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their efficiency heavily depends on a constant, given shityla
Abstract— Similarity join is a useful primitive operation un-  threshold, and hence they cannot be directly applied to the
derlying many applications, such as near duplicate Web page top- similarity join problem. On the other hand, the top-

detection, data integration, and pattern recognition. Traditiona % similarity ioin problem in vector spaces with Euclidean
similarity joins require a user to specify a similarity threshold. In Y P P

this paper, we study a variant of the similarity join, termed top-t ~ distance functions was studied in spatial databases [§], [9
set similarity join. It returns the top- k pairs of records ranked by [10]. However, their algorithms are specially tailored for
their similarities, thus eliminating the guess work users have to Eyclidean distance functions and not applicable to siitylar
perform when the similarity threshold is unknown before hand. (o gistance) functions such as Jaccard and cosine sitigkari
An algorithm, topk-join, is proposed to answer topk similarity . .
join efficiently. It is based on the prefix filtering principle and In this paper, we consider the case where records are sets
employs tight upper bounding of similarity values of unseen pairs. and similarity functions are Jaccard, cosine, and dicelaiityi
Experimental results demonstrate the efficiency of the propose similarities. We call this problem top-(set) similarity joins.
algorithm on large-scale real datasets. We propose an efficient algorithrtopk-join, that process top-
k similarity joins efficiently. A n@ve algorithm is to compute
similarity values for all possible record pairs and theresel
Given a similarity function, a similarity join between twothe topk pairs. We propose an efficient algorithm that dras-
sets of records returns pairs of records from two sets sugéally reduces the number of record pairs whose simitsiti
that their similarities are no less than a given thresholfleed to be computed. The basic idea is to carefully expleit th
Similar joins have a wide range of applications, includingrefix filtering principle [5] and upper bound the similarity
near duplicate Web page detection [1], data integration [Zjalues of unseen pairs. Several non-trivial optimizatians
record linkage [3], and data mining [4]. Consequently, ¢hel|so proposed to reduce the memory footprint and to achieve a
has been much interest in developing efficient algorithms faghter upper bound of the similarity scores of unseen pétites
this fundamental operation. experimentally study the proposed method and demonstrate

However, the traditional form of the similarity join opei@t its efficiency for a wide range of parameter settings on real
requires a user to input a similarity threshold. In many &ppl datasets.

tion scenarios, this threshold is not known before hand and i The contributions of this paper can be summarized as
likely to vary according to datasets and application sdesar fg|jows

An appealing alternative is to compute the most similpairs

of records, ordered decreasingly by their similarity valué/e
call this top4 similarity join.

Top-k similarity join has several advantages over the tradi-
tional similarity join. Firstly, it computes most similaecord
pairs without the need to specify a similarity thresholdthi
out this top% similarity join, users have to experiment with
different threshold values, which usually leads to empsyits
(if the threshold chosen is too high) or a long running time
and too many results (if the threshold is too low). Secondly,
it supports interactive near duplicate detection appbost,
where users are presented with topaost similar record pairs
progressively. Thirdly, it produces most meaningful resul i _
where users perform similarity join under certain resowce ° The experimental rgsults ShQW the}t the new aIgonthm
time constraints. The execution of the tbpsimilarity join outperforms alternative algorithms in most cases and is
can be stopped at any time and it is guaranteed that the set applicable to the interactive application scenarios.
of record pairs output by the algorithm have higher or equal The rest of the paper is organized as follows: Section Il in-
similarity values than any of the unseen record pairs. troduces preliminaries and background on traditionallgirity

Top-k similarity join poses several challenges to designingin algorithms. Section Ill introduces our basic tbsimilar-
efficient query processing algorithms. Although many simity join algorithm. Several optimizations of the algoritheme
larity join algorithms have been proposed [5], [4], [6], [7]presented in Section IV. We discuss implementation details

I. INTRODUCTION

« We propose a novel algorithm to answer togimilarity
join queries. Unlike traditional similarity joins algo-
rithms, the proposed algorithm can progressively compute
join results without need of a prior given similarity
threshold.

« We develop several new pruning and optimization tech-
niques for topk similarity joins by exploiting the mono-
tonicity of maximum possible scores of unseen pairs, and
the monotonicity ofk-th largest similarity values seen
so far. These optimizations are integrated into the basic
algorithm and lead to improved upper bound estimates as
well as space and time efficiency.



and extensions to other similarity functions in Section \d arfirst “the ”, B for “lord ”, and so on. Note that we treat each
VI. Experimental results are given in Section VII and rethtesubsequent occurrence of the same token as a new token [5],
work appears in Section VIII. Section IX concludes the papeand hence the firstthe ” has been transformed inté and the
second the " into D. Assuming thatidfg > idfg > idfc >

idfp > idfa, the record can be canonicalized according to
A. Problem Definition O,qf into the arrayz = [B, E,C, D, A].

Similarity joins take two sets of record and return all pairs An inverted index, I, is a data structure that maps a
of records whose similarities are above a given thresholel. \ieken w to a sorted list of record identifiers such that the
consider a record assetof tokens taken from a finite universecorresponding records contaim [11]. Accordingly, I,,i]

U = {wi,wa,...,wy }. A similarity function, sim(-,-), indicates the-th entry in the inverted index of tokem.

returns a similarity value irf0, 1] for two records. Given two
sets of records and a threshdlda similarity join returns all
pairs of records from each set, such that their similariteess ~ Several approaches to traditional similarity join problare

no smaller thart, i.e., { (r,s) | sim(r,s) > t,r € R,s € S }. based on the prefix filtering principle [5], [4], [6]. The iftion

In this paper, we study a variant of the similarity join prei, is that if two records are similar, some fragments of them
termed topk- S|m||ar|ty join_ Given two sets of recordS, a tdp_ should OVerIap with each other. We forma"y state the prefiX
similarity join returnsk pairs of records from each set, suctiltering principle below:

that their similarities are the highest among all possidiesp ~ Lemma 1 (Prefix Filtering Principle)Consider an order-
For the ease of exposition, we will focus on self-join case #9 O of the token univers&/ and a set of records, each sorted
this paper. by O. Let the p-prefix of a recordr be the firstp tokens of

We denote theizeof a recordz as|z|, which is the number - If O(z,y) > «, then the(|z| — « + 1)-prefix of z and the
of tokens inz. We denote the document frequency of a tokefly| — a + 1)-prefix of y must share at least one token.

w as df (w), which is the number of records that contain th&lote that the above prefix filtering principle is a necessary
token. Theinverse document frequenc§ a tokenw, idf(w), but not sufficient condition for the corresponding overlap
is defined ad /df (w). Intuitively, tokens with highidf values constraint.

are rare tokens in the collection. Wanonicalizea record by ~ EXisting approaches usually follow the following filterean
sorting its tokens according to a global orderiéiydefined refine framework:

oni. An inverse document frequency orderiéij;; arranges Indexing Phase Inverted indices are built for tokens that

Il. PRELIMINARIES

B. Prefix Filtering Methods for Similarity Joins

tokens ini/ by the decreasing order of tokenglf values. A appear in the prefixes of the records.
recordz can also be represented afd-dimensional vector, Candidate Generation PhaseThe inverted indices for to-

x, wherez; = 1 if w; € x andz; = 0 otherwise. kens in the prefix of each record are probed to generate a
We consider several commonly used similarity functions for  set ofcandidate pairsThe two records of a candidate pair
sets and vectors: are guaranteed to share at least one token in their prefixes.
« Jaccard similarityis defined as/(z,y) = mz} '_rhe candidate pairs are gua}rarjtegd to b.e qsuperset of the

« Cosine similarityis defined asC(x,y) = ¥ = final results due to the prefix filtering principle. _
Y. iy Verification Phase Each candidate pair is evaluated against
N RN the similarity constraint and added to the final results if
« Dice similarityis defined asD(xz,y) = ‘296"1?;" its similarity is no less than the threshold.
« Overlap similarityis defined a®)(z,y) = |z Ny|.t To ensure the prefix filtering-based approach does not miss

We shall first focus on the Jaccard similarity function an@ny similarity join result, it can be shown that we need a prefi

later discuss other similarity functions in Section VI. met ©f length|z| — [¢ - ||| + 1 for each record:.

rest of the papekim(z,y) denotes/(z,y) by default, unless We now reviewAll-Pairs [4], which is a state-of-the-art,

otherwise stated. prefix-filtering-based algorithm for processing similgijibins.
The Jaccard similarity constrainf(z,y) > ¢ can be The pseudo-code foAll-Pairs is given in Algorithm 1. It

transformed into several equivalent forms, such as thelayertakes as the input a collection of records already sortetlen t

betweenz andy: ascending order of their sizes. It iterates through eacbrdec
; z, looking for candidates that intersecs prefix (Lines 8-11).
J(r,y) >t <= |rNy| > a, wherea = el (|Jz| + |y|) Afterwards,z and all its candidates will be verified against the

similarity threshold to return the correct join resultsriés 13-
Q) 15 . o )
). The algorithm also employs size filtering techniquet§r]
Given a document the lord of the rings ", we reduce accesses to inverted lists by considering only dares
can tokenize the document with white spaces into the fakhose size is no less than |z| (Line 10).2.
lowing recordx = { A, B,C, D, E }, where A stands for the
2A recent improvementppjoin [6], employs two major optimiza-
1For the ease of illustration, we do not normalize the overlajons over theAll-Pairs algorithm. We will discuss how to integrate
similarity to [0, 1]. the two optimizations into our algorithm in Section V.



2t 7. _
Algorithm 1: All-Pairs (R, £) similarity of - andy is no greater thaR ™", which is
Input : R is a collection of records sorted by the increasing less thant. This contradicts the assumﬁibn thatr, y) > t,

order of their sizes; each record has been and hence the index reduction principle holds. [ |
canonicalized by a global orderin@; a Jaccard

similarity threshold: . Lemma 2 relies on the fact that we process r'ecords in the

Output : All pairs of records(z, y), such thatsim(z,y) > ¢ increasing order of their sizes. Tbk_iI-Paws_ algorlthm thus
18— 0; can be improved to reduce the size of inverted indices as
2L =0 (A <i<|U) follows. In Algorithm 1 Line 12, afterz has been scanned
3 for ?Chf” € }t{ do ; did to int and inserted into inverted lists, all the following records
g :Tﬂ p_y[? Tgﬂrirq.recor 1a ot be scanned are no shorter than Therefore we can apply
6 for i — 1 to pp do ' Lemma 2 to reduce the number o8& tokens to be indexed.
7 w  afi]; According to Lemma 2, we only need to index the first
8 for j =1to || do 2] — [{4 - |«[] + 1 tokens ofz. Algorithm 2 describes the
9 y— Lu[j]; integration of the above index reduction technique iAlb
10 if [y| > ¢-[z| then Pairs algorithm.
11 | Al — Ayl +1; N . : _

Therefore, we distinguish two kinds of prefixes for a record:
12 | T Lou{a); the probing prefix with lengttp,, (Line 5 in Algorithm 1 and
13 for each y such that A[y] > 0 do the indexing prefix with lengtlp; (Line 1 in Algorithm 2). In
14 if J(x,y) >t then order to avoid ambiguity, the word “prefix” denotes probing
15 | L S=Su{l= v} prefix by default, unless otherwise noted.
16 r&urn S i : i i
Algorithm 2: Replacement of Line 12 in Algorithm 1
1p1<*|ZE| 1+t |{EH+1
. A 2 if i < p; then

C. Index Reduction over the Prefix Filtering 3 | e Tlou{a)

Another significant optimization to thall-Pairs algorithm
is the introduction of an index reduction technique. It wast fi
used implicitly in [4] for cosine similarity function, and as
extended to other similarity functions in [6]. We illusteathe
basic idea in the following example. In this section, we first give a basic algorithm to answer top-

Example 1:Consider the following two records andy, A similarity joins, followed by two optimizations exploitjthe
and the similarity threshold of.8. Tokens “?” indicate that ordering that the tokens are probed to form candidate pairs.

we have not accessed those tokens and do not know their ] )
contents yet. A. Overview of the Algorithm

IIl. TorP-k SIMILARITY JOIN ALGORITHMS

The main technical challenge for t@psimilarity joins is
xz=[AB777 that the similarity value of thé-th largest pair is unknown.
y=[B,?,7,7,7] If this value were known to us, we can run a state-of-the-art

similarity join algorithm, e.g.All-Pairs[4] or ppjoin+[6], with
The prefix length ofzx is 2. If y contains the tokem3 but the threshold and obtain correct results.
not A, the maximum possible similarity of the paie,y) i An important observation is that we can enumerate all the
at mostz=—; = 0.67. Therefore this pair cannot meet thenecessary” similarity thresholds in the decreasing order
similarity threshold though they share a common tol&im ti,ta,..., wheret; > t;, Vi < j. By “necessary” thresholds,
their prefix. we mean that if we change between different thresholds, it is
This suggest that we do not need to index toerfor z. possible that similarity join result will change. To derittee
We formally state thendex reduction principlen Lemma 2. necessary thresholds for prefix-filtering based similajiy
Lemma 2 (Index Reduction Principlelsiven a recordr, algorithms, we note that the set of candidate pairs that the
All-Pairs only needs to index itsz| — [ - [«[] + 1-prefix algorithms consider are solely determined by the prefixes of
to produce correct join results. the records. Therefore, if we lower the current thresholtb
Proof: [Index Reduction Principle] Consider two recordshe first valuet such that there is a record in the database
x andy, wherey comes aftetc in the collection. We assumewhose prefix will extend by one more token, we have to
J(z,y) > t, and none of the tokens in the| — [ 25 +|z[+1-  consider this and sett;; = t.
prefix of z is contained iny. The maximum D033|b|e value of A simple algorithm utilizing the above observation is as
[z Nyl is [{5] - [« — 1. Since the records are sorted in thgollows: for each threshold;, we invoke a similarity join
ascending order of their sizes, we know > |=|. Therefore algorithm to find all pairs with similarity values no less tha
J(x,y) = \$|+1Z|my||my| < ‘mm'i?yl'm - After substituting ¢;. The stopping condition is simply when the result size is
with the maximum possible value df: N y|, the Jaccard larger thank.




The main problem with this algorithm is the redundant comes with the recordz in their current prefixes. The records
putation caused by the repeated invocation of the simjlariare paired withz to form candidate pairs, with their exact
join algorithm. This can be solved by using an incrementalmilarity values calculated by the similarity functiondathen
similarity join algorithm instead. Denote the prefix of foradded to temporary results. We keep ohlyemporary results
a recordz for a thresholdt as prefiz,(z). We note that with the highest similarity values. We can output a result as
prefiz,, (z) < prefiz, (z) if t; > ;. Below we describe major soon as the similarity threshold for the next prefix eventds n
modifications needed to devise an incremental version of theeater than the similarity values of the current result.
All-Pairs algorithm: For each prefix event, we need to answer the following

1) In the incremental algorithm, waannotdiscard candidate question: What is the similarity threshold that triggers this

pairs whose similarity value is less than tloerrent prefix ever?” Answering this question will lead us to establish
threshold (unless: = 1). Nevertheless, we only needan upper bound for the similarity value of unseen pairs. We
to keep the largest pairs seen so far. call this upper bound theimilarity upper bound of a prefix

2) we need to devise a new stopping condition. We can stegent. Consider a recordwith a prefix lengthp,, the answer

the execution of the algorithm when the similarity valu¢o the above question is equivalent to theximumsimilarity
of the currentk-th result is larger than the next similaritythreshold whenz has a prefix length op,. According to

threshold. the prefix filtering principle, this value id — pml. We

In the following subsections, we will describe the algarith USe (7, px, sp. ) to denote a prefix event, wherg,, is the
in more details. similarity upper bound for: with a prefix length ofp,.

Algorithm 3 describes this incremental similarity join alg

B. Temporary Results and Events rithm. A fixed sized min-heaff’ is used to keep the largekt

As the similarity threshold decreases, the prefixes of dxcompairs seen so farT'[k] gives the pair with thek-th largest
will increase. We call the extension of a record’s prefix by orsimilarity. For the ease of illustration, we can initialize
more tokenw a prefix eventand the record in question as thevith any & pairs (e.g., by pairing record 1 with records 2
sourceof the event. A prefix event implies an upper bound db £ + 1) so that it is full. The prefix length for each record is
the similarity value of unseen pairs, as they share no comminitialized as 1 first. for each record, we insert(z,1,1.0)
token beforew in the prefix. The incremental similarity joininto a max heap based on the upper bounds. The similarity
algorithm is then run in an event-driven manner: once a prefioper bound for these prefix events are initialized as 1.0¢(Li
event is triggered, we (1) probe the inverted list of the tokel). The algorithm then iteratively pulls the next prefix even
w to find candidates pairs, and then (2) push its next eveft, p., sp. ), and probes the inverted lists of tokens in the
into a priority queue (i.e., to extend prefix to's next token probing prefixz[l..p.]. = is paired with the records that
in this record). share at least one token with in their prefixes. The pairs

Note that the similarity threshold which triggers a prefi@and their similarity values returned by the similarity ftioa
event is exactly an upper bound of the similarity value afre regarded as temporary results and addefi. tblext, we

unseen pairs. extendz’s prefix length top,,+1, and recalculate the similarity
upper bound for: with the current prefix length gf,.+1 (Line
u 0.75 17). Finally, the new eventr, p, + 1, s,,,) is pushed into the
v 0.8 max heap for prefix events. The algorithm stops when the max
w 0.8 heap for prefix events is empty or all the remaining events in
x 0.875| 0.75 the heap has a lower similarity upper bound than that of the
Y 0.9 | 0.8 k-th result inT.
z 0.9 | 0.8 Size filtering (Line 12) can be applied when we have
temporary results. Specifically, the lowest similarity ual
Fig. 1. Event-Driven Model among thek temporary results, denoted ag, is regarded

_ ) ) ) as a similarity threshold, and we can estimate the minimum
Figure 1 illustrates the event-driven idea. Each row reprgnd the maximum required sizes in order to admit only the

sents a record, and each box in the row represents a token. Ji@rds that can achieve a similarity value of at legstwith
number in the box shows the similarity threshold to trigger @e recordz.

prefix event that involves the token corresponding to the box

The prefix length for each record starts with 1, indicating 8/ o p1imizaTIONS FOR THEINCREMENTAL ALGORITHMS

similarity threshold of 1.0. The similarity threshold deases

gradually with the extending prefix. We use a max-heap toBoth All-Pairs and ppjoin family algorithms exploit the

process the events in decreasing order of their associatésdending ordering of record sizes and the global ordering

similarity thresholds. of tokens. In order to further optimize the incremerttgbk-
Once a prefix event happens, a new tokers included by join algorithm, we will exploit the ascending ordering of the

the extended prefix of a record We probew’s inverted list lowest similarity value among: temporary results, and the

in order to find all the records that share the common tokelescending ordering of the similarity upper bound.



Algorithm 3: Top-kSimilarityJoin (R) contents ofr andy to tell whether a pair will be identified
Input _: R is a collection of records; each record has been @ second time This is achievable as; is monotonically
canonicalized by a global orderir@ increasing and we can use the currepvalue to calculate the
Output : Top-k pairs of recordsz, y) ranked by their maximum prefixethat will be accessed before the algorithm
_ similarity value stops. We put a pair into the hash taldaly if a second
1 E « InitializeEvents(R); . . . . .
common token in both maximum prefixes is found. Since

2 T < InitializeTempResults(R); [+ Store any k A . .

pairs as temp results in T /; the similarity function will access the contents ofand y
3L — 01 <i<|U); sequentially, we can be seamlessly integrated this opdiiiz
4 while £ # () do (Lines 5-6 in Algorithm 6) into the similarity calculatiohife
° i(f;p”’i”%)[ﬂsﬁﬁpfféﬁ 4) with little overhead.
; Lpbre_ak; I+ stop here /- .Lemma 3: Algorithm 6 guarantees that each candidate pair

will be evaluated exactly once.
8 w — Z[pal;
9 sk «— Tk].sim; _ _ _ _
10 for j = 1to |, do Algorithm 6: Replacement of Line 13-15 in Algorithm 3
1 y < Lwlj]; o 1 X — max(z,y); Y+« min(z,y); / * deal with
12 Lf/\y\ € [sklz|, |z|/sk] then [+ size filtering (w,y) and (y,z) */:
13 sim(z,y) < CalcSimilarity(z, y); 2 if (x,y) ¢ H then
14 L T.add((x,y), sim(z,y)); 3 =X = [se- X1+ 1 by —1|yl—Tse-yll+1;
15 sk — T[k].sim; 4 | sim(x,y) < CalcSimilarity(x,y);
16 Io —I,U{z)}; I+ index the current prefix 5 POSx the position ofx andy’s second common
*/ token inx;

17 Spy < SimilarityUpperBound-Probe(z, ps + 1); 6 posy «— the position ofx andy’s second common
18 | E.push(z,ps + 1, 5,,); token iny;
19 return T 7 if posy <y and posy < ly then

8 LHHHU{(x,y)};

Algorithm 4 : InitializeEvents (R) o T.add((x, Y)iSlm(X’ y));
10 | s« T[k].sim;

1 E«—( -

2 for each z in R do

3 | E.push(z,1,1.0); /+* E is a max-heap */;

Theorem 1:Algorithm 3 (together with Algorithm 6) ver-
4 return B ifies the minimum number of pairs for the given similarity
upper bounding function in Algorithm 5.
Proof: Assume the contrary that the number of pairs
A. Optimization for Verification verified by our algorithm is not minimum. Then there exists a

. . . L air (z,y), which is verified by our algorithm, but is not ver-
Ong problem with Algorithm 3 is that the <_5|m|lar|ty betweerﬁied by another correct top-similarity join algorithm. Note
a pair may be computed up tb times, if they sharel

common tokens in their prefixes. Like All-Pairs, we call the that our algorithm generate candidates by decreasing ofder

computation of the similarity value of a candidate pair @8 similarity upper bound. All the candidate pairs generatau ¢

in Algorithm 3) verification Obviously, repeated verificationsachieve this similarity upper bound if their unseen cordent
. 9 ) Y, rep are identical. Since this similarity upper bound is no lésmnt
incur unnecessary overhead.

A simol lution to add thi blem is t bthe finals, there exists a collection such thain(x,y) > s,
simpie solution 10 address this prob’em IS 1o remembogy, , therefordx, y) is a join result. Any other algorithm that
all candidate pairs that have been verified in a hash tab jes not verify this pair will miss this pair in their outputch
However, the hash table will have too many entries.

te that pairs that h b ified onl bef tgthus incorrect. |
note that pairs that have been verilied only once betore ey yiq 14t it is not easy to upper bound the similarity values

algorithm s_to_ps_ do not.need to be remembered in t.he hacﬁmnseens pairs and the one we used in Algorithm 5 is quite
table. To minimize the size of the hash table, we look into tr}ﬁ'fective Note that if we do not access partatifthe records

simultaneously, it is unlikely that we will have a useful @pp
bounding function — as long as two records have the same
lengths and no part of their contents is accessed, we have
Output : The upper bound of the similarity value afand tg usle T'O as the upper bounding score as the two might be
another record provided thafp] is the first common ldéntical.
. token ofz and the other record B. Optimization for Indexing
Spg — 1 — = ; . . . .. L . ..
et S =] As discussed in Section II-C, traditional similarity join
- algorithms benefit from the index reduction optimization by

Algorithm 5: SimilarityUpperBound-Probe (z, p,)
Input : A recordz and a prefix lengthp




only indexing the minimum number tokens. However, thmonotonically decreasing, the indexing similarity uppeuid

optimization require that records are sorted in the asogndiis also monotonically decreasing.

order of their sizes. Nevertheless, we manage to achieveAlgorithm 7 implements the optimization for indexing to-

a similar index reduction effect by exploiting the fact thakens. It computes the indexing similarity upper bound for

records inserted into inverted indexes are sorted by detnea each(z, p,, s, ), and compares the indexing similarity upper

similarity upper bound We illustrate the idea in the examplebound with s,. If the indexing similarity upper bound is

below. smaller, a boolean flag is set &sie to prevent any further
Example 2:Consider the following three records. Tokenidex insertion.

“?” indicate that we have not accessed those tokens and do

not know their contents yet.

Algorithm 7 : Replacement of Line 16 in Algorithm 3

z=[A,C717 1if f = false then [+ f is initialized as
y=1C,7,77 false */
»=[B,C,7,7,7 2 Si — SimilarityUpperBound-Index(z, p..);
3 if s; > s then
Suppose we are about to insertinto C’s inverted list. , | Ly L,U{z};
According to Algorithm 5, the maximum possible similarityg else
value thatz and another record can achieve(is, provided ¢ f — true; / * stop index insertion
that C' is their first common token. This is case for the pair L «/

(x, z) if their unseen parts are identical. However,aifis -
inserted intoC’s inverted list and is paired with another record
during subsequenprobings, can they still achieve a similarity
value of(0.8? A subsequent prefix event with similarity upper
bound no larger thaf.8 induces tokens contained only in the Algorithm 8: SimilarityUpperBound-Index (z, p,)
other record rather tham. Take prefix event z,2,0.8) as . ubound « lzl=p=+1.

example, whose similarity upper bound(iss. Since tokenB |zl +pz =17

is contained only irz, the maximum possible similarity value 2 return ubound

achieved byr and z is % = 0.67 when their unseen tokens

are identical. The similarity upper bound can be achieved

if and only if there exists another record |z| = |z| and L .

Vi € [pa, |2], z[i] = z[i]. In this case, the max overlap isC- Further Optimization for Indexing

z—p,+1 and the union size i +p, — 1. The similarity upper  The apbove optimization can be further extended to limit
bound for(z,2,0.8) is therefore reduced toz,2,0.67) f(?r access to the invert lists after the index insertion is stdpp
subsequent probings, and we do not need to ins@mto C's  consider the case that a prefix eveént p,, s,. ) is trigger,

inverted list if this upper bound is belowy. and we are accessingp,]'s inverted list to find the records
The following Lemma allows us to reduce the number Qhat containz[p,] in their indexing prefixes. When an entry
tokens that need to be indexed and accessed. in the inverted list is accessed, we ask the question: given

Lemma 4:Given a recordz and a prefix lengthp,, the (. ), s v probing similarity upper bound and the current
rl‘;ﬁx'”]}im possible similarity value of and another record is gntry's probing similarity upper bound when it is inserted
[eITp-—1 Provided thatz[p,] is the first common token of  inig the inverted list, what is the maximum possible sinifjar
and the other record, and this pair is found by probings aftggtween: and the current entry? Answering this question help
insertingz into z[p,]'s inverted list. _ . us to stop accessing the subsequent entries in the invésted |

We call the similarity upper bound given by Lemmam  gince the entries are inserted it ]'s inverted list according
dexing similarity upper boundvhile the upper bound returned;, decreasingorder of probing similarity upper bound.

by Algorithm 5 is calledprobing similarity upper boundWe —\ye go1ve this issue by estimating the sizes of intersection

use this optimization for indexing to calculate the ind@(mand union between two recordsandy. Supposer[p,]'s prob-
similarity upper bound ofz[p,] (denoted ass;), and then . gimijarity upper bound is,., andy’s probing similarity
compare it with the similarity value of thé-th temporary upper bound when it is inserted intejp,]'s inverted list is

resmijlts (denot?d as.k). If 'td's, fé’“”‘?' to b_e s;naller thay,, spy-> We distinguish two scenarios according to the maximum
we do not per orm |r!verte Index msgrﬂon ofp,]. L Possible intersection of the two records:
Another optimization can be derived from this tighte

indexing similarity upper bound: we can stop insertion for1) |2 Nyl == - spa, if Y- 55y > 2 - 5pe.
all inverted lists when ans; < s, is found. This is be- 2) |lzNyl =y spy, if y-spy < 5pa.

) . ) 1_;":::*
cause that similarity upper boungd

|z]—pat+1 __ B

—1 pr—11 . . .
lz[+Pa e SFor the ease of computation and exposition, we use probing

it varies monotonically with the probing similarity UpPergimijarity upper bound instead of indexing similarity upper bound

bound1 — pfw_‘l. Since the probing similarity upper bound isfor the current entry in the inverted list.




« For scenario (1),

[z Uyl =[]+ [yl =[] - spe

S
2ol + fol - 25— fa] - 50
ry

Therefore,

_lznyl

J(z,y)

Jz Uyl
SpzSpy

Spz + Spy — SpzSpy

« For scenario (2),

[z Uyl =lz[ + [yl = [y| - spy

s
>yl - = + 1yl =yl - spy
Spa

Therefore,

Jznyl

J(z,y)

lzuy
SpzSpy

V. IMPLEMENTATION DETAILS
A. Integration with Positional Filtering and Suffix Filterg

The positional filtering and suffix filtering technique pro-
posed in [6] can be employed here so as to reduce the number
of pairs to be verified for their similarity value. Each pair
identified by accessing inverted lists is tested under jposit
filtering and the following sulffix filtering before verificatn is
performed. For positional filtering, we use the lowest samity/
value of temporary resultss,, if more thank temporary
results have been obtained. The similarity value is reghrde
as a threshold, and the minimum required overlap between
and y is computed for each paifz,y) to be verified. With
the positions of the first common token in bothand y,
we can estimate the maximum possible overlap(efy),
and then compare with the minimum required value. A pair
is admitted for verification only if the estimated maximum
possible overlap is no smaller than the minimum required
value. For suffix filtering,s, is considered as a similarity
threshold and converted to a Hamming distance threshold for
each pair to be verified. We perform suffix filtering under
the Hamming distance constraints and remove the disquhlifie
pairs before performing verification.

 Spa T Spy — SpaSpy e
B. Initialization of Temporary Results

We call the above maximum possible similarity value
Spx Spa . P . . .
m accessing similarity upper boundince it

decreases monotonically with the decreasifg, access to
the rest of the inverted list for tokenm[p,] can be stopped

To fill up 7" with k£ temporary results during the initialization
stage (Line 3, Algorithm 3) so that we have an initial one
solution is to generaté candidate pairs with high similarity

) . . value beforehand. Specifically, we examine several toketts w
when its valu_e is smaller _tha.mk. Furthe_rmore, the_ value is medium document frequency (e.g., between 10 and 100) when
also_ decrea_smg mono_tomcally whap IS decrea_smg. The performing tokenization, and record théjf values as well as
entries starting frony til the gnd of the.m\./erted “St. Can.beinverted lists. To initializeT', we search among these tokens
deleted because future probings of this inverted list wal gv

) db " The ab thod is imol i or the tokenw with the smallest document frequendy,,
:Eczlrg;irith)r/nags‘r‘na €8pe- The aDOVE Method IS Implemente here(ng) > k, and then generate candidate pairs witk

inverted list. Thek candidate pairs with the highest similarities
are inserted intd’ as temporary results.

Algorithm 9: Replacement of Line 11 in Algorithm 3

C. Compression on Prefix Events

1y« Lyjl; . . . . L
5 if Since the probing and indexing similarity upper bound of
SimilarityUpperBound—Access(l—pml, 1_pr|1) < s a prefix event<a;,pz7sm>_ is only depender]t on the size of
then Y the record and the prefix length, the prefix events with the
5 Ty — Iy \ Tulj .- |Lu|l; /% remove entries same record size and preflx_length can be grouped toget_her to
« - save space and time. Specifically, we insert prefix eventsain t
L. form of (|z|, p, $p. ) Instead of{ z, p,., s, ) into the priority
4 break; p ) pE L
gueueE. When a prefix event|z|, pz, sp, ) IS popped from
E, we retrieve all the records with the same sizeraand
perform probing actions. This requires us to sort the rezord
in increasing order of their sizes and divide the records int
Algorithm 10: SimilarityUpperBound-Access (Spg, Spy) blocks, each block with the same record size.
1 ubound « sm+siz—ﬁjmspy; VI. EXTENSION TO OTHER SIMILARITY FUNCTIONS

2 return ubound

In this section, we generalize our main algorithm to several
other similarity measures. We consider the following samify
functions: overlap, cosine, and dice similarities. The anaj

4Section V will discuss the integration of positional filtering, whicichanges are related to the size filtering condition (Line 12,
eventually keeps the value of Algorithm 3), maximum prefix length (Line 3, Algorithm 6),



probing similarity upper bound (Line 1, Algorithm 5), in- 0.975 — 0.025 - 4, as the cosine similarity function is
dexing similarity upper bound (Line 1, Algorithm 8), and looser than the Jaccard similarity function with the same
accessing similarity upper bound (Line 1, Algorithm 10). threshold.

Overlap Similarity All algorithms were implemented as in-memory algorithms,
— with all their inputs loaded into the memory before they were
size filtering Y= sk run. Sinceppjoin+ has been shown to outperform alternative
max prefix length| |z] — s, +1 algorithms such adll-Pairs [4] and PartEnum [7] on large-
scale real datasets under a wide range of parameter settings
we didn’t consider them.
All experiments were performed on a PC with Intel an Xeon

probing sim ubound |z| — p, + 1

indexing sim ubound || — p. + 1

accessing sim ubound min(s,., spy) X3220 2.40GHz CPU and 4GB RAM. The operating system
is Debian 4.1.1-21. The algorithms were implemented in C++
Cosine Similarity and compiled using GCC 4.1.2 with the -O3 flag.

— We used the following publicly available real datasets.yThe
size filtering | |y| € [s. - ], [«]/s] covered a wide range distributions and application domains
max prefix length| || — [s? - |z[] + 1 DBLP is a snapshot of the bibliography records from the
DBLP Web site> It contains about 0.9M records; each
probing sim ubound 1- "ﬁ record is a concatenation of author name(s) and the title
of a publication. This dataset is widely used in similarity
indexing sim ubound 15t join and near-duplicate detection research [7], [4], [12],
o [L3], [6].
accessing sim ubound oty TREC is from TREC-9 Filtering Track Collectiorfslt con-
- - tains 0.35M references from the MEDLINE database. We
Dice Similarity extract and concatenate author, title, and abstract fields t
form records.
size filtering | |y| € [;i—fg,@%’;)'z‘] TREC-3GRAM the same TREC dataset tokenized into 3-
grams.
max prefix length| [z — [3£21] + 1 UNIREF-3GRAM denotes the UniRef90 protein sequence
i0q si 2(|2|~pa+1) data from the UniProt projeét.We extract the first
probing sim ubound 2lzl-pet1 0.5M protein sequences; each sequence is an array of
indexing sim ubound \m\f‘prJrl amino acids_coded as uppercase letters. Each record is
’ transformed into a set of 3-grams.
accessing sim ubound 52— The datasets are transformed and cleaned by converting

letters to their lowercases. White spaces and punctuatiens a
converted into underscores before extractipgrams to form
We present our experiment results and analyses in thi® ¢-gram datasets. Exact duplicates are then removed, and
section. the records are sorted in ascending order of size.
A. Experiment Setup _ Some important_ st.atisfcics about the cleaned datasets are
. . . . listed in Table I. Distributions of token frequency and neto
We used the following algorithms in the experiment. size are plotted in Figures 2(a)—2(c). Only the token fregye
topk-join is the proposed algorithm with full optimizations.gistribution for DBLP is shown because all datasets follow
The positional filtering and suffix filtering [6] tecmiquesapproximately a similar Zipf distribution. We observe tiia

are also employed. THIAXDEPTHbarameter for suffix record size distributions are quite different for DBLP, TRE
filtering is set to 2 for DBLP and TREC, and 4 for TREC+d UNIREFE datasets.

3GRAM and UNIREF-3GRAM. The similarity measures covered by our experiments are
pptopk  serves as the baseline algorithm, where we run @ccarg and Cosine similarity functions. We measure the
state-of-the-art similarity algorithmppjoin+ [6] repeat- ;¢ of candidate pairs verified by similarity functions and

edly with decreasing similarity threshold, to find thgng rynning time. The running time does not include the

answers to tops queries. In each round, if the size of, o rocessing and loading time, as they are the same for all
the result computed by thapjoin+ algorithm is smaller

e ) algorithms®
than k, the similarity threshold is decreased and the

a.bo.ve .process is repeated. In this study, we dgprease thfﬁttp://www.informatik.uni-trier.de/ ~ley/db
similarity threshold at an equal rate. More specifically, fo Shttp://trec.nist.gov/data/t9_filtering.html

the Jaccard similarity, we use threshol@5—0.05-i for  7htp://beta.uniprot.org/ (downloaded in March, 2008)
the i-th round; for the cosine similarity, we use threshold 8The loading time is between 2 to 38 seconds.

VIl. EXPERIMENTS
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Fig. 2. Statistics and Distributions of Datasets

TABLE |

DATASET STATISTICS Figures 4(a)- 4(c) show the number of candidate pairs for

both topk-join and pptopk algorithm with differentk values.
The candidate sizes for both algorithms grow with the ingeea

Dataset N  avg.size |U| . X ) . ..
of k. The difference is that the candidate sizetopk-join
DBLP 855,266 143 509370 grows smoothly with the increase &f while the number of
¥SEE SGRAM gj;'ggg éggé 1282222 pptopk jumps at a certairk. This is becaus@ptopk has to
UNIREF-3GRAM 500:000 3729 158315 “guess” the similarity threshold for the inpit On DBLP,

topk-join generates similar candidate size witptopk, while
on the other two datasetspk-join produces fewer candidates

thanpptopk. The candidate size is primarily dependent on two
B. Effect of Optimization for Verification factors:

In order to study the impact of the optimization for verifi- o the effect of positional filtering and suffix filtering. Both
cation, we remove it from thopk-join algorithm, and name filtering techniques are more effective at high similarity
the resulting algorithnmecord-all. Hence it records in a hash thresholds. If we use the final value @f as the similarity
table all the candidate pairs that have been verified in order thresholdt for pptopk, the candidate size opptopk

to avoid repeated verification. is smaller than that ofopk-join, because the positional

We measure the numbers of hash table entries for togik: filtering and suffix filtering use a constant similarity
join andrecord-all on the TREC dataset, which were shown  threshold¢ in pptopk, compared to a threshold that
in Figure 3(a). Results on other datasets are similar. Basih gradually increases tbin topk-join.

table sizes grow quickly with the increaselgfwhile applying « the guess on the similarity threshold faptopk. If

the optimization for verification can reduce the number atha the guess is “conservative”, i.e. the threshold is much

table entries by 33 lower than the finals;, pptopk may produce too many
candidate pairs and join results.

The reason whytopk-join produces similar number of
We remove the optimization for indexing itopk-join candidate pairs wittpptopk on DBLP but much fewer on
algorithm and name the resulting algorithwo-index-opt. ~ TREC and TREC-3GRAM is: (a) On DBLP, the join results

We run topk-join and w/o-index-opt algorithm on the have higher similarity than those on the other two datasets.
TREC dataset and measure the peak numbers of index entpesitional filtering and suffix filtering are quite effective
for both algorithms. Note thatopk-join employs an index against candidate pairs and then play a more important role
deletion technique to save space, so we measure the nunihefetermining candidate size. On TREC and TREC-3GRAM,
of index entries immediately after the insertion of index hgpositional filtering and suffix filtering are less effectives the
stopped but before the index deletion is performed. candidate sizes shown in the figures are quite large. (b) A

The number of index entries and running time are shovgubtle difference between the guessed similarity thresaod
in Figure 3(b) and 3(c). We observe that the number of indee final s;, might lead to a huge increase in candidate size.
entries can be reduced by about 40% with the optimizationhis is more substantial when similarity threshold is lowda
and it results in about 20% improvement on running time. thus the effect is enlarged for TREC and TREC-3GRAM.

The running time for both algorithms is shown in Fig-
ures 4(d)-4(f).topk-join outperformspptopk in most cases.

We compare the performance of otapk-join algorithm topk-join can achieve up to 1.6x speed-up on DBLP, 2x on
with the baselingoptopk algorithm. We measure the numbefTREC, and 3.4x on TREC-3GRAM. The main reason is that
of candidate pairs and running time, using the Jaccardaimilpptopk produces more results than needed for nigswhile
ity function on the DBLP and TREC datasets, and the cosit@pk-join is directly optimized for the parametér Table I
similarity function on the TREC-3GRAM dataset. shows the number of results obtained gytopk during each

C. Effect of Optimization for Indexing

D. Comparison withpptopk
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Fig. 3. Optimization for Verification and Indexing

round on the TREC dataset. In additiclpk-join employs largest similarities. Then the algorithm can simply iteraver

an optimization technique on indexing and saves the ovdrhdhe records, calculating the actual similarity values foe t
due to index construction and accesses. candidates suggested by the Oracle, and retain only theskarg
k pairs. The average number of verifications per record will be
k. Our result here shows thédpk-join performs even fewer
number of verifications than this hypothetical algorithm.

TABLE Il
PPTOPK’S JOIN RESULT SIZES IN EACH ROUND

t 095 090 085 080 075 070 065 0.60
# 34 84 187 404 725 1162 1819 3361

F. Answering Topt Queries Progressively

We investigate the performance of tlapk-join algorithm
to output join results progressively. This feature benefjis

It is interesting to note thatbpk-join is faster tharpptopk plications that require the system to output join resultslavh
on DBLP although it produces more candidate pairs. Thige algorithm is still running. For instance, a user may tnpu
is because the average record size in DBLP is short (oréf initial k& = 100 but terminate the execution of algorithm
14). The similarity computation can be done efficiently, lwhi when she is already satisfied with the fibét results.
index construction, accessing, and other overheads are mor\We ran the experiment on the TREC-3GRAM and UNIREF-
substantial. Thanks to the optimization for indexitmpk-join 3GRAM datasets using the Jaccard similarity function with
is able to reduce the cost on index construction and acegssikh = 200. The metrics measured are: the probing similarity
and therefore outperformgptopk on DBLP dataset. upper bound, the similarity of the-th temporary result, and

It is also interesting to observe that the two outliers offie output time. All measures are taken with respect to each
the TREC-3GRAM dataset, whetepk-join produces fewer join result.
candidate pairs but turns out to be slower. We found that thisFigure 5(b) shows the probing similarity upper bound of
is mainly due to the more powerful size filtering effect irunprocessed prefix events (denoted as TREC 3-GRAM UB and
pptopk than in topk-join. As pptopk scans records by the UNIREF 3-GRAM UB) and the lowest similarity value among
ascending order of record sizes, the entries in the invertda current temporary results (denoted as TREC 3-GRAM Sk
lists can be safely deleted if their sizes are below the requi and UNIREF 3-GRAM Sk) when théth (x-axis) temporary
minimum value, as they cannot produce any future join resultesult is confirmed as a final result and sent to the output.
However, intopk-join these entries cannot be deleted buthe probing similarity upper bounds are closelto for both
only kept from forming candidates when they are accessed,daasets when the first join result is sent to the output, and
they might be identified as candidates by future index probdscreases almost linearly with more join results are setfteto
and produce join results. This will incur more inverted lisputput. On the other hand, the similarity of theh temporary
accessing time fotopk-join. The impact of size filtering is results; almost remains the same during the whole process,
especially substantial on the TREC-3GRAM dataset, becawgept for a slight increase on the TREC-3GRAM dataset for

the inverted lists for 3-grams are typically very long. the first 20 results. This suggests that we can quickly fill the
o k temporary results whose lowest similarity value is close to
E. Verifications per Record the k-th final result. More than that, this strengthens the effect

We measure the average number of verifications for eaghthe optimizations for both verification and indexing snc
record runningtopk-join on the TREC dataset, and plot theve can find ans; close to the final value at an early stage.
result in Figure 5(a). We also show the numken the figure. The elapsed time when each final result is sent to the output
It is clear that the the average number of verifications per plotted in Figure 5(c). The rate of result ouptut is slow at
record is much smaller thath The number id3.3 whenk = the beginning, but increasing as more temporary results are
500, and397.8 when k = 2500. confirmed as final results and output. There are at least two

The result is interesting in the following sense. Consideeasons for this observation: (a) The un-indexed part ofi eac
a hypothetical algorithm equipped with an Oracle such thegcord is long at the beginning so that it is difficult to prune
for each record, the Oracle suggestsesults that have the candidate pairs by estimating the upper bound of the overlap
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This renders positional filtering less effective. (b) Thefpr In [19], LSS algorithm is proposed to perform similarityrjoi
lengths are short when the first few join results are sentdo thsing Graphics Processing Unit (GPU).

output. Note that the tokens within each record are sorted byThe work in the second category concentrates on retrieving
decreasingdf. Due to the low frequency tokens contained bgpproximate answers to the similarity join problem [20],
the prefix, the pairs have more chance of being similar if th¢21], [22], [23]. Local Sensitive Hashing(LSH) [23] is a
share such tokens. For example, two records might be quitelely adopted technique for similarity search. [20] prepd
similar if the first common token igdpjoin ", but less chance a shingle-based approach to approximately identify near du
of being similar if the first common token isalgorithm ", plicate Web pages. Another synopsis-based algorithm iscbas
These candidate pairs may have medium similarity values ama randomized projection [22].

survive suffix filtering though they might not be the final Several existing work studies the similarity search proble
results. On the contrary, the positional filtering and thifibssu [24], [25], [26], [27], which returns the records in a collien
filtering become more effective when more join results amghose similarity with the query exceeds a given threshold.
output, since the unseen part of tokens are smaller for eddfsed on the inverted list framework, [26] proposes an efiici
record and the first common token of a candidate pair is high@inciple to skip records when accessing inverted lists. Fo
in frequency. The optimization for indexing is also workingnformation retrieval(IR) purpose, [27] designs efficieath-
when probing similarity upper bound decreases to a certdiiues for indexing and processing similarity queries unde
value, which facilitates the algorithm to output the lasw fe IR-style similarity functions.

join results. Similarity functions were studied in a variety of appli-
cations. For text documents, edit distance [28] and Jaccard
similarity on g-grams [25] are widely used. In large-scalebV
Similarity Join  Similarity joins have attracted much atten@PPlications, similarities between two documents is ugual
tion in several research communities. It has been studied fomeasured by Jaccard or overlap similarity on small-sized
wide range of applications, such as record linkage [3], mergsynopses extracted from the documents [29], [21]. Soundex

purge [14], data deduplication [15], and name matching.[16f & commonly used phonetic similarity measure for names

Existing work on traditional similarity joins can be categoMatching tasks [30].
rized into two groups. The first is to retrieve exact answeli®p-k Queries The problem of topk query processing has
to the problem where all the pairs satisfying the similaritheen studied by Fagiet al [31], [32]. Much work build upon
constraints are returned. [17], [5], [4], [6] are based ~eited Fagin’s work for different application scenarios, e.gnkiag
indices and various filtering techniques. Alternatively] [ query results from structured databases [33], processsig d
employs the pigeon hole principle, which carefully divideet tributed preference queries [34] and keyword queries [35].
records into partitions and then hash them into signatures[36] studies the toge spatial join problem, which retrieves
with which candidate pairs are generated, followed by a-pogtirs of objects that satisfy a given spatial constraintveier,
filtering step to eliminate false positives. There has beemn t as the distance function used in our problem is not in Eualide
recent work on similarity join. [18] designs a novel frametvo distance and the dimensionality in our problem is much highe
to identify similar records with some token transformasion existing spatial database techniques are not applicable.

VIIl. RELATED WORK
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IX. CONCLUSIONS
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(13]

In this paper, we study the problem of answering similarity
join queries to retrieve tog-pairs of records ranked by their[14]
similarities. Existing approaches for the traditional gamity
joins with a given threshold will have to make guesses on thg)
similarity threshold and incur much redundant calculation
We propose an efficient algorithm that computes the answéi¥
in a progressive manner. The intrinsic monotonicity of uppe
bound score and the-th temporary result score are exploitedl7]
to develop several optimizations to improve the space aﬂg]
time efficiencies of the algorithm. The superiority of our
proposed algorithm is demonstrated by extensive expetsneiio]

on large-scale datasets under a wide range of parameter
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