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Abstract. This paper investigates the optimization problem when executing a join in a distributed database
environment. The minimization of the communication cost for sending data through links has been adopted as
an optimization criterion. We explore in this paper the approach of judiciously using join operations as reducers
in distributed query processing. In general, this problem is computationally intractable. A restriction of the
execution of a join in a pre-defined combinatorial order leads to a possible solution in polynomial time. An
algorithm for a chain query computation has been proposed in [21]. The time complexity of the algorithm is
O(m2n2 + m3n), where 7 is the number of sites in the network, and m is the number of relations (fragments)
involved in the join. In this paper, we firstly present a proof of the intuitively well understood fact—that the
“eigenorder” of a “chain” join will be the best pre-defined combinatorial order to implement the algorithm in [21].
Secondly, we show a sufficient and necessary condition for a chain query with the eigenordering to be a “simple”
query. For the process of the class of simple queries, we show a significant reduction of the time complexity from
O(m?n? + m3n) to O(mn + m?). It is encouraging that, in practice, the most frequent queries belong to the
category of simple queries.
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1. Introduction

Distributed query optimization has been studied for various environments, but the most
significant theoretical results have been achieved in purely relational systems.

Obviously, any-outcome of applying a method to query execution depends on distributed
database design or more specifically on data fragmentation and its allocation to the network.
When fragmentation and allocation are decided, one may apply different strategies for
the execution of queries as well as the propagation of updates to achieve overall system
performance. Clearly, there are complex dependencies between data allocation and the
ways in which the system validate queries and updates.

In this paper, we consider only some aspects of this complex structure. We concentrate on
distributed query processing to achieve the minimum overall system communication cost.
(We-do not consider the system’s response time for an individual mode.)

By communication cost we mean the cost of data shipping between different individual
computers.
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Traditionally, the approach of using semi-joins as reducers to process a distributed query
have received a great deal of attention. As pointed out in [32], this approach consists of the
following three phases: (1)alocal processing phase which involves all local processing such
as selections and projections, (2) a semijoin reduction phase where a sequence of semijoins
is used to reduce the size of relations, and then, lessen the total communication cost required,
and (3) afinal processing phase in which all resulting relations are sent to the result site where
the final query processing is performed. The problem of minimizing the communication
cost for distributed query processing by a semi-join reduction approach has been shown as
NP-hard [13, 28]. In the meantime, this problem, restricted to a “chain join”, can be solved
in polynomial time in the environment where only uniform networks—networks in which
the communication between each pair of sites is the same—are considered. Numerous
algorithms and heuristics are proposed to solve this problem [1, 3, 4, 6, 7, 13, 18, 32, 33].

Another approach in processing a distributed query is based on using join operations as
reducers. We call it a join based reduction approach (a formal description may be found in
Section 2). A join based reduction approach in processing distributed queries to minimize
the communication cost, after a semijoin reduction, is investigated in [8]. The authors
proposed an application of a join based reduction approach in the final processing phase,
as described above, to further reduce communication (transmission) cost through applying
join operations in sending relations (possibly semijoin reduced) to the result site. More-
over, in observing the inherent computational intractability of the optimization problem,
they provide an efficient heuristic for a case where only uniform neiworks are consid-
ered, but general queries are employed. Further, [21] points out that this optimization
problem, restricted to a case in which chain queries and general networks are considered,
can be solved in polynomial time. The claimed time complexity of the optimal algorithm
in [21] is O(m?n? + m3n). [21] suggests directly applying join operations as reduc-
ers without implementing a semijoin reduction phase, but with only a local processing
phase such as projections and selections, in view of the fact that semijoins will potentially
increase local processing cost. The optimization problem—minimizing the communica-
tion cost—for distributed query processing by applying a join based reduction approach
is essentially the same, in spite of whether or not a semijoin reduction has been applied
previously. So the algorithm in [21] can be immediately applied to the environment in
[8].

In this paper, we investigate a join based reduction approach for processing a distributed
query. We are motivated by two factors as follows:

1. Local processing costs can be significant [32], while additional local operations may
be generated when semijoins are employed.

2. If it is imperative to minimize the communication cost, then judiciously applying join
operations as reducers may further reduce the communication cost [8], in addition to
semijoins.

We adopt the same environment as that in [21]. We focus specifically on the execution of
chain queries in a distributed relational database, assuming that algebraic modifications,
such as selections and projections, have been applied prior to the join computation. We
have placed our study in a static environment. This means that the network of individual
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machines is fixed and its topology, including the cost of data unit transmission through
every link, is fixed and expressed as a constant. We assume that data for the period of our
execution of the database requests, have been allocated to the individual sites. Then we
show that for a large class (category) of queries, the time complexity O(m?n? + m3n) in
[21] can be significantly reduced. We propose a pre-processing phase to the algorithm in
[21], which can be executed in linear time. The aim of this additional computation is to
classify a multi-join, without a size reduction in any intermediate result, to the specified
category called “simple” queries (see Section 2 for the definition). This initial procedure
is based on a sufficient and necessary condition of a join with a pre-defined combinatorial
order to belong to the category of simple queries. This initial procedure, together with
the “simple” strategy (sec Section 2 for the definition) to process a simple query, leads
to a reduction of the time complexity of a join compution, from O(m?n2 + m3n) to
O(mn + m?). Applied to the environment in [8], it also leads to computing an optimal
strategy for processing a simple query in O(m?) (because only uniform networks are
considered there).

Additionally, we present some considerations of different orderings of relations in a chain
query. We prove that the “eigenorder” is optimal independently from strategies appointed
for a join based reduction approach.

Most of the research in distributed query processing optimization considers only the
communication cost. In a general environment, additional consideration of the local pro-
cessing cost exacerbates the intractability of the optimization problem. We have reached
interesting conclusions regarding this issue, however, this is only applicable to a special
case of a distributed environment. It is as follows:

If a simple strategy is applied along with a query processing optimization algorithm (for
a uniprocessor environment) in a communication network where each individual processor
(site) is identical, then a simple chain query can be processed with the minimal total cost
including local processing cost.

The rest of the paper is organized as follows. Section 2 provides basic notation, the prob-
lem specification, a formal definition of a join based reduction approach, and an overview of
the related works. Section 3 provides evidence of the optimality of the eigenorder of a chain
join. It follows that the problem of minimizing the communication cost for a chain join
belongs to the polynomial time solvable class of problems, though the general optimization
problem is computationally intractable [14, 21]. We then provide a necessary and sufficient
condition under which a join, with a pre-defined combinatorial order, is rendered simple
(defined in Section 2) in order to achieve the minimum communication cost. In Section
5, we show how to apply our result to the inclusion of local processing cost. Finally, we
present conclusions.

2. Preliminaries

This section includes a background discussion with respect to networks and join computation
representations. It also provides a brief overview of the algorithm in [21].
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Figure 1. Loop and multiple edge.

2.1. Network

Let I denote the set of positive integers. A nerwork N = (V, E, p) consists of a connected
graph (V, E)} without loops and multiple edges (5] (see Figure 1) and a mapping p: E — 1,
where each node in V represents an individual computer (a site of system), each edge
represents a link, and p is assigned so that the communication cost of a unit data transmission
through a link e is p(e). The communication cost within a node is assumed to be zero. Here
G = (V, E) is called the underlying graph of N.

In this paper, we consider only the metric networks of which the underlying graph is fully
connected (complete) [5], and for any triple u, v, w of distinct nodes:

p((u, v)) < p((u, w)) + p((w, v)).

It is obvious that to minimize the overall communication cost, the data transmission
between two sites must be done through the shortest path (cheapest path in term of cost)
between these two sites (nodes). However, the overall effectiveness of a strategy for sites
communication depends heavily on methods adopted for updates propagation, as well as
methods for the execution of complex queries.

The transformation of an arbitrary network to a “metric version” is a simple task which
always can be accomplished by finding the length of the shortest path for any pair of sites
(nodes). Thus, we consider only a metric network.

For the remainder of the paper, “metric network” is abbreviated to “network”.

2.2. A representation of join computation

Without loss of generality of the optimization problem, and also for simplification of the
formal notation, we express queries by the specification of relations involved in the query.
The results, presented in this paper, are applicable to any query, but in our formalization
we consider only natural joins [27].

Further on, by F; we denote the relation schema [27] of arelation f;.

The intersection of two relations is empty if there are no common attributes,



EFFICIENT PROCESSING OF A CHAIN JOIN 73

Ajoin fi X fa X f3 M- X fi is a chain if there is a permutation p = (i1,12,. .. ,im)
of (1,2,...,m)suchthatfor1 < j <m—1,F, NF, , #0andforl < jk <nand
|7 — k| > 2, F;, N F;, = (. The permutation (i3, %2, . .., %) is called the eigenorder of
the chain join. Note that the eigenorder of a chain join is unique up to a reversion.

A tree t [5] is a rooted-tree if it is organized as follows (see Figure 2(b)):

e anode in ¢ is the root, and

e each node v other than the root has one parent v,, and v and vy, is connected by an edge
in ¢, and

o there is a pointer type data structure such that each node other than the root is pointed
to its parent.

Suppose that « is a node of t. A rooted-subtree t,, of ¢ with the root u is the induced
rooted-subtree of u with respect to t if t,, is the maximal rooted-subtree with the root « in
t. For example in Figure 2(b), the rooted-subtree consisting of node 4, ( f3, 3), and (f4, 4)
is the induced rooted-subtree of node 4, while the rooted-subtree consisting of node 4 and
(f3,3) is not the induced rooted-subtree of 4 with respect to the rooted-tree in Figure 2(b).
The induced rooted-subtree of a leaf is a leaf itself.

There are a number of ways to process a multi-join. Consider a join fi X fo X f3. One
can process it in three ways:

o firstly, f1 ™ fs is carried out, and then (f; X f3) M f3 is implemented;
e we first implement f3 X f3, and then do f; X (fz M f3);
e f1 ™M f3can also be first processed, and then (f1 X f3) X f2 follows.

In a distributed database environment, we also need to consider which copy of a relation (if
redundant data exists) should be used to process a query.

Given a multi-join ¢ = M= £, a join based reduction approach suggests using only
m—1 join operations to get the result, that is, no redundant operations may be allowed. Each
possible computation of a join, by a join based reduction approach, may be represented as
a rooted-tree ¢ (similar to a query tree [27]), called an execution-tree. In an execution-tree
t of g, the root represents the join result site of g. Each leaf is represented by (f;, 7) where
fi is a relation and j is a site number where f; is allocated, and each of the nodes, other
than leaves, is represented by an integer ¢ where ¢ represents the i’th site in the network.

In an execution tree, each node other than the leaves represents a site which needs the
result of the join of the relations in the induced rooted-subtree. An execution tree £ of a join
corresponds to a particular strategy of the computation of the join, by a join based reduction
approach, as follows. Iteratively from leaves to the root, for each node %, the subresults
produced by its children are sent to site 4 and then joined there. The total communication
cost (data transmission cost) of the join computation represented by an execution tree t is
called the cost of 1.

For example in Figure 2, a network is illustrated in (a) where each link e has p(e) = 1.
Suppose that the relation f; is located at site 1 and site 2, the relation f5 is located at site
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Figure 2. Network and execution tree.

2 and site 4, and the relations f3 and f4 are respectively located at site 3 and site 4. An
execution tree for the join f; M fo X f3 X fy with result site 5 is illustrated in Figure 2(b).
This join is processed according to this tree as follows:

Relation f3 located at site 3 is sent to site 4, and is joined with f4 there. The copy of
f1 located at site 1, the copy of fa located at site 2, and the result of join of f3 < f4 at
site 4 are sent to site 5 to perform the join fi X fo X fa3 X fy.

Assume that the size of fy is 10, the size of fo is 10, the size of f3 is 10, and the size of
fs X f4is 10. The cost of the above tree is 40.

Given a join fi M fo X ... X f.  an execution order of this join is a permutation
(11,92, .,0m) of (1,2,...,m). An execution tree ¢ preserves an execution order p =
(i1,42, - . ., im) if:

(2.1) foreachnode in ¢ and the induced rooted-subtree t’ of the node, there are two integers
l'and L such that the relations stored at the leaf set of ¢’ are f;, for ] < j < L.

A node u in an execution tree t preserves p if the induced rooted-subtree of v satisfies (2.1).
For example, the execution tree in Figure 2(b) preserves the execution orders (1,2, 3,4)
and (2,1, 4, 3), but does not preserve (1, 3,2, 4).

It is clear that an execution tree preserves p if and only if all its nodes preserve p. Note
that each leaf in an execution tree preserves any execution order.

Suppose that q is the join f; X f, X ... X f,,. Let the whole execution tree set of ¢ be
denoted by Ty, that is, T, = {¢:¢ is an execution tree of g}. Note that each execution tree
of Mﬁi{” fi consists of only m leaves, because we do not consider additional operations.
We note that in some cases, adding additional operations—for example, semi-joins [3]-—
may further reduce the communication cost. We do not consider these aspects of join
computation in this work, since we can assume that profitable semijoins have been done
prior, like the environment in [§].
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2.3.  An overview of the related works

It has been shown that the problem of finding an execution tree with the minimum cost from
Ty is generally computationally intractable [14, 21]. Suppose that p is an execution order
of ajoin ¢ = XZT* f;, and T is a subset of T;; such that:

TP = {t:t € T, preserves p}.

[21] provides a polynomial time bounded algorithm 8(m?n? + m3n) (n is the number of
sites in the network) for finding an execution tree, with the minimum cost, from 77. For
the algorithm in [21], the inputs are:

e anetwork,

e an execution order p = (Iy,l2,...,ly) of ajoin ¢ = X=T £;, and

o amatrix S, .. = [@ilmxm such that a;; = |fi, X fi,, X oo X f | for
1<i<m-—-1land2<j<m-—i+1landay =|f;,|forl <i < m, otherwise a;;
is infinity.

Here each |f;, X fi,,, X --- X fi,. .| denotes the data volume of fi, X f;,, M ... X
fi.4;-1» and each | fi,| denotes the data volume of f}; as well. In the algorithm of [21], a
dynamic programming technique [9] is used. It, iteratively, computes the best execution
tree, preserving p, for processing each Nf;% f1.,. at each site, where 1 < 4,4+ 75 < m.
That is, before computing the best execution tree of Nﬁzg f1,,. at each site, one should
first compute respectively the best execution tree for processing each X7=¢2 ;.  at each
site (where 0 < ¢,¢p < jand ¢ — ¢; < j), and then combine them to obtain the best
execution tree, preserving p, for processing X3 _J fi., ., at each site. The detailed code of
this algorithm may be found in [21].

The authors of [8] investigate the problem of finding an execution tree with the minimum
costin Ty, fora general join g = X!=7" f; inuniform networks. Because of the computational
intractability of the problem, a heuristic algorithm is proposed in [8] to find an approximate
solution to the problem.

Let minT;, and minT} denote the costs of the execution trees with the minimum cost
respectively in T, and in 77

We, in this paper, first prove that:

. R
minly, = minI7,

for the case where ¢ is a chain multi-join and p is the eigenorder of ¢. This implies that we
may use the algorithm in [21] to find a solution for minT;, when ¢ is a chain join.

To present our second and also the main result in this paper, we shall first give some
notation.

An execution tree ¢ € T, is normal if:

(2.2) in t, for each node v and each child v of w, the site corresponding to u should be
different to the site corresponding to v, except that v is a leaf.
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Figure 3. Non-normal execution tree.

For example, the execution tree in Figure 2 is normal, but the one in Figure 3 is not normal.
It is clear that for each execution tree ¢ in 17, there exists a normal execution tree ¢’ such
that their costs are the same.

An execution tree is simple if it consists only of the root and leaves. Let

T; = {t: t € Ty, t is simple}.

Note that for any execution order p of a join g, 77 C T?. Since networks considered here
are metric, to find an execution tree in 7] with the minimum cost we only need to do the
following. If j is the query result site then:

For each relation f; involved in the join, find the closest copy of f; to site 7, and then
send it to site § to perform the join.

The above computation takes O(mn) time for a general network, and takes O(m) time for a
uniform network. Here, by minT; we mean the cost of an execution tree with the minimum
costin T}/ Note usually minT? < minT;. A query q with respect to an execution order p
is simple if minT} = minT}.

Our second resuit in this paper (presented in Section 4) provides a sufficient and necessary
condition for a join ¢ under which, for a given execution order p and any data allocation,

the following condition is satisfied:
b e s
minly = minT].
It leads to a significant reduction of the time complexity to produce a solution to minT, for

a large class of queries g—chain queries.

3. Optimality of the eigenorder

In this section, we prove the following Theorem.

THEOREM 1 Suppose that q is a chain join, and p.is the eigenorder of q. Then minT?
= mindy.
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From Theorem 1, it follows that using the eigenorder of a chain query ¢ as one input of
the algorithm in [21], we may find minl, in polynomial time. To prove Theorem 1, we
need only to prove the following Lemma.

LEMMA 1 Suppose that q is a chain join, p is the eigenorder of q, and t € Tj,. Then there
is an execution tree in I} whose cost is not greater than the cost of t.

Lemma 2 is the key of the proof of Lemma 1. To present Lemma 2, we first provide some
additional notation about a rooted-tree. Suppose that ¢, is a rooted-tree such that the root
u has only one child z, and the child set of z is U = {v;: 1 <14 < k}. A 2-way separation
t({vi,, .-, v}, y) of ty, is also arooted-tree which has the same root u as t,,, and splits t,,
into two parts by adding a child y to u such that the child set of y is {v;,,...,v;; } and the
child set of z is changed to U — {v,,, . .. , Vs, }» while the other parts of the sepération are
the same as £, (see Figure 4, for example).

LEMMA 2 Suppose thatt, (see Figure 4(a)) is a rooted-subtree of an execution tree t such
that in t,, the root u of t,, has only one child x, the child set of z is U = {v;: 1 <1 <k},
and t,, contains the induced rooted-subtree t,,, of each v, with respect tot. Further suppose
that for each v, the join result produced by t,,, is T, and there are | nodes in U, say v, for
1 < i <l such that

(31) |T'1 MTQN---M’r'k|Z|T1MT2N---NTI|+|TH_1M---Mrk|.

Then the cost of the execution tree by the replacement of t, by its 2-way separation
t({vig1s - -+, V¥m}, y) is not greater than that of t, where y represents the same site (individual
computer) as .

Proof: Observing the condition (3.1), the intuition is that to send out the result of the join

ry X rg M -+ X 7 is never better than to respectively send out the results of the joins
7y Mg X - Xy and ryqq ™ -« X g, This leads to an immediate verification of the
corresponding inequality about the tree costs. [

If the relation schemata of two relations do not have common parts, then the join of these
two relations is the Cartesian Product. Thus, the following Lemma is trivially true.

(2)

Figure 4. 2-way separation.
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LEMMA 3 Suppose that f, and f, are two relations, and Fy N Fo = 0. Then |fi X fy| >
Lfil + | f2].

The proof of Lemma 1 is based on a sequential transformation from an execution tree in T
to an execution tree in 77, using Lemmas 2 and 3, such that the result of each transformation
will decrease the number of nodes which do not preserve p, and will never increase the cost.

Proof of Lemma 1: If ¢ is also in 77, then the Lemma is certainly true. We prove this
Lemma under the assumption that ¢ is not in 77, that is, ¢ does not preserve p. Without loss
of generality, we may assume that g is a join of m relations, and that the eigenorder p of ¢
is (1,2,...,m).

Note that ¢ preserves p if and only if each node preserves p. Suppose that in £, there are [
nodes, V,, = {up1<i< [}, which do not preserve p.

Note that each leaf in ¢ preserves p. It follows that in V},, there is a node u; such that in
the induced rooted-subtree £ of u; with respect to t, all the nodes of £ preserve p, except
that u; does not preserve p.

It is clear that u; cannot be a leaf, nor the root of ¢—otherwise ¢ preserves p. Suppose
that the parent of u; is ug, and the child set of u; is {v;: 1 < 4 < k}. Let to denote the
rooted-subtree of t consisting of the root ug and ¢5.

Because each v; (1 < @ < k) preserves p, we may assume that the relations in the induced
rooted-subtree of v; are f,, for L; < h < R; where L; and R, are integers. Without loss
of generality, we may assume that for 1 < ¢ < k — 1, R; + 1 < L; + 1. Further, suppose
that there are K children v;, (1 < h < K) of u; suchthat L;, . > R;, + 1. From the fact
that ¢ is a chain join, p is the eigenorder, and Lemma 3, it follows that for 1 < h < K, say
L, = Ly, ]sz'h_l WM kal 2 |fLi,,‘_1 M- fRi,,v + |fLi,L+1 M- X kai

An iterative application of Lemma 2 implies that the cost of the execution tree t'—
constructed as follows—is not greater than the cost of t. The execution tree ¢’ is obtained
from ¢ by the replacement of ¢y by the rooted-tree to’ with the root ug in which the children
of ug are wy for 1 < z < K representing the same site in the network, w, = u;, the
children of each w,, are vy, for i,y + 1 < h < 14, and the induced rooted-subtree of each
vp, with respect to ¢’ is the induced rooted-subtree of vy, with respect to ¢ (see Figure 3).

Figure 5. An illustration to the proof of Lemma 1.
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Note that each w, above preserves p. It follows that the set of nodes in ¢’ which do not
preserve p is a subset of V,, — {u; }. Thus, one may continue the above procedure until each
node preserves p. |

4. An effective pre-process in the join computation algorithm

In this section, we show a necessary and sufficient condition for minT,] = minT}.

THEOREM 2 Supposethatp = (1,2,...,m)is an execution order of a join of m relations,
and the network N with at least two nodes. Then minT; = minT? for any data allocation
ifandonlyiffor1 <i<m,1<j<m-—u

=i
(4.1) | fi X fpr XX f | > 377 | figl
To prove Theorem 2, we first show the following Lemma.

LEMMA 4 Suppose thatp = (1,2, ..., m) is an execution order of a join q of m relations,
andforl <i<m,1 <j < m —1, the condition (4.1) holds. Further suppose that in an
execution treet € Tg’, there is a non-root node u such that v has at least 2 children nodes,
and in the induced rooted-subtree of u with respect to t, there are no other nodes which has
more than 1 child. Then the cost of the rooted-tree t', obtained from t by the deletion of u

and the attachment of the children of u to the parent of u, is not greater than the cost of t.

Proof: From the fact that ¢ preserves p, the fact that for 1 < i < n,1 < j < m — i, the
condition (4.1) holds, and the fact that the networks considered in this paper are metric, it
immediately follows that this Lemma holds. n

Proof of Theorem 2: First we prove the “only if” part. Suppose that the “only if” part is
not true. It implies that there is an i and an j(j < m — i) such that

i
|2 for| <D 1wl
=1

and that minT} = minT}.

Let the data allocation L allocate the relations f; (1 <1 < ¢+ j) on a site other than the
result site of g, and allocate the other relations to the result site. Then, one may immediately
verify that for this data allocation minT} < minT;. Thus, the “only if”” part is true.

Now we prove the “if” part. We need only to prove that for each execution tree £ € TP,
there is an execution tree £ € 1] whose cost is not greater than the cost of t.

For an execution tree t € Tg’ which is not in qu, one may obtain an execution t' € T;
by iterative applications of Lemma 4 such that in ¢/, all the nodes, other than the root,
have at most only one child, and the cost of ¢’ is not greater than the cost of {£. An
execution tree £ in qu may be obtained by the deletion of all the nodes, other than the
root and the leaves from ¢/, and the attachment of the leaves to the root. From the fact
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that the network is meiric, it follows that the cost of £ is not greater than the cost of .
|

COROLLARY 1 Suppose that p = (1, 2,...,m) is the eigenorder of a chain join of m
relations, and for 1 < i < n,1 < j < m — i, the condition (4.1) holds. Then minT,; =
minT?.

q

We now present a simple linear algorithm to check the condition (4.1) for the input matrix

SE «m as described in Section 2.3 with respect to an execution order p.

Algorithm 1. CHECK
1. Input: S}, s
2. Output: ID : Boolean Value;

3. {ID « true;

4 fori=1tomdo

5. {N« .15

6 forj =1+ 1tomdo

7 {N « N +aj;

8 if N > a; j_;+1 then

9 Stop this algorithm and ID « false } } }.

The algorithm outputs 1D = true if condition holds, otherwise 1D = false.

It is clear that this algorithm may be executed in O(m?) time which is linear with respect
to the size of the input S}, ... To find minT};, it takes O(mn) time (see Section 2.3), where
m 1is the number of fragments in a join, and n is the number of sites of the network. We
can expect that there are a large class of joins with a given execution order (for example, a
chain join) in which the condition (4.1) holds [22]. This implies that with the application of
the algorithm CHECK to the algorithm in [21], the time complexity 8(m?n? + m3n) may
be reduced to O(mn + m?), in many cases, for general networks, and reduced to O(m?)
for uniform networks. This is a significant reduction, since in real life, m is bounded by a
small constant.

5. Total communication cost vs total local processing cost

The local processing cost, which includes local CPU and I/O costs, has been addressed in
the problems of query processing optimization in either a uniprocessor environment [16,
24] or a parallel system environment [11, 17, 23]. The algorithm in [23] is optimal for
parallel processing a chain join based on a hash approach; that is, the total cost including
the local processing cost will be minimized. Consider that a uniprocessor environment is
a special case of a parallel system. Thus, the algorithm in [23] may also process a chain
join, with the minimum local processing cost in a single processor environment, by using
a hash-join approach.
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In most of the previous studies in distributed query processing optimization, the local
processing cost has been ignored when forming the total cost function. Only the total com-
munication cost has been addressed. Along with the development of network techniques,
the local processing cost is also expected to play an important role in the optimization
problem. The computational intractability of the problem to minimize the total cost for
processing a distributed query is simply exacerbated by an inclusion of the local processing
cost. However, we can show that in a distributed environment of homogeneous sites, the
simple strategy for processing a distributed join and an optimal query processing algo-
rithm in a uniprocess environment will constitute an optimal processing for a simple chain
distributed join.

Given an execution plan EP of a distributed join g, let 'Cgp , denote the total cost for
processing g by EP, CCgp 4 denote the total communication cost, and LCgp 4 denote the
total local processing cost. Thus, TCgp = CCgpgq + LCrp,q.

For a simple chain join gg, let the execution plan EF, consist of the simple strategy E P,
along with an optimal join processing algorithm E F; in a uniprocessor environment (that
is, by E'P; the computation cost of ¢ in a uniprocessor is minimized). We have that

TCEPo,qo = CCEPo’qo + LCE'Po,qO = CCEPs,qo + LCEPz,QO'

Clearly, for any execution plan EP of qo, we have CCgp, 4, < CCEgp,4, according to our
results in the last two sections. Moreover, in a distributed environment, where all the sites
are the same, it is trivially true that LCgp, o0 < LCEpg,, and then EP, is the optimal
execution plan to process a simple chain join with respect to the minimization of the total
cost. (For example, if we use only a hash-join approach to compute a join at local sites,
then the polynomial time algorithm in [23] may act as I F}.)

6. Conclusion

In this paper, we proved that the eigenorder of a chain join is the optimal pre-defined order
to implement the algorithm in [21]. This implies we may apply the algorithm in [21] to the
environment in {8] to find an optimal solution for a chain multi-join. Then we obtained a
significant reduction on the complexity of the algorithm in [21] for a large class of joins by
including a pre-processing procedure to evaluate the category of the query.
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