
An Optimal Victim Selection Algorithm for Removing Global
Deadlocks in Multidatabase Systems

X. Lin & M. E. Orlowska

Department of Computer Science
University of Queensland

Brinsbane, QLD 4072, Australia

Abstract
A time-out mechanism based on a potential con-

pici graph has been ap lied i o deiect global deadlocks.
In order i o perform t i e time-out mechanism betier,
in this paper we propose an optimal vidim selection
algorithm for resolving global deadlocks in a mul-
iidaiabase system. The algorithm selects a set of
iransaciions urirh the minimal abortion cost to re-
solve global deadlocks. It makes the use of network
pow techniques, and run8 in lime O(ns), where n is
the sixe of a subset of ihe global transactions.

1 Introduction
A muliidatabase system (MDBS) is a federation of

independently developed component database sys-
t e m connected through a communication network.
These component database systems are also called
local daiabose. sysiems (LDBS) in contrast to an
MDBS. There are two types of transactions in an
MDBS:

Local inansadions - that execute at a single
LDBS.

Global imnsadions - that may execute at sev-
eral LDBSs.

One major issue in transaction management in an
MDBS is concurrency control. During the concur-
rent execution of a set of transactions, a deadlock
occurs when they wait, in a circular fashion, for ex-
clusive access to some of the resource held by other
transactions in the set. The current developments
in concurrency control techniques in multidatabase
systems can be classified into two families[2,4]: one
is deadlock free, and another requires deadlock de-
tection. Usually, the concurrency control approach
without forcing a deadlock free can potentially pro-
vide a greater concurrency degree. But, this should
co-operate with an efficient and effective deadlock
resolution. Discussions about the advantages and
disadvantages of these two approaches are outside
the coverage of this paper. The interested reader
may refer to [2].

In this paper, we assume that the concurrency
control technique used in a multidatabase system
may c a w the existence of deadlocks. To simpliiy
the discussion, in this paper we adopt the MDBS
model presented in [2, 31 which is based on the fol-
lowinn assumptions:

Y. Zhang

Math & Computing Department
University of Southern Queensland
Toowoomba, QLD 4350, Australia

At the local level: no changes can be made
to local database systems in order to preserve
local autonomy; a local database management
system is not able to distinguish between local
and global transections which are active at the
LDBS, neither is it able to communicatedirectly
with other local DBMSs to synchronize the ex-
ecution of a global transaction active at several
LDBSs; and each local database management
system uses the strict two-phase locking proto-
col [l] for local serializability (that is, local locks
are released only after a transaction aborts or
commits), and has a mechanism for ensuring
freedom from local deadlocks.

At the lobal level: the global transaction
manager GTM) has no access to local DBMS;
and the (! TM submits an operation of a trans-
action T to an LDBS only if the previous sub-
mitted operation of T has been completed.

Thus, a global transaction may wait, at most, at
one LDBS each time; and we can assume that each
local schedule is serialiiable and that local deadlocks
can be resolved through a local concurrency control
approach. However, global deadlocks (that is, the
deadlocks amon global transactions) may still exist
due to either in%reci conflicis or dinei conflicts [2].

The time-out mechanism has been introduced [3]
to remove the global deadlocks in a multidatabase.
Later, an improvement on victim selection is sug-
gested in [4]. In this paper, we present an optimal
victim selection algorithm for the implementation
of the time-out mechanism to remove global dead-
locks. Once it is decided to abort a transaction by
an implementation of the time-out mechanism, our
algorithm will always choose a set of transactions
with the minimum abortion cost, and with better
(or the same) abortion effect. The algorithm pre-
sented in this paper usea network flow techniques.
Particularly, we translate the optimal problem into
the maximum flow problem.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief overview of the algorithms in
13, 41, our motivations, and an outline of our dead-
ock resolution. Section 3 shows a translation from
the optimal victim selection problem to the maxi-
mum flow problem, and then gives the optimal algo-
rithm. Section 4 concludes the paper.

50 1

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:34 from IEEE Xplore. Restrictions apply.

2 Preliminaries
2.1 Related Works

In respect to site autonomy, a GTM has no access
to local database management systems. So, indirect
conflicts usually may not be precisely determined by
a GTM. A poteniiol conflict graph has been in tm
duced in [2] to give an approximation status of con-
flicts, since indirect conflicts cannot be detected by
a GTM. A transaction Ti is active at site Sj if it has
a server at Sj , and if the server is performing an o p
eration of Ti at the site or has completed the current
operation of Ti and is ready to receive the next op
eration of Ti. A transaction that is not active at site
Sj is said to be waiting at site Sj, provided that it
has a server at the site and at least one operation of
the transaction was submitted to the site. A poten-
tial conflict graph has been described as a directed
graph G = (V, A) whose vertex set V consists of the
global transactions. An arc Ti I;: is in A if there
is a site at which T. is waiting and I;. is active.

Note that a cyde in a potential conflict graph
could be either a real deadlock or a false deadlock
due to inaccurate information about conflicts among
global transactions; and the potential conflict qraph
may be changed from time to time. Meanwhile, it
is believed that some abortions are more expensive
than waiting, and unnecessary abortions result in
wasted system resources.

A time-out mechanism BLS has been proposed by
Breibart, Litwin and Silberschatz in [3] which coop-
erates with the potential conflict graph to remove
global deadlocks. The alkorithm BLS initially issues
a timeout to each waiting global transaction, and
implements the following two steps once the t ime
out expires on a waiting transaction T
BLSl: If there is a cycle in the potential conflict

graph at that time, determine the set of all
transactions active at the waiting site of T and
involved in any cycle throu h T. If T is older
(with res ect to timestamp! than all transac-
tions in tge set, T continues waiting; otherwise,
T aborts.

BLSS: If there is no cycle in the potential graph, T
continues waiting.

Two problems of BLS have been reported in (41:
1) BLS may abort the transactions with expensive
cost; 2) BLS may abort a transaction involved in
fewer cycles than other transactions in the potential
conflict graph. So BLS may abort additional trans-
actions in order to resolve the deadlocks.

A possible improvement PPCG on BLS is out-
l i e d in [4], which consists of the following two steps
(performed once the timeout expires on T):
PPCG1: If there is at least one cycle in PCG

throu h T , find the set g of the transactions in-
volvef in a number of cycles equal to or greater
than the number of cycles in which T is in-
volved, and each transaction in g is involved in
a cycle through T. If the time-out expiring on
T is the last one in g, then abort T. Otterwise
choose the least expensive transaction T frop
g; if the expense of T is the same as that of T ,
then abort T.

PPCGS: Otherwise T continues to wait with a r e
initiated timeout.

502

2.2 Motivations
In our implementation of the algorithm PPCG,

we found two problems. One is that if it is decided
not to abort T , it is possible that there is a cycle
in the potential conflict graph through T which is a
real deadlock and may not be broken at that time.
In a dynamic environment where new transactions
are issued continuously, the potential conflict graph
may be extended at the next time-out, and this re-
maining deadlock may again fail to be broken. Thus,
this deadlock may exist forever in the dynamic en-
vironment. One may easily construct such a case to
illustrate this. Another problem is that the compu-
tation of g at PPCGl involves the computation of
the number of cycles in a directed graph. This com-
putation could be expensive (80 far, only high order
polynomial time algorithms are known).

The main difficulty of PPCG is that it doee not
take the dynamic environment into account, nor the
approximation property about the deadlock informa-
tion.

Consider that the potential conflict graph only
approximately provides the deadlock information. A
cycle in a potential conflict graph (PCG) could be
either a false or a real deadlock. This results in un-
certainty about the information of global deadlocks.
The measurement of how many cycles will be b m
ken along with a transaction abortion is not very im-
portant, since mme cycles could be false deadlocks.
Meanwhile when time-out expires on a transaction
T , each cycle in the current PCG could be a real
deadlock through T. Thus, we should abort all cy-
cles through a transaction Tin the potential conflict
graph once the time-out expires on T. Clearly, there
are two ways to break those cycles through T one is
to abort T , another is to abort a set of other trans
actions which are through all these cycles. In the
following, we propose an alternative way to carry
out a time-out mechanism to remove deadlocks in
multidatabasea. We suggest that once the timeout
expires on a transaction T and there is at least one
cycle in the PCG through T , inatead of abortin T
we may find a set of other transactions such %at
the abortion cost is " k e d and the abortion will
break all cycles through T.

After aborting a transaction T , all those sub-
mitted operations of T should be re-submitted for
computation. Obviously, the system resource8 for
aborted operations, which include the communica-
tion cost, are wasted. In this paper, we use the
number of submitted operations in the execution of
transaction T as the abortion eosi, denoted by ac(T),
of T in order to simplify the discussion. The abortion
cost of a set M of transactions, denoted by oc(M),
is the sum of the abortion cost of each transaction
in M. We use the following example to illustrate the
necessity of our consideration.
Example 1. Suppose that when timeout ex ires
on a transaction T, the execution status of the gLbal
transactions and the potential conflict graph are il-
lustrated by Fi ure l. The abortion costs are listed

ac(T3) = 2, (IC(4) =
ther, suppose that T is

as follows: oc&k = 8,

Ta. Then according to the algorithm BLS, T will be
aborted. Clear1 , the abortion mt of {Tl,Tz,T4} is
smaller than (I C ~ T) , and this abortion will also break
all cycles through T. The smallest abortion cost for

11- 1

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:34 from IEEE Xplore. Restrictions apply.

breaking all cycles through T is 2 which is required
to abort Ts. 0
2.3 Our Algorithm OVS

Below, we outline our global deadlock removal al-
gorithm. Once the time-out expires on a transaction
T, our algorithm OVS consists of the following three
steps:

Stepl: Find the "stron ly connected component"
X from the current SCG, which contains T. If
X contains only T, T continues to wait with a
re-initiated timesut. Otherwise, go to Step 2.

Step2: Find a subset M of other transactions from
X which have the smallest abortion costs such
that the abortion of the transactions in M will
break all cycles through T. If ac(T) is smaller
than ac(M), then abort T. Otherwise abort
M, and T either continues to wait with a re-
initiated timeout (in case that T still needs to
wait for other transactions to finish their oper-
ations) or T starts to proceas the waiting oper-
ation.

A sirongly connected_ componeni in a directed
graph G is a subgraph G such that:

1. For each pair of vertices U and U in G, there are
at least two directed paths - one is from U to U
and another is from v to U.

2. For each p&Tf vertices U and U with U in 6
and v not in G, there are no such two directed
paths.

Note that any potential conflict raph has no arc
that connects the same vertex. dearly, the poten-
tial codict graph has at least one cycle through T
if and only if the strongly connected component X
containin T has at least two vertices; and all cycles
through 4 must be in the strongly connected com-
ponent X. So, at Step 1, that X contains only T
means that there is no cycle in the PCG through T.
One may find a standard al orithm [6] to find X at
Step 1. The algorithm is in finear time with respect
to the arc set size of the potential conflict graph.
Thus, Step 1 may be implemented in linear time.
Section 3 shows that Step 2 can be implemented in
O(n") by making the use of network flow techniques,
where n is the size of the vertex set of the strongly
connected component X.
2.4 Networks

In this subsection, we present some basic knowl-
edge about the network flow problem. An s - t net-
work is an arc weighted directed graph N = (V, A, c)
with two distinguished vertices s and t such that
c : A + I where I is the positive integer set, and
all the arcs attached to s must be the outgoing arcs
from s and all the arcs attached t o t be the incoming
arcs to t . The vertex s is the source of N, and t is the
sink of N . The function c is the capacity function of
N and its value on an arc a is the capacity of a.

A pow in an 8 - t network N is a mapping f :
A + I such that:

for each a E A, 0 5 f(a) 5 c(a), and

for each vertex U other than and 1,

set of the arc8 going-out from U, and A; the set
of arc8 coming to U.

The man'mum pow problem of an s - t network N
is to find a flow f in N such that

CaEA: f(.) = C a e A ; f(a), where At is the

f(4
a attache. i o s

is maximized.
Acui(V, ,V,) inans- tnetworkN=(V,A,c) i s

a partition on V, that is, V = V, U V,, V, n V, = 0,
and t E V, and s E V,. The capacity of a cut (V,, Vi),
denoted as c(\V,, V,)), is defined as the sum of the
capacities o f t e arcs from V, to V,. The minimum
cut of an s - t network N is a cut (V,, V,) such that
c((V, , V,)) is miniized.

We use V(G) to denote the vertex set of a graph
G, and A(G) the arc set of G.
3 An Optimal Victim Selection Algo-

rithm
In our algorithm OVS, Step 2 corresponds to solv-

ing the following problem.
Minimum Verfez Cut Problem MVCP)

G = (V,A,ac) which is strongly connected and
where ac is a mapping from V to the positive in-
teger set I, a vertex U E V.
Question: Is there a subset M of V such that the
deletion of M removes all cycles which are through
U in G, and CuEM ac(u) is minimized?

Thanks to the developments in the maximum flow
problem 6, 51, MVCP can be solved in polynomial
time. Be I ow, we translate MVCP to the maximum
flow problem.

For a given strongly connected and vertex
weighted directed graph G = (V, A, ac) and a given
vertex U, we may first modify G into an s - t net-
work G,, named by the auziliary network of G with
respect to U, as follows.

For each arc a in G, assign the capacity c(a) =

Split v into two vertices 8 and 1'. All incoming
arcs, in G, to v are moved to attach t' with the
same capacity as that in G, and all outgoing
arcs, in G, from v are moved to attach 8 with
the same capacity. Add one vertex t and an arc
t1 + t with the capacity c(t' 4 t) = ac(u).

For each other vertex U E V, split it into two
vertices u1 and ua. All incoming arcs, in G, to U
are moved to attach u1 with the same capacity
as that in G, and all outgoing arcs, in G, from U
are moved to attach u2 with the same capacity.
Add one arc u1 + u2 with the capacity c(u' +

ua) = ac(u).

Based on Example 1, the auxiliary network of the
potential conflict graph with respect to T is illus-
trated in Figure 2.

Obviously, the auxiliary network G, of G with re-
spect to v has the vertex set size 21VI + 1, and the

Instance: Given a vertex weig 6 ted directed graph

C U E V ~ C (4 + 1.

111

503

1

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:34 from IEEE Xplore. Restrictions apply.

s3 s4 s5

T
Figure 1: Example 1

20 3 T2
Figure 2: the auxiliary network - an s-t network

arc set size IAl + [VI + 1, and G, is an s - t net-
work. Below, we prove the fundamental Theorem in
this paper. Clearly, a vertex set M, which breaks
all the cycles through v and has the minimum over-
all weight, either contains only vertex v or does not
contain U.

Theorem 1 Suppose that a vertex weighted directed
graph G = (V, A, ac) is strongly connected, and v is
a vertex. Then there is a subset M V such that
the removal of M breaks all the cycles through v and
CuEM ac(u) achieves the minimum value if and only
rf tn the auxiliary network G, of G with respect v,
any minimum cut (V,, V,) has the properties:

the capaciiy c((V,,V,)) of the cut i s equal to

CuCM ac(u), and

the set of arcs from V, l o V, is either {ul +

U' : U E M where U $! M} o r {t' --* t} in case
lhat M contains only U.

Proof: We first prove the "if' part by the approach
of a reductio? to absurdity. Suppose that ther_e
is a subset M of V such that the removal of M
breaks all the cycles through v and ac(u) <
CUEM ac(u). Without loas of generality, we may
assume that M does not contain U. Wther, let

d = {U' -+ U' : U E G I . NOW we construct F,
and fi in G, as follows:

0 fi = V(G,) - fi, and

7; = {U' : U E M}U{s}Uh, where consists
of vertices-which are on a path, including none
arc from A, in G, from s to a vertex in {U' :
U € M}.

From the constructions of G,, and G, it im-
mediately follows that-for each pair of vertices u1
and u2 such that U$ M, either they are all in V, or
none of them is in V. (because, there is only one arc
from U' to 2). Clearly, t E 6, since the removal
of & breaks all the cycles, in G, through U. Also,
each ua for U E M is in V,. From the above facts
and the constructions of V, and vi, it followsjhat
(J", V,) is a cut, yd_the set of the arcs from V, to
V is A. Thus c((V, , V,)) = CUE& ac(u). It follows
that c((R, 6)) < c((V,, V,)). This contradicts the
fact that c((V, , V,)) IS the minimum cut of G..

Again, we prove the "only if' part through the
approach of a reduction to absurdity. Also without
loss of generality, we may assume that M dose not
contain U. First, it is clear, from the above proof,

504

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:34 from IEEE Xplore. Restrictions apply.

that from M we may construct a cut (V,, &) of G,
such that e((&, V,)) = CUEM ac(u). Suppose that
there is a cut (K', &l) of G, such that e((&', K')) <
c((V,, K)), and the set 7 of arca from K1 to K1 either
contains only t' 4 t or does not contain 1' 4 t .
Without loss of generality, we may mume that 7

doea not contain t1 4 t .
From constructions of G, and the cut (h, K), it

follows that x is a subset of {U' + uz : U E V(G)}
(noting that the weight of each other arc is larger
than c((V., V,))). Clearly, the removal of II means
that there is no path left from s to t . From these
two facts, it can be Been that the removal of MI will
break all the cycles in G through U , where MI =
{U : for a U' + uz E x } . From the construction
of G,, it follows that CUEMI ac(u) = c((&', Vi)).
Thus, LE+ ac(u) < CUE,, ac(u). This contra-
dicts the mnimum property of M. 0

According to Theorem 1, it is clear that the im-
plementation of Step 2 in our algorithm OVS cor-
responds to finding a minimum cut from an s - t
network. The following Lemma from [SI says that
we may apply the algorithm for solving the maxi-
mum flow problem to finding a minimum cut.

Lemma 1 For any s - t network N = (V, A, c), the
value of the mazimum flow equals the capacity of
ihe minimum cut, and a pow f and cut (V,, &) are
jointly optimal if and only if

1. f (u + U) = 0 for U c U E A and U E V,,

2. f(u 4 U) = c(u + U) for U 4 U E A and

Based on Theorem 1 and Lemma 1, we may carry
out Step 2 in the following 4 stages.

sl: With respect to T, obtain the auxiliary net-
work GT of the strongly connected graph X
where each vertex has been assigned a weight
corresponding to the abortion cost. Go to sl.

v E &; and

U E K , U E & .

s2: Find a maximum flow f in GT. Go to s3.

s3: In GT, let & = t and VO = V(GT) - 3. Then
we apply breadth-first search to iteratively ex-
tend & and reduce VO (that is, we iteratively
carry out the following two operations until no
changes on and b):

for an arc U + v E A(GT), if U E VO,
v E & and f(u 4 U) < c U 4 U), then

for an arc v 4 U E A (G T , if u E VO,
v E VO and f(v 4 U) > 0, t b en remove U
from VO to VI.

remove U from VO to Vl; an 6

Go to s4.

s 4 From Theorem 1 and Lemma 1, it follows that
(b, &) is a minimumcut of GT, and the set of
arca from VO to & is in the form either {U' +
u1 : U E M for some subset M of V(X)} or

4 t}. (In the later case, let M = {T}.) P' bort the transactions in M.

Because all the cycles through T in the poten-
tial conflict graph must be included in the strongly
connected component X containing T, by combining
this with Theorem 1 and Lemma 1, it follows that

the implementation of the above four steps sl - sd
can find a subset M of the global transactions such
that the abortion of M will break all cycles through
T, and ac(M is minimized.

Clearly, s can be implemented in linear time
with respect to IA(X)l. The most efficient algo-
rithm for solving maximum flow problem takes time
O(I V(GT) I IA(GT) l l o g w) [5], which is slightly
better than the algorithm o((v(GT)$ in [6] for
sparse graphs. But the algorithm in 161 is much
easier to implement. We suggest applying this al-
gorithm. Thus, s2 can run in time o (l V (G ~) l ~) =
O(lV(X)13). Note that s3 and s4 can be imple-
mented together, and take 0 IA G T) ~) = O(IA(X))

lowing Theorem.

Theorem 2 Step 2 in the algorithm OVG can be
implemented in O(ns) where n is the number of ver-
tices in X .

4 Conclusions
In this paper, we provided an alternative im-

plementation of the time-out mechanism to remove
global deadlocks in multidatabase systems. The al-
ternative implementation has the guarantee that at
each time the abortion cost is minimized, and the
abortion effect is either the same as or better (with
the possibility of breakin some other cycles not
through T) than that in f3]. We transfer the o p
timization problem to the maximum flow problem,
and then we make the use of network flow techniques
in our al orithm. In the worst case, the time com-
plexity dour algorithm is cubic.

References
[l] P. Bernstein, V. Hadzilacos and G. Goodman,

Concurrency Control and Recovery in Database
Systems, Addison-Wesley, 1987.

[2] Y. Breibart, A. Silberschatz, and G. Thompc-
son, Reliable Transaction Management in a Mul-
tidatabase System, SIGMOD Record, 1990.

[3] Y. Breibart, W. Litwin and A. Silberschatz,
Deadlock Problems in a Multidatabase Environ-
ment, IEEE Data Engineering, January 1991.

[4] 0. Bukhres, J. Alm and N. Boudriga, A Priority-
Based PCG Algorithm for Global Deadlock D e
tection and Resolution in Multidatabase Sys-
tems, 3rd International Workshop on Interoper-
ability in Multidatabase Systems, IEEE CS press,
1993.

[5] B. M. E. Moret and H. D. Shapiro, Algorithms
from P to NP, Volume 1: Design and Eficiency,
Benj amin/Cummings , 1990.

[SI C. H. Papadimitriou and K. Steiglitz, Combina-
torial Optimixation: Algorithms and Complezity,
Prentiee-Hall Publish.

(time for breadth-first search\. go, we have the fo I -

505

111 I

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:34 from IEEE Xplore. Restrictions apply.

