
Using Parallel Semi- Join Reduction to Minimize Distributed
Query Response Time

Xuemin Lin: Maria E. Orlowskat and Xiaofang Zhou*

Abstract
A one-shot semi-join reduction approach was re-
cently proposed to execute all semi-joins on the
same relation simultaneously such that the rela-
tion only needs to be scanned once. The one-shot
semi-join reduction approach was applied to re-
ducing distributed query response time under the
assumption that one copy of each referenced rela-
tion has been chosen prior to the production of an
execution plan. The estimations of both semi-join
reduction effect and local join cost, employed in
previous work, were restricted to a special case. In
this paper, we extend the previous work in three
ways: 1) remove the requirement for copy selec-
tion before the production of a semi-join reduction
program, 2) allow the choice of redundant copies
for the execution of semi-joins, 3) employ a gener-
al cost model which covers a large class of possible
estimations of semi-join reduction effect and local
join cost. Then, an algorithm to produce an opti-
mal parallel one-shot semi-join reduction program
for minimizing response time shall be presented,
addressing the above three aspects.

1 Introduction

processing in distributed

relational database systems has been extensively

studied for more than one decade. To efficiently

execute a distributed query, emphasis on the re-

Query

‘Department of Computer Science,’ The Univekty of
Wzntem Australia, Nedlands, WA 6907, Australia, email:
Ixue(mcs.uwa.oz.au

tDepartment of Computer Science, The Univer-
sity of Queensland, QLD 4072, Australia, Email:

tCSIR0 Division of Information Technology, GPO
Box 664, Canberra, ACT 2601, Australia, Email:
zxf@cbr.dit.csiro.au

mhIk(mCS.Uq.OZ.hU

duction of transmission cost for data movements

among different sites has been made. In recent

investigations of distributed query processing, the

following assumptions (91 are usually adopted for

the underlying distributed systems: a) the trans-

mission cost for data shipping is more expensive

than the local processing cost, and b) local pro-
cessing cost cannot be entirely neglected. We shall
make these assumptions in this paper.

“Semi-join” is a major method used to reduce

transmission cost. A semi-join [2] on a relation

& with another relation Rj , denoted as &D<Rj,
is defined as the projection of f i W Rj on I&.
Consider a join R,, D.! R, where R, and Rj are

located at different sites. Let the resuli si le, where

the join result is required, be the site with R,. A

semi-join reductron approach to process this join

is as follows:

The join attributes in R,, say R;, are

sent to the site where R, is located

to perform a semi-join there, and then

R, D(R(i is sent to the result site to per-

form the join.

As (& D(Rj) W Rj G R, W Rj , the transmission
cost can be reduced by this semi-join if the sum

of the data volumes of Rj and R, D<Ri is smaller

than that of &. (In this case, we say that & is

semi-join reduced by Rj .) However, the sum of the

data volumes of Ri and & D< R; might be larger

517

0-7803-2018-2/95/$4.00 8 1995 IEEE

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

than that of &. Thus, the problem in processing

distributed queries by a semi-join reduction a p

proach is to determine a most favourable sem-join

reduction program for reducing transmission cost.

A number of significant results in processing

distributed queries by a semi-join reduction a p

proach have been achieved [3,10,11]. Most of them

assume that local costs are entirely negligible, and

then favor a sequential semi-join reduction, that

is, using the result of a semi-join to further reduce

the size of a relation by another semi-join.

Recent performance studies [9] show that when

local processing expense is not negligible, a se-

quential semi-join reduction approach may some-

times lead to inefficiencies, such as loss of par-

allelism, processing overhead, loss of global semi-

join optimization, and inaccurate semi-join reduc-

lion esiimalion.

The one-shot semi-join approach was proposed

in [IO] to reduce the semi-join processing cost and

to explore inter-operation parallelism in semi-join

executions. It suggests executing a set of semi-

joins on the same relation a t the same time. That

is, if there is more than one relation required
to perform semi-join with the same relation R,,
then R, is scanned once only to perform these

semi-joins together. I t encourages the semi-joins

to be performed on different relations in paral-

lel. The one-shot semi-join reduction approach

was then applied to reducing the response time for

distributed query processing by considering data

transmission time together with local processing
time. As in most prior work, the authors made

the assumptions that in the presence of redundant

data placement, 1) a preselected copy of each re-

lation referenced by a query should be determined

before producing a semi-join reduction program,
and 2) all those preselected copies are located at

different sites. Further, they considered only a

special form of the estimations of semi-join reduc-

tion effects and local join costs (see Section 2).

In this paper, we shall extend the approach in

[lo] in three ways:

1. remove the requirement for copy selection be-

fore the production of a semi-join reduction

program, and make a copy selection while
producing a semi-join reduction program, .

2. allow the choice of redundant copies for the

execution of semi-joins,

3. employ a general cost model which covers a

large class of possible estimations of semi-join

reduction effects and local join costs.

These three extensions are necessarily. Note

that data replication is desirable in distributed

database systems. The necessities of considering

aspects 1 and 2 are illustrated as follows.

Example 1. Suppose that a given network con-

sists of3 sites 1 ,2 , 3. Relations RI, Rz, and R3 are

located at site 1, relations RI, &, R5 are located

at site 2. A join W j z i R, is required at site 3. Fur-

ther suppose that R1 has join attributes with Rz,
R3, R4, and Rs. I t is obvious that the choice of

the copy of R1 from site 1 will favor the semi-joins

on R1 with R2 and R3 (i.e., no transmission cost is

required for these semi-joins), while the choice of

the copy of RI from site 2 will favor the semi-joins

on R1 with & and R5. The different semi-join re-

duction programs based on different choices of a

copy of R1 may be obtained, which have the differ-

ent “optimal” values using the algorithm in [IO].
Further, if we use redundant copies of R1 in the

execution of semi-joins, there is no transmission

cost for processing the semi-joins respectively on

Rz, RJ, &, and R5 with RI . 0

The significance of considering aspect 3 should
be clear, since different join methods have differ-

ent cost functions.

518

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

In regard of the above three aditional aspects,
in this paper we shall present a polynomial time

bounded algorithm, which can output an optimal

semi-join reduction program for processing a dis-

tributed query such that the response time, with

respect to our general cost model, will be mini-

mized.

The rest of the paper is organized as follows.

Section 2 presents a modification, with respect to

the above three aspects, of the oneshot semi-join

approach, and presents our cost model. In Sec-

tion 3, we present our optimal algorithm together
with the correctness proof. This is followed by

conclusions and remarks.

2 One-shot Semi-join vs
Cost Model

2.1 One-shot semi-join

Let wz1 I& be a multiple join to be processed. A
one-shot semi-join reduction approach consists of

the following five phases [lo].

1. Initial local processing: All selections and

projections are processed in parallel at each

site.

2. Projection Phase: All referenced relations are

scanned at most once in parallel to generate

all the necessary join attributes by projec-

tions. All these results are hashed at the time
they are generated.

3. Transmission Phase: The results of the pro-

jection phase are transmitted in parallel to
the corresponding sites for the execution of

semi-joins.

4. Reduction Phase: Scan each relation Ri to

process all these semi-joins. Since all the re-
sults of the projection phase are hashed, each

tuple in & need.s only to be scanned once to

check by hashin,g.

5 . Final Join Phase: Send all semi-join reduced

relations to the result site to perform the join.

Obviously, in the #case that the multiple copies

of a relation exist, only one of them needs to be

semi-join reduced and then sent to the result site

to perform the final join. This can save the total

transmission cost, and avoid any extra work in the

final join phase. Meanwhile, redundant copies of

the join attributes of a relation may be chosen to

execute semi-joins on other relations, in order to

save transmission cost of data shipping.

2.2 Cost Model

Our goal is to mininlize the distributed query re-

sponse time with respect to the above five phases.

Particularly, we concentrate on minimizing the re-

sponse time after the initial processing and projec-

tion phases, since the costs of another three phases

- data transmission, join and semi-join - are much

higher than that of the first two phases.

A precise cost model of distributed query re-

sponse time in the above last three phases may

include the considerations of job scheduling a t a

site (in case there are several referred relations

located at the same site) and transmission con-

tention. Complete optimization with respect to

each of those problems is known to be NP-hard

[4,11]. Thus, empirical cost models, which exclude

some negligible factors to achieve a good approxi-

mation of a precise cost model, should be adopted

to avoid computing a computationally intractable

problem.

We consider, as follows, both communication

and computation costs in our cost model. Note

that in our discussion, a given network is an arbi-

trary one.

519

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

In the transmission phase, the referenced re-

lations a t each site are scanned (at most once)

in parallel to generate all columns required by a

semi-join reduction program. The values in these

columns are hashed, and then sent in parallel to

other sites, where the data are used to perform a
semi-join reduction. We assume that the trans-

mission delay due to network contention is negli-

gible (this is possible in the environment where a

network is connected through a high bandwidth,

and multiple channels are available). We use ti;:
to denote the time for the transmission of join

attributes from site I where Rj is located, for pr-

cessing the semi-join R, D< R,, to site k where R,
is located.

The semi-join reduction phase cannot start un-

til all join attributes arrive. As all arrived values

are hashed already, the local relations which are

to be reduced need to be scanned only once to

perform semi-joins by hashing. When there is on-

ly one table a t each site, say &, the time of this

phase is dominated by the time for scanning the

whole table of R,, as pointed out in [lo]. Thus,

the time of semi-join reduction on relation R, at

site k is estimated by the time taken to scan R,
at site k, while other factors, such as hashing and

probing, are negligible. This time is represented

as a,,t, which depends on the size of & and the

computing facilities a t site k.

When there is more than one referenced rela-

tion located a t the same site, a delay on the re-

sponse time of the semi-join reduction phase may

happen due to a possible resource contention. As-

sume that this possible resource contention is han-

dled by a simple first-in-first-serve policy, that is,

a semi-join can be immediately executed once al-
l the join attributes arrive. In our cost model,

we employ the following resource contention situ-
ation:

All scanning programs a i a s i t e stari at the same

Lime concurrenily.

Then we use the response time for scanning a

relation & a t site k , in this resource contention

situation, to be the response time of an implemen-

tation of the one-shot semi-join reduction on I&
at site k. Therefore, the response time of an im-

plementation of the one-shot semi-join reduction
on & at site k can also be expressed as U i , k - a

constant if & and site k are given. Note that this

cost estimation can be regarded as the worst case

with respect to a resource contention. The reasons

for choosing this estimation are as follows.

It is possible that a set of semi-joins on a set

of referenced relations run together to cause

a resource contention situation. A precise es-

timation of a response time with respect to

an arbitrary resource contention situation is

difficult. If such an estimation is done each

time before a set of semi-joins is executed, too

much processing cost may be incurred.

This employed resource contention situation

is possible.

The semi-join cost is practically not a dom-

inant factor in the one-shot semi-join a p

proach for processing a distributed query. Al-
so, in most cases, the number of referenced

relations in a distributed join may be bound-

ed by a small integer. As well, a suitable

database placement, with respect to the s-

torage capacity a t each site, will prevent the

number of relations located at a single site

from being too large [1,6]. Thus, i t is un-

wise for us to focus on this to cause the w-

hole optimization problem computationally
intractable.

Let Ni,r denote the number of tuples left in &
after an implementation of the one-shot semi-join

520

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

reduction on R,. a t site k. The transmission time

of the reduced R, from site k to the result site can

be expressed as b,,kNi!k + C k , where Ck is the set

up time, bi,k is the transmission time of one tuple

of R, from site k to the result site.

Note that in general, the above transmission

time should be expressed as bi,k,INj,k+ck,~, where

I represents a result site 1. However, for a given

multiple join with a given result site I, the above

abbreviation bi,kNi,k + C k will not destroy the gen-

erality of the problem.

In the final join phase, semi-join reduced rela-

tions are sent to the result site to perform the join

at that site. Clearly, the cost in this phase depend-

s on many system factors, such as 1/0 bandwidth,

memory size and local join algorithms. In general,

the cost of performing a given final join WEl R,

a t the result site can be expected to be measured

by the sizes of the semi-join reduced relations in

average case. That is:

where each N,,k, represents the number of tu-

ples left in each &, and g(z1,z2, ... zm) is a non-

decreasing function [8] with respect to each vari-

able zi for 1 5 i 5 m. Note that generally, g

should also depend on the tuple size of each re-

lation and the computing facilities at the result

site, but the above abbreviation (1) will not de-

stroy the generality of the problem for a given join

and a given result site.

Note that (1) is only an approximate estimation

for local join cost. A precise estimation for local

join cost may require exponential size of informa-

tion, such as join selectivity with respect to each

subjoin. This will result in too much processing

cost to handle the information. Thus, we use the

above cost model with respect to an average case.

When applied on a specific system, a particular

form of g can be given by the system administra-

tor. After a specific g is given in a specific system,

a tailored optimal solution can be derived immedi-

ately from our algorithm. A worst case based cost

model with respect to the sizes of the reduced re-

lations, which is a spec:ial case of (l), i s used in

[lo]. This model suggests that the time needed for

processing the join is proportional to the product

of the relation cardinalities, that is,

where kj is the site at which & is sent to the re-

sult site. Such a loose =timation may potentially

degrade the quality of a produced execution plan

for a distributed query process.

Suppose that a join I$:? R, is required at a

site. Let 4 denote the attribute set from R, for

the execution of R,t)(Rj, and 0 5 5 1 denote

the selectivity of R , D (X R j , that is, after the exe-

cution of & D< Rj , the number of tuples left in R,

is 4141 where IR,I denotes the number of tuples

in R,. For 15 i I m, sz(i) = { j : 1 5 j 5 m, j #
i , < #0}.

A precise estimation of the size of a join (includ-

ing semi-join) is usually difficult to be obtained.

The research in this area still attracts a great at-

tention [5]. In order to ensure that our algorithm

may be applied to any reasonable estimation of a

semi-join reduction, in this paper we give a general

description of a semi-join reduction, and then pro-

vide a generally optimal algorithm with respect to

this general description.

A semi-join reduction funcfion p is a mapping

from 2x to the set of relational numbers which

are in the interval [0,1], where X is a set and 2x

denotes the set of all the subsets of X, such that:

52 1

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

Since more semi-joins on a relation will never

increase the size of the left relation, a semi-join re-
duction function can be used to generally describe
a possible estimation of a semi-join reduction ef-

fect:

For 1 5 i 5 m, let pi be a semi-join
reduction function with its variable do-

main 2s2('). After the execution of a set

of semi-joins { R , H R j : j E s*(i)}, the

number of tuples left in R, is then given

by p,(x2(i))lR,l, where B z (i) is a subset
of sz(i). (Note that p ; ({ j }) is the selec-
tivity of R, D< R, .)

Previously, the independency of semi-join re-

duction effects was employed [IO], that is, after

the execution of a set of semi-joins {R,D(R, :

j E Sz(i)}, the number of the tuples left in R,

is fljcT2(j)dlR;l. This is covered by our general
description. The advantage of using our general

description is:

Once a more precise estimation (covered

by our general description) appears, say

not necessarily only an estimation based

on independent reduction effects, then it

can be immediately employed in our al-

gorithm.

For 1 5 i 5 m, sl(i) denotes the set of the

sites where a copy of R, is located. Let S de-

note the Cartesian Product on all s l (i) , that is,

S = sl(1) x sl(2) x ... x s l (m) . The response time
of a processing Mi:'' R, by one-shot semi-join re-

duction approach can be represented by:

(~ L I I (I::;,) + . , , r , b , , t , ~ . l I ~ l ~) I I R i l + ~ ~ ~)
1S.S.m j € , , (i)

+ ~ ~ ~ ~ ~ ~ ~ ~ l ~ ~ l R ~ l , ~ a ~ ~ ~ ~ a ~ ~ l R ~ l , ~ ~ ~ ~ ~ ~ ~ ~ ~ l ~ ~ l ~ (3)

for (k l , k z , . _ _ , km) E S, sz(i) E 2*4 ') for each i ,

and 1j E sl(j) for each j E sz(i). In the next

section, we show how to determine an execution

plan to minimize the response time.

3 Algorithm

From the discussions in the last section, i t fol-

lows that an execution plan of a distributed query
Wi=m ,=, & corresponds to a combination of the fol-

lowing three selections:

Se1 1: a selection of a site k, from s l (i) for each

referenced relation R,,

Se1 2: a selection of a subset S,(i) of s a (i) with
respect to a given copy of R, which is located

at site ki,

Se1 S: for each j E .?z(i), a selection of a site l , E
s l (j) with respect to a given site ki where R,
is located

Se1 1 corresponds to a selection of a copy for each

relation referenced by the multiple join. The se-

lected copies in Se1 1 will possibly be first sem-join

reduced, and then will be sent to the result site
for the execution of the join. A choice of a set of

semi-joins on a given copy of a relation is stated

in Se1 2. TO execute a semi-join R. ,KR~ at site

t i , Se1 3 will provide a choice of a copy of the join

attribute set (between Rj and R,) of Rj (if there

are several copies of Rj) , which is required to be

sent to site k i . Note that redundant copies of a

Rj may be chosen in Se1 3 for the production of
join attribute sets with respect to the execution of

several semi-joins at different sites (see Example

1).
A trivial exhaustive search on the search space,

as described above for the minimization of the val-

ue of (3), is not feasible, because the search space

usually has an exponential size. Thus, we first

present a reduction on the search space such that
the reduced search space is polynomially bounded.

522

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

3.1 Reduction on Search Space

In this subsection, we present a reduction on the

search space from Se1 3 - Se1 1. Obviously, we need

only consider those semi-joins R, [XRj whose se-

lectivities pI are not 1. Thus in our later discus-

sions, we restricted our interests in a selection of

B z (i) from the following set for each i:

Hereby, we re-define sz(i) as the above set.

First, one can immediately verify the following

Lemma, which shows that Se1 3 can be solved eas-

ily. A t:::: in the minimum value of (3) has a
restriction on the choice of lj:

Lemma 1 Suppose that R,, k , , and R, are given

To minamize (3), 1, should be a szte in s l (j) , such
ihai ti;$', as minimized

This means that if 4 in Rj is required by the

site ki to process the semi-join RiD(Rj at hi, on-

ly such a site 1, in sl(j) that the value of ti:;, is

minimized shall be considered in the optimal solu-

tion for minimizing (3). In case there are several

such sites, we just randomly choose one. We use

f (i , k i , j) to denote such a site. Clearly, f(i, k i , j)

may be determined in time O (n j) for given i, k i , j

where nj is the cardinality of s l (j) .

In the optimal execution plan for minimizing

(3), a choice of each 32 (i) may be limited as follows

for a given i and its associated site ki E s l (i) .

Let t i ,k , denote t ~ : ~ ~ i * k ' r j) . We can show that the

optimal execution plan must have the following

property.

Lemma 2 Lei [X R, be ezecuted in an ezecu-

lion plan P which has ihe minimum value of (3)
for processing ihe jo in . Then ihis ezecution plan

either

e includes ihe implementaiion of ihe semi-joins

on & wiih those R; for ii,k, 5 ij,&. and j E

~ 2 (i) , or

e can l e eziended to another ezecution plan P
b y including the semi-joins on R, with those

R; fortivk, 5 tiskn and 3 E s2(i) such ihat the

response time for P i s ihe same as ihai f o r

P .

Proof: Note that in clur cost model, the response

time for an implementation of the one-shot semi-

join reduction on R, is expressed approximately

by the scanning time of R,, no matter how many

join attributes from the other relations are in-

volved. Meanwhile, the execution of more semi-

joins on & will never lead to an increase in the

number of tuples left in R,. From these and tc-

gether with the response time expression by (3),

the Lemma follows immediately . 0

Given & and hi E s l (i) , { t i ,k; : j E s~(i)) can

be organized into the non-decreasing ordered set

Di,k. = (di,k,(P) : 1 I P I l S 2 (i) l } , such that, say
t$, = di,k,(p) and t$, = di ,k , (q) , t i ; , 5 t::k, if
p 5 q. Let:

-m;,k*(P) = (J : I:,,, 5 d i , k , (P)) for 1 5 P 5 m (4)

smi,k,(O) = 0 . From Lemma 2, i t implies that
in our later discussion, we need only to consider

one of smi,k,(p) for 0 5 p 5 Isz(i)l as a choice of

f 2 (i) from s Z (i) , in our construction of an optimal

execution plan. Note that s ~ , k , (p) C smi,h,(q) if

PI 47.

From Lemmas 1 and 2, the problem in the de-

termination of an execution plan with the mini-

mum response time, has been reduced to finding

a ki in ~ (i) for 1 5 i 5 m, and a corresponding

sm,,,,(pi) for 0 I pi 5; IsZ(i) l to minimize:

((t:,k,) + * i , k , + b ; , h ; ~ ; (~ m , , k , (? ;)) l R ; l

+chi) + ~ (, i (, ~ ~ , h ~ (, ,)) l R i l , r n (. ~ ~ , h ~ (?m))IRmI)

I S i i m j € r m , , h , (i ;)

(s)

523

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

To further reduce the search space, we first in-

troduce the following notation. Let (21, yl) and

(22, y ~) be two points in a 2-dimenslonal space.
We say that (tl, y1) domtnaies (1 2 , yz) if 21 2 22
and y1 2 y2. Suppose that for 1 5 i 5 m and

0 I PI I Is2(i)l,

h (. - , , t , (P .)) = (m.1 k ,) t'c,kn
I E s m , , k ,

t b , , ~ , P , (~ ~ , , k ~ (? ,)) ~ ~ , ~ + c ~ ,) ~

From the fact that g is nondecreasing with respect

to each variable, we can verify the following Lem-

mas

Lemma 3 Suppose ihat given a R,, and ki , k; E
si(i) where k; and & are not necessarily equiv-

alent, (h(sm,,k,(pi)), v(smi,ti (pi))) dominates

(h(smi,f,(pi)),v(smi,r,(gi))). Let smi,b,(Pi) be
selected in an ezecution plan P . Then ihe ez-

ecuiion plan P , obtained b y the replacement of

smi,k,(pi) in P with smi,Ei(p;), leads t o the re-
sponse t ime smaller ihan (or equal to) ihe re-

sponse t ime by using P .

Proof: By (5), the fact that g is nondecreasing,

and the property of a semi-join reduction function,

one may immediately verify this Lemma. 0

Lemma 4 Let an ezecution plan P contain

sm;,h,(pi) for 1 I i I m, and T denote

maq<i<,,,{h(smi,t, (pi))}. Furiher suppose ihat
there ezists a sml,i,(pI) for a relaiion RI where

1 I 1 5 m and f o r a si ie E , in s l (l) , such
that h(sml, i , (gi)) 5 T and v(sml,r,(pr)) 5
v (s m i , k I (pi)). Then we may replace sml,kI (pi) in
p by s m I , g l (P ~) io obiain anofher ezecuiion plan

such ihai ihe value of (5) wiih respeci t o P is
not greaier ihan ihai wiih respeci t o P .

Proof: Again, one may immediately verify this

Lemma by (5) and the fact that g is nondecreas-

ing. 0

Suppose that for 1 I i I m and ki E s] (i) ,

all smi,ki(pi) have been computed. Then we can

use the following procedure PROC to determine

an optimal execution plan according to Lemma 3

and Lemma4.

PROC

Proc 1: For each i with 1 I i I m, the elements

in the following set

can be viewed as points in two dimension-

al space, and are organized into the nonde-
creasing ordered set S(i) with respect to first

coordinate. Then each S(i) , for 1 5 i 5 m, is

scanned once to eliminate those elements in

S(i) which dominate at least another elemen-

t in S(i) . Go to Proc 2. (Note the outputs

of Proc 1 are nondecreasing ordered sets S(a)

for 1 5 i I m, such that in each S (i) , there

is no element dominating another element.)

Proc 2: Suppose that after Proc 1, for each i
with 1 5 i I m, S(i) is represented by

{(Ui(P)rwi(P)) : 1 I P I IS(i)l}, where each

(ui(p)i wi(P)) = (h(smi,ki(pi))B u(smi,ri(pi)))
for some sm,ki(pi), and is linked to

smi,k,(pi), J?,i and k i . Here p denotes the
ordering, that is, in each S(i) , ui(p) < ui(q)

if p < q. (Note wi(p) > mi(q) if p < q , s-

ince no element in S(i) dominates another.)
Merge all S(i) to a nondecreasing ordered set
A with respect to the first coordinate. A is
represented by

5 2 4

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

Here z denotes the ordering, that is, for 1 5
I (AI, W (P) (Z) I Uj(P)(Y) if 2 < Y where

i and j are not necessarily different, and p

and q are not necessarily different for a pair
of distinguished i and j . The link of each

element (u ; (p) (z) , u ; (p) (z)) in A is equal to

the link'of (u , (p) ,u; (p)) in S(i) as described

above. Go to Proc 3.

Proc 3: Let C = CO, and for 1 5 i 5 m, let

U; = CO, w; = CO, templ; = 03, temp2; = M.

For x = 1 to [AI do (scan each element in A) :

e output the subscript (j) of

(uj (P) (S) ~ uj (P) (z)) ;

e templj := u j (p) (z) ; temp2j :=

u j (p) (z) ; (only re-value the correspond-

ing (templ j , t empaj) .)

e c1 = m a z i ~ i ~ m { t e m p l i } +
g (t emp21, temp&, . . . , t emp2,);

e if C1 < C then replace C with C1, and

replace { (u ; , ~ ,) : 1 I i 5 m} with

((templ; , temp&) : 15 i 5 m } .

Go to Proc 4.

Proc 4: output P = { (u i , w i) : 1 5 i I m } .

Note that we assume g = 03 if one of its variable

is CO. After procedure PROC, we can determine

a semi+, (p i) for each (U;, w;) from the link es tab

lished in Proc 2. We, then, obtain an execution

plan P .

3.2 Description of Algorithm

In this subsection, we present a detailed descrip

tion of the algorithm OPT. The algorithm OPT
outputs an execution plan for a distributed join

process by the one-shot semi-join approach with a

minimum response time (as presented in (3)). It

consists of the following 5 steps:

Algorith OPT

Step 1: For each i, each k, E s l (i) and each j E

= ti;L!'sk''J). sz (i) , find f (i , k , , j) . Let
Go to Step 2 .

Step 2: For each i and each ki E ~ (i) , compute

all smi,r,(p) for 0 _< p 5 Is*(i)l. Go to Step

3.

Step 3: Compute each

and link

to sm;,k,(p;). Go to Step 4

Step 4: Execute the procedure PROC as de-

scribed in the last subsection. Go to Step

5.

Step 5: Track back through the links on the out-
put of PROC to $obtain an execution plan.

The correctness of the algorithm O P T can be

obtained from Lemmas 1, 2 , 3 , and 4.

Theorem 1 The algorithm OPT produces an ez-

ecution plan for a di.sin'buted join such that ihe

execution plan minimize the response time as ez-

pressed in (3).

Proof: One may immediately verify this Theorem

by Lemmas 1 , 2 , 3 , and 4.

3.3 Time Complexity of the Algo-
rithm

Suppose that for 1 5 i 5 m, Isl(i)l = n;,
Isz(i)l = mi, M = m a x l ~ ; < , { m ; } , and N =

525

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

m a z l j i j m { n i } . We assume that i t takes con-
stant time to compute the value of g and each pi.

In the algorithm OPT, Step 1 takes O(mMNZ).
In Step 2, sorting is the dominant cost. Total-

ly, Step 2 takes O (m N M l o g M) . Step 3 takes

O (m M N) time. In Step 4, sorting is also the dom-

inant cost. Thus, Step 4 takes O(mNM(lagm +
logN + logM)) = O(mNM(logm + logN)). Step

5 takes O(m) time. Hence the time complexity

of the algorithm OPT is O (m M N (N + logm)).

The overall space for the algorithm OPT takes

O (n M N 2) space. Note that in case that there is

no redundant data placement, the complexity of

the algorithm is the same as that in [lo].

4 Remarks and Conclusions

In this paper, the approach in [IO] has been ex-

tended to cover three additional aspects.

As we pointed out in Section 2, the response

time minimization problem will be computation-

ally intractable if we apply a precise cost model.

This prevents us using a precise cost model, since

spending exponential time to produce an execu-

tion plan for a join process in order to minimize

response time is useless. The local processing cost

model presented in this paper is an approximation

model by the deletion of some non-dominant fac-

tors. Thus, we could expect that the optimization

solution for the cost model presented in this pa-

per is, in practice, a nearly optimal result t o an
NP-hard problem.

In the future, we would like to ease the restric-
tions in using a worst case based estimation model
for a resource contention situation at the semi-join
phase; that is, we would like to find a better way
t o estimate the response time while several semi-
joins run together to share a resource.

References
[l] Y. Bartal, A. Fiat and Y. Rabani, “Competitive

Algorithms for Distributed Data Management”,
24th Annual ACM Symposium on the Theory of
Computing, pp. 39-49, 1992.

[2] P. A. Bernstein and D. Chiu, “Using Semi-Joins
to Solve Relational Queries”, Journal of ACM,
28(1), 25-40, 1981.

[3] M . 4 . Chen and P. S. Yu, “Interleaving a Join
Sequence with Semijoins in Distributed Query
Processing”, IEEE Transactions on Parallel ond
Distributed Systems, 3(5), pp. 611-621, 1992.

[4] M. R. Garey and D. S. Johnson, Computers
and Intmtability: o guide to the theory of NP-
Completeness, W. H. Freeman and Company,
1978.

[5] Y. E. Ioannidis and S. Christodoulakis, “On the
Propagation of Errors in the Size of Join Result-
s”, Proceedings of the 1991 SIGMOD Interna-
tional Conference on Management of Data, pp.
268-277, 1991.

[6] X. Lin and M. Orlowska, “An Integer Linear
Programming Approach to Data Allocation with
the Minimum Total Communication Cost in Dis-
tributed Database Systems”, to appear in Infor-
mation Sciences (in press), 1995.

[7] D. Shasha and T. L. Wang, “Optimizing Equi-
join Queries in Distributed Databases Where Re-
lations are Hash Partitioned”, ACM Transac-
tions on Database Systems, 16(2), pp. 279-308,
1991.

[SI A. E. Taylor, Advanced Colcultis, Ginn, 1955.

[9] M. Templeton, et al., “Mermaid-Experiences
Pmceedings of IEEE with network operation”,

Dota Engineering Conference, 1986.

[IO] C. P. Wang, A. L. P. Chen and S.-C. Shyu, “A
Parallel Execution Method for Minimizing Dis-
tributed Query Response Time”, IEEE Tmnsac-
tions on Pamllel and Distributed Systems, 3(3),
325-333, 1992.

[11] C. T. Yu and C. C. Chang ‘Distributed Query
Processing”, ACM Computing Surveys, 16(4),
1984.

526

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

