
Top-k Set Similarity Joins
Chuan Xiao Wei Wang Xuemin Lin Haichuan Shang

The University of New South Wales & NICTA
{chuanx, weiw, lxue, shangh }@cse.unsw.edu.au

Abstract— Similarity join is a useful primitive operation un-
derlying many applications, such as near duplicate Web page
detection, data integration, and pattern recognition. Traditional
similarity joins require a user to specify a similarity threshold. In
this paper, we study a variant of the similarity join, termed top-k
set similarity join. It returns the top- k pairs of records ranked by
their similarities, thus eliminating the guess work users have to
perform when the similarity threshold is unknown before hand.
An algorithm, topk-join, is proposed to answer top-k similarity
join efficiently. It is based on the prefix filtering principle and
employs tight upper bounding of similarity values of unseen pairs.
Experimental results demonstrate the efficiency of the proposed
algorithm on large-scale real datasets.

I. I NTRODUCTION

Given a similarity function, a similarity join between two
sets of records returns pairs of records from two sets such
that their similarities are no less than a given threshold.
Similar joins have a wide range of applications, including
near duplicate Web page detection [1], data integration [2],
record linkage [3], and data mining [4]. Consequently, there
has been much interest in developing efficient algorithms for
this fundamental operation.

However, the traditional form of the similarity join operation
requires a user to input a similarity threshold. In many applica-
tion scenarios, this threshold is not known before hand and is
likely to vary according to datasets and application scenarios.
An appealing alternative is to compute the most similark pairs
of records, ordered decreasingly by their similarity values. We
call this top-k similarity join.

Top-k similarity join has several advantages over the tradi-
tional similarity join. Firstly, it computes most similar record
pairs without the need to specify a similarity threshold. With-
out this top-k similarity join, users have to experiment with
different threshold values, which usually leads to empty results
(if the threshold chosen is too high) or a long running time
and too many results (if the threshold is too low). Secondly,
it supports interactive near duplicate detection applications,
where users are presented with top-k most similar record pairs
progressively. Thirdly, it produces most meaningful results
where users perform similarity join under certain resourceor
time constraints. The execution of the top-k similarity join
can be stopped at any time and it is guaranteed that the set
of record pairs output by the algorithm have higher or equal
similarity values than any of the unseen record pairs.

Top-k similarity join poses several challenges to designing
efficient query processing algorithms. Although many simi-
larity join algorithms have been proposed [5], [4], [6], [7],

their efficiency heavily depends on a constant, given similarity
threshold, and hence they cannot be directly applied to the
top-k similarity join problem. On the other hand, the top-
k similarity join problem in vector spaces with Euclidean
distance functions was studied in spatial databases [8], [9],
[10]. However, their algorithms are specially tailored for
Euclidean distance functions and not applicable to similarity
(or distance) functions such as Jaccard and cosine similarities.

In this paper, we consider the case where records are sets
and similarity functions are Jaccard, cosine, and dice similarity
similarities. We call this problem top-k (set) similarity joins.
We propose an efficient algorithm,topk-join, that process top-
k similarity joins efficiently. A näıve algorithm is to compute
similarity values for all possible record pairs and then select
the topk pairs. We propose an efficient algorithm that dras-
tically reduces the number of record pairs whose similarities
need to be computed. The basic idea is to carefully exploit the
prefix filtering principle [5] and upper bound the similarity
values of unseen pairs. Several non-trivial optimizationsare
also proposed to reduce the memory footprint and to achieve a
tighter upper bound of the similarity scores of unseen pairs. We
experimentally study the proposed method and demonstrate
its efficiency for a wide range of parameter settings on real
datasets.

The contributions of this paper can be summarized as
follows

• We propose a novel algorithm to answer top-k similarity
join queries. Unlike traditional similarity joins algo-
rithms, the proposed algorithm can progressively compute
join results without need of a prior given similarity
threshold.

• We develop several new pruning and optimization tech-
niques for top-k similarity joins by exploiting the mono-
tonicity of maximum possible scores of unseen pairs, and
the monotonicity ofk-th largest similarity values seen
so far. These optimizations are integrated into the basic
algorithm and lead to improved upper bound estimates as
well as space and time efficiency.

• The experimental results show that the new algorithm
outperforms alternative algorithms in most cases and is
applicable to the interactive application scenarios.

The rest of the paper is organized as follows: Section II in-
troduces preliminaries and background on traditional similarity
join algorithms. Section III introduces our basic top-k similar-
ity join algorithm. Several optimizations of the algorithmare
presented in Section IV. We discuss implementation details

and extensions to other similarity functions in Section V and
VI. Experimental results are given in Section VII and related
work appears in Section VIII. Section IX concludes the paper.

II. PRELIMINARIES

A. Problem Definition

Similarity joins take two sets of record and return all pairs
of records whose similarities are above a given threshold. We
consider a record as asetof tokens taken from a finite universe
U = {w1, w2, . . . , w|U| }. A similarity function, sim(·, ·),
returns a similarity value in[0, 1] for two records. Given two
sets of records and a thresholdt, a similarity join returns all
pairs of records from each set, such that their similaritiesare
no smaller thant, i.e., { 〈r, s〉 | sim(r, s) ≥ t, r ∈ R, s ∈ S }.
In this paper, we study a variant of the similarity join problem,
termed top-k similarity join. Given two sets of records, a top-k
similarity join returnsk pairs of records from each set, such
that their similarities are the highest among all possible pairs.
For the ease of exposition, we will focus on self-join case in
this paper.

We denote thesizeof a recordx as|x|, which is the number
of tokens inx. We denote the document frequency of a token
w asdf(w), which is the number of records that contain the
token. Theinverse document frequencyof a tokenw, idf(w),
is defined as1/df(w). Intuitively, tokens with highidf values
are rare tokens in the collection. Wecanonicalizea record by
sorting its tokens according to a global orderingO defined
on U . An inverse document frequency orderingOidf arranges
tokens inU by the decreasing order of tokens’idf values. A
recordx can also be represented as a|U |-dimensional vector,
x, wherexi = 1 if wi ∈ x andxi = 0 otherwise.

We consider several commonly used similarity functions for
sets and vectors:

• Jaccard similarityis defined asJ(x, y) = |x∩y|
|x∪y| .

• Cosine similarity is defined asC(x, y) = x·y
‖x‖·‖y‖ =

∑

i
xiyi√

∑

i
x2

i
·
√

∑

i
y2

i

.

• Dice similarity is defined asD(x, y) = 2·|x∩y|
|x|+|y|

• Overlap similarity is defined asO(x, y) = |x ∩ y|.1
We shall first focus on the Jaccard similarity function and
later discuss other similarity functions in Section VI. In the
rest of the paper,sim(x, y) denotesJ(x, y) by default, unless
otherwise stated.

The Jaccard similarity constraintJ(x, y) ≥ t can be
transformed into several equivalent forms, such as the overlap
betweenx andy:

J(x, y) ≥ t⇐⇒ |x ∩ y| ≥ α, whereα =
t

1 + t
· (|x|+ |y|)

(1)

Given a document “the lord of the rings ”, we
can tokenize the document with white spaces into the fol-
lowing recordx = {A,B,C,D,E }, whereA stands for the

1For the ease of illustration, we do not normalize the overlap
similarity to [0, 1].

first “the ”, B for “ lord ”, and so on. Note that we treat each
subsequent occurrence of the same token as a new token [5],
and hence the first “the ” has been transformed intoA and the
second “the ” into D. Assuming thatidfB > idfE > idfC >
idfD > idfA, the record can be canonicalized according to
Oidf into the arrayx = [B,E,C,D,A].

An inverted index,Iw, is a data structure that maps a
token w to a sorted list of record identifiers such that the
corresponding records containw [11]. Accordingly, Iw[i]
indicates thei-th entry in the inverted index of tokenw.

B. Prefix Filtering Methods for Similarity Joins

Several approaches to traditional similarity join problemare
based on the prefix filtering principle [5], [4], [6]. The intuition
is that if two records are similar, some fragments of them
should overlap with each other. We formally state the prefix
filtering principle below:

Lemma 1 (Prefix Filtering Principle):Consider an order-
ingO of the token universeU and a set of records, each sorted
by O. Let thep-prefix of a recordx be the firstp tokens of
x. If O(x, y) ≥ α, then the(|x| − α + 1)-prefix of x and the
(|y| − α + 1)-prefix of y must share at least one token.
Note that the above prefix filtering principle is a necessary
but not sufficient condition for the corresponding overlap
constraint.

Existing approaches usually follow the following filter-and-
refine framework:

Indexing Phase Inverted indices are built for tokens that
appear in the prefixes of the records.

Candidate Generation PhaseThe inverted indices for to-
kens in the prefix of each record are probed to generate a
set ofcandidate pairs. The two records of a candidate pair
are guaranteed to share at least one token in their prefixes.
The candidate pairs are guaranteed to be a superset of the
final results due to the prefix filtering principle.

Verification Phase Each candidate pair is evaluated against
the similarity constraint and added to the final results if
its similarity is no less than the threshold.

To ensure the prefix filtering-based approach does not miss
any similarity join result, it can be shown that we need a prefix
of length |x| − dt · |x|e+ 1 for each recordx.

We now reviewAll-Pairs [4], which is a state-of-the-art,
prefix-filtering-based algorithm for processing similarity joins.
The pseudo-code forAll-Pairs is given in Algorithm 1. It
takes as the input a collection of records already sorted in the
ascending order of their sizes. It iterates through each record
x, looking for candidates that intersectx’s prefix (Lines 8-11).
Afterwards,x and all its candidates will be verified against the
similarity threshold to return the correct join results (Lines 13-
15). The algorithm also employs size filtering technique [7]to
reduce accesses to inverted lists by considering only candidates
whose size is no less thant · |x| (Line 10). 2.

2A recent improvement,ppjoin [6], employs two major optimiza-
tions over theAll-Pairs algorithm. We will discuss how to integrate
the two optimizations into our algorithm in Section V.

Algorithm 1 : All-Pairs (R, t)
Input : R is a collection of records sorted by the increasing

order of their sizes; each record has been
canonicalized by a global orderingO; a Jaccard
similarity thresholdt

Output : All pairs of records〈x, y〉, such thatsim(x, y) ≥ t
S ← ∅;1
Ii ← ∅ (1 ≤ i ≤ |U |);2
for each x ∈ R do3

A← empty map from record id to int;4
pp ← |x| − dt · |x|e+ 1;5
for i = 1 to pp do6

w ← x[i];7
for j = 1 to |Iw| do8

y ← Iw[j];9
if |y| ≥ t · |x| then10

A[y]← A[y] + 1;11

Iw ← Iw ∪ {x };12

for each y such that A[y] > 0 do13
if J(x, y) ≥ t then14

S ← S ∪ {(x, y)};15

return S16

C. Index Reduction over the Prefix Filtering

Another significant optimization to theAll-Pairs algorithm
is the introduction of an index reduction technique. It was first
used implicitly in [4] for cosine similarity function, and was
extended to other similarity functions in [6]. We illustrate the
basic idea in the following example.

Example 1:Consider the following two recordsx and y,
and the similarity threshold of0.8. Tokens “?” indicate that
we have not accessed those tokens and do not know their
contents yet.

x = [A,B, ?, ?, ?]

y = [B, ?, ?, ?, ?]

The prefix length ofx is 2. If y contains the tokenB but
not A, the maximum possible similarity of the pair〈x, y〉 is
at most 4

5+5−4
= 0.67. Therefore this pair cannot meet the

similarity threshold though they share a common tokenB in
their prefix.

This suggest that we do not need to index tokenB for x.
We formally state theindex reduction principlein Lemma 2.

Lemma 2 (Index Reduction Principle):Given a recordx,
All-Pairs only needs to index its|x| − d 2t

1+t
· |x|e + 1-prefix

to produce correct join results.
Proof: [Index Reduction Principle] Consider two records

x andy, wherey comes afterx in the collection. We assume
J(x, y) ≥ t, and none of the tokens in the|x|−d 2t

1+t
· |x|e+1-

prefix of x is contained iny. The maximum possible value of
|x ∩ y| is d 2t

1+t
e · |x| − 1. Since the records are sorted in the

ascending order of their sizes, we know|y| ≥ |x|. Therefore
J(x, y) = |x∩y|

|x|+|y|−|x∩y| ≤
|x∩y|

|x|+|x|−|x∩y| . After substituting
with the maximum possible value of|x ∩ y|, the Jaccard

similarity of x andy is no greater than
d 2t

1+t
e·|x|−1

b 2
1+t

c·|x|+1
, which is

less thant. This contradicts the assumption thatJ(x, y) ≥ t,
and hence the index reduction principle holds.

Lemma 2 relies on the fact that we process records in the
increasing order of their sizes. TheAll-Pairs algorithm thus
can be improved to reduce the size of inverted indices as
follows. In Algorithm 1 Line 12, afterx has been scanned
and inserted into inverted lists, all the following recordsto
be scanned are no shorter thanx. Therefore we can apply
Lemma 2 to reduce the number ofx’s tokens to be indexed.
According to Lemma 2, we only need to index the first
|x| − d 2t

1+t
· |x|e + 1 tokens ofx. Algorithm 2 describes the

integration of the above index reduction technique intoAll-
Pairs algorithm.

Therefore, we distinguish two kinds of prefixes for a record:
the probing prefix with lengthpp (Line 5 in Algorithm 1 and
the indexing prefix with lengthpi (Line 1 in Algorithm 2). In
order to avoid ambiguity, the word “prefix” denotes probing
prefix by default, unless otherwise noted.

Algorithm 2 : Replacement of Line 12 in Algorithm 1

pi ← |x| − d
2t

1+t
· |x|e+ 1;1

if i ≤ pi then2
Iw ← Iw ∪ {x };3

III. T OP-k SIMILARITY JOIN ALGORITHMS

In this section, we first give a basic algorithm to answer top-
k similarity joins, followed by two optimizations exploiting the
ordering that the tokens are probed to form candidate pairs.

A. Overview of the Algorithm

The main technical challenge for top-k similarity joins is
that the similarity value of thek-th largest pair is unknown.
If this value were known to us, we can run a state-of-the-art
similarity join algorithm, e.g.,All-Pairs[4] or ppjoin+[6], with
the threshold and obtain correct results.

An important observation is that we can enumerate all the
“necessary” similarity thresholds in the decreasing orderas
t1, t2, . . ., whereti > tj ,∀i < j. By “necessary” thresholds,
we mean that if we change between different thresholds, it is
possible that similarity join result will change. To derivethe
necessary thresholds for prefix-filtering based similarityjoin
algorithms, we note that the set of candidate pairs that the
algorithms consider are solely determined by the prefixes of
the records. Therefore, if we lower the current thresholdti to
the first valuet such that there is a record in the database
whose prefix will extend by one more token, we have to
consider thist and setti+1 = t.

A simple algorithm utilizing the above observation is as
follows: for each thresholdti, we invoke a similarity join
algorithm to find all pairs with similarity values no less than
ti. The stopping condition is simply when the result size is
larger thank.

The main problem with this algorithm is the redundant com-
putation caused by the repeated invocation of the similarity
join algorithm. This can be solved by using an incremental
similarity join algorithm instead. Denote the prefix of for
a record x for a thresholdt as prefix t(x). We note that
prefix ti

(x) ≤ prefix tj
(x) if ti > tj . Below we describe major

modifications needed to devise an incremental version of the
All-Pairs algorithm:

1) In the incremental algorithm, wecannotdiscard candidate
pairs whose similarity value is less than thecurrent
threshold (unlessk = 1). Nevertheless, we only need
to keep the largestk pairs seen so far.

2) we need to devise a new stopping condition. We can stop
the execution of the algorithm when the similarity value
of the currentk-th result is larger than the next similarity
threshold.

In the following subsections, we will describe the algorithm
in more details.

B. Temporary Results and Events

As the similarity threshold decreases, the prefixes of records
will increase. We call the extension of a record’s prefix by one
more tokenw a prefix event, and the record in question as the
sourceof the event. A prefix event implies an upper bound of
the similarity value of unseen pairs, as they share no common
token beforew in the prefix. The incremental similarity join
algorithm is then run in an event-driven manner: once a prefix
event is triggered, we (1) probe the inverted list of the token
w to find candidates pairs, and then (2) push its next event
into a priority queue (i.e., to extend prefix tow’s next token
in this record).

Note that the similarity threshold which triggers a prefix
event is exactly an upper bound of the similarity value of
unseen pairs.

u 1.0 0.75

v 1.0 0.8

w 1.0 0.8

x 1.0 0.875 0.75

y 1.0 0.9 0.8

z 1.0 0.9 0.8

Fig. 1. Event-Driven Model

Figure 1 illustrates the event-driven idea. Each row repre-
sents a record, and each box in the row represents a token. The
number in the box shows the similarity threshold to trigger a
prefix event that involves the token corresponding to the box.
The prefix length for each record starts with 1, indicating a
similarity threshold of 1.0. The similarity threshold decreases
gradually with the extending prefix. We use a max-heap to
process the events in decreasing order of their associated
similarity thresholds.

Once a prefix event happens, a new tokenw is included by
the extended prefix of a recordx. We probew’s inverted list
in order to find all the records that share the common token

w with the recordx in their current prefixes. The records
are paired withx to form candidate pairs, with their exact
similarity values calculated by the similarity function and then
added to temporary results. We keep onlyk temporary results
with the highest similarity values. We can output a result as
soon as the similarity threshold for the next prefix event is no
greater than the similarity values of the current result.

For each prefix event, we need to answer the following
question: “what is the similarity threshold that triggers this
prefix event?” Answering this question will lead us to establish
an upper bound for the similarity value of unseen pairs. We
call this upper bound thesimilarity upper bound of a prefix
event. Consider a recordx with a prefix lengthpx, the answer
to the above question is equivalent to themaximumsimilarity
threshold whenx has a prefix length ofpx. According to
the prefix filtering principle, this value is1 − px−1

|x| . We
use 〈x, px, spx 〉 to denote a prefix event, wherespx is the
similarity upper bound forx with a prefix length ofpx.

Algorithm 3 describes this incremental similarity join algo-
rithm. A fixed sized min-heapT is used to keep the largestk
pairs seen so far.T [k] gives the pair with thek-th largest
similarity. For the ease of illustration, we can initializeT
with any k pairs (e.g., by pairing record 1 with records 2
to k +1) so that it is full. The prefix length for each record is
initialized as 1 first. for each recordx, we insert〈x, 1, 1.0 〉
into a max heap based on the upper bounds. The similarity
upper bound for these prefix events are initialized as 1.0 (Line
1). The algorithm then iteratively pulls the next prefix event
〈x, px, spx 〉, and probes the inverted lists of tokens in the
probing prefix x[1 . . px]. x is paired with the records that
share at least one token withx in their prefixes. The pairs
and their similarity values returned by the similarity function
are regarded as temporary results and added toT . Next, we
extendx’s prefix length topx+1, and recalculate the similarity
upper bound forx with the current prefix length ofpx+1 (Line
17). Finally, the new event〈x, px + 1, s′px〉 is pushed into the
max heap for prefix events. The algorithm stops when the max
heap for prefix events is empty or all the remaining events in
the heap has a lower similarity upper bound than that of the
k-th result inT .

Size filtering (Line 12) can be applied when we havek
temporary results. Specifically, the lowest similarity value
among thek temporary results, denoted assk, is regarded
as a similarity threshold, and we can estimate the minimum
and the maximum required sizes in order to admit only the
records that can achieve a similarity value of at leastsk with
the recordx.

IV. OPTIMIZATIONS FOR THE INCREMENTAL ALGORITHMS

Both All-Pairs and ppjoin family algorithms exploit the
ascending ordering of record sizes and the global ordering
of tokens. In order to further optimize the incrementaltopk-
join algorithm, we will exploit the ascending ordering of the
lowest similarity value amongk temporary results, and the
descending ordering of the similarity upper bound.

Algorithm 3 : Top-kSimilarityJoin (R)
Input : R is a collection of records; each record has been

canonicalized by a global orderingO
Output : Top-k pairs of records〈x, y〉 ranked by their

similarity value
E ← InitializeEvents(R);1
T ← InitializeTempResults(R); / * Store any k2
pairs as temp results in T * / ;
Ii ← ∅ (1 ≤ i ≤ |U |);3
while E 6= ∅ do4

(x, px, spx)← E.pop();5
if spx ≤ T [k].sim then6

break; / * stop here * / ;7

w ← x[px];8
sk ← T [k].sim;9
for j = 1 to |Iw| do10

y ← Iw[j];11
if |y| ∈ [sk|x|, |x|/sk] then / * size filtering12

* /
sim(x, y)← CalcSimilarity(x, y);13
T.add((x, y), sim(x, y));14
sk ← T [k].sim;15

Iw ← Iw ∪ {x }; / * index the current prefix16

* / ;
s′px ← SimilarityUpperBound-Probe(x, px + 1);17

E.push(x, px + 1, s′px);18

return T19

Algorithm 4 : InitializeEvents (R)
E ← ∅;1
for each x in R do2

E.push(x, 1, 1.0); / * E is a max-heap * / ;3

return E4

A. Optimization for Verification

One problem with Algorithm 3 is that the similarity between
a pair may be computed up tol times, if they sharel
common tokens in their prefixes. Like inAll-Pairs, we call the
computation of the similarity value of a candidate pair (Line 13
in Algorithm 3) verification. Obviously, repeated verifications
incur unnecessary overhead.

A simple solution to address this problem is to remember
all candidate pairs that have been verified in a hash table.
However, the hash table will have too many entries. We
note that pairs that have been verified only once before the
algorithm stops do not need to be remembered in the hash
table. To minimize the size of the hash table, we look into the

Algorithm 5 : SimilarityUpperBound-Probe (x, px)
Input : A recordx and a prefix lengthp
Output : The upper bound of the similarity value ofx and

another record provided thatx[p] is the first common
token ofx and the other record

spx ← 1− px−1
|x|

;1
return spx2

contents ofx and y to tell whether a pair will be identified
a second time. This is achievable assk is monotonically
increasing and we can use the currentsk value to calculate the
maximum prefixesthat will be accessed before the algorithm
stops. We put a pair into the hash tableonly if a second
common token in both maximum prefixes is found. Since
the similarity function will access the contents ofx and y
sequentially, we can be seamlessly integrated this optimization
(Lines 5–6 in Algorithm 6) into the similarity calculation (Line
4) with little overhead.

Lemma 3:Algorithm 6 guarantees that each candidate pair
will be evaluated exactly once.

Algorithm 6 : Replacement of Line 13-15 in Algorithm 3

x← max(x, y); y← min(x, y); / * deal with1

(x, y) and (y, x) * / ;
if (x, y) /∈ H then2

lx ← |x| − dsk · |x|e+ 1; ly ← |y| − dsk · |y|e+ 1;3

sim(x, y)← CalcSimilarity(x, y);4

posx ← the position ofx andy’s second common5

token inx;
posy ← the position ofx andy’s second common6

token iny;
if posx ≤ lx and posy ≤ ly then7

H ← H ∪ { (x, y) };8

T.add((x, y), sim(x, y));9

sk ← T [k].sim;10

Theorem 1:Algorithm 3 (together with Algorithm 6) ver-
ifies the minimum number of pairs for the given similarity
upper bounding function in Algorithm 5.

Proof: Assume the contrary that the number of pairs
verified by our algorithm is not minimum. Then there exists a
pair (x, y), which is verified by our algorithm, but is not ver-
ified by another correct top-k similarity join algorithm. Note
that our algorithm generate candidates by decreasing orderof
similarity upper bound. All the candidate pairs generated can
achieve this similarity upper bound if their unseen contents
are identical. Since this similarity upper bound is no less than
the finalsk, there exists a collection such thatsim(x, y) ≥ sk,
and therefore(x, y) is a join result. Any other algorithm that
does not verify this pair will miss this pair in their output and
is thus incorrect.

Note that it is not easy to upper bound the similarity values
of unseens pairs and the one we used in Algorithm 5 is quite
effective. Note that if we do not access part ofall the records
simultaneously, it is unlikely that we will have a useful upper
bounding function — as long as two records have the same
lengths and no part of their contents is accessed, we have
to use 1.0 as the upper bounding score as the two might be
identical.

B. Optimization for Indexing

As discussed in Section II-C, traditional similarity join
algorithms benefit from the index reduction optimization by

only indexing the minimum number tokens. However, the
optimization require that records are sorted in the ascending
order of their sizes. Nevertheless, we manage to achieve
a similar index reduction effect by exploiting the fact that
records inserted into inverted indexes are sorted by decreasing
similarity upper bound. We illustrate the idea in the example
below.

Example 2:Consider the following three records. Tokens
“?” indicate that we have not accessed those tokens and do
not know their contents yet.

x = [A,C, ?, ?, ?]

y = [C, ?, ?, ?]

z = [B,C, ?, ?, ?]

Suppose we are about to insertx into C ’s inverted list.
According to Algorithm 5, the maximum possible similarity
value thatx and another record can achieve is0.8, provided
that C is their first common token. This is case for the pair
(x, z) if their unseen parts are identical. However, ifx is
inserted intoC ’s inverted list and is paired with another record
during subsequentprobings, can they still achieve a similarity
value of0.8? A subsequent prefix event with similarity upper
bound no larger than0.8 induces tokens contained only in the
other record rather thanx. Take prefix event〈 z, 2, 0.8 〉 as
example, whose similarity upper bound is0.8. Since tokenB
is contained only inz, the maximum possible similarity value
achieved byx and z is 4

6
= 0.67 when their unseen tokens

are identical. The similarity upper bound can be achieved
if and only if there exists another recordz, |x| = |z| and
∀i ∈ [px, |x|], x[i] = z[i]. In this case, the max overlap is
x−px+1 and the union size isx+px−1. The similarity upper
bound for〈x, 2, 0.8 〉 is therefore reduced to〈x, 2, 0.67 〉 for
subsequent probings, and we do not need to insertx into C ’s
inverted list if this upper bound is belowsk.

The following Lemma allows us to reduce the number of
tokens that need to be indexed and accessed.

Lemma 4:Given a recordx and a prefix lengthpx, the
maximum possible similarity value ofx and another record is
|x|−px+1

|x|+px−1
provided thatx[px] is the first common token ofx

and the other record, and this pair is found by probings after
insertingx into x[px]’s inverted list.

We call the similarity upper bound given by Lemma 4in-
dexing similarity upper bound, while the upper bound returned
by Algorithm 5 is calledprobing similarity upper bound. We
use this optimization for indexing to calculate the indexing
similarity upper bound ofx[px] (denoted assi), and then
compare it with the similarity value of thek-th temporary
results (denoted assk). If it is found to be smaller thansk,
we do not perform inverted index insertion forx[px].

Another optimization can be derived from this tighter
indexing similarity upper bound: we can stop insertion for
all inverted lists when ansi < sk is found. This is be-

cause that similarity upper bound= |x|−px+1

|x|+px−1
=

1− px−1

|x|

1+
px−1

|x|

;

it varies monotonically with the probing similarity upper
bound1− px−1

|x| . Since the probing similarity upper bound is

monotonically decreasing, the indexing similarity upper bound
is also monotonically decreasing.

Algorithm 7 implements the optimization for indexing to-
kens. It computes the indexing similarity upper bound for
each〈x, px, spx 〉, and compares the indexing similarity upper
bound with sk. If the indexing similarity upper bound is
smaller, a boolean flag is set astrue to prevent any further
index insertion.

Algorithm 7 : Replacement of Line 16 in Algorithm 3

if f = false then / * f is initialized as1

false * /
si ← SimilarityUpperBound-Index(x, px);2

if si ≥ sk then3

Iw ← Iw ∪ {x };4

else5

f ← true; / * stop index insertion6

* / ;

Algorithm 8 : SimilarityUpperBound-Index (x, px)

ubound← |x|−px+1

|x|+px−1
;1

return ubound2

C. Further Optimization for Indexing

The above optimization can be further extended to limit
access to the invert lists after the index insertion is stopped.
Consider the case that a prefix event〈x, px, spx 〉 is trigger,
and we are accessingx[px]’s inverted list to find the records
that containx[px] in their indexing prefixes. When an entry
in the inverted list is accessed, we ask the question: given
〈x, px, spx 〉’s probing similarity upper bound and the current
entry’s probing similarity upper bound when it is inserted
into the inverted list, what is the maximum possible similarity
betweenx and the current entry? Answering this question help
us to stop accessing the subsequent entries in the inverted list,
since the entries are inserted intox[px]’s inverted list according
to decreasingorder of probing similarity upper bound.

We solve this issue by estimating the sizes of intersection
and union between two recordsx andy. Supposex[px]’s prob-
ing similarity upper bound isspx, andy’s probing similarity
upper bound when it is inserted intox[px]’s inverted list is
spy.3 We distinguish two scenarios according to the maximum
possible intersection of the two records:

1) |x ∩ y| = x · spx, if y · spy ≥ x · spx.
2) |x ∩ y| = y · spy, if y · spy ≤ x · spx.

3For the ease of computation and exposition, we use probing
similarity upper bound instead of indexing similarity upper bound
for the current entry in the inverted list.

• For scenario (1),

|x ∪ y| =|x|+ |y| − |x| · spx

≥|x|+ |x| · spx

spy

− |x| · spx

Therefore,

J(x, y) =
|x ∩ y|
|x ∪ y|
≤ spxspy

spx + spy − spxspy

• For scenario (2),

|x ∪ y| =|x|+ |y| − |y| · spy

≥|y| · spy

spx

+ |y| − |y| · spy

Therefore,

J(x, y) =
|x ∩ y|
|x ∪ y|
≤ spxspy

spx + spy − spxspy

We call the above maximum possible similarity value
spxspy

spx+spy−spxspy
accessing similarity upper bound. Since it

decreases monotonically with the decreasingspy, access to
the rest of the inverted list for tokenx[px] can be stopped
when its value is smaller thansk. Furthermore, the value is
also decreasing monotonically whenspx is decreasing. The
entries starting fromy till the end of the inverted list can be
deleted because future probings of this inverted list will be
incurred by a smallerspx. The above method is implemented
in Algorithm 9. 4

Algorithm 9 : Replacement of Line 11 in Algorithm 3

y ← Iw[j];1

if2

SimilarityUpperBound-Access(1− px−1

|x| , 1− py−1

|y|) < sk

then
Iw ← Iw \ Iw[j . . |Iw|]; / * remove entries3

* / ;
break;4

Algorithm 10 : SimilarityUpperBound-Access (spx, spy)

ubound← spxspy

spx+spy−spxspy
;1

return ubound2

4Section V will discuss the integration of positional filtering, which
eventually keeps the value ofpy

V. I MPLEMENTATION DETAILS

A. Integration with Positional Filtering and Suffix Filtering

The positional filtering and suffix filtering technique pro-
posed in [6] can be employed here so as to reduce the number
of pairs to be verified for their similarity value. Each pair
identified by accessing inverted lists is tested under positional
filtering and the following suffix filtering before verification is
performed. For positional filtering, we use the lowest similarity
value of temporary results,sk, if more than k temporary
results have been obtained. The similarity value is regarded
as a threshold, and the minimum required overlap betweenx
and y is computed for each pair(x, y) to be verified. With
the positions of the first common token in bothx and y,
we can estimate the maximum possible overlap of(x, y),
and then compare with the minimum required value. A pair
is admitted for verification only if the estimated maximum
possible overlap is no smaller than the minimum required
value. For suffix filtering,sk is considered as a similarity
threshold and converted to a Hamming distance threshold for
each pair to be verified. We perform suffix filtering under
the Hamming distance constraints and remove the disqualified
pairs before performing verification.

B. Initialization of Temporary Results

To fill up T with k temporary results during the initialization
stage (Line 3, Algorithm 3) so that we have an initialsk, one
solution is to generatek candidate pairs with high similarity
value beforehand. Specifically, we examine several tokens with
medium document frequency (e.g., between 10 and 100) when
performing tokenization, and record theirdf values as well as
inverted lists. To initializeT , we search among these tokens
for the tokenw with the smallest document frequencydfw

where(dfw

2) ≥ k, and then generate candidate pairs withw’s
inverted list. Thek candidate pairs with the highest similarities
are inserted intoT as temporary results.

C. Compression on Prefix Events

Since the probing and indexing similarity upper bound of
a prefix event〈x, px, spx 〉 is only dependent on the size of
the record and the prefix length, the prefix events with the
same record size and prefix length can be grouped together to
save space and time. Specifically, we insert prefix events in the
form of 〈 |x|, px, spx 〉 instead of〈x, px, spx 〉 into the priority
queueE. When a prefix event〈 |x|, px, spx 〉 is popped from
E, we retrieve all the records with the same size asx and
perform probing actions. This requires us to sort the records
in increasing order of their sizes and divide the records into
blocks, each block with the same record size.

VI. EXTENSION TO OTHER SIMILARITY FUNCTIONS

In this section, we generalize our main algorithm to several
other similarity measures. We consider the following similarity
functions: overlap, cosine, and dice similarities. The major
changes are related to the size filtering condition (Line 12,
Algorithm 3), maximum prefix length (Line 3, Algorithm 6),

probing similarity upper bound (Line 1, Algorithm 5), in-
dexing similarity upper bound (Line 1, Algorithm 8), and
accessing similarity upper bound (Line 1, Algorithm 10).

Overlap Similarity

size filtering y ≥ sk

max prefix length |x| − sk + 1

probing sim ubound |x| − px + 1

indexing sim ubound |x| − px + 1

accessing sim ubound min(spx, spy)

Cosine Similarity

size filtering |y| ∈ [s2
k · |x|, |x|/s2

k]

max prefix length |x| − ds2
k · |x|e+ 1

probing sim ubound
√

1− p−1
|x|

indexing sim ubound 1− p−1
|x|

accessing sim ubound
s2

pxs2
py

s2
px+s2

py−s2
pxs2

py

Dice Similarity

size filtering |y| ∈ [sk|x|
2−sk

, (2−sk)|x|
sk

]

max prefix length |x| − d sk|x|
2−sk

e+ 1

probing sim ubound 2(|x|−px+1)
2|x|−px+1

indexing sim ubound |x|−px+1
|x|

accessing sim ubound spxspy

2spx+2spy−3spxspy

VII. E XPERIMENTS

We present our experiment results and analyses in this
section.

A. Experiment Setup

We used the following algorithms in the experiment.
topk-join is the proposed algorithm with full optimizations.

The positional filtering and suffix filtering [6] techniques
are also employed. TheMAXDEPTHparameter for suffix
filtering is set to 2 for DBLP and TREC, and 4 for TREC-
3GRAM and UNIREF-3GRAM.

pptopk serves as the baseline algorithm, where we run a
state-of-the-art similarity algorithm,ppjoin+ [6] repeat-
edly with decreasing similarity threshold, to find the
answers to top-k queries. In each round, if the size of
the result computed by theppjoin+ algorithm is smaller
than k, the similarity threshold is decreased and the
above process is repeated. In this study, we decrease the
similarity threshold at an equal rate. More specifically, for
the Jaccard similarity, we use threshold0.95−0.05 · i for
the i-th round; for the cosine similarity, we use threshold

0.975 − 0.025 · i, as the cosine similarity function is
looser than the Jaccard similarity function with the same
threshold.

All algorithms were implemented as in-memory algorithms,
with all their inputs loaded into the memory before they were
run. Sinceppjoin+ has been shown to outperform alternative
algorithms such asAll-Pairs [4] and PartEnum [7] on large-
scale real datasets under a wide range of parameter settings,
we didn’t consider them.

All experiments were performed on a PC with Intel an Xeon
X3220 2.40GHz CPU and 4GB RAM. The operating system
is Debian 4.1.1-21. The algorithms were implemented in C++
and compiled using GCC 4.1.2 with the -O3 flag.

We used the following publicly available real datasets. They
covered a wide range distributions and application domains.

DBLP is a snapshot of the bibliography records from the
DBLP Web site.5 It contains about 0.9M records; each
record is a concatenation of author name(s) and the title
of a publication. This dataset is widely used in similarity
join and near-duplicate detection research [7], [4], [12],
[13], [6].

TREC is from TREC-9 Filtering Track Collections.6 It con-
tains 0.35M references from the MEDLINE database. We
extract and concatenate author, title, and abstract fields to
form records.

TREC-3GRAM the same TREC dataset tokenized into 3-
grams.

UNIREF-3GRAM denotes the UniRef90 protein sequence
data from the UniProt project.7 We extract the first
0.5M protein sequences; each sequence is an array of
amino acids coded as uppercase letters. Each record is
transformed into a set of 3-grams.

The datasets are transformed and cleaned by converting
letters to their lowercases. White spaces and punctuations are
converted into underscores before extractingq-grams to form
the q-gram datasets. Exact duplicates are then removed, and
the records are sorted in ascending order of size.

Some important statistics about the cleaned datasets are
listed in Table I. Distributions of token frequency and record
size are plotted in Figures 2(a)–2(c). Only the token frequency
distribution for DBLP is shown because all datasets follow
approximately a similar Zipf distribution. We observe thatthe
record size distributions are quite different for DBLP, TREC,
and UNIREF datasets.

The similarity measures covered by our experiments are
Jaccard and Cosine similarity functions. We measure the
size of candidate pairs verified by similarity functions and
the running time. The running time does not include the
preprocessing and loading time, as they are the same for all
algorithms.8

5http://www.informatik.uni-trier.de/ ˜ ley/db
6http://trec.nist.gov/data/t9_filtering.html
7http://beta.uniprot.org/ (downloaded in March, 2008)
8The loading time is between 2 to 38 seconds.

100

101

102

103

104

105

106

100 101 102 103 104 105

C
ou

nt

Token Frequency

DBLP

DBLP

(a) Token Frequency Distribution, DBLP

100

101

102

103

104

105

100 101 102 103

C
ou

nt

Record Size

DBLP, TREC

DBLP
TREC

(b) Record Size Distribution, DBLP (in red) and TREC (in
blue)

100

101

102

103

104

101 102 103 104

C
ou

nt

Record Size

UNIREF 3-GRAM, TREC 3-GRAM

TREC 3-GRAM
UNIREF 3-GRAM

(c) Record Size Distribution, TREC-3GRAM (in red) and
UNIREF-3GRAM (in blue)

Fig. 2. Statistics and Distributions of Datasets

TABLE I

DATASET STATISTICS

Dataset N avg.size |U |

DBLP 855,266 14.3 509370
TREC 347,956 130.1 1066590
TREC-3GRAM 347,963 868.5 193644
UNIREF-3GRAM 500,000 372.9 158315

B. Effect of Optimization for Verification

In order to study the impact of the optimization for verifi-
cation, we remove it from thetopk-join algorithm, and name
the resulting algorithmrecord-all. Hence it records in a hash
table all the candidate pairs that have been verified in order
to avoid repeated verification.

We measure the numbers of hash table entries for bothtopk-
join and record-all on the TREC dataset, which were shown
in Figure 3(a). Results on other datasets are similar. Both hash
table sizes grow quickly with the increase ofk, while applying
the optimization for verification can reduce the number of hash
table entries by 33

C. Effect of Optimization for Indexing

We remove the optimization for indexing intopk-join
algorithm and name the resulting algorithmw/o-index-opt.

We run topk-join and w/o-index-opt algorithm on the
TREC dataset and measure the peak numbers of index entries
for both algorithms. Note thattopk-join employs an index
deletion technique to save space, so we measure the number
of index entries immediately after the insertion of index has
stopped but before the index deletion is performed.

The number of index entries and running time are shown
in Figure 3(b) and 3(c). We observe that the number of index
entries can be reduced by about 40% with the optimization,
and it results in about 20% improvement on running time.

D. Comparison withpptopk

We compare the performance of ourtopk-join algorithm
with the baselinepptopk algorithm. We measure the number
of candidate pairs and running time, using the Jaccard similar-
ity function on the DBLP and TREC datasets, and the cosine
similarity function on the TREC-3GRAM dataset.

Figures 4(a)– 4(c) show the number of candidate pairs for
both topk-join andpptopk algorithm with differentk values.
The candidate sizes for both algorithms grow with the increase
of k. The difference is that the candidate size oftopk-join
grows smoothly with the increase ofk, while the number of
pptopk jumps at a certaink. This is becausepptopk has to
“guess” the similarity threshold for the inputk. On DBLP,
topk-join generates similar candidate size withpptopk, while
on the other two datasetstopk-join produces fewer candidates
thanpptopk. The candidate size is primarily dependent on two
factors:

• the effect of positional filtering and suffix filtering. Both
filtering techniques are more effective at high similarity
thresholds. If we use the final value ofsk as the similarity
threshold t for pptopk, the candidate size ofpptopk
is smaller than that oftopk-join, because the positional
filtering and suffix filtering use a constant similarity
threshold t in pptopk, compared to a threshold that
gradually increases tot in topk-join.

• the guess on the similarity threshold forpptopk. If
the guess is “conservative”, i.e. the threshold is much
lower than the finalsk, pptopk may produce too many
candidate pairs and join results.

The reason whytopk-join produces similar number of
candidate pairs withpptopk on DBLP but much fewer on
TREC and TREC-3GRAM is: (a) On DBLP, the join results
have higher similarity than those on the other two datasets.
Positional filtering and suffix filtering are quite effective
against candidate pairs and then play a more important role
in determining candidate size. On TREC and TREC-3GRAM,
positional filtering and suffix filtering are less effective,as the
candidate sizes shown in the figures are quite large. (b) A
subtle difference between the guessed similarity threshold and
the final sk might lead to a huge increase in candidate size.
This is more substantial when similarity threshold is low, and
thus the effect is enlarged for TREC and TREC-3GRAM.

The running time for both algorithms is shown in Fig-
ures 4(d)–4(f).topk-join outperformspptopk in most cases.
topk-join can achieve up to 1.6x speed-up on DBLP, 2x on
TREC, and 3.4x on TREC-3GRAM. The main reason is that
pptopk produces more results than needed for mostk, while
topk-join is directly optimized for the parameterk. Table II
shows the number of results obtained bypptopk during each

106

107

108

109

500 1000 1500 2000 2500

H
as

h
T

ab
le

 E
nt

rie
s

K

TREC, jaccard

record-all
topk-join

(a) Jaccard, TREC, Hash Table Entries

4.0x106

6.0x106

8.0x106

1.0x107

1.2x107

1.4x107

1.6x107

1.8x107

2.0x107

500 1000 1500 2000 2500

In
de

x
E

nt
rie

s

K

TREC, jaccard

w/o-index-opt
topk-join

(b) Jaccard, TREC, Index Entries

 0

 100

 200

 300

 400

 500

 600

 700

 800

500 1000 1500 2000 2500

T
im

e
(s

ec
on

ds
)

K

TREC, jaccard

w/o-index-opt
topk-join

(c) Jaccard, TREC, Running Time

Fig. 3. Optimization for Verification and Indexing

round on the TREC dataset. In addition,topk-join employs
an optimization technique on indexing and saves the overhead
due to index construction and accesses.

TABLE II

PPTOPK’ S JOIN RESULT SIZES IN EACH ROUND

t 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60

34 84 187 404 725 1162 1819 3361

It is interesting to note thattopk-join is faster thanpptopk
on DBLP although it produces more candidate pairs. This
is because the average record size in DBLP is short (only
14). The similarity computation can be done efficiently, while
index construction, accessing, and other overheads are more
substantial. Thanks to the optimization for indexing,topk-join
is able to reduce the cost on index construction and accessing,
and therefore outperformspptopk on DBLP dataset.

It is also interesting to observe that the two outliers on
the TREC-3GRAM dataset, wheretopk-join produces fewer
candidate pairs but turns out to be slower. We found that this
is mainly due to the more powerful size filtering effect in
pptopk than in topk-join. As pptopk scans records by the
ascending order of record sizes, the entries in the inverted
lists can be safely deleted if their sizes are below the required
minimum value, as they cannot produce any future join results.
However, in topk-join these entries cannot be deleted but
only kept from forming candidates when they are accessed, as
they might be identified as candidates by future index probes
and produce join results. This will incur more inverted list
accessing time fortopk-join. The impact of size filtering is
especially substantial on the TREC-3GRAM dataset, because
the inverted lists for 3-grams are typically very long.

E. Verifications per Record

We measure the average number of verifications for each
record runningtopk-join on the TREC dataset, and plot the
result in Figure 5(a). We also show the numberk in the figure.
It is clear that the the average number of verifications per
record is much smaller thank. The number is13.3 whenk =
500, and397.8 whenk = 2500.

The result is interesting in the following sense. Consider
a hypothetical algorithm equipped with an Oracle such that
for each record, the Oracle suggestsk results that have the

largest similarities. Then the algorithm can simply iterate over
the records, calculating the actual similarity values for the
candidates suggested by the Oracle, and retain only the largest
k pairs. The average number of verifications per record will be
k. Our result here shows thattopk-join performs even fewer
number of verifications than this hypothetical algorithm.

F. Answering Top-k Queries Progressively

We investigate the performance of thetopk-join algorithm
to output join results progressively. This feature benefitsap-
plications that require the system to output join results while
the algorithm is still running. For instance, a user may input
an initial k = 100 but terminate the execution of algorithm
when she is already satisfied with the first50 results.

We ran the experiment on the TREC-3GRAM and UNIREF-
3GRAM datasets using the Jaccard similarity function with
k = 200. The metrics measured are: the probing similarity
upper bound, the similarity of thek-th temporary result, and
the output time. All measures are taken with respect to each
join result.

Figure 5(b) shows the probing similarity upper bound of
unprocessed prefix events (denoted as TREC 3-GRAM UB and
UNIREF 3-GRAM UB) and the lowest similarity value among
the currentk temporary results (denoted as TREC 3-GRAM Sk
and UNIREF 3-GRAM Sk) when thei-th (x-axis) temporary
result is confirmed as a final result and sent to the output.
The probing similarity upper bounds are close to1.0 for both
datasets when the first join result is sent to the output, and
decreases almost linearly with more join results are sent tothe
output. On the other hand, the similarity of thek-th temporary
result sk almost remains the same during the whole process,
except for a slight increase on the TREC-3GRAM dataset for
the first 20 results. This suggests that we can quickly fill the
k temporary results whose lowest similarity value is close to
thek-th final result. More than that, this strengthens the effect
of the optimizations for both verification and indexing since
we can find ansk close to the final value at an early stage.

The elapsed time when each final result is sent to the output
is plotted in Figure 5(c). The rate of result ouptut is slow at
the beginning, but increasing as more temporary results are
confirmed as final results and output. There are at least two
reasons for this observation: (a) The un-indexed part of each
record is long at the beginning so that it is difficult to prune
candidate pairs by estimating the upper bound of the overlap.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

100 200 300 400 500

C
an

di
da

te
 S

iz
e

K

DBLP, jaccard

pptopk
topk-join

(a) Jaccard, DBLP, Candidate Size

106

107

108

109

500 1000 1500 2000 2500

C
an

di
da

te
 S

iz
e

K

TREC, jaccard

pptopk
topk-join

(b) Jaccard, TREC, Candidate Size

102

103

104

105

106

107

108

109

50 100 150 200 250

C
an

di
da

te
 S

iz
e

K

TREC 3-GRAM, cosine

pptopk
topk-join

(c) Cosine, TREC-3GRAM, Candidate Size

 0.4

 0.6

 0.8

 1

 1.2

 1.4

100 200 300 400 500

T
im

e
(s

ec
on

ds
)

K

DBLP, jaccard

pptopk
topk-join

(d) Jaccard, DBLP, Running Time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

500 1000 1500 2000 2500
T

im
e

(s
ec

on
ds

)

K

TREC, jaccard

pptopk
topk-join

(e) Jaccard, TREC, Running Time

101

102

103

104

50 100 150 200 250

T
im

e
(s

ec
on

ds
)

K

TREC 3-GRAM, cosine

pptopk
topk-join

(f) Cosine, TREC-3GRAM, Running Time

Fig. 4. Experiment Results I

This renders positional filtering less effective. (b) The prefix
lengths are short when the first few join results are sent to the
output. Note that the tokens within each record are sorted by
decreasingidf . Due to the low frequency tokens contained by
the prefix, the pairs have more chance of being similar if they
share such tokens. For example, two records might be quite
similar if the first common token is “ppjoin ”, but less chance
of being similar if the first common token is “algorithm ”.
These candidate pairs may have medium similarity values and
survive suffix filtering though they might not be the final
results. On the contrary, the positional filtering and the suffix
filtering become more effective when more join results are
output, since the unseen part of tokens are smaller for each
record and the first common token of a candidate pair is higher
in frequency. The optimization for indexing is also working
when probing similarity upper bound decreases to a certain
value, which facilitates the algorithm to output the last few
join results.

VIII. R ELATED WORK

Similarity Join Similarity joins have attracted much atten-
tion in several research communities. It has been studied for a
wide range of applications, such as record linkage [3], merge-
purge [14], data deduplication [15], and name matching [16].

Existing work on traditional similarity joins can be catego-
rized into two groups. The first is to retrieve exact answers
to the problem where all the pairs satisfying the similarity
constraints are returned. [17], [5], [4], [6] are based on inverted
indices and various filtering techniques. Alternatively, [7]
employs the pigeon hole principle, which carefully divide the
records into partitions and then hash them into signatures,
with which candidate pairs are generated, followed by a post-
filtering step to eliminate false positives. There has been two
recent work on similarity join. [18] designs a novel framework
to identify similar records with some token transformations.

In [19], LSS algorithm is proposed to perform similarity join
using Graphics Processing Unit (GPU).

The work in the second category concentrates on retrieving
approximate answers to the similarity join problem [20],
[21], [22], [23]. Local Sensitive Hashing(LSH) [23] is a
widely adopted technique for similarity search. [20] proposed
a shingle-based approach to approximately identify near du-
plicate Web pages. Another synopsis-based algorithm is based
on randomized projection [22].

Several existing work studies the similarity search problem
[24], [25], [26], [27], which returns the records in a collection
whose similarity with the query exceeds a given threshold.
Based on the inverted list framework, [26] proposes an efficient
principle to skip records when accessing inverted lists. For
information retrieval(IR) purpose, [27] designs efficienttech-
niques for indexing and processing similarity queries under
IR-style similarity functions.

Similarity functions were studied in a variety of appli-
cations. For text documents, edit distance [28] and Jaccard
similarity on q-grams [25] are widely used. In large-scale Web
applications, similarities between two documents is usually
measured by Jaccard or overlap similarity on small-sized
synopses extracted from the documents [29], [21]. Soundex
is a commonly used phonetic similarity measure for names
matching tasks [30].

Top-k Queries The problem of top-k query processing has
been studied by Faginet al [31], [32]. Much work build upon
Fagin’s work for different application scenarios, e.g., ranking
query results from structured databases [33], processing dis-
tributed preference queries [34] and keyword queries [35].

[36] studies the top-k spatial join problem, which retrieves
pairs of objects that satisfy a given spatial constraint. However,
as the distance function used in our problem is not in Euclidean
distance and the dimensionality in our problem is much higher,
existing spatial database techniques are not applicable.

101

102

103

104

500 1000 1500 2000 2500

V
er

ifi
ca

tio
ns

 p
er

 R
ec

or
d

K

TREC, jaccard

K
topk-join

(a) Jaccard, TREC, Verifications per Record

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

1 20 40 60 80 100 120 140 160 180 200

B
ou

nd

i

TREC 3-GRAM, UNIREF 3-GRAM, jaccard

trec 3-gram UB
trec 3-gram Sk

uniref 3-gram UB
uniref 3-gram Sk

(b) Jaccard, TREC-3GRAM and UNIREF-3GRAM, Upper
Bound andsk

 0

 50

 100

 150

 200

 250

1 20 40 60 80 100 120 140 160 180 200

R
un

ni
ng

 T
im

e

i

TREC 3-GRAM, UNIREF 3-GRAM, jaccard

trec 3-gram
uniref 3-gram

(c) Jaccard, TREC-3GRAM and UNIREF-3GRAM, Run-
ning Time

Fig. 5. Experiment Results II

IX. CONCLUSIONS

In this paper, we study the problem of answering similarity
join queries to retrieve top-k pairs of records ranked by their
similarities. Existing approaches for the traditional similarity
joins with a given threshold will have to make guesses on the
similarity threshold and incur much redundant calculation.
We propose an efficient algorithm that computes the answers
in a progressive manner. The intrinsic monotonicity of upper
bound score and thek-th temporary result score are exploited
to develop several optimizations to improve the space and
time efficiencies of the algorithm. The superiority of our
proposed algorithm is demonstrated by extensive experiments
on large-scale datasets under a wide range of parameter
settings.

AcknowledgmentWei Wang is supported by ARC Discovery
Grants DP0987273 and DP0881779. Xuemin Lin is sup-
ported by Google Research Award and ARC Discovery Grants
DP0987557, DP0881035 and DP0666428.

REFERENCES

[1] M. R. Henzinger, “Finding near-duplicate web pages: a large-scale
evaluation of algorithms,” inSIGIR, 2006.

[2] W. W. Cohen, “Integration of heterogeneous databases without com-
mon domains using queries based on textual similarity,” inSIGMOD
Conference, 1998, pp. 201–212.

[3] W. E. Winkler, “The state of record linkage and current research
problems,” U.S. Bureau of the Census, Tech. Rep., 1999.

[4] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairssimilarity
search,” inWWW, 2007.

[5] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” inICDE, 2006.

[6] C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient similarityjoins for
near duplicate detection,” inWWW, 2008.

[7] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity joins,”
in VLDB, 2006.

[8] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos,
“Closest pair queries in spatial databases,” inSIGMOD Conference,
2000, pp. 189–200.

[9] A. Corral, M. Vassilakopoulos, and Y. Manolopoulos, “The impact of
buffering on closest pairs queries using r-trees,” inADBIS, 2001, pp.
41–54.

[10] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos,
“Algorithms for processing k-closest-pair queries in spatial databases,”
Data Knowl. Eng., vol. 49, no. 1, pp. 67–104, 2004.

[11] R. Baeza-Yates and B. Ribeiro-Neto,Modern Information Retrieval,
1st ed. Addison Wesley, May 1999.

[12] C. Li, B. Wang, and X. Yang, “VGRAM: Improving performanceof
approximate queries on string collections using variable-length grams,”
in VLDB, 2007.

[13] H. Lee, R. T. Ng, and K. Shim, “Extending q-grams to estimate
selectivity of string matching with low edit distance,” inVLDB, 2007,
pp. 195–206.

[14] M. A. Hernández and S. J. Stolfo, “Real-world data is dirty: Data
cleansing and the merge/purge problem,”Data Mining and Knowledge
Discovery, vol. 2, no. 1, pp. 9–37, 1998.

[15] S. Sarawagi and A. Bhamidipaty, “Interactive deduplication using active
learning,” in KDD, 2002.

[16] M. Bilenko, R. J. Mooney, W. W. Cohen, P. Ravikumar, and S.E.
Fienberg, “Adaptive name matching in information integration,” IEEE
Intelligent Sys., vol. 18, no. 5, pp. 16–23, 2003.

[17] S. Sarawagi and A. Kirpal, “Efficient set joins on similarity predicates,”
in SIGMOD, 2004.

[18] A. Arasu, S. Chaudhuri, and R. Kaushik, “Transformation-based frame-
work for record matching,” inICDE, 2008, pp. 40–49.

[19] M. D. Lieberman, J. Sankaranarayanan, and H. Samet, “A fast similarity
join algorithm using graphics processing units,” inICDE, 2008, pp.
1111–1120.

[20] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic
clustering of the web,”Computer Networks, vol. 29, no. 8-13, pp. 1157–
1166, 1997.

[21] A. Chowdhury, O. Frieder, D. A. Grossman, and M. C. McCabe,
“Collection statistics for fast duplicate document detection,” ACM Trans.
Inf. Syst., vol. 20, no. 2, pp. 171–191, 2002.

[22] M. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in STOC, 2002.

[23] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” inVLDB, 1999.

[24] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, “Robust and
efficient fuzzy match for online data cleaning,” inSIGMOD Conference,
2003, pp. 313–324.

[25] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava, “Approximate string joins in a database (almost) for
free,” in VLDB, 2001.

[26] C. Li, J. Lu, and Y. Lu, “Efficient merging and filtering algorithms for
approximate string searches,” inICDE, 2008, pp. 257–266.

[27] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava, “Fast
indexes and algorithms for set similarity selection queries,” in ICDE,
2008, pp. 267–276.

[28] E. Ukkonen, “On approximate string matching,” inFCT, 1983.
[29] A. Z. Broder, “On the resemblance and containment of documents,” in

SEQS, 1997.
[30] R. C. Russell, “Index, U.S. patent 1,261,167,” April 1918.
[31] R. Fagin, “Combining fuzzy information from multiple systems,” J.

Comput. Syst. Sci., vol. 58, no. 1, pp. 83–99, 1999.
[32] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for

middleware,”J. Comput. Syst. Sci., vol. 66, no. 4, pp. 614–656, 2003.
[33] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis, “Automated ranking

of database query results,” inCIDR, 2003.
[34] K. C.-C. Chang and S. won Hwang, “Minimal probing: supporting

expensive predicates for top-k queries,” inSIGMOD Conference, 2002,
pp. 346–357.

[35] Y. Luo, X. Lin, W. Wang, and X. Zhou, “SPARK: top-k keyword query
in relational databases,” inSIGMOD Conference, 2007, pp. 115–126.

[36] M. Zhu, D. Papadias, J. Zhang, and D. L. Lee, “Top-k spatial joins,”
IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 567–579, 2005.

