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Abstract. This paper investigates the optimization problem when executing a join in a distributed database 
environment. The minimization of the communication cost for sending data through links has been adopted as 
an optimization criterion. We explore in this paper the approach of judiciously using join operations as reducers 
in distributed query processing. In general, this problem is computationally intractable. A restriction of the 
execution of a join in a pre-defined combinatorial order leads to a possible solution in polynomial time. An 
algorithm for a chain query computation has been proposed in [21]. The time complexity of the algorithm is 
O(m2n 2 + m3n),  where n is the number of sites in the network, and m is the number of relations (fragments) 
involved in the join. In this paper, we firstly present a proof of the intuitively well understood fact--that the 
"eigenorder" of a "chain" join will be the best pre-defined combinatorial order to implement the algorithm in [21]. 
Secondly, we show a sufficient and necessary condition for a chain query with the eigenordering to be a "simple" 
query. For the process of the class of simple queries, we show a significant reduction of the time complexity from 
O(m2n 2 + ra3n) to O(rnn + m2). It is encouraging that, in practice, the most frequent queries belong to the 
category of simple queries. 

Keywords: Distributed databases, query processing optimization, communication cost 

1. I n t r o d u c t i o n  

Dis t r ibu ted  query  op t imiza t ion  has  been  s tudied  for  var ious  e n v i r o n m e n t s ,  but  the  m o s t  

s ign i f ican t  theore t ica l  resul ts  have  been  ach ieved  in pure ly  re la t iona l  sys tems.  

Obvious ly ,  a n y  o u t c o m e  of  app ly ing  a m e t h o d  to query  execu t ion  depends  on  d i s t r ibu ted  

da t abase  des ign  or m o r e  specif ical ly  on  data  f r a g m e n t a t i o n  and  its a l loca t ion  to the  ne twork .  

W h e n  f r a g m e n t a t i o n  and  a l loca t ion  are decided,  one  may  apply  d i f fe rent  s t ra tegies  for  

the  execu t ion  of  quer ies  as wel l  as the p ropaga t ion  of  Updates to ach ieve  overal l  sy s t em 

pe r fo rmance .  Clearly,  there  are c o m p l e x  dependenc i e s  b e t w e e n  data  a l loca t ion  and  the  

ways  in w h i c h  the  sys t em va l ida te  quer ies  and  updates .  

In this  paper,  we  cons ide r  on ly  some  aspects  of  this  c o m p l e x  s t ructure.  W e  concen t r a t e  on 

d i s t r ibu ted  query  p roces s ing  to ach ieve  the  m i n i m u m  overal l  sy s t em c o m m u n i c a t i o n  cost.  

(We, do  not  cons ide r  the  s y s t e m ' s  r e sponse  t ime  for  an ind iv idua l  mode . )  

B y  c o m m u n i c a t i o n  cos t  we  m e a n  the cos t  of  data  sh ipp ing  b e t w e e n  d i f fe ren t  ind iv idua l  

compute r s .  
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Traditionally, the approach of using semi-joins as reducers to process a distributed query 
have received a great deal of attention. As pointed out in [32], this approach consists of the 
following three phases: (1) a localprocessingphase which involves all local processing such 
as selections and projections, (2) a semijoin reduction phase where a sequence of semijoins 
is used to reduce the size of relations, and then, lessen the total communication cost required, 
and (3) a final processing phase in which all resulting relations are sent to the result site where 
the final query processing is performed. The problem of minimizing the communication 
cost for distributed query processing by a semi-join reduction approach has been shown as 
NP-hard [13, 28]. In the meantime, this problem, restricted to a "chain join", can be solved 
in polynomial time in the environment where only uniform networks--networks in which 
the communication between each pair of sites is the same--are considered. Numerous 
algorithms and heuristics are proposed to solve this problem [1, 3, 4, 6, 7, 13, 18, 32, 33]. 

Another approach in processing a distributed query is based on using join operations as 
reducers. We call it a join based reduction approach (a formal description may be found in 
Section 2). A join based reduction approach in processing distributed queries to minimize 
the communication cost, after a semijoin reduction, is investigated in [8]. The authors 
proposed an application of a join based reduction approach in the final processing phase, 
as described above, to further reduce communication (transmission) cost through applying 
join operations in sending relations (possibly semijoin reduced) to the result site. More- 
over, in observing the inherent computational intractability of the optimization problem, 
they provide an efficient heuristic for a case where only uniform networks are consid- 
ered, but general queries are employed. Further, [21] points out that this optimization 
problem, restricted to a case in which chain queries and general networks are considered, 
can be solved in polynomial time. The claimed time complexity of the optimal algorithm 
in [21] is O(rn2n 2 + man). [21] suggests directly applying join operations as reduc- 
ers without implementing a semijoin reduction phase, but with only a local processing 
phase such as projections and selections, in view of the fact that semijoins will potentially 
increase local processing cost. The optimization problem--minimizing the communica- 
tion cost--for distributed query processing by applying a join based reduction approach 
is essentially the same, in spite of whether or not a semijoin reduction has been applied 
previously. So the algorithm in [21] can be immediately applied to the environment in 
[8]. 

In this paper, we investigate a join based reduction approach for processing a distributed 
query. We are motivated by two factors as follows: 

1. Local processing costs can be significant [32], while additional local operations may 
be generated when semijoins are employed. 

2. If it is imperative to minimize the communication cost, then judiciously applying join 
operations as reducers may further reduce the communication cost [8], in addition to 
semi joins. 

We adopt the same environment as that in [21]. We focus specifically on the execution of 
chain queries in a distributed relational database, assuming that algebraic modifications, 
such as selections and projections, have been applied prior to the join computation. We 
have placed our study in a static environment. This means that the network of individual 
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machines is fixed and its topology, including the cost of data unit transmission through 
every link, is fixed and expressed as a constant. We assume that data for the period of our 
execution of the database requests, have been allocated to the individual sites. Then we 
show that for a large class (category) of queries, the time complexity O(rn2n 2 + m3n) in 
[21] can be significantly reduced. We propose a pre-processing phase to the algorithm in 
[21], which can be executed in linear time. The aim of this additional computation is to 
classify a multi-join, without a size reduction in any intermediate result, to the specified 
category called "sihaple" queries (see Section 2 for the defnition). This initial procedure 
is based on a sufficient and necessary condition of a join with a pre-defined combinatorial 
order to belong to the category of simple queries. This initial procedure, together with 
the "simple" strategy (see Section 2 for the definition) to process a simple query, leads 
to a reduction of the time complexity of a join compution, from O(m~n 2 + m3n) to 
O (mn  + m2). Applied to the environment in [8], it also leads to computing an optimal 
strategy for processing a simple query in O(m 2) (because only uniform networks are 
considered there). 

Additionally, we present some considerations of different orderings of relations in a chain 
query. We prove that the "eigenorder" is optimal independently from strategies appointed 
for a join based reduction approach. 

Most of the research in distributed query processing optimization considers only the 
communication cost. In a general environment, additional consideration of the local pro- 
cessing cost exacerbates the intractability of the optimization problem. We have reached 
interesting conclusions regarding this issue, however, this is only applicable to a special 
case of a distributed environment. It is as follows: 

I f  a simple strategy is applied along with a query processing optimization algorithm (for 
a uniprocessor environment) in a communication network where each individualprocessor 
(site) is identical, then a simple chain query can be processed with the minimal total cost 
including local processing cost. 

The rest of the paper is organized as follows. Section 2 provides basic notation, the prob- 
lem specification, a formal definition of a join based reduction approach, and an overview of 
the related works. Section 3 provides evidence of the optimality of the eigenorder of a chain 
join. It follows that the problem of minimizing the communication cost for a chain join 
belongs to the polynomial time solvable class of problems, though the general optimization 
problem is computationally intractable [14, 21]. We then provide a necessary and sufficient 
condition under which a join, with a pre-defined combinatorial order, is rendered simple 
(defined in Section 2) in order to achieve the minimum communication cost. In Section 
5, we show how to apply our result to the inclusion of local processing cost. Finally, we 
present conclusions. 

2. Preliminaries 

This section includes a background discussion with respect to networks and join computation 
representations. It also provides a brief overview of the algorithm in [21]. 
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Figure 1. Loop and multiple edge. 

2.1. Network 

Let I denote the set of positive integers. A network N = (V, E, p) consists of a connected 
graph (V, E)  without loops and multiple edges [51 (see Figure 1) and a mapping p: E ~ I ,  
where each node in V represents an individual computer (a site of system), each edge 
represents a link, and p is assigned so that the communication cost of a unit data transmission 
through a link e is p(e). The communication cost within a node is assumed to be zero. Here 
G = (t7, E)  is called the underlying graph of N. 

In this paper, we consider only the metric networks of which the underlying graph is fully 
connected (complete) [5], and for any triple u, v, w of distinct nodes: 

v((u, v)) _< p((u, v)). 

It is obvious that to minimize the overall communication cost, the data transmission 
between two sites must be done through the shortest path (cheapest path in term of cost) 
between these two sites (nodes). However, the overall effectiveness of a strategy for sites 
communication depends heavily on methods adopted for updates propagation, as well as 
methods for the execution of complex queries. 

The transformation of an arbitrary network to a "metric version" is a simple task which 
always can be accomplished by finding the length of the shortest path for any pair of sites 
(nodes). Thus, we consider only a metric network. 

For the remainder of the paper, "metric network" is abbreviated to "network". 

2.2. A representation of join computation 

Without loss of generality of the optimization problem, and also for simplification of the 
formal notation, we express queries by the specification of relations involved in the query. 
The results, presented in this paper, are applicable to any query, but in our formalization 
we consider only natural joins [27]. 

Further on, by Fi we denote the relation schema [27] of a relation fi. 
The intersection of two relations is empty if there are no common attributes. 
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A join f l  N f2 N f3 N . . .  N f ~  is a chain if there is a permutation p = (il ,  i s , . . . ,  i n )  
of  ( 1 , 2 , . . . , m )  such that for 1 _< j _< m -  1, F~j A F~+I # ~), and for 1 _< j , k  _< n and 
IJ - k[ > 2, F~j N F~ k = (3. The permutation (/1, i 2 , . . . ,  i~ )  is called the eigenorder of 
the chain join. Note that the eigenorder of a chain join is unique up to a reversion. 

A tree t [5] is a rooted-tree if it is organized as follows (see Figure 2(b)): 

• a node in t is the root, and 

• each node v other than the root has one parent vp, and v and vp is connected by an edge 
in t, and 

• there is a pointer type data structure such that each node other than the root is pointed 
to its parent. 

Suppose that u is a node of t. A rooted-subtree t~ of t with the root u is the induced 
rooted-subtree o f u  with respect to t if t~ is the maximal rooted-subtree with the root u in 
t. For example in Figure 2(b), the rooted-subtree consisting of node 4, (f3, 3), and (f4, 4) 
is the induced rooted-subtree of node 4, while the rooted-subtree consisting of node 4 and 
(f3, 3) is not the induced rooted-subtree of 4 with respect to the rooted-tree in Figure 2(b). 
The induced rooted-subtree of a leaf is a leaf itself. 

There are a number of ways to process a multi-join. Consider a join f l  N f2 N f3. One 
can process it in three ways: 

• firstly, f l  N f2 is carried out, and then (f l  N f2) N f3 is implemented; 

• we first implement f2 M f3, and then do f l  N (f2 N f3); 

• f l  N fa can also be first processed, and then ( f l  >~ f3) N f2 follows. 

In a distributed database environment, we also need to consider which copy of a relation (if 
redundant data exists) should be used to process a query. 

Ni='~ f.i, a join based reduction approach suggests using only Givefl a multi-join q = i=1 
m - -  l join operations to get the result, that is, no redundant operations may be allowed. Each 
possible computation of  a join, by a join based reduction approach, may be represented as 
a rooted-tree t (similar to a query tree [27]), called an execution-tree. In an execution-tree 
t of q, the root represents the join result site of q. Each leaf is represented by (fi ,  j )  where 
fi  is a relation and j is a site number where fi  is allocated, and each of the nodes, other 
than leaves, is represented by an integer i where i represents the i ' th site in the network. 

In an execution tree, each node other than the leaves represents a site which needs the 
result of the join of the relations in the induced rooted-subtree. An execution tree t of a join 
corresponds to a particular strategy of the computation of the join, by a join based reduction 
approach, as follows. Iteratively from leaves to the root, for each node / ,  the subresults 
produced by its children are sent to site i and then joined there. The total communication 
cost (data transmission cost) of the join computation represented by an execution tree t is 
called the cost of t. 

For example in Figure 2, a network is illustrated in (a) where each link e has p(e) = 1. 
Suppose that the relation f l  is located at site 1 and site 2, the relation f~ is located at site 
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(a) (b) 

Figure 2. Network and execution tree. 

2 and site 4, and the relations f3 and f4 are respectively located at site 3 and site 4. An 
execution tree for the join f l  N f2 N f3 N f4 with result site 5 is illustrated in Figure 2(b). 
This join is processed according to this tree as follows: 

Relation f3 located at site 3 is sent to site 4, and is joined with f4 there. The copy of 
f l  located at site 1, the copy of f2 located at site 2, and the result of join of f3 N f4 at 
site 4 are sent to site 5 to perform the join f l  N f2 N f3 N f4. 

Assume that the size of f l  is 10, the size of f2 is 10, the size of f3 is 10, and the size of 
fa N f4 is 10. The cost of the above tree is 40. 

Given a join f l  N f2 N . . .  N f ~ ,  an execution order of this join is a permutation 
(il ,  i 2 , . . . ,  i,~) of ( 1 , 2 , . . . ,  m). An execution tree t preserves an execution order p = 
(il, i 2 , . . . ,  ira) if: 

(2.1) for each node in t and the induced rooted-subtree t ~ of the node, there are two integers 
1 and L such that the relations stored at the leaf set of t ~ are fij for l _< j _< L. 

A node u in an execution tree t preserves p if the induced rooted-subtree of u satisfies (2.1). 
For example, the execution tree in Figure 2(b) preserves the execution orders (1, 2, 3, 4) 
and (2, 1,4, 3), but does not preserve (1, 3, 2, 4). 

It is clear that an execution tree preserves p if and only if all its nodes preserve p. Note 
that each leaf in an execution tree preserves any execution order. 

Suppose that q is the join f l  N f2 t~ • • • N f,~. Let the whole execution tree set of  q be 
denoted by Tq, that is, Tq = {t: t is an execution tree of q}. Note that each execution tree 

i = m  of Ni= 1 fi  consists of only m leaves, because we do not consider additional operations. 
We note that in some cases, adding additional operations--for example, semi-joins [3 ] - -  
may further reduce the communication cost. We do not consider these aspects of join 
computation in this work, since we can assume that profitable semijoins have been done 
prior, like the environment in [8]. 
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2.3. An overview of the related works 

It has been shown that the problem of finding an execution tree with the minimum cost from 
Tq is generally computationally intractable [14, 21]. Suppose that p is an execution order 

= Ni=m fi, and Tq p is a subset of  Tq such that: of  a join q i=1 

Tq p = {t: t C Tq, t preserves p}. 

[21] provides a polynomial time bounded algorithm O(rn2n 2 + man)  (n is the number of 
sites in the network) for finding an execution tree, with the minimum cost, from Tq p. For 
the algorithm in [21], the inputs are: 

O 

a network, 

Mi=rn an execution orderp = (/1, 12,..., lm) of a join q = i=l fi ,  and 

a matrix S~x  m = [aij]mxm such that aij = Ifl~ N ft~+l N .- .  N fh+j 11 for 
l < i < m - l a n d 2 < j _ < m - i + l a n d a i l  = l f z ~ [ f o r l < i < m ,  otherwiseai j  
is infinity. 

Here each Ifl~ N fl~+l N . .-  N fl~+j_x [ denotes the data volume of fl~ N fz~+~ N •. • N 
fli+~-l, and each Ifz~] denotes the data volume of fz~ as well. In the algorithm of [21], a 
dynamic programming technique [9] is used. It, iteratively, computes the best execution 
tree, preserving p, for processing each N~=~ fl~+~: at each site, where 1 _< i, i + j _< m. 

That is, before computing the best execution tree of  N~=~ fl~+~: at each site, one should 
first compute respectively the best execution tree for processing each N ~=~2 fz~+:,, at each 

X~CI 

site (where 0 _< cl, e2 _< j and c2 - cl < j),  and then combine them to obtain the best 
execution tree, preserving p, for processing N~__=~ fl~+~ at each site. The detailed code of 
this algorithm may be found in [21]. 

The authors of [8] investigate the problem of finding an execution tree with the minimum 
cost in Tq for a general join q -- Ni=mi=l fi  in uniform networks. Because of  the computational 
intractability of  the problem, a heuristic algorithm is proposed in [8] to find an approximate 
solution to the problem. 

Let minTq and minTq; denote the costs of the execution trees with the minimum cost 
respectively in Tq and in T~. 

We, in this paper, first prove that: 

minTq = minT~, 

for the case where q is a chain multi-join and p is the eigenorder of q. This implies that we 
may use the algorithm in [21] to find a solution for minTq when q is a chain join. 

To present our second and also the main result in this paper, we shall first give some 
notation. 

An execution tree t C Tq is normal if: 

(2.2) in t, for each node u and each child v of u, the site corresponding to u should be 
different to the site corresponding to v, except that v is a leaf. 
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Figure 3. Non-normal execution tree. 

For example, the execution tree in Figure 2 is normal, but the one in Figure 3 is not normal. 
It is clear that for each execution tree t in Tq, there exists a normal execution tree t '  such 
that their costs are the same. 

An execution tree is simple if it consists only of the root and leaves. Let 

T ;  = {t: t E Tq, t is simple}. 

Note that for any execution order p of a join q, T~ C T~'. Since networks considered here 
are metric, to find an execution tree in T~ with the minimum cost we only need to do the 
following. If j is the query result site then: 

For each relation fi  involved in the join, find the closest copy of fi to site j ,  and then 
send it to site j to perform the join. 

The above computation takes O(mn) time for a general network, and takes O(m) time for a 
uniform network. Here, by minT~ ~ we mean the cost of an execution tree with the minimum 
cost in Tq. Note usually minT~ <_ minT~. A query q with respect to an execution order p 
is simple if minTPq = minT~. 

Our second result in this paper (presented in Section 4) provides a sufficient and necessary 
condition for a join q under which, for a given execution order p and any data allocation, 
the following condition is satisfied: 

minT~ = minTq. 

It leads to a significant reduction of the time complexity to produce a solution to minTq for 
a large class of queries q--chain queries. 

3. Optimality of the eigenorder 

In this section, we prove the following Theorem. 

THEOREM 1 Suppose that q is a chain join, and p is the eigenorder of q. Then minTPq 
= minTq. 
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From Theorem 1, it follows that using the eigenorder of  a chain query q as one input of 
the algorithm in [21], we may find minTq in polynomial time. To prove Theorem 1, we 
need only to prove the following Lemma. 

LEMMA 1 Suppose that q is a chain join, p is the eigenorder of q, and t E Tq. Then there 
is an execution tree in TPq whose cost is not greater than the cost oft .  

Lemma 2 is the key of the proof of Lemma 1, To present Lemma 2, we first provide some 
additional notation about a rooted-tree. Suppose that t~ is a rooted-tree such that the root 
u has only one child x, and the child set o f x  is U = {vi: 1 < i < k}. A 2-way separation 
t ( { v i l , . . . ,  vii }, y) of t~  is also a rooted-tree which has the same root u as t~, and splits t~ 
into two parts by adding a child y to u such that the child set of y is {vii , .  • •, vii } and the 
child set of  x is changed to U - {v i~ , . . . ,  vii }, while the other parts of the separation are 
the same as t~ (see Figure 4, for example). 

LEMMA 2 Suppose thatt~ (see Figure 4(a)) is a rooted-subtree of  an execution tree t such 
that in t~, the root u oft~ has only one child x, the child set of x is U = {vi: 1 < / < k }, 
and t~ contains the induced rooted-subtree tv~ of each vi with respect to t. Further suppose 
that for each vi, the join result produced by tv~ is ri, and there are l nodes in U, say v~ for 
1 < i < I s u c h t h a t  

(3.1) Irl N r 2 N . . . N r k l _ >  I r l N r 2 N ' " N r z l + l r z + l  N . . . N r k l .  

Then the cost of  the execution tree by the replacement of t~ by its 2-way separation 
t ({vt+ 1 , . . . ,  vm }, y) is not greater than that oft, where y represents the same site (individual 
computer) as x. 

Proof:  Observing the condition (3.1), the intuition is that to send out the result of the join 
r l  N r2 N • • - N rk is never better than to respectively send out the results of  the joins 
r l  N r 2  N • • • N r l  and r l + l  N • • • N r k .  This leads to an immediate verification of the 
corresponding inequality about the tree costs. • 

If  the relation schemata of  two relations do not have common parts, then the join of these 
two relations is the Cartesian Product. Thus, the following Lemma is trivially true. 

vl 

(a) Co) 

F i g u r e  4 .  2-way separation. 
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LEMMA 3 Suppose that fl and f2 are two relations, and F1 n F2 = ~). Then if1 N f2[ --> 

Ifxl + If=l. 

The proof of  Lemma 1 is based on a sequential transformation from an execution tree in Tq 
to an execution tree in T~, using Lemmas 2 and 3, such that the result of each transformation 
will decrease the number of nodes which do not preserve p, and will never increase the cost. 

Proof  of  L e m m a  1: If  t is also in Tq p, then the Lemma is certainly true. We prove this 
Lemma under the assumption that t is not in Tq p, that is, t does not preserve p. Without loss 
of  generality, we may assume that q is a join of m relations, and that the eigenorder p of q 
is (1, 2 , . . . ,  m). 

Note that t preserves p if and only if each node preserves p. Suppose that in t, there are 1 
nodes, Vp = {u~: 1 < i < 1}, which do not preserve p. 

Note that each leaf in t preserves p. It follows that in Vp, there is a node uj such that in 
the induced rooted-subtree Q of uj with respect to t, all the nodes of Q preserve p, except 
that uj does not preserve p. 

It is clear that uj cannot be a leaf, nor the root of t --otherwise t preserves p. Suppose 
that the parent of uj is Uo, and the child set of uj is {v~: 1 < i < k}. Let to denote the 
rooted-subtree of t consisting of the root Uo and Q. 

Because each vi (1 < i < k) preserves p, we may assume that the relations in the induced 
rooted-subtree of vi are fh for L~ < h < Ri where Li and/~i are integers. Without loss 
of  generality, we may assume that for 1 < i < k - 1, Ri + 1 _< L~ + 1. Further, suppose 
that there are K children vii, (1 < h < K) ofuj such that Li,,+l > Ri,~ + 1. From the fact 
that q is a chain join, p is the eigenorder, and Lemma 3, it follows that for 1 < h < K,  say 

L,o = L I ,  IYL,,~_I N ' ' '  N fR~I  > IfL, , ,_I  N ' ' '  N fR,, ,  ] + IfL,,,+I X ' ' '  N fR~I .  

An iterative application of Lemma 2 implies that the cost of the execution tree t ' - -  
constructed as follows--is  not greater than the cost of t. The execution tree t '  is obtained 
from t by the replacement oft0 by the rooted-tree to' with the root Uo in which the children 
of  uo are wx for 1 _< x _< K representing the same site in the network, wx = uj, the 
children of  each wx are vt~ for iz -1  + 1 < h < ix, and the induced rooted-subtree of each 
Vh with respect to t '  is the induced rooted-subtree of Vh with respect to t (see Figure 5). 

V 1 

u0 

wl ( © 

Figure 5. An illustration to the p roof  of  L e m m a  1. 
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Note that each w:~ above preserves p. It follows that the set of nodes in t ~ which do not 
preserve p is a subset of Vp - {uj }. Thus, one may continue the above procedure until each 
node preserves p. • 

4. An effective pre-process in the join computation algorithm 

In this section, we show a necessary and sufficient condition for minTq = minTq p. 

THEOREM 2 Suppose that p = (1, 2 , . . . ,  m) is an execution order o f  a join o f  m relations, 
and the network N with at least two nodes. Then minTq = minTg for  any data allocation 
if  and only i f  for  i < i < m, 1 <_ j < m - i: 

(4.1) Ifi N / i + 1  N . . - N  fi+jl >- ~I=~ Iflz+ll- 

To prove Theorem 2, we first show the following Lemma. 

LEMMA 4 Suppose that p = (1, 2 , . . . ,  m)  is an execution order of  a join q o f  m relations, 
and for  1 < i < m, 1 <_ j < m - i, the condition (4.1) holds. Further suppose that in an 
execution tree t C T p, there is a non-root node u such that u has at least 2 children nodes, 
and in the induced rooted-subtree o f  u with respect to t, there are no other nodes which has 
more than 1 child. Then the cost o f  the rooted-tree t ~, obtained from t by the deletion o f  u 
and the attachment o f  the children of  u to the parent o f  u, is not greater than the cost oft .  

Proof: From the fact that t preserves p, the fact that for I < i < n, 1 _< j _< m - / ,  the 
condition (4.1) holds, and the fact that the networks considered in this paper are metric, it 
immediately follows that this Lemma holds. • 

Proof of Theorem 2: First we prove the "only if" part. Suppose that the "only if" part is 
not true. It implies that there is an i and an j ( j  <_ m - i) such that 

J 

l=1 

and that minTq p = minT~. 
Let the data allocation L allocate the relations fl (i < l < i + j )  on a site other than the 

result site of  q, and allocate the other relations to the result site. Then, one may immediately 
verify that for this data allocation minT~ < minT~. Thus, the "only if" part is true. 

Now we prove the "if" part. We need only to prove that for each execution tree t E T~, 
there is an execution tree ~ E T~ whose cost is not greater than the cost of  t. 

For an execution tree t E Tq p which is not in Tq, one may obtain an execution t '  E T p 
by iterative applications of Lemma 4 such that in t ' ,  all the nodes, other than the root, 
have at most only one child, and the cost of t ~ is not greater than the cost of t. An 
execution tree { in Tq may be obtained by the deletion of all the nodes, other than the 
root and the leaves from t ~, and the attachment of the leaves to the root. From the fact 
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that the network is metric, it follows that the cost of { is not greater than the cost of t. 

COROLLARY 1 Suppose that p = (1, 2 , . . . ,  rn) is the eigenorder of  a chain join o f  rn 
relations, and for  1 < i < n, 1 <_ j <_ rn - i, the condition (4.1) holds. Then minTq = 
minT~. 

We now present a simple linear algorithm to check the condition (4.1) for the input matrix 
S ~ x  m as described in Section 2.3 with respect to an execution order p. 

Algorithm 1. CHECK 

1. Input: S q x m ;  

2. Output: I D  : Boolean Value; 

3. { I D  +-- true; 

. 

5. 

6. 

7. 

8. 

9. 

f o r i  = 1 t o m d o  

{ N ~-- ai,1; 

f o r j = i + l t o m d o  

{ N +-- N + aj,1; 

if N > ai,j-i+l then 

Stop this algorithm and I D  +-- false } } }. 

The algorithm outputs I D  = true if condition holds, otherwise I D  = false. 

It is clear that this algorithm may be executed in O(rn 2) time which is linear with respect 
to the size of the input SPmxm. To find minT~, it takes O(rnn) time (see Section 2.3), where 
rn is the number of fragments in a join, and n is the number of sites of the network. We 
can expect that there are a large class of joins with a given execution order (for example, a 
chain join) in which the condition (4.1) holds [22]. This implies that with the application of 
the algorithm CHECK to the algorithm in [21], the time complexity 0(rn2n 2 + man) may 
be reduced to O(rnn + rn2), in many cases, for general networks, and reduced to O(m 2) 
for uniform networks. This is a significant reduction, since in real life, m is bounded by a 
small constant. 

5. Total communication cost vs total local processing cost 

The local processing cost, which includes local CPU and I/O costs, has been addressed in 
the problems of query processing optimization in either a uniprocessor environment [16, 
24] or a parallel system environment [11, 17, 23]. The algorithm in [23] is optimal for 
parallel processing a chain join based on a hash approach; that is, the total cost including 
the local processing cost will be minimized. Consider that a uniprocessor environment is 
a special case of a parallel system. Thus, the algorithm in [23] may also process a chain 
join, with the minimum local processing cost in a single processor environment, by using 
a hash-join approach. 
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In most of the previous studies in distributed query processing optimization, the local 
processing cost has been ignored when forming the total cost function. Only the total com- 
munication cost has been addressed. Along with the development of network techniques, 
the local processing cost is also expected to play an important role in the optimization 
problem. The computational intractability of the problem to minimize the total cost for 
processing a distributed query is simply exacerbated by an inclusion of the local processing 
cost. However, we can show that in a distributed environment of homogeneous sites, the 
simple strategy for processing a distributed join and an optimal query processing algo- 
rithm in a uniprocess environment will constitute an optimal processing for a simple chain 
distributed join. 

Given an execution plan E P  of a distributed join q, let TCEP, q denote the total cost for 
processing q by F,P, CCEp, q denote the total communication cost, and LCEp, q denote the 
total local processing cost. Thus, TVEP,  q = CCEP, q -]- LCF, P,q. 

For a simple chain join q0, let the execution plan EPo consist of the simple strategy EPs 
along with an optimal join processing algorithm F, Pz in a uniprocessor environment (that 
is, by EPl the computation cost of q in a uniprocessor is minimized). We have that 

TCEPo,qo = CCEPo,qo -t- LCEPo,qo : CCEP~,qo + LCEpl,qo. 

Clearly, for any execution plan E P  of q0, we have CCEp~,qo <<_ CCZp, q,, according to our 
results in the last two sections. Moreover, in a distributed environment, where all the sites 
are the same, it is trivially true that LCep~,qo <_ L C E P ,  q o, and then EPo is the optimal 
execution plan to process a simple chain join with respect to the minimization of the total 
cost. (For example, if we use only a hash-join approach to compute a join at local sites, 
then the polynomial time algorithm in [23] may act as EPl.) 

6. Conclusion 

In this paper, we proved that the eigenorder of a chain join is the optimal pre-defined order 
to implement the algorithm in [21]. This implies we may apply the algorithm in [21] to the 
environment in [8] to find an optimal solution for a chain multi-join. Then we obtained a 
significant reduction on the complexity of the algorithm in [21] for a large class of joins by 
including a pre-processing procedure to evaluate the category of the query. 
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