Probabilistic Ranking over Relations

Lijun Chang , Jeffrey Xu Yu, Lu Qin Xuemin Lin
The Chinese University of Hong Kong The University of New South Wales
. Hong Kong, China Sydney, Australia
{lichang,yu,lgin}@se.cuhk.edu.hk Ixue@cse.unsw.edu.au
ABSTRACT ranked and probabilities of the existence of the objects are stored

Probabilistic top-k ranking queries have been extensively studied in the same relation. . S
due to the fact that data obtained can be uncertain in many real ap- Hoyvever, we observe tha, in ggneral, Scores and. probabilities
plications. A probabilistic top-k ranking query ranks objects by the are highly possible to be stored irfitirent rel_atlons, €.g.n column-
interplay of score and probability, with an implicit assumption that store database [1, 20, 8, 17, 21, 4], data |ntegra_1t|on [29], and data
both scores based on which objects are ranked and probabilities ofVarehouse [9]. In a column-store database, unlike the tuple-based
the existence of the objects are stored in the same relation. Weapproa_ch taken in co_nventlonal relational DBMSs, mformatlon IS
observe that in general scores and probabilities are highly possibIeSto.red n CO'F‘.m“ relatlon.s. For example, one column relation stores
to be stored in dferent relations, for example, in column-oriented object |de_nt|f|(_9r an_d_ object Scores, a-_1nd another co_ll_Jmn re_Iatlon
DBMSs and in data warehouses. In this paper we study probabilis- stores object |dent|f|gr and object existence probability. It is re-
tic top-k ranking queries when scores and probabilities are stored in ported that column-orlented DBMSs can perform r_nuc_h better than
different relations. We focus on reducing the join cost in probabilis- CO”Ye”“OF‘a' f?'a“ona' DB_MS_S in many real applications such as
tic top-k ranking. We investigate two probabilistic score functions, business intelligence appllcatlon§ [4]. Column storage .has been
discuss the upper/lower bounds in random access and sequemiawccgssfully used f_or many years in OLAP (Online Analy_tlcal Pro-
access, and provide insights on the advantages and disadvantage%es.s'ng) (36], anq is also adapted to perform OLTP (Onlln_e Trans-
of randomjsequential access in terms of upfmxer bounds. We actional Processing) recentl_y [28]. As another examp_le, in a_data
also propose random, sequential, and hybrid algorithms to Conductwarehouse, d?‘a are stored in a fact tabl_e an_d a c_o_llectlon of dimen-
probabilistic top-k ranking. We conducted extensive performance SION tables using a star schema. The object identifiers and the prob-
studies using real and synthetic datasets, and report our findings in@Pility of the existence of the objects may be stored in the fact table
this paper. or a dimensional table, whereas the scores based on which users

want to rank objects may be stored in another dimension table. In
such an environment, it needs to joirffdrent relations into one
1. INTRODUCTION relation to have both score and probability together, and to apply
Uncertain data management is an important issue in sensor net-one of the existing approaches to probabilistically rank the objects,
work, data cleaning, data integration, and market decision making, Which can be costly.
due to the fact that a large amount of information obtained is either ~ Consider a data warehouse that stores textual information, e.g.
incomplete or uncertain. Several uncertain data models are pro-reviews, shape, price, weight, about products extracted from online
posed [2, 12, 4], and probabilistic ranking queries are studied [34, Shops and forums. The fact table stores the probability of each fact
16, 11, 7, 23, 24] which are based on the interplay of score to be (e.g. review) to be true, and the shape, price and weight informa-

ranked and probability to be observed. tion will be stored in other dimensional tables. In order to analyze
Probabilistic ranking queries are first studied by Soliman et al. such kinds of uncertain information, users may want to rank the
under the possible worlds semantics [34], and tfeiency of facts based on a user-specified score function by combining shape,

probabilistic ranking queries are further studied in [37, 16] by uti- price, weight, and text information. These scoring attributes and
|izing independent and mutua"y exclusive re|ati0nships among tu- the probability attribute are stored infflirent tables. Also the users
ples under an x-Relation model. Cormode et al. also propose to may want to specify selection constraints on the facts that should
rank uncertain data based on their expected rank values [11], calledbe ranked, e.g. specify the areas where the products are sold, the
expected rank semantic. Li et al. study ranking distributed uncer- countries where the products are made, the time interval the facts
tain data based on the expected rank semantic [23]. The exist-are extracted. Users are interested fifieent portions of the whole
ing approaches assume that both scores based on which objects ardata, and also in different ranking criteria. In such cases, itfis di

cult to materialize data for all possible queries.

In this paper, we study top-k probabilistic ranking queries with

joins when scores and probabilities are stored ffedént relations.
Permission to make digital or hard copies of all or part of this work for To the best of our knowledge, this is the first work in probabilistic
personal or classroom use is granted without fee provided that copies areranking under possible worlds semantic that take join issues into
not made or distributed for profit or commercial advantage and that copies consideration. Our work is ffierent from the existing work on rank
bear thls notice and the full citation on the first page. To copy otherwse,_tp joins which deal with deterministic data [19, 32]. The maiffeti
Lzeumﬁgzrgggﬂgfgrogéeer_\/ers orto redistribute to lists, requires prior specific ence is that, for deterministic data, the score of an object can be
EDBT 2010 March 22—26, 2010, Lausanne, Switzerland. computed by itself, whereas, for probabilistic data, the probabilis-
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00
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tic score of an object cannot be computed by itself, and needs to be OID [ score[ prob

computedbased on scores and probabilities of other objects. 01 100] 0.3
The main contributions of this work are summarized below. We 02 9510.15
study top-k probabilistic ranking queries when scores and proba- 83 gg 8‘11
bilities are stored in dierent relations. We investigate two proba- 02 801045
bilistic score functions, namely, expected rank value [11] and prob- Os 751702
ability of highest ranking [7]. We give upp#ower bounds of such 07 70 0.2

probabilistic score functions in random access and sequential ac-
cess, and discuss the advantadisadvantages of random and se-
guential accesses. We propose ng éfficient algorithms to find
top-k objects with probabilistic ranking functions, using random

Table 1: An Example Relation S P

access, sequential access, and the combination of random and se- | ralnk | tuople | ?EOZ | | ralnk | tuople | gHSR |
guential access by taking the advantages from both rafs#muential > Oi 1:05 > o; 0:238
access. We conduct extensive performance studies, and confirm the 3 05 | 117 3 o5 | 0.144585
effectiveness of our approaches. 7 0, 1.4475 i} 0, 0.105

The remainder of the paper is organized as follows. In Section 2, 5 0 | 1.56 5 0, | 0.0375
we review the x-Relation model of uncertain data and probabilistic 6 07 1.6 6 Os 0.035343
ranking queries over x-Relation. Section 3 gives out our problem 7 o, | 1615 7 07 |0.0282744

statement. In Section 4, we discuss bounding schema for two top-k
probabilistic ranking queries. In Section 5, we propose algorithms
to find the top-k answers with respect to the probabilistic ranking
function, with random an@r sequential accesses. Experimental
studies are reported in Section 6 followed by discussions on related \jgte that the top tuple has rank 0.
work in Section 7. Finally, Section 8 concludes the paper.

(a) Rank withRe (b) Rank withPyr

Table 2: Two Rankings
m]

Definition 2.2: (Expected rank value[11]) The expected rank

2 PROBABILISTIC RANKING QUERIES value of a tuplep; is defined as follows.
We adopt the x-Relation model [2] to model the uncertain data. Re(0) = Z Pr(l) - rank (o))
An x-RelationX contains a set of independent x-tuples, .= lepwd(X)

{r1,72,---}. By independent, it means that the existence of an x-
tuple is independent from the other x-tuples. An x-tupig,con-
sists of a set of mutually exclusive tuples (also called alternatives
in [16]), and represents a discrete probability distribution of the Definition 2.3: (Probability of highest ranking [7]) The probabil-
possible tuples (alternatives) it may take in a randomly instanti- ity for a tupleo; to be ranked at the first place is defined as follows.
ated data. In brief, an alternative of an x-tuple, denoteg dsas a

It considers the rank of a tuple as a random variable, and ranks a
tuple based on the expected value of the random variable. o

score, denoted aore(), and a probability, denoted @$0). The Pur(0) = Z Pr(l)
probability represents the tuple existence probability over possible 'G%Yvetfx)
instances. By mutually exclusive, it implies that an x-tuple can take rank|()=0

at most one alternative in a possible instance.

The x-Relation X, represents a probability distribution over a It ranks tuple;, based on the summation of the probability of the

possible instances wheogappears and is ranked at the first place

set of possible instancghk, I,, - - - }. A possible instancd;, main-
. . . (rank 0). O

tains zero or one alternative for every x-tuple. The probability of _

an instance];, is the probability that the x-tuples take ngoee As can be seen from the above, for ranking tugleshe score

alternative in that instance, (score()) and probability p(a)) play different roles in the proba-

bilistic ranking. Thescore(g) is used to define the relative rank of
Pr(;) = 1_[ p(0) x ﬂ(l - Pr(@)) 1) tuples in a possible instance, whergds) is used to measure the
oel; ¢l probability in all possible instances. In the following, we discuss

probabilistic ranking based on a probabilistic score function that
combines botlscore() andp(a), denoted apscore(o;). BothRe
andPyr are such probabilistic score functions.
Based on the probabilistic score functiBa, a Top-k Expected
ank Value (Top-KERV) query returns top-k tuples with lowst
values. Based on the probabilistic score functRuk, a Top-k
Probable Highest Ranking (Top-kPHR) query returns top-k tuples
with highestPyr values.

Table 1 shows a relation with 7 tuplés,, 0,,--- ,07}. A tuple

wherert ¢ |; means x-tuple takes no alternative ih and Prf) =
>er P(0). The set of possible instances with positive probability is
called possible worlds of the x-Relatidf)y denoted apwd(X).

Below, we discuss ranking based on tuples instead of x-tuples R
because an x-tuple can take at most one alternative tuple. As-
sume there is an x-tuple, that has three alternative tuples=
{01,03,04}. Let p(o;)) = 0.3, p(z) = 0.4, andp(ay) = 0.1. It
suggests that the x-tuptemay take eithep; with probability Q3,

or 08 Vl\;'tlh p;obgt;lina(?, 8rf4_ vg)itg probability 1, or none with o; is associated with a scoredore(g)) and a probability p(a)).
probability 1-0.3-04-0.1=0.2. For example, tuple; has a score valuescore(@) = 90, and a
Definition 2.1: (Rank in a possible instancd [11]) In a possible probability p(o3) = 0.4. Assume an x-RelatioN has 7 x-tuples

instancel, the rank of a tuple; € 1, rank (o), is the number of {r1,72,- -+ , 77}, and each x-tuple; has only one alternative tupte
tuples whose score is larger than in Table 1. The ranking based & andPyg are shown in Table 2.
\ _ | l{o; € 1| score(q) > score(q)}], if g el;
rank (o)) = { I, otherwise.
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OID | score OID | prob
01 100 o5 | 0.45
02 95 03 0.4
03 90 01 0.3
04 85 O 0.2
05 80 o7 0.2
Og 75 02 0.15
07 70 04 0.1

(a) Relations (b) RelationP

Table 3: Two Relations (S and P)

3. PROBLEM STATEMENT

All the existing work assume that there is an x-Relatdwhich
contains both score and probability. However, in real applications,
the scores and the probabilities may be storedfiiecént relations.

As an example, the same information stored in relatom (Ta-
ble 1) may be stored in two separated relatiéhandP, as shown
in Table 3where&Ss P=S x P.

A naive approach to compute a probabilistic ranking query, when
score and probability are not stored in the same relation, is to join
the relations followed by applying an existing approach to com-
pute the probabilistic ranking query in the relation. But this naive
approach will incur both high computational cost af@ tost, be-
cause it needs to join the whole relations.

Problem Statement: In this paper, we study how to compute a
probabilistic ranking query (Top-KERV or Top-kPHR) by reducing
the total I/O cost, when score and probability are not stored in the
same relation. We aim at computing the top-k tuples by accessing
tuples as least as possible.

In the following, we discuss our approaches using the two re-
lations, S and P, as shown in Table 3. We consider two access
methods, namely, random access and sequential access.

e Forthe random access, it assumes that the rel&tisrsorted
in descending order based on the scores. It sequentially ac-
cesses the tuples in relati@one-by-one. When it accesses
a tupleg; in relation S in an iteration, it obtains the score
value (score(g)) from the same tuple in relatio, and ob-
tains the probability of the tuple, p(a), in relationP using
asqL selection with the sam@ID o;, which results in a ran-
dom access of relatioR.

For the sequential access, it assumes that both rel&tad
relationP are sorted in descending order based on the scores
and probabilities, respectively. It sequentially accesses the
tuples in relatiorS and relationP following the descending
order of score and probability, respectively. In every itera-
tion, it accesses an additional tuple from relat®rand an
additional tuple from relatior®, respectively. For example,
as shown in Table 3, in the first iteration, it accesses the tuple
identified byo, from S and the tuple identified bgs from P;

in the second iteration, it accesses the tuple identified,by
from S and the tuple identified bg; from P.

In summary, we consider that the relatiSris accessed sequen-

tially in descending score order, which is the access method used in

all the existing algorithms when both scores and probabilities are
stored in the same relation [34, 37, 16, 11]. The two access meth-
ods, namely randofsequential accesses, are about how to access
relationP.

The key issue is how many tuples it needs to access in order to
compute Top-kERYTop-kPHR using random access and sequen-

tial access. We show that we do not need to compute the exact
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pscore values (R values andPyr values) with the assistance of
upper bounds and lower bounds fmscore values. We can com-
pute Top-KERYTop-kPHR by its relative orders.

4. BOUNDING RANKING FUNCTIONS

A probabilistic ranking query ranks a tuple, with a score func-
tion pscore(q;). It is worth noting that the probabilistic score func-
tion pscore(0;) is completely different from those score functions
that can be evaluated by the tuple in question and is independent
from other tuples. In other words, the probabilistic score func-
tion pscore(0;) needs to be evaluated depending on shere(o)
and p(o) for the tupleo; itself as well asscore(g) and p(o;) for
the other tuple®;. It becomes very important to identify charac-
teristics of the probabilistic score functiqscore, especially the
monotonicity, upper bounds, and lower bounds.

In this section, first, for simplicity, we focus on independent
case such that in an x-Relatid¢y every x-tuple has only one tu-
ple (alternative). Then we will discuss mutually exclusive case.
We assume that all the scores are dfatent values, it is straight-
forward to extend to tie scores. We use the notation in a way
that the tupleso, - - - , 0,, are in descending score order such that
score(@) > score(q) if i < j.

4.1 Ranking Functionre

Assume the tuples,, - - - , 0, are in descending score order, and
they are totally independent. The expected size of possible in-
stances i€[|l]] = X p(o;) for all o; in relation P, and the prob-
abilistic score functiofiRg(0;) can be simplified as follows.

Re(0)
= Z Pr(l) - rank (o)
lepwd(X)
= > Pr()-rank (o) + Y Pr()- |
ojel 0 ¢l
i-1
= p@)- ), p©)+(L-p@)- ), p(©) @
j=1 j#i
i-1
= p(a)- ) p(o)+ (1~ p(@)) (NN - p(a))

._‘

j=
i-1

ENN - p(@) - (EQN - ) p(oy) - p(@) + 1)

j=1
The details and correctness of Eq. (2) are given in [11]. Eg. (2)
suggests that we cannot simply compRtg€o;) even if we have al-
ready known itsscore(g) andp(a), because it requests us to know
p(o;) for those tuples thascore(q) > score(g). In order to find
the top-k tuples without accessing all tuples, we need to bound the
Re value for each seen or unseen tuple. Before discussing bounds,
we first prove the monotonicity d®e below.

Lemma 4.1: The R function, on which the Top-KERV query is
based, is a monotone function, i.e. for any two tupleand g, if
score(g) > score(q) and p(@) > p(9)), then R(0;) < Re(0) and

o; ranks higher than p

Proof Sketch: We simplify p(a) asp, in the following proof. Con-
siderRe(0;) — Re(0;). We have

Re(@) - Re(0))
p.pr(l m(Enlufp‘)prZplf(l p)(EDN - )

pJ)Zpl P;Zpl

"
- pj)(Z p-EN+pi-1-pi ), P
1=1 1=i

E[M(pi = pj) + (pi = ) (i + pj — 1)
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Set | S| P | Type Bounds for E[|I[] - Re Bounds for Pyr
H | v | v | lower | p@)-(E[Nl-X jsi p(o)-X% j<i p+1) | p@)-IT j«i (1-p0j)-IT jsi (L-p)
ojeHS ojeHs 0jeH ojeHs
H | v | v | upper| p(a)- (ElNl-X j<i p(oj)+1) p@)-IT j<i (1- p(o))
_ ojeHS _ ojeHS
Hs | v | x [ upper| p-(E[I]-X jsi p(oj)+1) p-11 jsi (1-p(oy)
ojeHS ojeHS

Hos | x | | upper | p(a) - (E[TI] - Yo,z P(0)) ~ P(@) +1) P(@) - [ojer (1 - P(0)))

U | x | x | upper| p-(E[Ill] - Xo,ens P(0)) +1) P [ojerz (1 - p(oj))

Table 4: E[|I]] - Re and Pyr bounds for tuple o; (independent)

where the last inequality holds becausk, pi + p; < E[|I[] and
pi > p;. ThereforeRe(0;) < Re(05) ando; ranks higher thao;. o

We can boundRg(0;), under the random access and sequential
access of relatiof® respectively, where relatio8 is accessed se-

Let H, denote the set of seen tuples that we know their scores,
and letH_s denote the set of seen tuples that we know their prob-
abilities but do not know their scores. In other words, we know
score(g) for those tuplesn, € Hs and p(a) only for those tu-

guentially in descending score order. We denote the upper andpleso, € H.s. Furthermore, the tuples; that we know both

lower bounds a&:” andRC". It is reasonable to assume tHEft! []
is available in advance, becauspl|] = ; p(o;) for all o; in rela-
tion P.

Random access on relatiorP: For a tupleo;, we obtain its score
score(@) when accessing relatidd in descending score order and
obtain its probabilityp(a) using asqL selection to access rela-
tion P randomly at the same time. Because relat®is sorted
in descending score order, we know the probabififyp;) for all
tuples whose scores are larger than that of the tapie question
(score(q) > score(0)).

For each seen tuple;, we can compute its exa&(0;) value
by Eq. (2). Assume thaj, is the last seen tuple after retrieving the
tuplesoy,---,0._;. For the unseen tuples we can lower bound
Re(0) by the following equation.

Re() =p(0)- Y. po)+(L-p)- > p(0)

score(q)>score(o) 0j#0

2 p(0): ), P(0)) + (1~ p(0))- ), P(9y) 3)
) j=1 j=1
= > p(0)
j=1

Intuitively, it is lower bounded by the expected size of the possible
worlds generated by the tuplésy, - - - , 0;}. Note that for the Top-
KERV query the smalleRe: value the better.

Example 4.1: Consider relatiors and relationP in Table 3. As-
sume the first three tuples in relati&have been retrieved. We get
all the scores fop;, 0;, andos, and also get the probability for the
three type by random accesses on relaBoiThe set of seen tuples
is {01(100,0.3),0,(95,0.15), 03(90,0.4)}, where each entry repre-
sentso;(score(9), p(a)). E[|l]] = 1.8. Based on Eg. (2), we have
Re(0;) = 1.05,Re(0;) = 1.4475, andrg(03) = 1.02. The lower
bound for any unseen tupteis R2"(0) = 0.3+ 0.15+ 0.4 = 0.85.
]

Itis difficult to boundRe(0) tight, if we do not know all the tuples
0; whose scores are largesdore(q) > score(0)). In other words,

all the unseen tuples may have larger scores or none of them hav

larger score.

Sequential access on relatiofP: In this scenario, each time we
retrieve one entry frons andP in descending score and probabil-

score(@) and p(o) are also kept inHs. In particular, we have
Hs = He U Hs, whereH{ contains the tuples that we know both
score and probability, an@#{; contains the tuples we only know
their score. In summary, we need to bouRdfor the tuples inH;,

H;, H-s and those tuples we have not seen. For the tuplé&fin

we need to get both the lower bound and the upper bound, to find
the top-k tuples earlier. For the other tuples, we only need to get
its lower bound, because its upper bound can be very loose, and we
can not determine any of the other tuples to be in top-k results at
this step. If the upper bounige of any tuples inH{ is no larger
than the lower bound of all the other tuples, then this tuple can be
determined in the top-k results. In order to bouRg we need the
following information.

For the tuples irHZ with known score and probability, we need
both lower bound and upper boundR§. Consider Eq. (2). When
p(a) is known, the formula can be simplified to the formR(o;)
=c- Z'j;ll p(o;) + ¢, wherec > 0 andc’ are constants. The lower
bound and upper bound are obtained by replacing those unknown
p(0;)’'s with 0 andp respectively.

For those tuples irH; with known score only, we need to com-
pute its lower bound. It is lower bounded Ej|1]] — p- (E[|I[] -
Zijciojery P(0) +1).

For those tuples; € H-s, we need its lower bound, which can be
obtained in a similar way as discussed above. It is lower bounded
by E[[1l] - p(a) - (E[ll] - Zo,er¢ P(0)) — P(0) + 1). Similarly, we
can lower boundRg(0;) for the unseen tuples B[] — p- (E[|I]] -
Sojers PO)) +1).

In a summary, the bounds for tuples irffdrent sets are listed in
Table 4. Where th8et column is the name of the set that the tuple
belongs to, and) denotes the set of unseen tuples. The S and P
columns means whether we know the score and probability for the
tuple respectively. We show bounds f6}i1]] — Re(0;) in Table 4.

All the lower bounds fofE[|l|] — Re(0;) become upper bounds for
Re(0;), and upper bounds fd[|I|] — Re(0;) become lower bounds

for Re(0)).

Example 4.2: Assume that we have retrieved 3 tuples from both
relation S and relationP in Table 3, respectively. TherHs =

e{01(100,0.3),02(95,—), 03(90,0.4)} and H_s = {0s(—, 0.45)}. H,

can be further partitioned int®(; = {0,(100,0.3), 05(90,0.4)} and
H; = {02(95,-)}. “-" means the value of that field is unknown.
Here,p = p(0;) = 0.3, which is the last probability we have seen.
E[|l]] = 1.8. For tupleoy, no tuple has a larger scorp(o;) = 0.3,

ity order respectively. For each seen tuple, we may know its score and thenRe(0;) = 1.8 - 0.3 x (1.8— 0.3+ 1) = 1.05. For tuple

and/or probability. In other words, we may not know both score and

02, tuple o; is the only tuple with a larger score, and we do not

probability for every seen tuple. However, in the sequential access, know the probability ofo,. We compute its lower bound, which
unlike the random access, we have one additional piece of informa- jg R°%(0,) = 1.8-0.3x (1.8- 0.3+ 1) = 1.05. For tupleos,

tion, the upper bound of all the unknown probabilities, denoted as tuple o, ando, are the tuples with a larger score, apbs) = 0.4.

p. Itis the last retrieved probability from relatidh
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Tuple || Randomly Acces® || Sequentially AccesB
R2¥(0) | Re (o) R2V(0) | RE(01)
01 1.05 1.05 1.05 1.05
02 1.4475 | 1.4475 1.05 -
03 1.02 1.02 0.96 1.08
05 - - 1.0575 | -
unseen|| 0.85 - 1.17 -

Table 5: Bounds ofRg(0;) in ran/seq access

Re(03) = 1.8-0.4%x(1.8-0.3- p(02) —0.4+1) = 0.96+0.4% p(0,),
thenR:"(0s) = 0.96+0.4x0.3 = 1.08 andR®"(03) = 0.96. For tuple

0s, we do not know its exact score, and only know that the tuples in
H, are with a larger score. Hend@2"(os) = E[|1]-p(os)x(E[|1]]-
p(o1) — p(02) — p(0s) — p(05) +1) > 1.8-0.45%(1.8—0.3-0-0.4—
0.45+ 1) = 1.0575, with a lower bound.Q@575. For all the unseen
tupleso;, R2*(0)) = E[I1] - px (E[I1] - p(01) - p(02) — p(03) +1) =
1.17, with a lower bound.17. m]

Tuple || Randomly Acces® || Sequentially AccesB
Prr(0) [ PS&©) [[ Par(a) | POR(0)
01 0.3 0.3 0.3 0.3
02 0.105 0.105 0.21 -
03 0.238 0.238 0.28 0.196
05 - - 0.189 -
unseen|| 0.357 - 0.126 -

Table 6: Bounds ofPyr(0;) in ran/seq access

Proof Sketch: As all the tuples are totally independent, the follow-
ing equation holds.

-1

x [ ]@- p))

Pur(0))  p(0y)

Pur(0)  p(0)

®)

Here, the first parp(o;)/p(a) < 1 because(a) > p(o;), and the
second part is no larger than one too. Therefore the probabilistic

Table 5 summarizes the bounds for seen and unseen tuples, aftegcore functiorPyg is monotonePug(0;) > Pur(0)), if score(q) >

three iterations of randofsequential accesses on relatPrespec-
tively. TheRe(0;) for 01, 0., andos, are exact values in random

score(g) andp(a) > p(o)). O
Let the upper and lower bounds®fir(0;) be P (o) andP%(0),

access, which is tighter compared to the bounds in sequential ac-respectively. We consider random and sequential accesses on rela-
cess. But the lower bound for unseen tuples in random access istion p respectively.

looser, i.e. R%¥(0) = 0.85, whereaR°¥(0) = 1.17 in sequential
access, which is tighter.

Fig. 1 shows the [lower bound, upper bound] interval for tugle
andos in every iteration from 1 to 7. As we get more information,

the lower bound goes non-decrease, and the upper bound goes nor2/€S We can upper bound it gy

increase, eventually we get the exRetvalues.
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Bounds

0.5 L 0.5

[o] or-

1 2 3 4 5 6 7 1 2 3 4 5 6 7

(a) o3 (random) (b) o3 (sequential)

2 2

15 1.5

1 is 1 - -

Bounds
Bounds

0.5 L 0.5

[o] (o]

1 2 3 4 5 6 7 1 2 3 4 5 6 7

(c) os (random) (d) os (sequential)

Figure 1: Re bound changes foroz and os
Lemma 4.2: Our bounding scheme is correct. [

The bounding scheme is correct based on Lemma 4.1.

4.2 Ranking Functionpys

If the tuplesoy, - - - , 0, are in descending score order and are to-
tally independent, th@yr(0;) function can be simplified as below.

i-1
Pur(0) = p(a) x | [@ - p(0) (@)
j=1
It is the product of the nonexistence probability of tuptgsthat
have a larger score than the scor@aind the probability of tuple;
itself. We prove thaPyr is a monotone function in the following.

Lemma 4.3: The Ryr function, on which the Top-kPHR query is
based, is a monotone function. For any two tuplesamd g, if
score(@) > score(q) and p(g) > p(o;), then Ryr(0i) > Pur(0;).

[m]
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Random access on relatiorP: In this scenario, we get the prob-
ability for each seen tuple by a random access on reld@iofror
any seen tuple we know its exéaRfr value. For all the unseen tu-
i=1(1 - p(9y)), whereg; is the last
accessed tuple from relati® Note that this upper bound is tight,
because an unseen tuple; may have probability 1.

Example 4.3: Consider relatior and relationP in Table 3. As-
sume the first three tuples in relati@have been retrieved. The set
of seen tuples i$0,(100,0.3),0,(95,0.15),03(90,0.4)}. Based on
Eq. (4), we havePyr(0;) = 0.3, Pyr(02) = 0.105, andPyr(03) =
0.238. The upper bound for any unseen tupe,is P\(0) =
(1-0.3)-(1-0.15)-(1-0.4) = 0.357. This upper bound is achieved
by giving the unseen tuple with highest score a probability 1. That
iS, 04 is estimated to have a probability 1. O

Sequential access on relatiofP: In this scenario, in every itera-
tion, we retrieve a tuple from relatio® and a tuple from relation
P in descending scofierobability order respectively. We know the
score angbr probability for the retrieved tuples from both relations.
Let p denote the last retrieved probability frofn

For a tupleg; € Hs, all the tupleso; such thatscore(g) >
score(Q) are inHs already. We comput®ur(0;) using Eq. (4).
However, because the probability for some tuples may be unknown,
we need to upper bound and lower bouRgk(o). If p(a) is un-
known, then we upper bound it by, and lower bound it by 0.
For each tuple; involved in Eq. (4) to comput®yr(0;), the up-
per/lower bounds of (+ p(0;)) are 1 and (% p) respectively.

For a tupleo; € H_s, we upper/lower bounyr(0;) value. Note
that its lower bound is 0. All the tuples ik have a score larger
thanscore(9). We upper boundPyr(0;) by multiplying p(a) and
(1 - p(9y)) for all the tuples inHs as discussed above. Note that
there may exist some tuptg that has a larger score thanbut has
not been retrieved from relatiod yet. Similarly, we upper bound
Pur(0) for the unseen tuples by multiplyingand (1- p(o;)) for
all the tuples inH, as discussed above.

In a summary, the bounds &, for tuples in diferent sets are
listed in Table 4.

Example 4.4: Assume that we have retrieved 3 tuples from both
relation S and relationP in Table 3, respectively. TherHs =
{01(100,0.3), 0,(95,-), 03(90,0.4)} and H_s = {0s(—, 0.45)}. H



can be further partitioned inté(; = {0,(100,0.3),05(90,0.4)} and where the first equation is from [11]. Compared wia in the

H; = {02(95,-)}. Here,p = 0.3, which is the last probability we  independent case, there is one extra te(a) - Dojo0.j>i p(0)).

have seen. In the following, we compute upper bounds and lower When randomly accessing relatiéh the lower bound for the
bounds for all the parti#ull seen tuples. For tuple;, no tuple unseen tuples iRe(0) > X p(0;), which is the same as Eqg. (3).
has a larger scorep(o;) = 0.3, thenPyr(0;) = p(0,) = 0.3. For However, theRe(0;) for the seen tuples can not be bounded tightly.
tuple oy, tupleo; is the only tuple with a larger score, but we do  Even though we have retrieved all the tuples with higher score and
not know the probability 0b,. Ppr(02) = p(02) X (1 - p(oy)), then their probabilities, we still do not know those tuples in the same

Pi(02) = px (1 - p(oy)) = 0.21 andP%%(o,) = 0. For tupleos, x-tuple witho,, i.e., the e, .o, j»i P(0)) is unknown.

tuple o, ando, are the tuples with larger scores, ap¢bs) = 0.4. When sequentially accessing relatin the bounding scheme
PHRr(03) = p(03) X (1 — p(01)) X (1 - p(0)) = 0.4x (1-0.3)x (1 - is more complicated compared to that discussed in Section 4.1.
p(o)) = 0.28x (1 — p(ay)), thenP%(0s) = 0.28 andPi9¥(03) = In Section 4.1,p(a) for unknown probability is bounded by @

0.28x (1 - p) = 0.196. For tupleos, we do not know its exact p(a) < p. But, when mutually exclusive exists, it is upper bounded
score, but we know that the tuples fs are with a larger score. by
S0 Pig(0s) = p(0s) x (1~ p(0r)) x (1~ p(0z)) x (1~ p(0s)) <

0.45x (1-0.3)x (1 - 0)x (1 - 0.4) = 0.189, with an upper bound mnp.l- > pO))
0.189. For all the unseen tuples Px(01) = px (1— p(or)) x (1 - 0j01,0j€HS UH-s
P(02)) % (1 - p(03)) < 0.126, with an upper bound IP6. o When ¥ .q.0,crtun. P(O) > 1— P, p(a) must be less thap. Tn

Table 6 summarizes the bounds for seen and unseen tuples, aftePrder to boundRe(o;) when mutually exclusive exists, we reorga-
three iterations of randofsequential accesses on relatPrespec-  Nize Eq. (6) in the granularity of x-tuples. Itis possible to get better
tively. The Pur(0)) for o1, 05, andos, are exact values in random ~ ounds, becausg, .. p(0j) < 1. Eq. (6) is reorganized as follows.

access, which is tighter compared to the bounds in sequential ac- Re (o)

cess. But the upper bound for unseen tuples is a little looser i.e. = EMN- BTN 41— N B _

P.(0) = 0.357, wherea®}/x(0) = 0.126 in sequential access, [ = o) - CEQHI + ]Z; P(o}) -~ p(a) O;i P(o;)

which is tighter. i (7)
Lemma 4.4: Our bounding scheme is correct and tight among all EO = p(a)- (B[N + 1 - T;YOJZ;T p(;) - O;o p1))

possible bounding schema provided that relation P is sorted in de- Oi¢T j<i '

scending probability order. o The x-tuples are independent, so are their bounds. For the term

Proof Sketch: The correctness of our bounding scheme directly Y,c-j<i P(0;), the lower bound is obtained by replacing all the un-
follows from Lemma 4.3. For the tightness, we assume that a tuple known p(o;) with 0, i.€.,%o.cr.0,enz j<i P(0;). There exist two pos-
may have zero probability. There does not exist any other bounding sible upper bounds. One is to replace all of the unkngay) with
scheme (without random guess) that is more tight than ours. Basedp, i.e.,ZOjer,Oleng,jd p(o) + p-Hoj e 7] 0; € Hg,| < i}, where

on Eq. (4), the lower bound is achieved, when all the tuples with |-|is the size of a set. The other is one minus the summation of the
a larger score has probabilify; and the upper bound is achieved probabilities for tuples irr that has a larger score thagore(),
when all the tuples with larger score has probability 0. Note that i.e., 1—- Diojer0jeH: && j>illojeH s p(o;). The upper bound is the min-
the upper bound and lower bound are achievable individuallg imum of the two. Simiiarly, for the terni](,leroi p(0)), its lower

. . . . . bound can be obtained by replacing all the unkngwo;) with 0,
4.3 Ranking Function with Exclusive Relation- 1.€., 0/, oricuris P(0}), the upper bound can be obtained by re-

ship placing all th unknowm(o;) for tuples inz,, with p, if we can get
In the previous section, we discussed the boundRfa@ndPyr the size information about x-tuptg, , otherwise, it can only be triv-
respectively, assuming that all the tuples are independent. In thisially upper bounded by 1. By combining the corresponding lower
section, in a general, we discuss boundsRerand Py in an x- bounds and upper bounds for each term, we get the lower bound
Relation with exclusive relationships. and upper bound for Eq. (7).
Leto < 0; denote that tuple; ando; are mutually exclusive, i.e. In a summary, the bounds &f|I[] — Re for tuples in diferent
they belong to the same x-tupteo; € = ando; € 7, and leto;¢0; sets are shown in Table 7.

denote that tuple; ando; are from diferent x-tuples (independent). Example 4.5: Consider the two relation§ and P in Table 3,
Note thato ando; are diferent tuples. Let, denote the x-tuple  assyme there is a mutually exclusive relationship between tuple
thato; belongs to, i.e.7o = {0; | 0 © 0} U {0i}. o, andog, i.e. 7, = {01,06}, and the other tuples are indepen-

: dent. The x-tuple information can be possibly maintained in re-
4.3.1 Re function . . lation S, in an additional column named XID. The tuples iden-
Assume the tuples,, --- , 0, are in descending score order, the  ifieq by unique OID share the same XID if they belong to the

Re(0) with exclusive relationship is as follows. same x-tuple. In addition, we add an additional column called
Re(0) Xent which records the number of alternatives an x-tuple has. With
= p(o)- Z p(0)) this_additional column_ Xc_nt, we can achieve tighter bound. _It is
oS« achieved by the following information. For example, when retriev-
Yojoo; P(0]) ing o5 from relationS by sequential access, we get the informa-
+(1=p(0)) - (S + Loy P(O)) tion that all the alternatives of x-tupte have been retrieved, be-
= p()- (Z p(o;) - p(oy)) + Z p(o)) (6) causer; has only two alternatives and the other alternatiydéas
j<i 0j0j, j<i 0jo0; been retrieved.E[|I]] = 1.8. After three sequential accesses on
+(1-p(a)) - (ENH] = p(@) = Xo;c0, P(9)))- both S and P, Hs = {0,(100,0.3),0,(95,-),05(90,0.4)}, H.s =
= E[I]] - p(a)- (E[I] - Z p(o) — p(a) + 1) {05(—,0.45)}, andp = 0.3. We also know that tuple, andos have
< no other alternatives from the same x-tuple, and there are more al-
+p(0) - 2iojo01.ji p(o;) ternatives from the x-tuple that contaios For tupleo,, Re(0;) =
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Set | S| P | Type Bounds for E[|I[]] - Re
Hs | v | v [ upper | p(@) (B[ +1 - Yrexor Zojerojeriz,i<i P(0)) = Xoj00,0,e74 ugts P(0)) — P(Q))
HE | v | v | lower | p(a)- (E[Il]+1 B
= Yrex MIN{Y ojer p(0j) + p-l{oj € 7] 0j € Hg, ] <ill,1- X ojer p(0j) — X ojer  P(0))}
O ¢ ojeHS ojeHg 0jeH-s
. j<i _ j>i
= MiN{Xo,00,.0,cHg uts P(O)) + P(@) + P (7o | = 0] © 0 | 0j € HY UH-s)l - 1),1))
Hs | v | x | upper | min{p,1-3 ojooi  p(0j)} - (E[Il] + 1= Xrex X ojer P(0)) =X  ojeo  P(0j))
0jeHE UH-s 0T ojeH 0jeHEUH-s
j<i
Wﬁs X v upper p(q) : (E[“l] +1- ZOjXOi.oieﬂ; p(oj) - ZOjeroi ,Ojeﬁs*u‘}hs p(OJ))
U [ x [ x | upper| p-(EMNI +1- Socpe PO)

Table 7: E[|l]] — Re boundsfor tuple o; (independent/exclusive)

E[NT = p@)(EMNN + 1= Xojer, P(0))) = 0.96+0.3%,cr,, P(0)),
where 3o, P(0)) is lower bounded byp(o;) = 0.3 and upper
bounded byp(o;) + p = 0.6. ThenR2¥(0,) = 1.05 andR’(0y) =
0.96+0.3x0.6 = 1.14. For tupleo,, Re(02) = E[|I]] - p(c)(E[|1]] -
p(o)-p(0)+1), and thengW(oz) =1.8-0.3x(1.8-0.3+1) = 1.05.
For tupleos, R%¥(03) = 0.96 andR:"(0;) = 1.08. For tupleos,
R%(0s) = 1.0575. AndR%%(0) = 1.17 for unseen tuples. o

In this example, although we know both score and probability
for o, ando, has the highest score, we can not get the eRa, ),

When randomly accessing relatién we retrieve the probability
by a random access each time we retrieve the corresponding tuple
from relationS. H_s = 0 andHs = H;. For tupleso, € HZ, we
can get the exagtscore(o;) values, both upper bound and lower
bound argpscore(0;) which is absolutely tight. But, for tuples
U, we do not know any information about the score and probability.
Then, the upper bound fascore(o;) can be arbitrarily loose.

When sequentially accessing relatiBnwe have additional in-
formation p, which is the upper bound for all the unknown proba-
bilities. We can upper bounpscore(o;) for tupleso; € H.s U U

because there may exist some tuples with a smaller score and in thgy, o tighter than that in random access. But, among tuples

same x-tuple where; belongs to.

4.3.2 Pyr function

Assume the tuples,, - - - , 0, are in descending score order, the
Pur(0;) with exclusive relationship is as follows.

Pur(@) = pa)x [ | @~ 7 p)) ®
7eX,0¢7 ojer,j<i

which is the multiplication of the existence probabilityagfind the

nonexistence probabilities of other tuples with higher score. Note

that, the multiplication is in the granularity of x-tuple, because the

tuples from an x-tuple are mutually exclusive.

When randomly accessing relatidh we only need to upper
bound the unseen tuples. L&tbe the last seen tuple, tiigr for
unseen tuples can be upper bounded byy(1 — Dojerj<i p(9))).

When sequentially accessing relatiéhin descending proba-
bility order, we need both upper and lower bounds for seen tu-
ples. In Eq. (8), ifp(a) is unknown, then the upper bound is
min{p,1 — Dojo0; p(o;)} and the lower bound is 0. For each un-
known p(o;) in the second part of Eq. (8), we replace it by O for the
upper bound, and bp for the lower bound. If the lower bound is
negative, then its lower bound is 0.

For eacho, € H_s whose score is unknown, we upper bound it
by PL2(0) = ()X [Trexer (1= ojerojerg P(0)))- For the unseen
tuples, we can upper bound it by

min{p,1 - DlojeHE UHos p(o)}
1- z:aie’l‘ls+ p(ol)

H]a- > e

TeX
TeX ojer,0jeHS

4.4 Discussions

H,, the probability for some tuples may be unknown, we can only
bound it by 0 from below ang from above. The lowgupper
bound forpscore(q;) is a little looser than that in random access.

In summary, with random access on relat®nve can get better
bounds ofpscore(o;) for tuples inHs. With sequential access on
relation P, we can get better bounds p$core(o;) for tuples in
H_s U U. But, we can not get better bounds for both tuplegin
and tuples inH_s U U at the same time, in either random access or
sequential access.

The bounds for other functions: There are also other probabilistic
ranking functions used in the literature, e.g., top-k probability [16],
or the probability for a tuple to be ranked at tl¢h position in
possible worlds [34]. The same approach in the literature can be
used to boungbscore in random access, because it is the same as
to process in the same relation. However, it is ve§idilt to find
an upper bound or nontrivial lower bound (other than 0) for these
probabilistic ranking functions, in sequential access of relafon
Below, we discuss why it is flicult to find an upper bound for
the probability that a tuple ranked at thih position in possible
worlds.

Suppose we have done 4 sequential accesses, and wé{have
{01(100,p1), 02(95, p2), 03(90, ps), 04(85,0.4)}, wherep; is short
for p(a) and is unknown. We only know that;, p,, and ps, are
in the range of [0p], wherep is the last seen probability. Then
the probability foro, to be ranked at the second place in possible
worlds is as follows.

P(0s) - (PL(1 = P2)(L~ p3) + P2(1 = p1)(1 - p3) + Pa(1— p)(1 - p2))

which is 0.4- (3p1p2ps — 2p1P2 — 2P1Ps — 2P2P3 + P1 + P2 + P3).
It is a polynomial of degree 3, it is hard to get the upper bound.
A very loose upper bound is®- (3p1p2ps + P1 + P2 + P3), where

In this section, we discuss two issues. One is the advantages and,, p,, ps is replaced by . This upper bound can be very loose, and

disadvantages related to randseguential access. The other is
the bounding scheme for other possible top-k probabilistic ranking
queries.

Random vs Sequential accessWe discuss the advantages and

can be arbitrarily large when there are more than 3 tuples with un-
known probability. Even worse, in order to get such upper bound,
it takesO(2") time in order to compute the probability for a tuple
to be ranked at the second position, wheis the number of prob-

disadvantages of the bounds for random and sequential accessedPilities that are unknown.

Consider at the iteratioin we distinguish the whole set of (seen or
unseen) tuples into two setés andH_s U U.

483



Algorithm 1 PRR(S, P, k)

Algorithm 2 PRS(S, P, k)

Input: relationS, relationP, and a numbek
Output: Top-k tuples in sorted order based Ba.

1: initialize a priority queue of siz&, Q, to be empty;
2: while less thark tuples reportedio

3: (0,5) « nex(S);

4. (0, pi) « find(P, 0;);

5. computeRe(0;) using Eq. (2);

6: insert 0, Re(0;)) into @;

7:  compute the lower bound of all the unseen tupleB'@t%(o);
8:  while less thark tuples reporteddo

9: let o; be the tuple with largedRe(0;) in Q.

10: if Re(0;) < RC(0) then

11: reporto; as the next tuple in the top-k answers;
12: deleteo; from Q;

13: else

14: break;

5. /O EFFICIENCY

We discussed the bounding schema for bigghandPyr in Sec-
tion 4. In this section, we discuss two algorithms for random ac-
cess and sequential access of relafaespectively for Top-kERV
queries when all x-tuples are independent. It is straightforward
to extend the algorithms to support the general mutually exclusive

case, and it is straightforward to extend the algorithms to compute

probability of highest rank queries using the bounding scheme of
Pyr instead ofR:. We also discuss how to combine the advantages
from both randornfsequential access.

5.1 Random Access on Relation

The algorithm for random access on relati®ns similar to the
algorithms for probabilistic rank queries in a single relation.

Algorithm 1 shows the detailed steps of computing Top-KERV
queries. It takes three inputs: a relatiBnwhich is sorted in de-
scending score order, a relatiéh and a numbek. It uses a pri-
ority queueQ of sizek which is initialized to be empty (line 1).
It outputs the top-k answers in a while loop (line 2-14), and will
stop when top-k answers are output. In the while loop, it gets the
next pair @i, s) from relationS wheres, = score(g) (line 3). The
score will be the largest among those unseen tuples in rel&tion
because relatiol® is sorted in descending score order. Then, it
obtainsp(ag) by calling find(P, 0;) with the OID o; by a random
access (line 4). It computd(0;) using Eqg. (2) (line 5), and in-
serts the pairdj, R=(0;)) into the priority queu& where tuples are
sorted in ascendinBg(0;) order (line 6). If its size exceedswhen
inserting a pair int@}, we delete the pair with the largeRg value
from Q. It also computes the lower bound for all the unseen tu-
ples denoted aB¥(0), using the bounding approach discussed in
Section 4.1 (line 7). All the tuples in Q with Re(0) < R2¥(0)

Input: relationS, relationP, and a numbek
Output: Top-k tuples in sorted order based Ba.

1. while less thark tuples reporteddo

2. (0,s) < nex(sS);

3. (0, pj) < nex(P);

5.  updateHs andH-s;

6: for all the tupleso; € Hs, compute its upper bound and lower bound
RLP(0r) andRe(0));

7. compute the lower bound for all the tuples#.s and all the unseen
tuples;

8:  while less thark tuples reporteddo

9: let o; be the unreported tuple iHs with smallest lower bound;

10: if ReP(0;) is no larger than all the other lower bourttien

11: reporto; as the next tuple in the top-k answers;

12: else

13: break;

bound computed iE?gW(o) = 0.95. No tuple can be determined to

be the top-k answers. In the fifth iteration, we retrieyérom both

relations: 6s,80) and (@, 0.45). Re(0s) = 1.17. The lower bound

computed isRC¥(0) = 1.4. Reg(0s) and Re(0;) are smaller than

R2%(0), thenos ando; can be determined to be the top-2 results.
O

Theorem 5.1: Algorithm 1 correctly finds the top-k tuples with
respect to R, with sequential access on relatiach and random
access on relatiof®. O

Proof Sketch: For all the seen tupleg;, we can comput&:(0;)
exactly by Eq. (2). For the unseen tuptest can be lower bounded
asR°"(0). All the tuples output by Algorithm 1 are guaranteed to
be no larger tharﬁégw(o) (line 10). Then it is guaranteed to be in
the top-k answers. O

5.2 Sequential Access on Relation

Because random access usually is much expensive compared to
sequential access, in this section, we consider sequential accessing
relation P provided that relatiorP is sorted in descending order
in terms of probability, as well as sequential accessing relaion
which is sorted in descending score order.

We sequentially access relati@and relationP. In every itera-
tion, we retrieve ¢, s) from relationS, and (q, p;) from relation
P, updatepto be p;, wherepis the upper bound for all the unseen
probabilities. We updaté{s and H-s which may require joining
(0, s) and (g, p;) with the existing retrieved tuples iHs and#_s.

We also update the upper bound and lower bound for all the seen tu-
ples, and compute the lower bound for all the unseen tlR#46).

Leto; be the tuple with smallest lower bound among all seen tuples.
If RE"(01) is no larger than all the other lower bounds, then tuple

can be determined to be the top-k answers (line 8-14). Note that can be determined to be the next tuple in the top-k answers. Algo-

in Algorithm 1 the numbers of tuples retrieved from relat®mand
relationP are the same.

Example 5.1: Consider the two relation§ andP, in Table 3. Let

k = 2. Algorithm 1 executes as follows. In the first two iterations,
(01,100) and (@, 0.3), and (g, 95) and (@, 0.15), are retrieved from
relationS and relatiorP. In the third iteration,ds, 90) and (g, 0.4)
are retrieved. We hav&®g(0;) = 1.05, Re(0;) = 1.4475, and
Re(0s) = 1.02. The lower bound is computed B§"(0) = 0.85.
All theseRg(0;), Re(02), andRe(03) are larger than the lower bound

rithm 2 shows the detailed steps. We explain it using an example.

Example 5.2: Consider the two relationss and P, in Table 3.
Letk = 2. Algorithm 2 executes as follows. In the first iteration,
(01,100) and (g, 0.45) are retrieved from relatio8 and relation

P (line 2-3). p = 0.45 (line 4). Here;Hs = {(01(100,-)} and
H_s = {(0s(—,0.45)}, where every entry it andH_g represents
oi(score(9), p(a)). In the second iterationof, 95) and (@, 0.4)
are retrieved from relatio® and relationP. p = 0.4. Here H; =
{(0,(100,-), 02(95,-)} andH_s = {(0s(—,0.45), 03(—,0.4)}. The

R'gW(o). Therefore, no tuples can be determined to be in the top-k upper bounds foRg of all the seen tuples are(|1]), no tuples can

answers in this iteration. In the fourth iteration, we retrieyérom
both relations: d,,85) and (@,0.1). Re(04) = 1.615. The lower
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be the top-k answers.
In the third iteration, after retrievingpg, 90) from relationS and



(01,0.3) from relationP, we updateHs and H_s (line 5). Here, Parameter | Range Default

Hs = {(01(100,0.3),0,(95,-), 03(90,0.4)}andH_s = {(0s(—, 0.45)}. k 5, 10, 20, 30, 50 20
Note that the entrps(—, 0.4) is deleted fron¥_s and its probabil- Sizé i g 3, j' S(x18) |3
ity is added intaos(90,0.4) in Hs. The same is applied . The xsize 123,45 3
. S . mean 0.4,0.5,0.6,0.7,0.4 0.6
upper bounds and lower bounds in the third iteration are shown
in Table 8. The tuple with smallest lower bound0§ such that Table 9: Parameters for all Testings
Ro%(03) = 0.96. Its upper boundR."(0s) = 1.08) is larger than the
lower bound ofo, becauseR'gW(oz) = 1.05, so we continue for the M Random — 17— M T Random —1—
3 ) Hybrid —f3-— Hybrid —f=-—
next iteration. Sequent -4 Sequent &
2 ook e 2 ook
Tuple lteration 3 lteration 4 © e ©
Re’(a) [ R2¥(a) [[ Re"(o) | Re™(o)
01 1.05 1.05 1.05 1.05 KT 0 20 30 o KT, s 4 s
02 - 1.05 - 1.3 (a) Varyk (b) Vary size
03 1.08 | 0.96 1.04 | 0.96 e M
04 - - - 1.38 | seoom A sememt A
O5 - 1.0575 - 1.0575 g ook g ook ET’—'—F
O - - - 1.42 o o A AT E e
unseenf|| - 1.17 - 1.38 10K
. . . w 2 3 4 5 YT s 6 7 -8
Table 8: Upper/lower bounds in 3rd and 4th iteration () Vary xsize (d) Varymean
In the fourth iteration, after retrievingp{, 85) from relationS Figure 3: Uniform Distribution

and (@, 0.2) from relationP, we haveH, = {0,(100,0.3),0,(95,-),
03(90,0.4),04(85,-)} andH_s = {05(—, 0.45),06(—, 0.2)}. p= 0.2.
We recompute the upper bounds and lower bouRdfor the seen
tuples, as shown in Table 8. The lower bouRg value for the
tuples inH_s is R2"(0s) = 1.0575, and the lower bound for the un-
seen tuples iR¥(0) = 1.38. The tuples with smallest lower bound
is 03, and its upper bound.Q4 is no larger than any other lower
bounds. Thereforey; can be determined to be the top-1 answer, | ) > -
although its exadRc(0s) is still unknown. Then the unreported tu-  SSU€ & random access to find the probability for the tupifin
ples with the smallest lower boundds, and its upper bound.a5 with the largest score and unknown probability. Then, the bounds

is no larger than any other unreported lower bounds. We can report for all the tuples with smaller scores will become tighter. Note that,
o, as the top-2 answer. when a random access is issued, phelue will not be changed to

the probability retrieved. Below, we give an example to show how
Compare Example 5.1 and Example 5.2. For random access oNrandom access helps bounding in sequential access.

relation P, we report the top-2 answers after retrieving 5 tuples
from relationS and 5 tuples from relatioR. For sequential access o . .
on relationP, we can determine that tuples ando; must be in Letk = 2. Assume the probability ofs is changed to 0.5, i.e.,
the top-2 answers, in the fourth iteration. It is does not only incur P(Cs) = 0.5. E[[l[l = 1.85. After conducting four sequential ac-
less expensive to conduct sequential access, but also retrieve lesSESS€S on relatiob and relatiorP respectively#s = {01(100,0.3),

number of tuples compared to random access on rel&ion 02(95,-), 05(90.0.4),04(85,-)}, H-s = {05(~. 0.5),06(~, 0.2)}, and
p = 0.2. Then the upper bounds and lower bounds are as fol-

Theorem 5.2:_Algorithm_2 correctly computes _the top-k tuplgs lows. For tupleo;, Re(0;) = 1.085. For tuplen,, R|£W(02) — 1.34.

based on R, with sequential access on both relation S and relation g, tuple os, RI(E)W(Og) = 0.99, andREp(og) = 1.07. For tupleo,,

P. o %Jw(m) = 1.42. For tupleos, R®"(0s) = 1.025. For tupleo,

Proof Sketch: The correctness of Algorithm 2 directly follows °%(0s) = 1.56. For unseen tuple, R%¥(0) = 1.42. The upper

from Lemma 4.1 and Lemma 4.2, and the correctness of the non-bound ofos, which is the tuple with smallest lower bound, is larger

random access algorithms in [14, 32]. m] than the lower bound ads. Then no tuple can be determined to be
It is important to note that our sequential access is similar to the in the top-k answers in this iteration.

scenario discussed in [14, 32]. For each seen tuple, there is an up- If, in the fourth iteration, we issue a random accessPoin-

per bound and lower bound &(0). If R®(0;) < RE’(0;), then stead of sequential access to the probabilityoof Then, Hs =

tupleo; is guaranteed to rank higher thap For the unseen tuples,  {01(100,0.3),02(95,0.15),05(90,0.4),04(85, )}, H-s = {05 (-, 0.5)},

Re(0) is guaranteed to be less than or equal to some lower boundp = 0.3. Note thatpis larger than that of sequential access. The

value. However, both work reported in [14, 32] are for determin- Set of upper bounds and lower bounds are as follows. For tuple

istic datasets and cannot be directly applied to probabilistic query 01, Re(01) = 1.085. For tupleo,, Re(02) = 1.49. For tuple

In this section, we discuss conducting both sequential and ran-
dom access at the same time, to utilize both advantages of random
access and sequential access. We can add random access of rela-
tion P into the framework of Algorithm 2, which is designed for
sequential access only. In some iteration in Algorithm 2 (line 3),
instead of sequentially retrieving the next tuple from relattonwve

Example 5.3: Consider the two relationss and P, in Table 3.

processing. 03, Re(03) = 1.05. For tupleos, R2¥(04) = 1.25. For tupleos,
) R%%(0s) = 1.1. For unseen tuple, R2"(0) = 1.25. Then, tuple

5.3 Sequential and Random Access 03 can be determined with the highest rank, and tuplevith the
In Section 5.1 and Section 5.2, we discussed algorithms to find Second highest rank. o

the top-k answers, with either random access or sequential access

on relationP. We also discussed the advantages and disadvantage

of these two access methods in Section 4.4. It is hard to get better®- PERFORMANCE STUDIES

bounds ofpscore(o;) for both the seen tuples and unseen tuples. We conducted extensive performance studies to get top-k an-
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which contain 50879 tuples. For each x-tupte we normalize the
probabilities for each tuple € t as follows, p(0) = %@

. conf(0)
maxconf(0’)|o’ € 7}, whereconf(o) is the confidence probability
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(d) Vary mean

Figure 5: Positive Correlated

swers using the tw@score functions, namelyRe and Pyg.
tested 3 algorithms, nameRandom, Sequent, andHybrid. All
the 3 algorithms sequentially access relat®nand access rela-
tion P as the names impl\Random randomly accesses relatiéh
Sequent sequentially accesses relatiBpandHybrid may sequen-
tially and randomly access relatiéh
We use both real datasets and synthetic datasets. For the reatl, ave+ d]. For the normal distribution, for a mean valage, all
datasets, we extracted several sets of x-tuples from the Internationalprobabilities of x-tuples follow the normal distributidfi( ave,0.2).
Ice Patrol (IIP) Iceberg Sightings Databaketp://nsidc.org/
data/g00807.html) which is a database that collects the activ-
ities of the iceberg in the North Atlantic. The data are collected and-0.8 respectively.
through airborne Coast Guard reconnaissance missions and infor-
mation from radar and satellites to monitor iceberg danger near the synthetic data are given in Table®is for the top-k value in a top-
Grand Banks of Newfoundland. There are some imprecise infor- k probabilistic query.sizeis the number of units for the dataset,
mation for each record which is recorded as the confidence level where each unit contains @00 tuples.xsizeis the average num-
according to the source of sighting. The 6 confidence levels are ber of tuples in each x-tuple in the datagaeanis the mean value
converted to confidence probabilities30 0.7, 0.6, 0.5, 0.4, and
0.3 respectively. Each drifting activity may be recorded several eters are used for both real and synthetic datasets, whrsizes
times by several types of sources. The x-tuples are the recordsandmeanparameters are used for the synthetic datasets only. We
that are obtained at the same time and the same location. We col+eport the JO cost follow the same approach given in [33]. The cost
lected records from 1998 to 2007 and generatebQ3 x-tuples

S
for the tupleo. For each tuple extracted, we set its score to be the
number of days drifted because it is important in determining the
status of icebergs. We extracted 5 datasets from the whole dataset,
which are sized 1000, 20000, 30000, 40000 and 50000 in
terms of tuples respectively.

For the synthetic datasets, we have 4 types of distributions for
the probabilities of x-tuples in the datasets, namely, uniform dis-
tribution, normal distribution, positive correlated distribution and
negative correlated distribution. For the uniform distribution, given
a mean value & ave< 1, supposel = min{avel — ave}, all prob-
abilities of x-tuples are distributed uniformly in the range/¢—

We

For the positive and negative correlated distribution, the probabili-
ties and the scores form a correlated bivariate with correlatin 0

The parameters used and their default values for both real and

under a certain distribution discussed above. Khadsizeparam-

is measured in unit, one sequentj&@ kcontributes one unit, and one
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random O contributes 5 units. All algorithms are implemented in  abilities, whereas, in the negative correlated data, the tuples with
Visual G++, and all tests were conducted on a 2.8GHz CPU, 2GB large scores tend to have low probabilities. The curves are all sim-
memory and 80GB disk space PC running Windows XP. ilar to those in the normal distributions. The performance for all
testings in the positive correlated data is much better than those
in the negative correlated data. In the positive correlated data, the
lower bound ofRg in Random increases fast in the first several

Exp-1 Real Datasets forRg: The testing results foRg using the
real datasets are shown in Fig. 2. In Fig. 2(a), we also test the
Hybrid algorithm with diferent accessing patterns between the | ) X
random access and the sequential access. In our teKtihgid |te_r§1t|ons, because the first several tuples tend to have a large prob-
i/j means that the Hybrid algorithm performssequential ac- ~ Pility. For the same reason, the upper boundReffor each tu-

cesses followed byrandom accesses alternatively. From Fig. 2(a), gle in Seqaent degreasfes fTSt n ri f'rhSt several |tderat|%nsb._l_l_:or
Hybrid i/j performs well wheri < j, and there is no much dif- equent, the number of tuples with both scores and probabilities

ference between flerentHybrid algorithms withi < j regarding in_the positive correlated data is_much Ia_rger than t_h_at in the neg-
the cost. Becausiybrid 1/1 performs well among these vari- ative correlated data. It makes it faster in the positive correlated

ants, we us@iybrid 1/1 asHybrid to conduct our testing below. ~ data-

In Fig. 2(b), whenk increases, the numbers of tuples visited for Exp-3 Real Datasets forPyr: We tested thd>, function in the

all the 3 algorithms increase because the top-k answers for all thereal dataset for all the 3 algorithms. The results are shown in Fig. 7.
3 algorithms are incrementally generateRlandom and Sequent When eitherk or sizeincreases, the cost for all the 3 algorithms
have similar costsHybrid is much better than botRandom and increases.Random andHybrid have similar performance, and is
Sequent. One of the bottlenecks f@equent is that, although the much better tharsequent. This is because, the upper bound of
lower bounds oRg for the unseen tuples increase in every iteration, Pyg in theRandom algorithm decreases fast. For example, even if
the set of seen tuples with both scores and probabilities is small. all of the first 30 tuples have very low probability, say 0.1, the upper
Note that the seen tuples with both scores and probabilities have anbound for the unseen tuples after 30 iterations become8. (*° =
upper bound, and thus can satisfy the stop conditions. When ran-0.04 which is very small. This means that we can output the top-k
dom access is integrated into sequential access, the number of seeanswers in an early stage.

tuples with both scores and probabilities increases. THyisid

can stop in an early stage. In Fig. 2(c), when the number of tuples

in the datasets increases, the cost for lRéndom and Sequent 7. RELATED WORK

increases, but it decreases fdybrid. The reason is that, in the o o ) »

same iteration the upper boundR¥ for the seen tuples with both Top-k Qu_eneg in Pro_bab|I|st|c _Data: Uncertairiprobability data
scores and probabilities tend to be smaller in a dataset with a larger@s received increasing attention recently. There are several prob-

size, wherep() tends to be largeHybrid is also much better than abilistic data models and systems proposed, for example, Trio sys-
bothRandom andSequent. tem [2, 6, 31], MystiQ system [12, 30], and MayBMS system [5,

. . 4].

Exp-2 Synthetlc Datasets forRe: We tested all the 3 alg_c_)rlthr_ns_ In the literature, several works study computing the koga-
for Re using synthetic data. For each of the four probability distri-  g\yers by the interplay of score and probability, based on the possi-
butions, namely, uniform, normal, positive correlated, and negative pje worlds semantics. Soliman et al. first study the ranking issues
correlated, we vark, size xsize, ananean, to test the performance i, propabilistic data under the possible world semantics [34], and
for eaph algorlthm.. The results are shown in Fig. 3, Fig. 4, Fig. 5 propose two probabilistic ranking queries: U-Topk query and U-
and Fig. 6 respectively. _ _ kRanks query. They also study ranking aggregate queries in prob-

Under the uniform distribution, Fig. 3(a) shows that wiein- abilistic data [35]. Yi et al. [37] improve the performance of the
creases, the cost for all the 3 algorithms increaldgbrid does not U-Topk and U-kRanks queries using a dynamic programming ap-
perform as good as in the real dataset, because in the real datasely gach. Hua et al. [16] study a PT-k query, which returns the set
some of the first several tuples tend to have high probabilities, sf yples whose top-k probability is above a user-specified thresh-
which make the upper boundsfg for those tuples small, and thus 4|4 and propose three heuristic approaches to answer such PT-k
output in early iterations. In Fig. 3(b), when the number of tuples in queries. Cormode et al. [11] propose the expected rank query.
the dataset increases, the cost for all the three algorithms in(:reasesq—hey rank tuples based on their expected rank values. Jin et al.
Hybrid is betweenSequent and Random. Fig. 3(c) shows that  [2o1'study the U-Topk/U-kRankBk-topk queries in an uncertain
when xsizeincreases, the cost for all the 3 algorithms increases. giream environment under a sliding-window model. Li et al. [23]
Sequent performs badly whemxsizeis small, because the average  ompute the top-lanswers in the scenario of uncertain distributed
probability for each tuple in each x-tuple is large. In this situation,  yata where subsets of the tuples are distributedféret places.
p will be large in each iteration, thus the lower bound for unseen A the existing studies assume that all the information about score
tuples will be loose. In addition, when the average probability for 5., probability is stored in a single relation.

tuples is large, the lower bound f8 in Sequent is small. Thus Join queries in uncertain database are studied in [10, 3]. Cheng
the performance is bad. On the other hand, the lower bound for the g 51 study probabilistic threshold join queries [10]. In [10], the
unseen tuples iRandom increases faster, which makes it perform  51,e5 of join attributes are uncertain, which is represented as pdf.
good. In Fig. 3(d), when thmeanvalue increases, the cost for all 1,0 typles can be joined with a probability, which is the probabil-
the 3 algorithms decreasesybrid algorithm decreases faster. AS iy that the two pdfs can join. Agrawal et al. [3] study the problem
shown in Fig. 4, The algorithms under the normal distribution per- ¢ finding top-k join answers in an uncertain database when mem-

form similar as in the uniform distributior§equent does not per- 4y is insuficient. Although they consider the join issues in a top-k
form well in the normal distribution, because there are not many gyery, they treat each probability attribute as an ordinary numeric
tuples with very high probabilities or very low probabilities. attribute, and rank the answers based on the aggregated probabili-

Fig. 5 and Fig. 6 show the distributions in two opposite situa- ties. In this paper, we are dealing with afdrent problem.
tions, positive correlated and negative correlated. In the positive

correlated data, the tuples with large scores tend to have high prob-10P-k Queries in Deterministic Data: Top-k queries in determin-
istic data have been studied extensively. A detailed survey can be
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found in [19]. In general, it is to find the top-k answers with re-  [9] D. Burdick, P. M. Deshpande, T. S. Jayram, R. Ramakrishnan, and

spectto a user specified score function by joining and aggregating S. Vaithyanathan. OLAP over uncertain and imprecise dAt&B J.,

multiple inputs(or relations). 16(1), 2007. , ,
The top-k algorithms by Fagin et al. are the most influential [13, [10] R.Cheng, S.Singh, S. Prabhakar, R. Shah, J. S. V'ftter' and . Xia.

14]. They consider both random access/andequential access Egggfantjom processing over uncertain dataPioc. of CIKM'0§

o_f the lists of base scores,_where each list of a base score can b 11] G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for

viewed as a separate relation. There are many works considering probabilistic data and expected ranksPiroc. of ICDE’09 2009.

the scenario that random access is not supported by the underly{12] N. N. Dalvi and D. Suciu. Hcient query evaluation on probabilistic

ing sources. The No Random Access (NRA) algorithm [14], the databases/LDB J., 16(4), 2007.

Stream-Combine algorithm [15], and the LARA-j algorithm [25] [13] R. Fagin. Combining fuzzy information from multiple systems.

answer a top-k query by sequential accesses on the lists of base ~ Comput. Syst. Sci., 58(1):83-99, 1999.

scores. The* algorithm [27], algorithms in [18], and the family of ~ [14] R.Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms

PBRJ algorithms [32] retrieve the join answers with top-k scores, for middleware.). Comput. Syst. Sci., 66(4), 2003.

. - : : 5] U. Guntzer, W.-T. Balke, and W. KieR3ling. Toward$ieent
using sequential access on the base relations. Marian et al. propos~£=1 multifeature queries in heterogeneous environmenigrat. of

Upper and Pick algorithm to answer top-k queries, when sequential ITCC'01, 2001.

access is provided and also controlled random accesses is providegy g M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries on uncertain
[26]. But, these work consider deterministic data, and can not be data: A probabilistic threshold approach.Rroc. of SIGMOD'08
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