum cut of G, . 

Again, we prove the "only if" part through the 
approach of a reduction to absurdity. We may as- 
sume that M dose not contain v (If M contains v ,  
a counter example can be immediately constructed). 
First, it is clear, from the above proof, that from 
M we may construct a cut (Vs, &) of G, such that 
c((V,, V,)) = CuEM ac(u) .  Suppose that there is a 
cut (q', V,') ofG, such that e((&' ,  V,')) < e ( ( & ,  Vs) ) ,  
and the set R of arcs from x' to V,' either contains 
only t1 4 t or does not contain t' .+ t .  Without loss 
of generality, we may assume that R does not contain 
t' + t .  

From constructions of G, and the cut (Vs, G ) ,  it 
follows that R is a subset of {U' -+ U' : U E V ( G ) }  
(noting that the weight of each other arc is larger than 
e( (V, , V,))). Clearly, the removal of T means that there 
is no path left from s to t .  From these two facts, it 
can be seen that the removal of M I  will break all the 
cycles in G through v, where M1 = { U  : for a u1 -+ 

u2 E TI. From the construction of G,, it follows that 

3.3.3 

According to  Theorem 1, the implementation of Step 
2 corresponds to  finding a minimum cut from an s - t 
network. The following Lemma from [14] says that 
we may apply the algorithm for solving the maximum 
flow problem to find a minimum cut. 

Detailed Implementation of Step 2 

Lemma 1 For any s - t network N = (V, A ,  e) ,  the 
value of the maximum flow equals the capacity of  the 
minimum cut, and a f low f and cut (V,, &) are jointly 
optimal if and only af 

1. f(u t U) = 0 for U c v E A and U E V,, v E V,; 
and 

2. f(u 4 v )  = C ( U  -+ w) for U -+ w E A and U E V,, 
v E v,. 

Based on Theorem 1 and Lemma 1, we may carry 
out Step 2 in the following 4 stages. 

sl :  With respect to T ,  obtain the auxiliary network 
GT of the strongly connected graph X where each 
vertex has been assigned a weight corresponding 
to the abortion cost. Go to  s2. 

s2: 

s3:  

Find a maximum flow f in GT. Go to  s3 

In G T ,  let VI = t and VO = V(GT)  - V I .  Then 
we apply breadth-first search to  iteratively extend 
VI and reduce V ,  (that is, we iteratively carry out 
the following two operations until no changes on 
VI and VO):  

0 for an arc U -+ v E A(GT),  if U E VO, v E VI 
and f(u 4 U) < c(u -+ U), then remove U 
from Vo to V I ;  and 

0 for an arc v -+ 21 E A(GT) ,  if U E Vo, v E VI 
and f(v -+ U )  > 0 ,  then remove U from Vo 
to VI. 

Go to s4. 

s4: From Theorem 1 and Lemma 1, it follows that 
(Lb, V I )  is a minimum cut of GT, and the set of 
arcs from VO to VI is in the form of either: 
{U' -+ U' : U E M for some subset M of V ( X ) }  
or {t' -+ t } .  
(In the later case, let M = {T}.)  Abort the trans- 
actions in M .  
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Because all the cycles through T in the potential 
conflict graph must be included in the strongly con- 
nected component X containing T ,  by combining this 
with Theorem 1 and Lemma 1, it follows that 

the implementation of the above four steps s l  - s4 
can find a subset M of the global transactions such 
that the abortion of M will break all cycles  through T, 
and ac (M)  is minimized. 

Clearly, s l  can be implemented in linear time 
with respect to  I A ( X ) ( .  The most efficient algo- 
rithm for solving maximum flow problem takes time 
O ( l V ( G , ) l l A ( G T ) l l o g ~ )  [13], which is slightly 
better than the algorithm O(lV13) in [14] for sparse 
graphs. But the algorithm in [14] is much easier 
to implement. We suggest applying this algorithm. 
Thus, s2 can run in time O ( I V ( G T ) ~ ~ )  = O(lV(X)13).  
Note that s3 and s4 can be implemented together, and 
take O ( ~ A ( G T ) I )  = 0 ] A  X I )  (time for breadth-first 

Theorem 2 Step 2 in the algorithm OVG can be im- 
plemented in O(n3) where n is the number of vertices 
in X .  

3.4 Properties of the New Deadlock De- 
tection Algorithms 

From the preceding discussion, it follows that our 
deadlock detection algorithm OVS runs in time O(m+ 
n3) where m is the number of arcs in a current PCG, 
and n is the number of the transactions in the dead- 
locks containing a given global transaction T .  

The algorithm OVS will always select less expen- 
sive transactions to  be aborted among the transactions 
whose first issuing times are the same. Furthermore, 
the choice of abortion cost in (1) will avoid the occur- 
rence of livelock and starvation problems, because: 

0 If a transaction T is uncommitted for a very long 
period due to repeated abortions of TI then the 
abortion cost of T will be increased every time. 
Eventually, the abortion of T will never occur, 
and T will be exclusively executed. 

0 Every time after the other transactions deadlock- 
ing T are aborted, we can at least execute one 
more operation of T before new deadlocks occur 
on T .  

search). So, we have t h l l '  e 01 owing Theorem. 

4 Conclusions 
In this paper, we provided a novel deadlock reso- 

lution algorithm in multidatabase systems. It always 
chooses less expensive victims to be aborted, and does 
not have livelock and transaction processing starvation 
problems. By using the network flow techniques, the 
algorithm runs in cubic time. 
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