
Confirmation: a Solution for Non-compensatability in Workflow Applications

Chengfei Liu Maria Orlowska Xiaofang Zhou Xuemin Lin
School of Comp. Sci. Dept. of CS & EE School of Comp. Sci. & Eng.

Univ. of Technology, Sydney Univ. of Queensland Univ. of New South Wales
Sydney NS W 2009 Australia Brisbane QLD 4072 Australia Sydney NSW 2052 Australia

liu@socs.uts.edu.au {maria, zxf)@csee.uq.edu.au lxue@cse.unsw.edu.au

The notion of a compensation is widely used in
advanced transaction models as means of recovery from a
failure. Similar concepts are adopted for providing
“transaction-like” behavior for long business processes
supported by workflows technology. Generally, designing
a compensating task in the context of a workflow process
is a non-trivial job. In fact, not every task is
compensatable. This work contributes to the study of the
non-compensatability problem.

A compensating task C of a task T semantically undoes
the effect of T after T has been committed. For example,
the compensating task of a deposit is a withdrawal. For a
task to be compensatable, it must satisfy two conditions.
. forcibility: The compensating task of the task must be

forcible. In other words, after the task commits, the
execution of its compensating task is guaranteed to
succeed by the application semantics.

. relaxation of isolation: The isolation requirement of
the shared data resources which the task may access
must be relaxed. This relaxation is required as the
purpose of introducing compensation is to avoid long-
duration waiting, otherwise, compensation may
become useless.

In this work, we carefully investigate the properties of
shared resources and tasks which may be performed on
these resources. As all its invoked operations must be
compensatable as well if a task is compensatable, we only
discuss the compensatability of operations defined on
shared resources. For most non-compensatable operations,
their reverse operations are only conditionally non-
forcible. i.e., the reverse operation of a non-compensatable
operation may fail only when undesired condition is
reached. Based on this, it is ideal to provide a semantic
level mechanism which can be used to guarantee that the
undesired condition will never be reached. For this
purpose, we propose a new concept called confirmation.

A confirmation is defined as part of an operation. It
specifies the extra work which needs to be done
(confirmed) after the normal part of the operation commits.
In other words, the work of an operation is divided into a
normal part and an extra part, if needed. The normal part of
an operation is performed when the operation is invoked,

while the extra part, as specified by the confirmation, is
executed later.

To ensure that the undesired condition will never be
reached, we can put unsafe work of an operation (e.g.,
deposit) into its confirmation part and delay the execution
of this part until a safe time later on, say, after an invoking
workflow instance succeeds in its execution. At that time,
changing the value of the undesired condition by other
operations (e.g., withdraw) will not cause any problem
because the compensation of the operation invocation is no
longer needed. As a result, the normal part of an operation
can be always compensated before the execution of the
confirmation part of the operation. By using ‘a
confirmation, we are able to modify some originally non-
compensatable tasks so that they become compensatable.

Note, the normal part and confirmation part areforward
parts of an operation. Unlike the compensation backward
part) of an operation, if the forcibility of either the normal
part or the confirmation part cannot be guaranteed by
application semantics, it will not leave any problem as the
invoking workflow can always choose to fail or try a
contingency plan.

In facilitating compensation and confirmation in a
transactional workflow environment, compensate and
confirm statements should be allowed to put in a workflow
specification. This is similar to including abort a n d
commit statements in a transaction. Upon success (or a
safe stage) of a workflow instance, the confirmation parts
of all executed operations, if defined, are executed; Upon
failure of a workflow instance, the compensation parts of
all executed operations, if defined, are executed. The
difference between a workflow scenario and a transaction
scenario is that execution of compensate and confirm
statements is application behavior, while execution of
abort and commit statements is system behavior. In this
light, the pair of concepts confirm/compensate can be
regarded as semantic commit/abort.

A framework has been proposed to incorporate both
confirmation and compensation into transactional
workflows.

O-7695-0071-4/99 $10.00 0 1999 IEEE
102

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 06:59 from IEEE Xplore. Restrictions apply.

