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Abstract 
A one-shot semi-join reduction approach was re- 
cently proposed to execute all semi-joins on the 
same relation simultaneously such that the rela- 
tion only needs to  be scanned once. The one-shot 
semi-join reduction approach was applied to re- 
ducing distributed query response time under the 
assumption that one copy of each referenced rela- 
tion has been chosen prior to the production of an 
execution plan. The estimations of both semi-join 
reduction effect and local join cost, employed in 
previous work, were restricted to  a special case. In 
this paper, we extend the previous work in three 
ways: 1) remove the requirement for copy selec- 
tion before the production of a semi-join reduction 
program, 2) allow the choice of redundant copies 
for the execution of  semi-joins, 3) employ a gener- 
al cost model which covers a large class of possible 
estimations of semi-join reduction effect and local 
join cost. Then, an algorithm to produce an opti- 
mal parallel one-shot semi-join reduction program 
for minimizing response time shall be presented, 
addressing the above three aspects. 

1 Introduction 

processing in distributed 

relational database systems has been extensively 

studied for more than one decade. To efficiently 

execute a distributed query, emphasis on the re- 
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duction of transmission cost for data movements 

among different sites has been made. In recent 

investigations of distributed query processing, the 

following assumptions (91 are usually adopted for 

the underlying distributed systems: a) the trans- 

mission cost for data shipping is more expensive 

than the local processing cost, and b) local pro- 
cessing cost cannot be entirely neglected. We shall 
make these assumptions in this paper. 

“Semi-join” is a major method used to  reduce 

transmission cost. A semi-join [2] on a relation 

& with another relation Rj ,  denoted as &D<Rj, 
is defined as the projection of f i  W Rj on I&. 
Consider a join R,, D.! R, where R, and Rj are 

located at  different sites. Let the resuli si le,  where 

the join result is required, be the site with R,. A 

semi-join reductron approach to  process this join 

is as follows: 

The join attributes in R,, say R;, are 

sent to the site where R, is located 

to perform a semi-join there, and then 

R, D(R(i is sent to the result site to per- 

form the join. 

As (& D( Rj)  W Rj G R, W Rj ,  the transmission 
cost can be reduced by this semi-join if the sum 

of the data volumes of Rj and R, D<Ri is smaller 

than that of &. (In this case, we say that & is 

semi-join reduced by  Rj . )  However, the sum of the 

data volumes of Ri and & D< R; might be larger 
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than that of &. Thus, the problem in processing 

distributed queries by a semi-join reduction a p  

proach is to determine a most favourable sem-join 

reduction program for reducing transmission cost. 

A number of significant results in processing 

distributed queries by a semi-join reduction a p  

proach have been achieved [3,10,11]. Most of them 

assume that local costs are entirely negligible, and 

then favor a sequential semi-join reduction, that 

is, using the result of a semi-join to further reduce 

the size of a relation by another semi-join. 

Recent performance studies [9] show that when 

local processing expense is not negligible, a se- 

quential semi-join reduction approach may some- 

times lead to inefficiencies, such as loss of par- 

allelism, processing overhead, loss of global semi- 

join optimization, and inaccurate semi-join reduc- 

lion esiimalion. 

The one-shot semi-join approach was proposed 

in [IO] to reduce the semi-join processing cost and 

to explore inter-operation parallelism in semi-join 

executions. It suggests executing a set of semi- 

joins on the same relation a t  the same time. That 

is, if there is more than one relation required 
to perform semi-join with the same relation R,, 
then R, is scanned once only to  perform these 

semi-joins together. I t  encourages the semi-joins 

to be performed on different relations in paral- 

lel. The one-shot semi-join reduction approach 

was then applied to reducing the response time for 

distributed query processing by considering data 

transmission time together with local processing 
time. As in most prior work, the authors made 

the assumptions that in the presence of redundant 

data placement, 1) a preselected copy of each re- 

lation referenced by a query should be determined 

before producing a semi-join reduction program, 
and 2) all those preselected copies are located at 

different sites. Further, they considered only a 

special form of the estimations of semi-join reduc- 

tion effects and local join costs (see Section 2). 

In this paper, we shall extend the approach in 

[lo] in three ways: 

1. remove the requirement for copy selection be- 

fore the production of a semi-join reduction 

program, and make a copy selection while 
producing a semi-join reduction program, . 

2. allow the choice of redundant copies for the 

execution of semi-joins, 

3. employ a general cost model which covers a 

large class of possible estimations of semi-join 

reduction effects and local join costs. 

These three extensions are necessarily. Note 

that data replication is desirable in distributed 

database systems. The necessities of considering 

aspects 1 and 2 are illustrated as follows. 

Example 1. Suppose that a given network con- 

sists of3 sites 1 ,2 ,  3. Relations RI, Rz, and R3 are 

located at  site 1, relations RI, &, R5 are located 

at  site 2. A join W j z i  R, is required at site 3. Fur- 

ther suppose that R1 has join attributes with Rz, 
R3, R4, and Rs. I t  is obvious that the choice of 

the copy of R1 from site 1 will favor the semi-joins 

on R1 with R2 and R3 (i.e., no transmission cost is 

required for these semi-joins), while the choice of 

the copy of RI from site 2 will favor the semi-joins 

on R1 with & and R5. The different semi-join re- 

duction programs based on different choices of a 

copy of R1 may be obtained, which have the differ- 

ent “optimal” values using the algorithm in [IO]. 
Further, if we use redundant copies of R1 in the 

execution of semi-joins, there is no transmission 

cost for processing the semi-joins respectively on 

Rz,  RJ, &, and R5 with RI .  0 

The significance of considering aspect 3 should 
be clear, since different join methods have differ- 

ent cost functions. 
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In regard of the above three aditional aspects, 
in this paper we shall present a polynomial time 

bounded algorithm, which can output an optimal 

semi-join reduction program for processing a dis- 

tributed query such that the response time, with 

respect to our general cost model, will be mini- 

mized. 

The rest of the paper is organized as follows. 

Section 2 presents a modification, with respect to 

the above three aspects, of the oneshot semi-join 

approach, and presents our cost model. In Sec- 

tion 3, we present our optimal algorithm together 
with the correctness proof. This is followed by 

conclusions and remarks. 

2 One-shot Semi-join vs 
Cost Model 

2.1 One-shot semi-join 

Let wz1 I& be a multiple join to be processed. A 
one-shot semi-join reduction approach consists of 

the following five phases [lo]. 

1. Initial local processing: All selections and 

projections are processed in parallel at  each 

site. 

2. Projection Phase: All referenced relations are 

scanned at most once in parallel to generate 

all the necessary join attributes by projec- 

tions. All these results are hashed at  the time 
they are generated. 

3. Transmission Phase: The results of the pro- 

jection phase are transmitted in parallel to 
the corresponding sites for the execution of 

semi-joins. 

4.  Reduction Phase: Scan each relation Ri to 

process all these semi-joins. Since all the re- 
sults of the projection phase are hashed, each 

tuple in & need.s only to be scanned once to 

check by hashin,g. 

5 .  Final Join Phase: Send all semi-join reduced 

relations to the result site to  perform the join. 

Obviously, in the #case that the multiple copies 

of a relation exist, only one of them needs to  be 

semi-join reduced and then sent to  the result site 

to perform the final join. This can save the total 

transmission cost, and avoid any extra work in the 

final join phase. Meanwhile, redundant copies of 

the join attributes of a relation may be chosen to 

execute semi-joins on other relations, in order to  

save transmission cost of data shipping. 

2.2 Cost Model 

Our goal is to mininlize the distributed query re- 

sponse time with respect to the above five phases. 

Particularly, we concentrate on minimizing the re- 

sponse time after the initial processing and projec- 

tion phases, since the costs of another three phases 

- data transmission, join and semi-join - are much 

higher than that of the first two phases. 

A precise cost model of distributed query re- 

sponse time in the above last three phases may 

include the considerations of job scheduling a t  a 

site (in case there are several referred relations 

located at the same site) and transmission con- 

tention. Complete optimization with respect to 

each of those problems is known to be NP-hard 

[4,11]. Thus, empirical cost models, which exclude 

some negligible factors to achieve a good approxi- 

mation of a precise cost model, should be adopted 

to avoid computing a computationally intractable 

problem. 

We consider, as follows, both communication 

and computation costs in our cost model. Note 

that in our discussion, a given network is an arbi- 

trary one. 
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In the transmission phase, the referenced re- 

lations a t  each site are scanned (at most once) 

in parallel to generate all columns required by a 

semi-join reduction program. The values in these 

columns are hashed, and then sent in parallel to 

other sites, where the data are used to perform a 
semi-join reduction. We assume that the trans- 

mission delay due to network contention is negli- 

gible (this is possible in the environment where a 

network is connected through a high bandwidth, 

and multiple channels are available). We use ti;: 
to denote the time for the transmission of join 

attributes from site I where Rj is located, for pr- 

cessing the semi-join R, D< R,, to site k where R, 
is located. 

The semi-join reduction phase cannot start un- 

til all join attributes arrive. As all arrived values 

are hashed already, the local relations which are 

to be reduced need to be scanned only once to 

perform semi-joins by hashing. When there is on- 

ly one table a t  each site, say &, the time of this 

phase is dominated by the time for scanning the 

whole table of R,, as pointed out in [lo]. Thus, 

the time of semi-join reduction on relation R, at  

site k is estimated by the time taken to scan R, 
at  site k, while other factors, such as hashing and 

probing, are negligible. This time is represented 

as a,,t, which depends on the size of & and the 

computing facilities a t  site k. 

When there is more than one referenced rela- 

tion located a t  the same site, a delay on the re- 

sponse time of the semi-join reduction phase may 

happen due to a possible resource contention. As- 

sume that this possible resource contention is han- 

dled by a simple first-in-first-serve policy, that is, 

a semi-join can be immediately executed once al- 
l the join attributes arrive. In our cost model, 

we employ the following resource contention situ- 
ation: 

All scanning programs a i  a s i t e  stari at the same 

Lime concurrenily. 

Then we use the response time for scanning a 

relation & a t  site k ,  in this resource contention 

situation, to be the response time of an implemen- 

tation of the one-shot semi-join reduction on I& 
at site k. Therefore, the response time of an im- 

plementation of the one-shot semi-join reduction 
on & at site k can also be expressed as U i , k  - a 

constant if & and site k are given. Note that this 

cost estimation can be regarded as the worst case 

with respect to a resource contention. The reasons 

for choosing this estimation are as follows. 

It is possible that a set of semi-joins on a set 

of referenced relations run together to cause 

a resource contention situation. A precise es- 

timation of a response time with respect to 

an arbitrary resource contention situation is 

difficult. If such an estimation is done each 

time before a set of semi-joins is executed, too 

much processing cost may be incurred. 

This employed resource contention situation 

is possible. 

The semi-join cost is practically not a dom- 

inant factor in the one-shot semi-join a p  

proach for processing a distributed query. Al- 
so, in most cases, the number of referenced 

relations in a distributed join may be bound- 

ed by a small integer. As well, a suitable 

database placement, with respect to  the s- 

torage capacity a t  each site, will prevent the 

number of relations located at a single site 

from being too large [1,6]. Thus, i t  is un- 

wise for us to focus on this to cause the w- 

hole optimization problem computationally 
intractable. 

Let Ni,r denote the number of tuples left in & 
after an implementation of the one-shot semi-join 
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reduction on R,. a t  site k. The transmission time 

of the reduced R, from site k to the result site can 

be expressed as b,,kNi!k + C k ,  where Ck is the set 

up time, bi,k is the transmission time of one tuple 

of R, from site k to the result site. 

Note that in general, the above transmission 

time should be expressed as bi,k,INj,k+ck,~, where 

I represents a result site 1. However, for a given 

multiple join with a given result site I, the above 

abbreviation bi,kNi,k + C k  will not destroy the gen- 

erality of the problem. 

In the final join phase, semi-join reduced rela- 

tions are sent to the result site to perform the join 

at that site. Clearly, the cost in this phase depend- 

s on many system factors, such as 1/0 bandwidth, 

memory size and local join algorithms. In general, 

the cost of performing a given final join WEl R, 

a t  the result site can be expected to be measured 

by the sizes of the semi-join reduced relations in 

average case. That is: 

where each N,,k, represents the number of tu- 

ples left in each &, and g(z1,z2, ... zm) is a non- 

decreasing function [8] with respect to each vari- 

able zi for 1 5 i 5 m. Note that generally, g 

should also depend on the tuple size of each re- 

lation and the computing facilities at the result 

site, but the above abbreviation (1) will not de- 

stroy the generality of the problem for a given join 

and a given result site. 

Note that (1) is only an approximate estimation 

for local join cost. A precise estimation for local 

join cost may require exponential size of informa- 

tion, such as join selectivity with respect to each 

subjoin. This will result in too much processing 

cost to handle the information. Thus, we use the 

above cost model with respect to an average case. 

When applied on a specific system, a particular 

form of g can be given by the system administra- 

tor. After a specific g is given in a specific system, 

a tailored optimal solution can be derived immedi- 

ately from our algorithm. A worst case based cost 

model with respect to  the sizes of the reduced re- 

lations, which is a spec:ial case of (l), i s  used in 

[lo]. This model suggests that the time needed for 

processing the join is proportional to the product 

of the relation cardinalities, that  is, 

where kj is  the site at which & is sent to the re- 

sult site. Such a loose =timation may potentially 

degrade the quality of a produced execution plan 

for a distributed query process. 

Suppose that a join I$:? R, is required at  a 

site. Let 4 denote the attribute set from R, for 

the execution of R,t)(Rj, and 0 5 5 1 denote 

the selectivity of R , D ( X R j ,  that  is, after the exe- 

cution of & D< Rj , the number of tuples left in R, 

is 4141 where IR,I denotes the number of tuples 

in R,. For 15 i I m, sz(i) = { j  : 1 5  j 5 m, j # 
i ,  < #0}. 

A precise estimation of the size of a join (includ- 

ing semi-join) is usually difficult to  be obtained. 

The research in this area still attracts a great at- 

tention [5]. In order to ensure that our algorithm 

may be applied to any reasonable estimation of a 

semi-join reduction, in this paper we give a general 

description of a semi-join reduction, and then pro- 

vide a generally optimal algorithm with respect to 

this general description. 

A semi-join reduction funcfion p is a mapping 

from 2x to the set of relational numbers which 

are in the interval [0,1], where X is a set and 2x 

denotes the set of all the subsets of X, such that: 
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Since more semi-joins on a relation will never 

increase the size of the left relation, a semi-join re- 
duction function can be used to generally describe 
a possible estimation of a semi-join reduction ef- 

fect: 

For 1 5 i 5 m, let pi be a semi-join 
reduction function with its variable do- 

main 2s2('). After the execution of a set 

of semi-joins { R , H R j  : j E s*(i)}, the 

number of tuples left in R, is then given 

by p,(x2(i))lR,l, where B z ( i )  is a subset 
of sz(i). (Note that p ; ( { j } )  is the selec- 
tivity of R, D< R, .) 

Previously, the independency of semi-join re- 

duction effects was employed [IO], that is, after 

the execution of a set of semi-joins {R,D(R, : 

j E Sz(i)}, the number of the tuples left in R, 

is fljcT2(j)dlR;l. This is covered by our general 
description. The advantage of using our general 

description is: 

Once a more precise estimation (covered 

by our general description) appears, say 

not necessarily only an estimation based 

on independent reduction effects, then it 

can be immediately employed in our al- 

gorithm. 

For 1 5 i 5 m, sl(i) denotes the set of the 

sites where a copy of R, is located. Let S de- 

note the Cartesian Product on all s l ( i ) ,  that is, 

S = sl(1) x sl(2) x ... x s l (m) .  The response time 
of a processing Mi:'' R, by one-shot semi-join re- 

duction approach can be represented by: 

( ~ L I I  (I::;,) + . , , r , b , , t , ~ . l I ~ l ~ ) I I R i l + ~ ~ ~ )  
1S.S.m j € , , ( i )  

+ ~ ~ ~ ~ ~ ~ ~ ~ l ~ ~ l R ~ l , ~ a ~ ~ ~ ~ a ~ ~ l R ~ l , . . . . ~ ~ ~ ~ ~ ~ ~ ~ ~ l ~ ~ l ~  (3) 

for ( k l , k z ,  . _ _ ,  km) E S, sz(i) E 2*4 ' )  for each i ,  

and 1j E sl(j) for each j E sz(i). In the next 

section, we show how to determine an execution 

plan to minimize the response time. 

3 Algorithm 

From the discussions in the last section, i t  fol- 

lows that an execution plan of a distributed query 
Wi=m ,=, & corresponds to  a combination of the fol- 

lowing three selections: 

Se1 1: a selection of a site k, from s l ( i )  for each 

referenced relation R,, 

Se1 2: a selection of a subset S,( i )  of s a ( i )  with 
respect to  a given copy of R, which is located 

at site ki,  

Se1 S: for each j E .?z(i), a selection of a site l ,  E 
s l ( j )  with respect to a given site ki where R, 
is located 

Se1 1 corresponds to a selection of a copy for each 

relation referenced by the multiple join. The se- 

lected copies in Se1 1 will possibly be first sem-join 

reduced, and then will be sent to  the result site 
for the execution of the join. A choice of a set of 

semi-joins on a given copy of a relation is stated 

in Se1 2. TO execute a semi-join R. ,KR~ at site 

t i ,  Se1 3 will provide a choice of a copy of the join 

attribute set (between Rj and R,) of Rj (if there 

are several copies of Rj) ,  which is required to be 

sent to site k i .  Note that redundant copies of a 

Rj may be chosen in Se1 3 for the production of 
join attribute sets with respect to the execution of 

several semi-joins at different sites (see Example 

1). 
A trivial exhaustive search on the search space, 

as described above for the minimization of the val- 

ue of (3), is not feasible, because the search space 

usually has an exponential size. Thus, we first 

present a reduction on the search space such that 
the reduced search space is polynomially bounded. 
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3.1 Reduction on Search Space 

In this subsection, we present a reduction on the 

search space from Se1 3 - Se1 1. Obviously, we need 

only consider those semi-joins R, [XRj whose se- 

lectivities pI are not 1. Thus in our later discus- 

sions, we restricted our interests in a selection of 

B z ( i )  from the following set for each i: 

Hereby, we re-define sz( i )  as the above set. 

First, one can immediately verify the following 

Lemma, which shows that Se1 3 can be solved eas- 

ily. A t:::: in the minimum value of (3) has a 
restriction on the choice of lj: 

Lemma 1 Suppose that R,, k , ,  and R, are given 

To minamize (3), 1, should be a szte in s l ( j ) ,  such 
ihai ti;$', as minimized 

This means that if 4 in Rj is required by the 

site ki to process the semi-join RiD(Rj at hi,  on- 

ly such a site 1, in sl(j) that the value of ti:;, is 

minimized shall be considered in the optimal solu- 

tion for minimizing (3). In case there are several 

such sites, we just randomly choose one. We use 

f ( i ,  k i , j )  to denote such a site. Clearly, f(i,  k i ,  j )  

may be determined in time O ( n j )  for given i, k i ,  j  

where nj is the cardinality of s l ( j ) .  

In the optimal execution plan for minimizing 

(3), a choice of each 32 ( i )  may be limited as follows 

for a given i and its associated site ki E s l ( i ) .  

Let t i ,k ,  denote t ~ : ~ ~ i * k ' r j ) .  We can show that the 

optimal execution plan must have the following 

property. 

Lemma 2 Lei [X R, be ezecuted in an ezecu- 

lion plan P which has ihe minimum value of (3) 
for  processing ihe jo in .  Then ihis ezecution plan 

either 

e includes ihe implementaiion of ihe semi-joins 

on & wiih those R; for ii,k, 5 ij,&. and j E 

~ 2 ( i ) ,  or 

e can l e  eziended to another ezecution plan P 
b y  including the semi-joins on R, with those 

R; fortivk, 5 tiskn and 3 E s2(i) such ihat the 

response time for P i s  ihe same as ihai f o r  

P .  

Proof: Note that in clur cost model, the response 

time for an implementation of the one-shot semi- 

join reduction on R, is expressed approximately 

by the scanning time of R,, no matter how many 

join attributes from the other relations are in- 

volved. Meanwhile, the execution of more semi- 

joins on & will never lead to an increase in the 

number of tuples left in R,. From these and tc- 

gether with the response time expression by (3), 

the Lemma follows immediately . 0 

Given & and hi E s l ( i ) ,  { t i ,k;  : j E s~(i)) can 

be organized into the non-decreasing ordered set 

Di,k. = (di,k,(P) : 1 I P I l S 2 ( i ) l } ,  such that, say 
t$, = di,k,(p) and t$, = di ,k , (q) ,  t i ; ,  5 t::k, if 
p 5 q. Let: 

-m;,k*(P)  = ( J  : I:,,, 5 d i , k , ( P ) )  for 1 5 P 5 m ( 4 )  

smi,k,(O) = 0 .  From Lemma 2, i t  implies that 
in our later discussion, we need only to  consider 

one of smi,k,(p) for 0 5 p 5 Isz(i)l as a choice of 

f 2 ( i )  from s Z ( i ) ,  in our construction of an optimal 

execution plan. Note that s ~ , k , ( p )  C smi,h,(q) if 

PI 47. 

From Lemmas 1 and 2, the problem in the de- 

termination of an execution plan with the mini- 

mum response time, has been reduced to finding 

a ki in ~ ( i )  for 1 5 i 5 m, and a corresponding 

sm,,,,(pi) for 0 I pi 5; IsZ(i) l  to minimize: 

( (t:,k,) + * i , k ,  + b ; , h ; ~ ; ( ~ m , , k , ( ? ; ) ) l R ; l  

+chi) + ~ ( , i ( , ~ ~ , h ~ ( , , ) ) l R i l ,  . . . . r n ( . ~ ~ , h ~  (?m))IRmI) 

I S i i m  j € r m , , h , ( i ; )  

(s)  
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To further reduce the search space, we first in- 

troduce the following notation. Let (21, yl) and 

( 22, y ~ )  be two points in a 2-dimenslonal space. 
We say that (tl, y1) domtnaies ( 1 2 ,  yz) if 21 2 22 
and y1 2 y2. Suppose that for 1 5 i 5 m and 

0 I PI I Is2(i)l, 

h ( . - , , t , ( P . ) )  = ( m.1 k , )  t'c,kn 
I E s m , , k ,  

t b , , ~ , P , ( ~ ~ , , k ~ ( ? , ) ) ~ ~ , ~ + c ~ , ) ~  

From the fact that g is nondecreasing with respect 

to each variable, we can verify the following Lem- 

mas 

Lemma 3 Suppose ihat given a R,, and ki ,  k; E 
si(i) where k; and & are not necessarily equiv- 

alent, ( h(sm,,k,(pi)), v(smi,ti (pi)) ) dominates 

( h(smi,f,(pi)),v(smi,r,(gi)) ). Let smi,b,(Pi) be 
selected in an ezecution plan P .  Then ihe ez- 

ecuiion plan P ,  obtained b y  the replacement of 

smi,k,(pi) in  P with smi,Ei(p;), leads t o  the re- 
sponse t ime smaller ihan (or equal to)  ihe re- 

sponse t ime  by using P .  

Proof: By (5), the fact that g is nondecreasing, 

and the property of a semi-join reduction function, 

one may immediately verify this Lemma. 0 

Lemma 4 Let an ezecution plan P contain 

sm;,h,(pi) for 1 I i I m, and T denote 

maq<i<,,,{h(smi,t, (pi))}. Furiher suppose ihat 
there ezists a sml,i,(pI) for  a relaiion RI where 

1 I 1 5 m and f o r  a si ie  E ,  in  s l ( l ) ,  such 
that h(sml, i , (gi))  5 T and v(sml,r,(pr)) 5 
v ( s m i , k I  (pi)). Then we may replace sml,kI (pi) in 
p by s m I , g l ( P ~ )  io  obiain anofher ezecuiion plan 

such ihai ihe value of (5) wiih respeci t o  P is 
not greaier ihan ihai wiih respeci t o  P .  

Proof: Again, one may immediately verify this 

Lemma by (5) and the fact that  g is nondecreas- 

ing. 0 

Suppose that for 1 I i I m and ki E s ] ( i ) ,  

all smi,ki(pi) have been computed. Then we can 

use the following procedure PROC to determine 

an optimal execution plan according to  Lemma 3 

and Lemma4. 

PROC 

Proc 1: For each i with 1 I i I m, the elements 

in the following set 

can be viewed as points in two dimension- 

al space, and are organized into the nonde- 
creasing ordered set S(i)  with respect to  first 

coordinate. Then each S(i) ,  for 1 5 i 5 m, is 

scanned once to eliminate those elements in 

S( i )  which dominate at least another elemen- 

t in S(i) .  Go to Proc 2. (Note the outputs 

of Proc 1 are nondecreasing ordered sets S(a) 

for 1 5 i I m, such that in each S ( i ) ,  there 

is no element dominating another element.) 

Proc 2: Suppose that after Proc 1, for each i 
with 1 5 i I m, S(i)  is represented by 

{(Ui(P)rwi(P)) : 1 I P I IS(i)l}, where each 

(ui(p)i wi(P)) = (h(smi,ki(pi))B u(smi,ri(pi))) 
for some sm,ki(pi), and is linked to 

smi,k,(pi), J?,i and k i .  Here p denotes the 
ordering, that is, in each S(i) ,  ui(p) < ui(q) 

if p < q.  (Note wi(p) > mi(q) if p < q ,  s- 

ince no element in S( i )  dominates another.) 
Merge all S( i )  to a nondecreasing ordered set 
A with respect to  the first coordinate. A is 
represented by 

5 2 4  
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Here z denotes the ordering, that is, for 1 5 
I (AI, W ( P ) ( Z )  I Uj(P)(Y) if 2 < Y where 

i and j are not necessarily different, and p 

and q are not necessarily different for a pair 
of distinguished i and j .  The link of each 

element ( u ; ( p ) ( z ) , u ; ( p ) ( z ) )  in A is equal to 

the link'of (u , (p) ,u; (p) )  in S( i )  as described 

above. Go to Proc 3. 

Proc 3: Let C = CO, and for 1 5 i 5 m, let 

U; = CO, w; = CO, templ; = 03, temp2; = M. 

For x = 1 to [AI do (scan each element in A ) :  

e output the subscript ( j )  of 

(uj ( P ) ( S ) ~  uj ( P ) ( z ) ) ;  

e templj := u j ( p ) ( z ) ;  temp2j := 

u j ( p ) ( z ) ;  (only re-value the correspond- 

ing ( templ j , t empaj ) . )  

e c1 = m a z i ~ i ~ m { t e m p l i }  + 
g (t emp21, temp&, . . . , t emp2,); 

e if C1 < C then replace C with C1, and 

replace { ( u ; , ~ , )  : 1 I i 5 m} with 

( ( templ; , temp&) : 15 i 5 m } .  

Go to Proc 4. 

Proc 4: output P = { (u i ,  w i )  : 1 5 i I m } .  

Note that  we assume g = 03 if one of its variable 

is CO. After procedure PROC, we can determine 

a semi+, ( p i )  for each (U;, w;)  from the link es tab  

lished in Proc 2. We, then, obtain an execution 

plan P .  

3.2 Description of Algorithm 

In this subsection, we present a detailed descrip 

tion of the algorithm OPT. The algorithm OPT 
outputs an execution plan for a distributed join 

process by the one-shot semi-join approach with a 

minimum response time (as presented in (3)). It  

consists of the following 5 steps: 

Algorith OPT 

Step 1: For each i, each k, E s l ( i )  and each j E 

= ti;L!'sk''J). sz ( i ) ,  find f ( i , k , ,  j ) .  Let 
Go to  Step 2 .  

Step 2: For each i and each ki E ~ ( i ) ,  compute 

all smi,r,(p) for 0 _< p 5 Is*(i)l. Go to  Step 

3. 

Step 3: Compute each 

and link 

to sm;,k,(p;). Go to  Step 4 

Step 4: Execute the procedure PROC as de- 

scribed in the last subsection. Go to Step 

5. 

Step 5: Track back through the links on the out- 
put of PROC to $obtain an execution plan. 

The correctness of the algorithm O P T  can be 

obtained from Lemmas 1, 2 ,  3 ,  and 4. 

Theorem 1 The algorithm OPT produces an ez- 

ecution plan for a di.sin'buted join such that ihe 

execution plan minimize the response time as ez- 

pressed in (3). 

Proof: One may immediately verify this Theorem 

by Lemmas 1 ,  2 ,  3 ,  and 4. 

3.3 Time Complexity of the Algo- 
rithm 

Suppose that for 1 5 i 5 m, Isl(i)l = n;, 
Isz(i)l = mi,  M = m a x l ~ ; < , { m ; } ,  and N = 

525 
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m a z l j i j m { n i } .  We assume that i t  takes con- 
stant time to compute the value of g and each pi. 

In the algorithm OPT, Step 1 takes O(mMNZ). 
In Step 2, sorting is the dominant cost. Total- 

ly, Step 2 takes O ( m N M l o g M ) .  Step 3 takes 

O ( m M N )  time. In Step 4, sorting is also the dom- 

inant cost. Thus, Step 4 takes O(mNM(lagm + 
logN + logM))  = O(mNM(logm + logN)).  Step 

5 takes O(m) time. Hence the time complexity 

of the algorithm OPT is O ( m M N ( N  + logm)). 

The overall space for the algorithm OPT takes 

O ( n M N 2 )  space. Note that in case that there is 

no redundant data placement, the complexity of 

the algorithm is the same as that  in [lo]. 

4 Remarks and Conclusions 

In this paper, the approach in [IO] has been ex- 

tended to  cover three additional aspects. 

As we pointed out in Section 2, the response 

time minimization problem will be computation- 

ally intractable if we apply a precise cost model. 

This prevents us using a precise cost model, since 

spending exponential time to produce an execu- 

tion plan for a join process in order to  minimize 

response time is useless. The local processing cost 

model presented in this paper is an approximation 

model by the deletion of some non-dominant fac- 

tors. Thus, we could expect that the optimization 

solution for the cost model presented in this pa- 

per is, in practice, a nearly optimal result t o  an  
NP-hard problem. 

In the future, we would like to  ease the restric- 
tions in using a worst case based estimation model 
for a resource contention situation at the semi-join 
phase; that  is, we would like to find a better way 
t o  estimate the response time while several semi- 
joins run together to share a resource. 
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