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ABSTRACT 
This paper investigates the problem of allocation of data- 
base fragments to a network, so that the overall communi- 
cation cost for processing a given set of transactions is 
minimized. Presented first is a data allocation algorithm 
with respect to a "simple strategy" to process transac- 
tions. Secondly, we present a dynamic data allocation 
algorithm which is guaranteed to produce a "locally 
optimal" data allocation. 

1. Introduction 
In distributed database design, extensive study [l, 4, 

81 has been carried out on the problem of how to allocate 
fragments [l, 6, 101 of a pre-existing database to the sites 
(individual computers) of a given network to enhance the 
performance of transaction processing. This is called the 
data allocation problem. Usually two objective criteria 
are applied to a data allocation problem: 
0 Given a set of transactions, a network of individual 

computers and a database, allocate the data such that the 
total response time of the execution of the transactions 
in Tis minimized. 

0 Given a set of transactions, a network of individual 
computers and a database, allocate the database such 
that the overall communication costs are minimized. 

Those two problems are inherently different, and are both 
important in distributed database design. In this paper, we 
shall study only the data allocation problem with the 
requirement of minimizing the overall communication 
Cost. 

In general, each of the following factors will sub- 
stantially impact on the quality and overall performance of 
the system: 
1. How do we split a relation into severalfragments? 
2. What kind of strategy is used to process each transac- 

tion? 

3. What kind of approach is used to find a data alloca- 
tion, based on the solutions of 1 and 2, to minimize the 
overall communication costs? 

There are a number of works on how to split a rela- 
tion into fragments [l, 6, 103. Among them, the result in 
[l] is the one which most directly and effectively 
addresses the data allocation problem. In this paper, we 
assume that a fragmentation has been automatically 
obtained using the information about a set of most fre- 
quently used transactions. 

For a given fragmentation, the relationship between 
factor 2 and factor 3 makes the data allocation problem 
logically intractable: 
The quality of a data allocation can be evaluated through 
transaction processing strategies. Different strategies may 
lead to different minimum overall communication costs. 
On the other hand, without specific data allocation it is 
generally dificult to justify what strategies should be 
chosen. 
This logical intractability is mainly caused by the con- 
sideration of the inter-relationship between the fragments 
(relations or objects), while processing a transaction. 

A simple way [4, 81 to overcome this hard issue is 
to simplify the inter-relationship between fragments by the 
application of a "simple strategy" (see Section 3) when a 
query transaction is processed. For example, when per- 
forming ajoin, the fragments are sent to the result site - 
the site which requires the result of this transaction. The 
join operation is done at that site. Thus, the optimal 
model of the data allocation problem, under this 
simplification, is similar to thefile allocation problem in 
classical distributed computing [ll. 

Further, in [I], general schedules to process the 
given transactions are pre-assumed. Following this a data 
allocation with the minimum overall "transmission cost" 
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[ l ]  under the given general schedule is sought. A frame- 
work of a data allocation process in dynamic co-operation 
with an existing distributed optimizer is presented in [ 11. 

The research in [ 13 corresponds only to the problem 
of minimizing overall communication cost on a "uniform 
network (defined in Section 2). The generality of a net- 
work makes the data allocation more difficult. Also, it is 
generally difficult to judge whether or not a given pre- 
assumed strategy to process the given transactions is better 
than a simple strategy. 

In this paper, our work concentrates on a general 
network. First, we present a polynomial time heuristic 
algorithm for finding a data allocation of given database 
fragments under a simple query strategy. The update stra- 
tegy between tKe duplicated copies of a fragment adopted 
in this paper is different and better than that in [l, 4, 81 
(see Section 2). The performance - optimality estimation 
results - of this algorithm and the computational intracta- 
bility are also illustrated. 

Second, we propose an approach to refine the data 
allocation obtained from the above algorithm. This 
approach starts from an initial data allocation, and then 
iteratively and greedily reduces the overall communication 
cost by either adding or dropping a copy of a fragment 
based on an employed optimizer. 

This paper is organized as follows. In Section 2 ,  we 
present some necessary preliminaries which include the 
necessary formalizations. In Section 3, a heuristic algo- 
rithm is presented for obtaining a data allocation under 
given simple query strategies, together with its theoretical 
performance guarantee. The computational intractability 
of the related optimization problems is shown in Section 
3. In Section 4, we present a dynamic approach for 
obtaining a data allocation in co-operation with an exist- 
ing optimizer. This is followed by the conclusion. 

2. Preliminaries 
This section includes a background discussion with 

respect to networks, fragments, and transaction manage- 
ment strategies. 

2.1. Networks 
Let I denote the set of all positive integers. A physi- 

cal nefwork N = ( V ,  E ,  p )  consists of a simple connected 
undirected graph ( V ,  E )  [3] and a mapping p :  E+I, 
where each node in V represents an individual computer, 
each edge represents a link, and p is assigned so that the 
communication cost of a unit data volume through a link e 
is p(e ) .  The communication cost of sending a data 
volume U through a link e in N is Up(e).  Here (V, E )  is 
called the underlying graph of N .  
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An undirected graph is complete if it is simple, and 
each pair of distinct vertices is connected by an edge. A 
physical network isfully connected if its underlying graph 
is complete. A physical network is uniform if it is fully 
connected and p ( e ) = c  for each link e, where c is a con- 
stant integer. 

A network N = ( V ,  E, p )  is metric if it is fully con- 
nected, and for a triple U ,  v, w of distinct vertices: 

p ( ( u ,  V ) ) l P ( ( U ,  w ) ) + p ( ( w ,  v)). 
A physical network G = ( V ,  E, p) has a 

corresponding metric network G '= ( V ,  E ', p ') by the 
assignment of p ' ( ( U  ,v)) to the length of the shortest path 
[3] between U and v - a pair of distinct vertices. Here G ' 
is called the metric map of G .  

In this paper, a necessary restriction is added to the 
data allocation problem, that is, the communication 
between two computers on a physical network is through 
the shortest path in a physical network. Thus, finding a 
data allocation with the minimum overall communication 
cost on a physical network is equivalent to finding a data 
allocation with the minimum overall communication cost 
on its merric map. 

In the rest of the paper, we consider only metric net- 
works. "Metric network is abbreviated to "network. 

2.2. Fragmentations, Data Allocation, and Tran- 
sactions 

A primary fragmentation of relational database is a 
set F = { f i  : l l i l m )  of fragments with the property that 
f i  # fj if i#j. For the correctness issue of a fragmentation, 
we refer the reader to [6, 101. A duplicated fragmentation 
is induced by a primary fragmentation so that each frag- 
ment may have several copies. 

For the remainder of this paper, an element in a pri- 
mary fragmentation is always called a fragment, while 
each element in a duplicated fragmentation is called a 
copy of a fragment. A fragmentation is always referred to 
as a primary fragmentation; and "primary fragmentation" 
is abbreviated to "fragmentation". 

A data allocation L of F on a network 
N = { V ,  E, p) isamapsuchthatL: F+2". 

Without loss of generality, we assume that the tran- 
sactions are either query only or update only, and transac- 
tions are expressed by fragments. 

23. Transaction Processings 
Suppose that a fragmentation F, a network 

N = ( V ,  E ,  p ) ,  a data allocation L of F on N ,  and a tran- 
saction set T, are given. Further, let F = { f i  : 1 l i l m }  and 
V = { j :  l l j l n ) .  In this section, we discuss strategies to 
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process the transactions in T. 
An Update Strategy: MST-Strategy 

Note that in this paper, a transaction causing an 
update of several different fragments is always assumed to 
be expressed by those fragments. Further, the following 
update strategy called MST-strategy is applied to update 
all copies of a fragment located on N. Say a user at node j 
of the network N issues an update of a fragmentfi: 

the route for processing this transaction is a minimum 

For example, a given network, as illustrated in Figure 1, 
has the fragmentfl located at site 1 and site 2. A transac- 
tion issued at site 3 requires an update offl. Using MST- 
strategy, the update route is from site 3 to site 1 to site 2. 
In early works, the broadcasting strategy [l] was applied 
to update copies of a fragment. In the above example, the 
route is from site 3 to site 1 and to site 2 by broadcasting 
strategy. Usually, MST-strategy leads to a smaller com- 
munication cost than broadcasting strategy, since the route 
of the broadcasting strategy is also a spanning tree. 

spanning tree [3] of L(fi) U{]] in N. 

site 3 

Figure 1 
Let Uij denote the total data volume required by the 

transactions in T issued at nodej to update the fragmentf;. 
The overall communication cost for update f i  using 
MST-strategy is: 

n 

j=l 
(2.1) uijvmP(j, U f i ) ) ,  

where vmsp(j, L ( f i ) )  is the summation of the weights of 
the links of the minimum spanning tree of {j} uL(fi) in 
N. The overall communication cost to process the update 
type transactions of Tis: 

m n  

(2-2) x uijvmp(j, U f i ) ) .  
i = l  j=1 

We should note that MST-strategy is not optimal; to 
find an optimal strategy (with the minimum communica- 
tion cost) for a particular update among the sites contain- 
ing copies of a fragment and the issuing site, is equivalent 
to the problem of finding the minimum steiner tree which 
is NP-hard [2]. 
Minimum Steiner Tree Problem 
INSTANCE: Metric network N = ( V ,  E, p) ,  a subset 

V’GV. 

QUESTION How can we find a subtree of N that 
includes all the vertices of V’ and such that 
the sum of the weights of the edges in the 
subtree is minimized? 

However, from [2], it follows that the communication cost 
by using MST-strategy is at most twice of the minimum 
communication cost. 
Query Strategies 

There are a number of ways to process a query. 
According to the query optimisation technique [12], we 
may always assume that selection and projection opera- 
tions have been pushed down while processing a query, 
that is, it is necessary to first process the relevant selec- 
tions and projections on the required fragments at the sites 
where those fragments are located. Then, a simple stra- 
tegy to process a query is to send the contents of all frag- 
ments, which are required to access, to the query result 
site to implement the query; meanwhile if a fragment has 
several copies in the location L then the closest copy to the 
result site is chosen. 

For example, assume thatfl (A ,B) andf2 ( B  ,C) are 
two fragments located at site 1 and site 2 of the network 
illustrated in Figure 1. A query, resulted at site 3, is 
represented in SQL [ 113 as following: 

SELECT A ,  B ,  C 
FROMflLf2 
WHEREfl . B = f z . B  mdfl .A150 

The simple strategy to process this is to do a selection on 
f l  at site 1 with the conditionfl . A G O ,  and then to send 
the result of the selection and fragment f 2  to site 3 to 
implement the join. 

Let Qij denote the total data volume offi required 
to send to site j to process the queries in T which resulted 
at site j by the simple strategy. Then the overall commun- 
ication cost to process the queries in Tis: 

(2-3) Qijd(j9 L(f i>>-  
i = l  j=1 

where d ( j ,  L(fi))=min{p((j,l)): l ~ L ( f i ) J  and 
d ( j ,  L ( f i ) ) = O  if j € L ( f i ) .  The overall communication 
cost to process the queries in T with respect roti is defined 
as: 

n 

To observe the computational intractability of pro- 
cessing a join by the minimum communication cost in 
nesting order, an efficient (polynomial time) optimization 
query algorithm [7] has been presented with the restriction 
to a given chain order. This algorithm executes any query 
in a chain order by the minimum communication cost for 
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a given data allocation on a metric network. 

3. A Data Allocation Algorithm Under the Simple 
Strategy 

Suppose that F = i f i  : 1 l i l m )  is a fragmentation, N 
is a network with node set { j :  1 ljln), and T is a transac- 
tion set. In this section, we study the problem of finding a 
data allocation L of F on N so that the overall communica- 
tion cost to process the transactions in T, by the simple 
query strategy and MST-smtegy, is minimized. This 
optimization problem can be precisely stated as the fol- 
lowing problem. 
Simple Data Allocation Problem (SDAP) 
Find an allocation L of F on N so that the following value 
is minimized: 

(3.1) g i Q i j d ( i ,  L ( f i ) ) +  2 2 u i j v m P ( i ,  L ( f i ) ) -  
i = l  j = 1  i = l j = 1  

The SDAP is equivalent to finding an allocation L 
offi for each fragment so that 

n n 

(3.2) E Qijd(i9 L ( f i ) ) +  xuijvm~(i, L(f i ) )  

is minimized. 
j = l  j =  1 

3.1. NP-hardness 
In this section, we prove that SDAP is NP-hard. To 

prove the NP-hardness of SDAP, we need only to show 
the NP-hardness of the following problem. 
Allocation Problem (AP) 
INSTANCE: Given a network N with n nodes, a frag- 

mentfi, two integers U i j  and Q i j  for each 
node j in N ,  and an integer K .  

QUESTION Is there a data allocation L of f i  such that 
the value of (3.2) is not greater than K? 

Theorem 1: AP is NP-hard. 
To prove Theorem 1, we 6rst show a propem 

(Lemma 1) for an allocation. For 1 l i l m ,  let Ui = Uij; 

and for l l i l m  and l l j l n ,  let B i j = Q i j + U i j - U i ;  and 
for an allocation L offi, let 

n 

j =  1 

n n 

j =  1 j =  1 
cost(L(f i ) )= Qi jd( i9  L ( f i ) ) +  u i j v m P ( i ,  L ( f i ) ) -  

Lemma 1: Given a fragmentfi, suppose that L is an arbi- 
trary allocation of f i .  Then cosr(Ll ( f i ) ) l c o s t ( L ( f i ) )  
where L ( f i  ) = L ( f i  ) u { j )  for a node j with B i j  20. 
Proof: Without loss of generality, we may assume that 
j e  L ( f i ) .  We may immediately verify the following pro- 
perties (3.3), (3.4) and (3.5) according to the definitions. 

(3.3) d ( j , V l ) I d ( j , V ~ )  i f V 2 ~ V 1 ;  
(3.4) vmp(k ,V1 u { j ~ ) l d ( j , V 1 ) + v m p ( k , V l ) ;  
(3.5) vmp(k ,V1 U { j J ) = v m p ( j , V 1 )  i f j=k,  
where V 1  and V 2  are subsets of the node set of the net- 
work. 

From the above properties, it follows that: 
(3.6) C O s t ( L ( f i ) ) >  x Qikd(k,Ll (fi)) 

kb Li ( f , )  

+ Q i j d ( j J ( f i  1)) 
+ x UikVmp(k,L(f i ) ) ,  

n 

k = l  

(3.7) cost(L1 ( f i ) ) l  Q ikd(kJ1  Vi))  
k I L i ( f . )  

+ uij v m ~  ( ,L (fi )) 
+ u i j ( v m p ( k J ( f i  )I+ d ( j J ( f i  

k+ j 

Take (3.6) from (3.7): 

Proof of Theorem 1: Note that the following problem has 
been shown NP-hard in [5,2]. 
Steiner Tree Problem (STP) 
INSTANCE: Given a metric network N = ( V ,  E, p), a 

subset V ’ r V ,  and an integer 1. 
QUESTION Is there a subtree (Vl, E l )  of N so that 

V’EV1 and p(e)ll? 

cost( L 1 ( f i  )) - cost(L ( f i  )) I - B i j  d(  j , L ( f i  )) lo .  0 

e e E ,  

For each instance I l = ( N ,  V’ ,  1 )  of STP where 
N = ( V ,  E, p) is a graph and V = { j i  l l j l n )  and V ’ c V ,  
we now construct an instange I*_=(!, { U i j , Q i j ,  l l j l n ) ,  
K )  of AP as follows, where N = ( V ,  E ,  p) is a network 

N = N ,  
for l l j l n ,  U i j = c  and Qi j=nc  where c is a constant 
integer if je V’, and both Uij  and Q i j  are zero ifjs V’; 
K=cflV’I  

It can be immediately shown that for a solution 
( V I ,  El)  of STP, L such that L ( f i ) = V 1  is a solution of 
AP. Also from Lemma 1, it follows that for a solution L 
of AP, the minimum spanning tree of L ( f i )  uV’ is a solu- 
tion of STP. Hence the Theorem holds [5]. 

- 

C o r ~ l l a ~  1: SDAP is NP-hard. 

3.2. Algorithm SIMPLE 
In this section, we present an approximation algo- 

rithm, SIMPLE, for SDAP. From Lemma 2, it follows 
that an allocation L of a fragment fi with the minimum 
value of cost(L(f i ) )  can be viewed as an extension of the 
data allocation which allocates f i  to those nodes j with 
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Bij2O. This is the basic idea for the development of the 
algorithm SIMPLE. 

For each fragment f i ,  the algorithm SIMPLE starts 
to allocate copies offi to those J with B i j  20. Then it finds 
other nodes to allocate copies offi to greedily reduce the 
overall communication cost. 

Algorithm SIMPLE({& U i j  : 1 ljln J , f i  , N; Var L); 
Input: { Q i j , U i j :  l S j l n } , N ,  f i ;  
Output: L is an allocation offi; 
{ if Ui > O  then 

{ V o : = { j :  Bij2O); 
i f V 0 = 0  then cos t (Vo)=-;  
V' :=  v-  vo; 
f o r j = l t o  IVI-lVoldo 

{ choose a node I in V'such that 
cost( Vi- U { l )  ) is minimized, 
V j : = V j - l V { l ) ;  
V' :=  V'-  { I ) ;  ] 

Choose a V j  such that cos t (Vj )  is minimized; 
L ( f i ) : = v j ;  } 

e l s e L ( f i ) = { j :  Q i j > O ) ;  ] 

33. Analysis of the Algorithm SIMPLE 
Suppose that N is a given network, C is the largest 

weight of an edge in N, and c is the smallest weight of an 
edge in N. Further, suppose that F is a given fragment, T 
is a given transaction set, and for each fragment Lop,,  L o p ,  

is the data allocation of f i  with the minimum value of 

Clearly, the algorithm SIMPLE may run in polyno- 
mial time. Further, we have the following performance 
guarantee. 
Theorem 2: For each hgmentfi, suppose that L is a data 
allocation given by the algorithm SIMPLE. Then 

cost(Lopt(fi 1)- 

cost(L(fi  1) c 
cost(Lopt(fi))  'c. 

Proof: Clearly, if U i  = 0 then the algorithm SIMPLE will 
output a data allocation with the minimum communication 
cost. Below, we prove that this Theorem is true for 
ui >o. 

Let V o = { j :  B i j 2 0 ) ;  and let L o ( f i ) = V o  if V O + O ,  
otherwise let LO ( f i  ) = { j) where j is an arbitrary element 
in Lopt ( f i ) .  From Lemma 1, it follows that 
cosf(L1 ( f i  ) )=cost(Lopr ( f i  )) where 
L l ( f i ) = L , , ( f i ) ~ V O .  It isclearthatLo(fi)ELI ( f i ) .  

From the algorithm SIMPLE, we have that 
cost(L(fi))lcost(Lo ( f i ) ) .  We now prove that 
cost(L0 ( f i  1) c 
cost(L1 ( f i ) )  '7 

Suppose that I L o ( f i ) l = K o + l  and 
IL1 ( f i )  I=K1+ 1 .  By elementary calculation, we have 
that: 
cost(Lo(fi))5 2 ( Q i j + u i j ) C  

io L I (f,) 
+ ( Q i j + U i j ) C + K o U i C .  

j e  L I (f) -Lo (f) 
From the fact that L o ( f i )  contains all nodes j with 
B j ( f i ) 2 O  and above, it follows that: 

jeL,ffb 
~ o s t ( L o ( f i ) ) <  ( Q i j + U i j ) C + K l  UiC .  

Similarly, 
cosf(L1 ( f ; ) ) 2  (Qi j+Ui j )  c +K1 Uic.  

j e  L(fJ 

Corollary 2: Suppose that the algorithm SIMPLE is 
applied to each fragmentfi in F to obtain the allocation Li  
of f i .  Then in the data allocation L of F such that 
L ( f i ) = L i ( f i )  for each f i ,  we have that 

m 

x C o s t ( L ( f i ) )  
i = l  C 

m 
5-. Further, if the network is uni- 

C 
x C o s t ( L o p r ( f i ) )  
i = l  
form then L has the minimum communication cost under 
the simple strategy. 

"-etically, the algorithm SIMPLE has a good 
C performance for a local nework, the network such that - 

is small. From our experiments, in practice, this algorithm 
performs well in a general network. 

C 

4. A Heuristic Algorithm: REFINEMENT 
The algorithm in [7] usually outputs a better stra- 

tegy to process a query than the simple strategy; that is, if 
the simple strategy is the optimal then the algorithm will 
take the simple strategy. The data allocation output by the 
algorithm SIMPLE needs to be refined because the stra- 
tegies to process queries are not necessarily simple. In 
this section, we present a framework of a refinement algo- 
rithm on the data allocation Lo obtained by the algorithm 
SIMPLE based on an employed distributed optimizer OP. 
Suppose that cost(L, T, OP) is the overall communica- 
tion cost to process T by OP on the data allocation L. 

A local modification of a data allocation L of F is 
either: 

for a hgmentf;, drop a copy of f i  from a node j with 
j~ L( f i  ); or 
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0 for a fragment fi, add a copy of fi to a node j with 
j C  (fi); or 
for a fragmentf;, remove it f" a node j with j~ L(f;) 
to a node 1 with I C  L(f;). 

A data allocation L of F on N is locally optimal with 
respect to a distributed optimizer OP if no local 
modification will reduce the overall communication cost 
to process T by OP. 

The algorithm REFINEMENT iteratively refines LO 
through the choice of a local modification, so that the 
overall communication cost is greedily reduced, until there 
is no reduction. 

Algorithm REFINEMENT(Lo, F, N, OP; Var L); 
Input: F is a fragmentation, N is a network with node set V, 

OP is a distributed optimizer, 
Lo  is a data allocation of F on N; 

Output: L is a data allocation; 
( L:=Lo; 

REPEAT 
~ o : = c o s t ( L o ,  T ,  O P ) ; C : = C O ;  
for each fragmentf; do 

( for eachjE L o ( f i )  do 
for each node k#j  do 

{ Locally modify Lo to produce L so that 
L 1 (fi) : =LO (fi )- Cjl ~ C k l ,  
andsothat Ll(fi):=Lo(fr) forfl#fi; 

if c1 cc then 

forje V-Lo(fl)do 

~1 :=cost(Li ,T, OP); 

( L:=L1; c:=c1 } }; 

( Locally modify Lo to produce L 
so that L 1 ( f i )  :=LO (fi uijli 
and so that L 1 (fi ) : = L 0 (f,) forfr #fi; 

i fcl<cthen 
~1 :=cost (L l ,  T ,  OP); 

( L:=L1; c:=c1 } } }; 
Lo:=L; 
Until c: = co (no reduction on c o); } 

It is clear that in the algorithm REFINEMENT, each 
iteration runs in polynomial time if OP runs in polynomial 
time for each transaction. Each iteration never increases 
the overall communication cost, and the algorithm will 
stop if there is no reduction on the overall communication 
cost. In practice, we can choose a fixed number as the 
maximal iteration times. Let Ti be a subset of the given 
transaction set in which all transactions are required to 
access fragmentf; . To implement the algorithm REFINE- 
MENT efficiently, for each local modification of fmgment 
f; , we only need to run the optimizer again for the transac- 
tions in Ti  instead of the whole T. 
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From the algorithm REFINEMENT, it immediately 
follows that: 
Theorem 3: The algorithm REFINEMENT produces a 
locally optimal data allocation of F. 

5. Remarks and Conclusion 
This paper studies the data allocation problem with 

emphasis on minimizing overall communication cost. We 
have developed an iterative algorithm considering both the 
generality of a physical network (like other classical 
research in the file allocation problem) and the generality 
of transaction processing strategy (like the work in [l] for 
a uniform network). Several important properties of our 
algorithms are shown, while the computational intractabil- 
ity of the optimization problems is illustrated. 
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