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Abstract 
A time-out mechanism based on a potential con- 

pici graph has been ap lied i o  deiect global deadlocks. 
In order i o  perform t i e  time-out mechanism betier, 
in this paper we propose an optimal vidim selection 
algorithm for resolving global deadlocks in a mul- 
iidaiabase system. The algorithm selects a set of 
iransaciions urirh the minimal abortion cost to re- 
solve global deadlocks. It makes the use of network 
pow techniques, and run8 in lime O(ns), where n is 
the sixe of a subset of ihe global transactions. 

1 Introduction 
A muliidatabase system (MDBS) is a federation of 

independently developed component database sys- 
t e m  connected through a communication network. 
These component database systems are also called 
local daiabose. sysiems (LDBS) in contrast to an 
MDBS. There are two types of transactions in an 
MDBS: 

Local inansadions - that execute at a single 
LDBS. 

Global imnsadions - that may execute at sev- 
eral LDBSs. 

One major issue in transaction management in an 
MDBS is concurrency control. During the concur- 
rent execution of a set of transactions, a deadlock 
occurs when they wait, in a circular fashion, for ex- 
clusive access to some of the resource held by other 
transactions in the set. The current developments 
in concurrency control techniques in multidatabase 
systems can be classified into two families[2,4]: one 
is deadlock free, and another requires deadlock de- 
tection. Usually, the concurrency control approach 
without forcing a deadlock free can potentially pro- 
vide a greater concurrency degree. But, this should 
co-operate with an efficient and effective deadlock 
resolution. Discussions about the advantages and 
disadvantages of these two approaches are outside 
the coverage of this paper. The interested reader 
may refer to [2]. 

In this paper, we assume that the concurrency 
control technique used in a multidatabase system 
may c a w  the existence of deadlocks. To simpliiy 
the discussion, in this paper we adopt the MDBS 
model presented in [2, 31 which is based on the fol- 
lowinn assumptions: 
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At the local level: no changes can be made 
to local database systems in order to preserve 
local autonomy; a local database management 
system is not able to distinguish between local 
and global transections which are active at the 
LDBS, neither is it able to communicatedirectly 
with other local DBMSs to synchronize the ex- 
ecution of a global transaction active at several 
LDBSs; and each local database management 
system uses the strict two-phase locking proto- 
col [l] for local serializability (that is, local locks 
are released only after a transaction aborts or 
commits), and has a mechanism for ensuring 
freedom from local deadlocks. 

At the lobal level: the global transaction 
manager GTM) has no access to local DBMS; 
and the (! TM submits an operation of a trans- 
action T to an LDBS only if the previous sub- 
mitted operation of T has been completed. 

Thus, a global transaction may wait, at most, at 
one LDBS each time; and we can assume that each 
local schedule is serialiiable and that local deadlocks 
can be resolved through a local concurrency control 
approach. However, global deadlocks (that is, the 
deadlocks amon global transactions) may still exist 
due to either in%reci conflicis or dinei conflicts [2]. 

The time-out mechanism has been introduced [3] 
to remove the global deadlocks in a multidatabase. 
Later, an improvement on victim selection is sug- 
gested in [4]. In this paper, we present an optimal 
victim selection algorithm for the implementation 
of the time-out mechanism to remove global dead- 
locks. Once it is decided to abort a transaction by 
an implementation of the time-out mechanism, our 
algorithm will always choose a set of transactions 
with the minimum abortion cost, and with better 
(or the same) abortion effect. The algorithm pre- 
sented in this paper usea network flow techniques. 
Particularly, we translate the optimal problem into 
the maximum flow problem. 

The rest of the paper is organized as follows. Sec- 
tion 2 gives a brief overview of the algorithms in 
13, 41, our motivations, and an outline of our dead- 
ock resolution. Section 3 shows a translation from 
the optimal victim selection problem to the maxi- 
mum flow problem, and then gives the optimal algo- 
rithm. Section 4 concludes the paper. 
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2 Preliminaries 
2.1 Related Works 

In respect to site autonomy, a GTM has no access 
to local database management systems. So, indirect 
conflicts usually may not be precisely determined by 
a GTM. A poteniiol conflict graph has been in tm 
duced in [2] to give an approximation status of con- 
flicts, since indirect conflicts cannot be detected by 
a GTM. A transaction Ti is active at site Sj if it has 
a server at Sj , and if the server is performing an o p  
eration of Ti at the site or has completed the current 
operation of Ti and is ready to receive the next op 
eration of Ti. A transaction that is not active at site 
Sj is said to be waiting at site Sj, provided that it 
has a server at the site and at least one operation of 
the transaction was submitted to the site. A poten- 
tial conflict graph has been described as a directed 
graph G = (V, A) whose vertex set V consists of the 
global transactions. An arc Ti I;: is in A if there 
is a site at which T. is waiting and I;. is active. 

Note that a cyde in a potential conflict graph 
could be either a real deadlock or a false deadlock 
due to inaccurate information about conflicts among 
global transactions; and the potential conflict qraph 
may be changed from time to time. Meanwhile, it 
is believed that some abortions are more expensive 
than waiting, and unnecessary abortions result in 
wasted system resources. 

A time-out mechanism BLS has been proposed by 
Breibart, Litwin and Silberschatz in [3] which coop- 
erates with the potential conflict graph to remove 
global deadlocks. The alkorithm BLS initially issues 
a timeout to each waiting global transaction, and 
implements the following two steps once the t ime 
out expires on a waiting transaction T 
BLSl: If there is a cycle in the potential conflict 

graph at that time, determine the set of all 
transactions active at the waiting site of T and 
involved in any cycle throu h T. If T is older 
(with res ect to timestamp! than all transac- 
tions in tge set, T continues waiting; otherwise, 
T aborts. 

BLSS: If there is no cycle in the potential graph, T 
continues waiting. 

Two problems of BLS have been reported in (41: 
1) BLS may abort the transactions with expensive 
cost; 2) BLS may abort a transaction involved in 
fewer cycles than other transactions in the potential 
conflict graph. So BLS may abort additional trans- 
actions in order to resolve the deadlocks. 

A possible improvement PPCG on BLS is out- 
l i e d  in [4], which consists of the following two steps 
(performed once the timeout expires on T): 
PPCG1: If there is at least one cycle in PCG 

throu h T ,  find the set g of the transactions in- 
volvef in a number of cycles equal to or greater 
than the number of cycles in which T is in- 
volved, and each transaction in g is involved in 
a cycle through T.  If the time-out expiring on 
T is the last one in g, then abort T. Otterwise 
choose the least expensive transaction T frop 
g; if the expense of T is the same as that of T ,  
then abort T.  

PPCGS: Otherwise T continues to wait with a r e  
initiated timeout. 
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2.2 Motivations 
In our implementation of the algorithm PPCG, 

we found two problems. One is that if it is decided 
not to abort T ,  it is possible that there is a cycle 
in the potential conflict graph through T which is a 
real deadlock and may not be broken at that time. 
In a dynamic environment where new transactions 
are issued continuously, the potential conflict graph 
may be extended at the next time-out, and this re- 
maining deadlock may again fail to be broken. Thus, 
this deadlock may exist forever in the dynamic en- 
vironment. One may easily construct such a case to 
illustrate this. Another problem is that the compu- 
tation of g at PPCGl involves the computation of 
the number of cycles in a directed graph. This com- 
putation could be expensive (80 far, only high order 
polynomial time algorithms are known). 

The main difficulty of PPCG is that it doee not 
take the dynamic environment into account, nor the 
approximation property about the deadlock informa- 
tion. 

Consider that the potential conflict graph only 
approximately provides the deadlock information. A 
cycle in a potential conflict graph (PCG) could be 
either a false or a real deadlock. This results in un- 
certainty about the information of global deadlocks. 
The measurement of how many cycles will be b m  
ken along with a transaction abortion is not very im- 
portant, since mme cycles could be false deadlocks. 
Meanwhile when time-out expires on a transaction 
T ,  each cycle in the current PCG could be a real 
deadlock through T. Thus, we should abort all cy- 
cles through a transaction Tin the potential conflict 
graph once the time-out expires on T. Clearly, there 
are two ways to break those cycles through T one is 
to abort T ,  another is to abort a set of other trans 
actions which are through all these cycles. In the 
following, we propose an alternative way to carry 
out a time-out mechanism to remove deadlocks in 
multidatabasea. We suggest that once the timeout 
expires on a transaction T and there is at least one 
cycle in the PCG through T ,  inatead of abortin T 
we may find a set of other transactions such %at 
the abortion cost is " k e d  and the abortion will 
break all cycles through T. 

After aborting a transaction T ,  all those sub- 
mitted operations of T should be re-submitted for 
computation. Obviously, the system resource8 for 
aborted operations, which include the communica- 
tion cost, are wasted. In this paper, we use the 
number of submitted operations in the execution of 
transaction T as the abortion eosi, denoted by ac(T), 
of T in order to simplify the discussion. The abortion 
cost of a set M of transactions, denoted by oc(M), 
is the sum of the abortion cost of each transaction 
in M. We use the following example to illustrate the 
necessity of our consideration. 
Example 1. Suppose that when timeout ex ires 
on a transaction T, the execution status of the gLbal 
transactions and the potential conflict graph are il- 
lustrated by Fi ure l. The abortion costs are listed 

ac(T3) = 2, (IC( 4) = 
ther, suppose that T is 

as follows: oc&k = 8, 

Ta. Then according to the algorithm BLS, T will be 
aborted. Clear1 , the abortion mt of {Tl,Tz,T4} is 
smaller than ( I C ~ T ) ,  and this abortion will also break 
all cycles through T.  The smallest abortion cost for 
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breaking all cycles through T is 2 which is required 
to abort Ts. 0 
2.3 Our Algorithm OVS 

Below, we outline our global deadlock removal al- 
gorithm. Once the time-out expires on a transaction 
T, our algorithm OVS consists of the following three 
steps: 

Stepl: Find the "stron ly connected component" 
X from the current SCG, which contains T. If 
X contains only T, T continues to wait with a 
re-initiated timesut. Otherwise, go to Step 2. 

Step2: Find a subset M of other transactions from 
X which have the smallest abortion costs such 
that the abortion of the transactions in M will 
break all cycles through T. If ac(T) is smaller 
than ac(M), then abort T. Otherwise abort 
M, and T either continues to wait with a re- 
initiated timeout (in case that T still needs to 
wait for other transactions to finish their oper- 
ations) or T starts to proceas the waiting oper- 
ation. 

A sirongly connected_ componeni in a directed 
graph G is a subgraph G such that: 

1. For each pair of vertices U and U in G, there are 
at least two directed paths - one is from U to U 
and another is from v to U. 

2. For each p&Tf vertices U and U with U in 6 
and v not in G, there are no such two directed 
paths. 

Note that any potential conflict raph has no arc 
that connects the same vertex. dearly, the poten- 
tial codict graph has at least one cycle through T 
if and only if the strongly connected component X 
containin T has at least two vertices; and all cycles 
through 4 must be in the strongly connected com- 
ponent X. So, at Step 1, that X contains only T 
means that there is no cycle in the PCG through T. 
One may find a standard al orithm [6] to find X at 
Step 1. The algorithm is in finear time with respect 
to the arc set size of the potential conflict graph. 
Thus, Step 1 may be implemented in linear time. 
Section 3 shows that Step 2 can be implemented in 
O(n") by making the use of network flow techniques, 
where n is the size of the vertex set of the strongly 
connected component X. 
2.4 Networks 

In this subsection, we present some basic knowl- 
edge about the network flow problem. An s - t net- 
work is an arc weighted directed graph N = (V, A, c) 
with two distinguished vertices s and t such that 
c : A + I where I is the positive integer set, and 
all the arcs attached to s must be the outgoing arcs 
from s and all the arcs attached t o t  be the incoming 
arcs to t .  The vertex s is the source of N, and t is the 
sink of N .  The function c is the capacity function of 
N and its value on an arc a is the capacity of a. 

A pow in an 8 - t network N is a mapping f : 
A + I such that: 

for each a E A, 0 5 f(a) 5 c(a), and 

for each vertex U other than and 1,  

set of the arc8 going-out from U, and A; the set 
of arc8 coming to U. 

The man'mum pow problem of an s - t network N 
is to find a flow f in N such that 

CaEA:  f(.) = C a e A ;  f(a), where At is the 

f(4 
a attache. i o  s 

is maximized. 
Acui(V, ,V, ) inans- tnetworkN=(V,A,c) i s  

a partition on V, that is, V = V, U V,, V, n V, = 0, 
and t E V, and s E V,. The capacity of a cut (V,, Vi), 
denoted as c(\V,, V,)), is defined as the sum of the 
capacities o f t  e arcs from V, to V,. The minimum 
cut of an s - t network N is a cut (V,, V,) such that 
c( (V, , V,)) is miniized. 

We use V(G) to denote the vertex set of a graph 
G, and A(G) the arc set of G. 
3 An Optimal Victim Selection Algo- 

rithm 
In our algorithm OVS, Step 2 corresponds to solv- 

ing the following problem. 
Minimum Verfez Cut Problem MVCP) 

G = (V,A,ac) which is strongly connected and 
where ac is a mapping from V to the positive in- 
teger set I, a vertex U E V. 
Question: Is there a subset M of V such that the 
deletion of M removes all cycles which are through 
U in G, and CuEM ac(u) is minimized? 

Thanks to the developments in the maximum flow 
problem 6, 51, MVCP can be solved in polynomial 
time. Be I ow, we translate MVCP to the maximum 
flow problem. 

For a given strongly connected and vertex 
weighted directed graph G = (V, A, ac) and a given 
vertex U, we may first modify G into an s - t net- 
work G,, named by the auziliary network of G with 
respect to U, as follows. 

For each arc a in G, assign the capacity c(a) = 

Split v into two vertices 8 and 1'. All incoming 
arcs, in G, to v are moved to attach t' with the 
same capacity as that in G, and all outgoing 
arcs, in G, from v are moved to attach 8 with 
the same capacity. Add one vertex t and an arc 
t1 + t with the capacity c(t' 4 t) = ac(u). 

For each other vertex U E V, split it into two 
vertices u1 and ua. All incoming arcs, in G, to U 
are moved to attach u1 with the same capacity 
as that in G, and all outgoing arcs, in G, from U 
are moved to attach u2 with the same capacity. 
Add one arc u1 + u2 with the capacity c(u' + 

ua) = ac(u). 

Based on Example 1, the auxiliary network of the 
potential conflict graph with respect to T is illus- 
trated in Figure 2. 

Obviously, the auxiliary network G, of G with re- 
spect to v has the vertex set size 21VI + 1, and the 

Instance: Given a vertex weig 6 ted directed graph 

C U E V ~ C ( 4  + 1. 
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s3 s4 s5 

T 
Figure 1: Example 1 

20 3 T2 
Figure 2: the auxiliary network - an s-t network 

arc set size IAl + [VI + 1, and G, is an s - t net- 
work. Below, we prove the fundamental Theorem in 
this paper. Clearly, a vertex set M, which breaks 
all the cycles through v and has the minimum over- 
all weight, either contains only vertex v or does not 
contain U. 

Theorem 1 Suppose that a vertex weighted directed 
graph G = (V, A, ac) is strongly connected, and v is 
a vertex. Then there is a subset M V such that 
the removal of M breaks all the cycles through v and 
CuEM ac(u) achieves the minimum value if and only 
rf tn the auxiliary network G, of G with respect v, 
any minimum cut (V,, V,) has the properties: 

the capaciiy c((V,,V,)) of the cut i s  equal to  

CuCM ac(u), and 

the set of arcs from V,  l o  V, is either {ul + 

U' : U E M where U $! M} o r  {t' --* t} in case 
lhat M contains only U. 

Proof: We first prove the "if' part by the approach 
of a reductio? to absurdity. Suppose that ther_e 
is a subset M of V such that the removal of M 
breaks all the cycles through v and ac(u) < 
CUEM ac(u). Without loas of generality, we may 
assume that M does not contain U. Wther, let 

d = {U' -+ U' : U E G I .  NOW we construct F, 
and fi in G, as follows: 

0 fi = V(G,) - fi, and 

7; = {U' : U E M}U{s}Uh, where consists 
of vertices-which are on a path, including none 
arc from A, in G, from s to a vertex in {U' : 
U € M}. 

From the constructions of G,, and G, it im- 
mediately follows that-for each pair of vertices u1 
and u2 such that U$ M, either they are all in V,  or 
none of them is in V. (because, there is only one arc 
from U' to 2). Clearly, t E 6,  since the removal 
of & breaks all the cycles, in G, through U. Also, 
each ua for U E M is in V,. From the above facts 
and the constructions of V, and vi, it followsjhat 
(J", V,) is a cut, yd_the set of the arcs from V,  to 
V is A. Thus c((V, ,  V,)) = CUE& ac(u). It follows 
that c((R, 6))  < c((V,, V,)). This contradicts the 
fact that c(( V, , V,)) IS the minimum cut of G.. 

Again, we prove the "only if' part through the 
approach of a reduction to absurdity. Also without 
loss of generality, we may assume that M dose not 
contain U. First, it is clear, from the above proof, 
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that from M we may construct a cut (V,, &) of G, 
such that e((&, V,)) = CUEM ac(u). Suppose that 
there is a cut (K', &l) of G, such that e((&', K')) < 
c((V,, K)), and the set 7 of arca from K1 to K1 either 
contains only t' 4 t or does not contain 1' 4 t .  
Without loss of generality, we may mume that 7 

doea not contain t1 4 t .  
From constructions of G, and the cut (h, K),  it 

follows that x is a subset of {U' + uz : U E V(G)} 
(noting that the weight of each other arc is larger 
than c((V., V,))). Clearly, the removal of II means 
that there is no path left from s to t .  From these 
two facts, it can be Been that the removal of MI will 
break all the cycles in G through U ,  where MI = 
{U : for a U' + uz E x } .  From the construction 
of G,, it follows that CUEMI ac(u) = c((&', Vi)). 
Thus, LE+ ac(u) < CUE,, ac(u). This contra- 
dicts the mnimum property of M. 0 

According to Theorem 1, it is clear that the im- 
plementation of Step 2 in our algorithm OVS cor- 
responds to finding a minimum cut from an s - t 
network. The following Lemma from [SI says that 
we may apply the algorithm for solving the maxi- 
mum flow problem to finding a minimum cut. 

Lemma 1 For any s - t network N = (V, A, c), the 
value of the mazimum flow equals the capacity of 
ihe minimum cut, and a pow f and cut (V,, &) are 
jointly optimal if and only if 

1. f (u + U) = 0 for U c U E A and U E V,, 

2. f(u 4 U) = c(u + U) for U 4 U E A and 

Based on Theorem 1 and Lemma 1, we may carry 
out Step 2 in the following 4 stages. 

sl: With respect to T, obtain the auxiliary net- 
work GT of the strongly connected graph X 
where each vertex has been assigned a weight 
corresponding to the abortion cost. Go to sl. 

v E &; and 

U E K , U E & .  

s2: Find a maximum flow f in GT. Go to s3. 

s3: In GT, let & = t and VO = V(GT) - 3. Then 
we apply breadth-first search to iteratively ex- 
tend & and reduce VO (that is, we iteratively 
carry out the following two operations until no 
changes on and b): 

for an arc U + v E A(GT), if U E VO, 
v E & and f(u 4 U) < c U 4 U), then 

for an arc v 4 U E A ( G T ,  if u E VO, 
v E VO and f(v 4 U) > 0, t b en remove U 
from VO to VI. 

remove U from VO to Vl; an 6 

Go to s4. 

s 4  From Theorem 1 and Lemma 1,  it follows that 
(b, &) is a minimumcut of GT, and the set of 
arca from VO to & is in the form either {U' + 
u1 : U E M for some subset M of V(X)} or 

4 t}. (In the later case, let M = {T}.) P' bort the transactions in M. 

Because all the cycles through T in the poten- 
tial conflict graph must be included in the strongly 
connected component X containing T, by combining 
this with Theorem 1 and Lemma 1, it follows that 

the implementation of the above four steps sl - sd 
can find a subset M of the global transactions such 
that the abortion of M will break all cycles through 
T, and ac(M is minimized. 

Clearly, s can be implemented in linear time 
with respect to IA(X)l. The most efficient algo- 
rithm for solving maximum flow problem takes time 
O( I V(GT) I IA(GT) l l o g w )  [5], which is slightly 
better than the algorithm o((v(GT)$ in [6] for 
sparse graphs. But the algorithm in 161 is much 
easier to implement. We suggest applying this al- 
gorithm. Thus, s2 can run in time o ( l V ( G ~ ) l ~ )  = 
O(lV(X)13). Note that s3 and s4 can be imple- 
mented together, and take 0 IA G T ) ~ )  = O(IA(X) ) 

lowing Theorem. 

Theorem 2 Step 2 in the algorithm OVG can be 
implemented in O(ns) where n is the number of ver- 
tices in X .  

4 Conclusions 
In this paper, we provided an alternative im- 

plementation of the time-out mechanism to remove 
global deadlocks in multidatabase systems. The al- 
ternative implementation has the guarantee that at 
each time the abortion cost is minimized, and the 
abortion effect is either the same as or better (with 
the possibility of breakin some other cycles not 
through T) than that in f3]. We transfer the o p  
timization problem to the maximum flow problem, 
and then we make the use of network flow techniques 
in our al orithm. In the worst case, the time com- 
plexity dour  algorithm is cubic. 
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