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(Extended Abstract) 

Abstract .  In this paper, we investigate area requirements for drawing 
s-t hierarchically planar graphs by straight-lines. Two drawing standards 
will be discussed: 1) each vertex is represented by a point and 2) grid visi- 
bifity representation (that is, a line segment is allowed to represent a ver- 
tex). For the first drawing standard, we show an exponential area lower 
bound needed for drawing hierarchically planar graphs. The lower bound 
holds even for hierarchical graphs without transitive arcs, in contrast to 
the results for upward planar drawing. Applications of some existing 
algorithms from upward drawing can guarantee the quadratic drawing 
area for grid visibility representation but do not necessarily guarantee 
the minimum drawing area. Motivated by this, we will present another 
grid visibifity drawing algoiithm which is efficient and guarantees the 
minimum drawing area. 

Keywords: Graph Drawing, Hierarchically Planar Graph, Straight Line 
Drawing, Visibility Representation, Drawing Area. 

1 I n t r o d u c t i o n  

Automatic graph drawing plays an important role in many computer-based ap- 
plications such as CASE tools, software and information visualization, and VLSI 
design. The upward drawing convention for drawing acyclic directed graphs has 
received a great deal of attention since last decade. Many results [2, 4, 6, 9, 11] for 
drawing upward planar graphs have been published. However, acyclic directed 
graphs are not powerful enough to model all applications. Hierarchical graphs 
are then introduced, where layering information is also specified in an acyclic 
directed graph. Naturally, the "hierarchical" drawing convention (to be defined 
in Section 2) is proposed to display the specified layering information. 

Due to the additional layering constraint, hierarchical drawing is different to 
upward drawing. Results in upward drawing and hierarchical drawing are not 
always the same. Issues, such as planar, straight-line, convex, and symmetric 
representations, have been revisited [7, 8, 10, 11] for drawing "hierarchically 
planar graphs" (to be defined in Section 2). In this paper, we investigate the 
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problem of area requirements for drawing "s-t hierarchically planar graphs" (to 
be defined in Section 2) with respect to a given resolution requirement. 

In [6], it has shown that  exponential areas are generally necessary for drawing 
upward planar graphs by the drawing standard of using points only" to represent 
vertices and straight-lines to represent arcs. However, only quadratic drawing 
areas are required when upward planar graphs are reduced, meaning that  no 
"transitive" arcs exist. 

In this paper, we show that  the results in [6] do not hold for hierarchically 
planar graphs. Specifically, we show that  by the same drawing standard, expo- 
nential drawing areas are necessary even for hierarchically planar graphs without 
transitive arcs. This is the first contribution of the paper. 

Secondly, we study the drawing area problem by allowing line segments to 
represent vertices. Particularly, we study the drawing area problem for "grid 
visibility representations" (to be defined in Section 2). An application of the 
algorithm VISIBILITY_DRAW in [4] gives the quadratic area for the grid vis- 
ibility representation of hierarchically planar graphs. However, this algorithm 
does not necessary guarantee the minimal drawing area - an example will be 
given in Section 4. Motivated by this, we present an emcient algorithm for grid 
visibility representations of s-t hierachically planar graphs which guarantees the 
minimum drawing area. 

The rest of the paper is organized as follows. Section 2 gives the basic termi- 
nology and background knowledge. Section 3 shows an exponential lower bound 
of drawing area. In Section 4, we present a drawing algorithm for producing a 
grid visibility representation which minimizes the drawing area. This is followed 
by the conclusions and remarks. 

2 P r e l i m i n a r i e s  

The basic graph theoretic definitions can be found in [1]. 
A hierarchical graph H = (V, A, )~, k) consists of a simple and acyclic directed 

graph (V, A), a positive integer k, and for each vertex u, an integer A(u) E 
{1, 2, ..., k} with the property that  i fu  --+ v E A, then A(u) > A(v). For 1 < i < k 
the set {u : A(u) = i} of vertices is the ith layer of H and is denoted by Li. An 
arc u --+ v in H = (V, A, A, k) is a transitive arc if there exists another directed 
path from u to v with length at least 2. An arc u -+ v is long if it spans more 
than two layers, that  is, A(u) - )~(v) > 2. 

A sink of a hierarchical graph H is a vertex which does not have outgoing 
arcs, and a source of H is a vertex which does not have incoming edges. H is s-t 
if it has only one sink and one source. 

A hierarchical graph is proper if it has no long arcs. Clearly, adding A(u) - 
),(v) - 1 dummy vertices to each long arc u -+ v in an unproper hierarchical 
graph H results in a proper hierarchical graph, denoted by H a. tip is called the 
proper image of H. Note that  Hp = H if H is proper. 

To display the specified hierarchical information in a hierarchical graph, the 
hierarchical drawing convention is proposed, where a vertex in each layer Li is 
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separately allocated on the horizontal tine y = i and arcs are represented as 
curves monotonic in y direction; see Figures 1 (a)-(c). A hierarchical drawing is 
planar if no pair of noincident arcs intersect. A hierarchical graph is hierarchically 
planar if it has a planar drawing admitting the hierarchical drawing convention. 
In this paper, we will discuss only hierarchical drawing convention. 

An embedding of a proper hierarchical graph H consists of an ordering of 
the vertices in each layer, and is denoted by E H. An embedding of an unproper 
hierarchical graph H means an embedding of the proper image Hp of H, and is 
also denoted by E~.  

A hierarchical drawing o~ of H respects EH if c~ gives the same vertex ordering 
in each layer in Hp as EH does. An embedding EH is planar if any straight-line 
drawing of Hp respecting EH is planar. 

Various drawing standards exist for drawing hierarchically planar graphs by 
retaining planarity. In a straight line drawing a,  each vertex v is represented as 
a point a(u) and each arc u --+ v is represented as a line segment connecting 
c~(u) and ~(v); see Figure 1 (a). In a polyline drawing, each long arc is allowed 
to be represented as a polygonal chain with bends allocated on some of the k 
horizontal lines y = i for 1 < i < k; see Figure 1 (c). In a visibility representation 
~, each vertex u is represented as a horizontal line segment/?(u) on y = ),(u) 
and each arc u -+ v as a vertical line segment connecting ~(u) and ~(v), such 
that: 

- fl(u) and fl(v) are disjoint if u ¢ v, and 
- a vertical line segment and a horizontal line segment do not intersect if the 

correponding arc and vertex are not incident. 

See Figure l(b), for example. Note that  in a visibility representation, a line 
segment used to represent a vertex may be degenerated into a point. 

y2y3y4iii ill 
y=l 

(a) (b) 

Fig. 1. Va~ous Representations 

iii iii 
(c) 

A straight line drawing is a grid drawing if each vertex is at a grid position; 
and a polyline drawing is a grid drawing if vertices and bends are at grid posi- 
tions. Similarly, in a grid visibility representation each horizontal line segment 
and vertical line segments must use grid points as their ends. 
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Drawing a hierarchically planar graph H consists of two phases: 1) finding 
a planar embedding EH, and 2) finding a hierarchical drawing of H respecting 
EH. 

A linear time algorithm [10] was proposed for phase 1. In this paper, we 
concentrated on phase 2 and assume that a planar embedding is given. More 
restrictly, we study how to draw a planar embedding of an s-t hierarchically 
planar graph. This does not destroy the generality of the investigation of phase 
2, since each planar embedding can be easily extended to a planar embedding 
of an s-t hierarchically planar graph [7, 8, 11]. 

3 A n  E x p o n e n t i a l  A r e a  L o w e r  B o u n d  

The drawing area of a hierarchical drawing c~ is the minimal rectangle/t  which 
contains a and is composed of horizontal and vertical lines. 

The width of a hierarchical drawing is the horizontal distance between the 
leftmost vertex and the rightmost vertex, while the height is the vertical distance 
between the top layer and the bottom layer. For a given hierarchical graph H, any 
hierarchical drawing of H has the fixed height. Consequently, the investigation 
of drawing area problem is reduced to that of drawing width problem. 

In this section, we define a hierarchically planar graph H~ = (V,~, An, A~, 4n 
-1)  with IVnl = 1 0 n - 6  for n > 1, such that 1) Hn has no transitive ares, and 2) 
any planar straight-line drawing of H .  requires exponential drawing area with 
respect to a given vertex resolution requirement. More specifically, we define H~ 
by extending H , -1  for n > 2. The extension follows the same topology. 

The graph H1 consists of 4 vertices {tl, el,l, c2,1, sl} and three layers La = 
{sl}, L2 = {c1,i, c2,1}, and L1 = {tl}. Four arcs connect H1 in a diamond shape 
(see Figure 2(a)). To extend H1 to H2, ten vertices are added as depicted in 
Figure 2(b). 

Generally, we construct H~+I from Hi by adding the following ten vertices 
in a way depicted in Figure 2(c): 

~+i  = ~ U {s~+i, ti+l, a i j+i ,  a2,1+1, bl,i+l, b2,/+i, ci,/+l, c2,1+i, di,i+l, d2j+i}. 

The layering of Hn is described below: 

L1 = {tn},  L4n-1 = {sn},  L2n = {51,1, 52,1}; and for 1 < i < n -  1, L2~+2/ = 
{bj,i+l : 1 < j < 2}, L~+2~-1 = {s/} U {aj,~+l : 1 < j <_ 2}, L2~+l = { t~ - i }  tO 
{cj,n-~+i : 1 < j <_ 2}, and L2i = {dj ,~-i+l  : 1 <_ j <_ 2}. 

The arc set An of Hn consists of: 

{s1+52,1,  cj, l - + t l :  l < _ j _ < 2 } , { s i - + s i _ I ,  s i - + b j , i ,  s i - -+c j , i :  l < _ j <  
2, 2 < i < n}, {bj,i --+ aj,i, bj,i -+ cj,i-1, aj,i -+ t i -1 ,  aj,i --~ dj,i : 1 <_ j <_ 
2, 2 < i < n},  and {cj,i -~ dj,~, dj,i -+ ti, t~-l -+ ti : l < j _ < 2 ,  2 < i < n}.  

The following two lemmas can be immediately verified [12] based on the 
structure of H~,. 
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L 4  

c 1.2 c 2.2 L3 L2~.21+3 

L 1 L 2n-2t÷l 

( 2 L 2n.2 i 

(b): H 2 L 2n'2i-I 

(c): Hi+ I m H n 

Fig. 2. Construct H~ 

L e m m a l .  For n >_ 1, H,~ is a hierarchically planar graph with no transitive 
a r c s .  

L e m m a 2 .  For n >_ 1, the planar embedding EH~ of Ha is unique up to a 
complete reversal. 

Here is the main result in this section. 

Th eo rem 3. For each Ha, suppose that a is a hierarchically planar straight line 
drawing of Ha, where each pair of vertices in the same layer are at least distance 
1 apart. Then a has width at least ¢2((2n - 1)!). 

Proof:  With respect to a, suppose that for 2 < i < n, the distance between 
a ( c u )  and a(c2,i) is li. 

Lemma 2 tells us that the planar embedding given by Figure 2(c) is unique 
to any hierarchically planar drawing of H.  up to a complete reversal. 

Without loss of generality, we may assume that a gives the planar embedding 
as depicted in Figure 2(c). 

Thus, in a, the relationship of the vertices orderings between a restricted 
to Hi+l and a restricted to Hi must be as the one illustrated in Figure 2(c). 
Consider the two triangles in Figure 3 with respect to a. Since the drawing 
is a planar straight line drawing, elementary geometry implies ~ > 2i(2i - 1). 

l i  - -  

Hence, l~ _> ( 2 ( n -  1))!. Therefore the Theorem holds. 
[] 

Note that any hierarchical drawing of Ha has height 4n - 2. Thus each 
hierarchically planar straight-line drawing of Ha, in which each pair of vertices 
in the same layer are at least distance 1 apart, has area at least 12(n(2n - 2)!). 

Note that H,  can be drawn upward planar in quadratic area (with respect 
to the number of vertices in Ha) by the algorithm in [6], but the layering of Ha 
is not preserved. 
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Fig. 3. Relationship among widths 

4 Visibility Representation 

The algorithm VISIBILITY_DI~AW in [4] was developed for grid visibility rep- 
resentations of s-t upward planar graphs by using the dual graph technique; and 
it can be immediately applied to s-t hierarchically planar graphs for grid visi- 
bility representations. By applying the algorithm VISIBILITY_DRAW to an s-t 
hierarchically planar graph H, the output visibility representation of H has the 
width w - 1 where w is the length of the longest path from the source to the sink 
of the dual graph of H. However, the minimum width of a visibility representa- 
tion of H may be much smaller than w - 1; and this is shown by the following 
examples. 

-Q 
dual graph 

\ 
2 3 

,,, , , , . , , ,  i J I i 

i 

(a) (b) (c) 

Fig. 4. Example 1 

A hierarchical graph H1 and its dual graph are illustrated in Figure 4(b), 
where the dual graph is depicted by rectangles and dotted arcs. An application 
of the algorithm VISIBILITY_DRAW produces the grid visibility representation 
of Ht with width 3 as shown in Figure 4(b). However, the minimum width of 
a grid visibility representation of H is 2 as shown in Figure 4(c). Actually, the 
drawing in 4(e) is output by our algorithm. 
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We can generalize the example in Figure 4 to the graph H2 as shown in Figure 
5, where H1 in Figure 4 is duplicated n times in H~. It can be immediately verified 
that the length of the longest path from the source to the sink of the dual graph 
of H2 is 4n. Consequently, the width of the grid visibility representation of H2 
produced by the algorithm VISIBILITY_DRAW is 4n - 1. However, it easy to 
show that the minimum width of a grid visibility representation of H2 is 3n - 1. 

Fig. 5. Example 2 

Inspired by the work in [4], in this section we present a new drawing algorithm 
GVP for the grid visibility representation of an s-t hierarchically planar graph 
with respect to a given planar embedding. The algorithm guarantees the minimal 
drawing area; that is, the width is minimized. 

Like the algorithm VISIBILITY_DRAW, the algorithm GVP consists of two 
steps: 1) label each arc a by an integer l(a) and 2) allocate an arc a on the 
vertical line x = i if l(a) = i. However, the labeling technique in our algorithm 
GVP is different than that in the algorithm VISIBILITY_DRAW and therefore 
can guarantee the minimum drawing area. 

The basic idea of our labeling technique is to push each individual vertical 
line segment as left as possible. This can be done by the following procedure 
ARC-LABELING which labels a given arc according to the previous labeling 
information. 

Suppose that an s-t hierarchically planar graph H and its proper image Hp 
are given. Recall that Hp is a proper hierarchical graph. The label of a long arc 
u -+ v in H is inherited by the short arcs in Hp of which u -+ v is composed. In 
our algorithm, the current labeling information of H is kept with respect to Hp 
to simplify descriptions. For each layer Li in He, 

- [i denotes the maximal integer label used among labeled arcs incoming to 
Li ,  

- Oi denotes the maximal label used among labeled arcs outgoing from Li,  
and 
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- IOi denotes the maximal label used among arcs incident to the vertices in 
Li all of whose outgoing and incoming arcs are labeled. 

We also need the following notion for the description of our algorithm. Let EH 
be a given planar embedding of H. For two arcs u -+ v and x --+ y between Li+l 
and L~, u -+ v is at the left of x --+ y with respect to EH if u < x and v < y 
according to EH. 

P r o c e d u r e  A R C - L A B E L I N G  

INPUT: an arc u --+ v to be labeled, a given planar embedding EH, and the 
current Oi, Ii and IOi for each layer Li in H. 
OUTPUT:  a label l(u --+ v) of u --+ v and the updated Oi, Ii and IOi for each 
layer Li. 

Suppose that u E Lj+,~ and v E Lj. Let L = maxl<_,7<_m-l{IOj+~} if m _> 2, 
and L = 0 if m = 1. The arc a = u --+ v is labeled according to the four different 
causes: 

1. If  a is the leftmost outgoing arc from u and the leftmost incoming arc to v, 
l(a) = max{IOj+,,~, IOj,  L} + 1. 

2. If a is the leftmost outgoing arc from u but not the leftmost incoming arc to 
v, l(a) = max{IOj+,~, Ij, L} + ]. 

3. If a is the leftmost incoming arc to v but not the leftmost outgoing arc from 
u, l(a) = max{Os+m , fOj ,  L} + 1. 

4. If  a is neither leftmost outgoing from u nor leftmost incoming to v, l(a) = 
max{Oj+m, IS, L} + 1. 

After labeling a, update 105+ 7 to l(a) for 1 _< ~ _< m - 1. Meanwhile, we modify 
oj+ ,~ ,  and I O s + ~ ,  Is, and IOs ~ follows. O s+~  = l(a) and I 5 -- t(a).  If all arcs 
incident to u are labeled, then [Oj+m - ~  max{/(a), Ij+,~}. Similarly, if all arcs 
incident to v are labeled, then IOj = ma×{I(a), OS}. [] 

To preserve the given planar embedding EH in the Mgorithm GVP and then 
to guarantee the planarity of the drawing, we successively label each arc in H 
according to the trajectory of a leftmost depth-first search (LDFS) on Hp with 
respect to EH. LDFS is a variation of the depth-first search technique [1]. 
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LDFS 
Start from the source of Hp. While going down by the depth-first search from 
vertex u, always first visit the leftmost unvisited outgoing arc u -+ v from u. 
If all outgoing arcs from v are already visited or v is a sink, then the LDFS 
procedure continues as follows. 

SI: Terminate the current LDFS path. Goto $2. 
$2: Along the reverse direction of the current LDFS path, trace back (till reach 

the source) to the bottom-most vertex v0 which has unvisited outgoing arcs. 
If no such v0 exists then stop the LDFS procedure, otherwise goto $3. 

$3 Start the next LDFS path from v0. [] 

For example, by applying LDFS to H2 in Figure 2(b) we successively visit the 
arcs: s2 --+ Cl,2, cl,2 --4 dl,2, dl,2 --4 t2, s2 --+ bl,2, bl,2 --4 al,2, al,2 --4 dr,2, 
al,2 --+ tl, tl -+ t2, ... 

Algor i thm G V P  

INPUT: an s-t hierarchically planar graph H and its planar embedding EH. 
OUTPUT:  a grid visibility representation of H respecting Eiv. 

S t e p  1: Labe l ing .  Initially, Ii, Oi and IOi are set to zero. Label arcs succes- 
sively as follows according to the ordering given by LDFS till all arcs are labeled. 
Note that  each arc in Hp is a short arc. While an arc u --4 v in Hp is visited in 
LDFS, there are two cases: 

case1: u --+ v is an arc of H. Then call the procedure ARC-LABELING for 
labeling u --+ v. 

case2: At least one of u, v is a dummy vertex to H; that  is, u -+ v is one part of 
a long arc x --+ y in H. In this case, we do not label u --+ v separately but give 
a label to the whole arc x --4 y. Thus, call the procedure ARC-LABELING 
for labeling x --+ y. (In LDFS, we should be able to notice this long arc b 
immediately after x, and be able to reach y by the LDFS path from x.) 

S t e p  2: D r a w i n g .  This step follows immediately Step 1 and draws H based on 
the output  of Step 1. It consists the following two phases: drawing vertices and 
drawing arcs of H.  
D r a w i n g  ve r t i c e s .  For each vertex u E H,  let A~ represent the set of arcs in 
H which are incident to u. Assume u C L~. Represent u by the horizontal line 
segment from (min~eA, {/(a)}, i) to (max~eA" {l(a)}, i). 
D r a w i n g  arcs .  Represent an arc a = u -+ v with u E L i  and v E Lj by the 
vertical line segment from (l(a), i) to (/(a), j ) .  [] 

For instance, Figure 6(a) shows the result after applying Step 1 to H~ in 
Figure 2(b), and Figure 6(b) il]ustrates the result after applying Step 2 in the 
algorithm GVP to the output (Figure 6(a)) of Step l. 

It can be verified [12] that the drawing given by Step 2 respects the given 
planar embedding; and thus, 
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Ca) 

3 4 ~: 6 7 $ 9 10  1 2 3 4 $ 6 7 8 9 1 0  
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Fig. 6. Apply Algorithm GVP and Algorithm GRID_DRAW to H2 

L e m m a 4 .  The algorithm GVP gives a grid visibility representation of H re- 
specting a given planar embedding E~r. 

Applying similar arguments as used in [4], we can immediately show that the 
grid visibility representation given by the algorithm GVP occupies drawing area 
O(n2). Furthermore, we can show: 

T h e o r e m  5. Respecting a planar embedding EH of a hierarchically planar graph 
H, the grid visibility representation of H produced by the algorithm GVP has the 
minimum drawing area. 

Sketch of  the  proofi It can be shown in [12], based on induction, that every 
arc has been allocated on the "most left-possible" vertical line. The theorem 
immediately follows, rn 

It is easy [12] to implement the algorithm GVP in time O(n + L) if the 
ordering of outgoing arcs from each vertex is pre-specified in a given EH, where 
L is the total lengths of long arcs in H. If such ordering has not been provided 
for each vertex, then the algorithm runs in time O(n log n + L). 

5 C o n c l u s i o n s  a n d  R e m a r k s  

In this paper, we have shown an exponential area lower bound for planar straight- 
line drawings of hierarchically planar graphs without transitive arcs in contrast 
to the result [6] for upward planar drawing. An efficient algorithm has been 
presented for producing a grid visibility representation with the minimal drawing 
area. 

Finally, we should note that if the algorithm GRID_DRAW is applied to the 
output of the algorithm GVP, then a grid polyline drawing is obtained, which 
guarantees the following properties: 

- each long arc is represented by a poly line with at most two bends; 
- the drawing area is O(nZ). 
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Figure 4(c) shows the result after applying the algorithm GRID_DRAW to the 
drawing in Figure 4(b). 

Note that our drawing algorithms do not necessarily produce a symmetric 
drawing when a graph is symmetric. This will be our future study. 
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