
Probabilistic Skyline Operator over Sliding
Windows

Wenjie Zhang#1, Xuemin Lin #1, Ying Zhang#1, Wei Wang#1, Jeffrey Xu Yu∗2

#University of New South Wales & NICTA
1{zhangw, lxue, yingz, weiw}@cse.unsw.edu.au

∗Chinese University of Hong Kong
2yu@se.cuhk.hk

Abstract— Skyline computation has many applications includ-
ing multi-criteria decision making. In this paper, we study the
problem of efficient processing of continuous skyline queries
over sliding windows on uncertain data elements regarding
given probability thresholds. We first characterize what kind of
elements we need to keep in our query computation. Then we
show the size of dynamically maintained candidate set and the
size of skyline. We develop novel, efficient techniques to process
a continuous, probabilistic skyline query. Finally, we extend
our techniques to the applications where multiple probability
thresholds are given or we want to retrieve “top-k” skyline
data objects. Our extensive experiments demonstrate that the
proposed techniques are very efficient and handle a high-speed
data stream in real time.

I. I NTRODUCTION

Uncertain data analysis is an important issue in many emerg-
ing important applications, such as sensor networks, trend
prediction, moving object management, data cleaning and
integration, economic decision making, and market surveil-
lance. In many scenarios of such applications, uncertain data
is collected in a streaming fashion. Uncertain streaming data
computation has been studied very recently and the existing
work mainly focuses on aggregates and top-k queries [8], [14],
[28].

Skyline analysis has been shown as a useful tool [3], [7],
[21], [24] in multi-criterion decision making. Given a certain
data setD, an objects1 ∈ D dominates another objects2 ∈ D
if s1 is better thans2 in at least one aspect and not worse
than s2 in all other aspects. The skyline onD comprises
of objects inD that are not dominated by any other object
from D. Skyline computation against uncertain data has also
been studied recently [22]. In this paper, we will investigate
the problem of efficient skyline computation over uncertain
streaming data where each data element has a probability to
occur.

Skyline computation over uncertain streaming data has
many applications. For instance, in an on-line shopping system
products are evaluated in various aspects such asprice, condi-
tion (e.g., brand new, excellent, good, average, etc), andbrand.
In addition, each seller is associated with a “trustability” value
which is derived from customers’ feedback on the seller’s
product quality, delivery handling, etc. This “trustability” value
can also be regarded as occurrence probability of the product
since it represents the probability that the product occurs

exactly as described in the advertisement in terms of delivery
and quality. A customer may want to select a product, say
laptops, according to multi-criteria based ranking, such as low
price, good condition, and brand preference. For simplicity we
assume the customer prefers ThinkPad T61 only and remove
the brand dimension from ranking. Table I lists four qualified
results. BothL1 andL4 are skyline points,L1 is better than
(dominates)L2, andL4 is better thanL3. Nevertheless,L1 is
posted long time ago;L4 is better than (dominates)L3 but the
trustability of the seller ofL4 is low.

TABLE I

LAPTOPADVERTISEMENTS.

Product ID Time Price Condition Trustability
L1 107 days ago $ 550 excellent 0.80
L2 5 days ago $ 680 excellent 0.90
L3 2 days ago $ 530 good 1.00
L4 today $ 200 good 0.48

In such applications, customers may want to continuously
monitor on-line advertisements by selecting the candidates for
the best deal - skyline points. Clearly, we need to “discount”
the dominating ability from offers with too low trustability.
Moreover, too old offers may not be quite relevant. We model
such an on-line selection problem as probabilistic skyline
against sliding windows by regarding on-line advertisements
as a data stream (see Section II for details).

Such a data stream may have a very high speed. Consider
the stock market application where clients may want to on-
line monitor good deals (transactions) for a particular stock.
A deal is recorded by two aspects (price, volume) where
price is the average price per share in the deal and volume
is the number of shares. In such applications, customers may
want to know the top deals so far, as one of many kinds
of statistic information, before making trade decisions. A
deal a is better than another dealb if a involves a higher
volume and is cheaper (per share) than those ofb, respectively.
Nevertheless, recording errors caused by systems or human
beings may make unsuccessful deals be recorded successful,
and vise versa; consequently each successful deal recorded
has a probability to be true. Therefore, a stream of deals may
be treated as a stream of uncertain elements and some clients
may only want to know “top” deals (skyline) among the most
recentN deals (sliding windows); and we have to take into
consideration the uncertainty of each deal. This is another



example of probabilistic skyline against sliding windows.
In this paper we investigate the problem of efficiently pro-

cessing probabilistic skyline against sliding windows. Tothe
best of our knowledge, there is no similar work existing in the
literature in the context of skyline computation over uncertain
data steams. In the light of data stream computation, it is
highly desirable to develop on-line, efficient, memory based,
incremental techniques using small memory. Our contribution
may be summarized as follows.

• We characterize the minimum information needed in
continuously computing probabilistic skyline against a
sliding window.

• We show that the volume of such minimum information
is expected to be bounded by logarithmic size in a lower
dimensional space regarding a given window size.

• We develop novel, incremental techniques to continu-
ously compute probabilistic skyline over sliding windows.

• We extend our techniques to support multiple pre-given
probability thresholds, as well as “top-k” probabilistic
skyline.

Besides theoretical guarantee, our extensive experiments
demonstrate that the new techniques can support on-line
computation against very rapid data streams.

The rest of the paper is organized as follows. In Section
II, we formally define the problem of sliding-window skyline
computation on uncertain data streams and present background
information. Section III and Section IV present our theoretic
foundation and techniques for processing probability thresh-
old based sliding window queries. Results of comprehensive
performance studies are discussed in Section V. Section VI
extends our techniques to top-k skyline, time-based sliding
windows, and a data object with multiple instances. Section
VII summaries related work and Section VIII concludes the
paper.

II. BACKGROUND

We use DS to represent a sequence (stream) of data
elements in ad-dimensional numeric space such that each
elementa has a probabilityP (a) (0 < P (a) ≤ 1) to occur
wherea.i (for 1 ≤ i ≤ d) denotes thei-th dimension value.
For two elementsu andv, u dominatesv, denoted byu ≺ v,
if u.i ≤ v.i for every1 ≤ i ≤ d, and there exists a dimension
j with u.j < v.j. Given a set of elements, theskylineconsists
of all points which are not dominated by any other element.

A. Problem Definition

Given a sequenceDS of uncertain data elements, apossible
world W is a subsequence ofDS. The probability ofW to
appear isP (W ) = Πa∈W P (a)×Πa6∈W (1−P (a)). Let Ω be
the set of all possible worlds, then

∑
W∈Ω P (W ) = 1.

We useSKY (W ) to denote the set of elements inW that
form the skyline ofW . The probability that an elementa
appears in the skylines of the possible worlds isPsky(a) =∑

a∈SKY (W ),W∈Ω P (W ). Psky(a) is called theskyline proba-
bility of a. The equation (1) below can be immediately verified.

Psky(a) = P (a) × Πa′∈DS,a′≺a(1 − P (a′)) (1)

In many applications, a data streamDS is append-only
[15], [20], [25]; that is, there is no deletion of data element
involved. In this paper, we study the skyline computation
problem restricted to the append-only data stream model.
In a data stream, elements are positioned according to their
relative arrival ordering and labelled by integers. Note that the
position/labelκ(a) means that the elementa arrivesκ(a)th in
the data stream.

Problem Statement.In this paper, we study the problem of
efficiently retrieving skyline elements from the most recent N
elements, seen so far, with the skyline probabilities not smaller
than a given thresholdq (0 < q ≤ 1); that is, q-skyline.
Specifically, we will investigate the problem of efficiently
processing such acontinuousquery, as well asad-hocqueries
with a probability thresholdq′ ≥ q.

B. Preliminaries

Various Dominating Probabilities. Let DSN denote the most
recent N elements. For each elementa ∈ DSN , we use
Pnew(a) to denote the probability that none of the new arrival
elements dominatesa; that is,

Pnew(a) = Πa′∈DSN ,a′≺a,κ(a′)>κ(a)(1 − P (a′)) (2)

Note thatκ(a′) > κ(a) means thata′ arrives aftera. We
usePold(a) to denote the probability that none of the early
arrival elements dominatesa; that is,

Pold(a) = Πa′∈DSN ,a′≺a,κ(a′)<κ(a)(1 − P (a′)) (3)

The following equation (4) can be immediately verified.

Psky(a) = P (a) × Pold(a) × Pnew(a). (4)
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Fig. 1. A Sequence of Data Elements

Example 1:Regarding the example in Figure 1(a) where
the occurrence probability of each element is as depicted,
assume thatN = 5, and elements arrive according the element
subindex order; that is,a1 arrives first, a2 arrives second,
..., anda5 arrives last.Pnew(a4) = 1 − P (a5) = 0.9 and
Pold(a4) = (1−P (a2))(1−P (a3))(1−P (a1)) = 0.042, and
Psky(a4) = P (a4)Pnew(a4)Pold(a4) = 0.034. �

Dominance Relationships.Our techniques will be based on
R-trees. Below we define various relationships between each
pair of entriesE′ andE. We useE.min to denote the lower-
left corner of the minimum bounding box (MBB) of the
elements contained byE, and E.max to denote the upper-
right corner of MBB of the elements contained byE. Note



that whenE degenerates to a single elementa, E.min =
E.max = a.

An entry E fully dominatesanother entryE′, denoted by
E ≺ E′, if E.max ≺ E′.min or E.max = E′.min with the
property that there is no element inE allocated atE.max or
there is no element inE′ allocated atE′.min. E partially
dominatesE′ if E.min ≺ E′.max but E does not fully
dominatesE′; this is denoted byE ≺partial E′. Otherwise,
E doesnot dominateE′, denoted byE ≺not E′.
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Fig. 2. Dominance relationships.

As depicted in Figure 2,E fully dominatesE3, and partially
dominatesE1 and E2. Note thatE1 does not dominateE
but E2 ≺partial E. Clearly, some elements inE1 may be
dominated by elements inE but elements inE cannot be
dominated by any elements inE1. This can be formally stated
below which can be verified immediately according to the
definitions.

Theorem 1:Suppose thatE ≺partial E′. Then some ele-
ments inE′ might be dominated by elements inE. However,
if E′ ≺not E′′. Then elements inE′′ cannot be dominated by
any element inE′.

III. F RAMEWORK

Given a probability thresholdq and a sliding window with
lengthN , below in Algorithm 1 is the framework whereaold

is the oldest element in current windowDSN and inserting
(anew) incrementally computesq-skyline.

Algorithm 1 : Continuous Probabilistic Skyline Computa-
tion over a Sliding Window

while a new elementanew arrives do1

if κ(anew) ≤ N then Inserting (anew);2

else Expiring (aold); Inserting (anew);3

end while4

Let SN,q denote the set of elements fromDSN with their
Pnew values not smaller thanq; that is,

SN,q = {a|a ∈ DSN&Pnew(a) ≥ q} (5)

A critical requirement in data stream computation is to have
small memory space and fast computation. In our algorithms,
instead of conducting the computation against a whole sliding
window (N elements), we do the computation restricted to
SN,q which will be shown logarithmic in size regardingN on
average. Next, we first show the correctness of restricting the
computation toSN,q.

A. UsingSN,q Only

In this subsection, we will show the following two things:
1) SN,q contains all skyline points withPsky ≥ q; and 2)
computingPsky andPnew againstSN,q will not lead to false
positivenor false negativeto continuously identifySN,q and
SKYN,q whereSKYN,q is the solution set; that is, for each
elementa in SKYN,q, Psky(a) ≥ q.

No Missing Elements.The following Lemma is immediate
based on (4).

Lemma 1:Eachq-skyline pointa (i.e., Psky(a) ≥ q) must
be in SN,q.

No False Hits to DetermineSN,q. Suppose thatPnew|SN,q
(a),

Pold|SN,q
(a) and Psky|SN,q

(a) denotePnew(a), Pold(a) and
Psky(a) restricted toSN,q, respectively.

Example 2:Regarding the example in Figure 1, suppose
that elementsa1, a2, a3, a4, and a5 arrive at time1, 2, 3,
4, and 5, respectively, andN = 5, q = 0.5. We have that
SN,q = {a2, a3, a4, a5} since values ofPnew for a2, a3,
and a5 are the same1, while Pnew(a4) = 0.9 as shown in
Example 1. It can be immediately verified that theirPnew

values restricted toSN,q remain unchanged. Example 1 also
shows thatPold(a4) = 0.042, while Pold(a4)|SN,q

= 0.6 ×
0.7 = 0.42 sincea1 is not contained inSN,q. �

Next, we show that for each elementa in SN,q, calculating
Pnew(a) againstSN,q is the same as calculating against the
whole windowDSN .

Theorem 2:For each elementa ∈ SN,q, Pnew|SN,q
(a) =

Pnew(a).
Theorem 2 immediately follows from the following Lemma.
Lemma 2:For each elementa ∈ SN,q, if there is an element

a′ ∈ DSN such thata′ ≺ a and a′ is newer thana, then
a′ ∈ SN,q.

Proof: Since a′ ≺ a and a′ is newer thana, each
element that is newer thana′ and dominatesa′ must dominate
a. Consequently,Pnew(a) ≤ Pnew(a′). As Pnew(a) ≥ q,
Pnew(a′) ≥ q. Thus, the theorem holds.

Note thatPold values againstSN,q are imprecise; neverthe-
less, below we will show that these will not affect a correct
determination ofSKYN,q.

No False Negative to DetermineSKYN,q. We show that
there is noa ∈ SKYN,q such thatPsky|SN,q

(a) < q.
Theorem 3:For each elementa ∈ SN,q, if Pold(a) ×

Pnew(a) ≥ q thenPold|SN,q
(a) = Pold(a).

Theorem 3 immediately follows the following lemma -
Lemma 3

Lemma 3:For an elementa′ such thata′ ≺ a, a′ arrives
earlier thana, andPold(a) × Pnew(a) ≥ q, thena′ ∈ SN,q.

Proof: Sincea′ ≺ a, any element dominatinga′ must
dominatea. Consequently,Pnew(a′) ≥ Pnew(a) × Pold(a) ≥
q. Thus,a′ ∈ SN,q.

Note thatPsky(a) = P (a)Pold(a)Pnew(a) whereP (a) ≤ 1.
This, together with Lemma 1, Theorems 2 and 3, immediately
implies the following corollary.

Corollary 1: For each elementa ∈ SN,q, if Psky ≥ q then
Psky(a) = Psky|SN,q

(a).



Corollary 1 immediately implies there is no false negative;
that is, there is noa ∈ SKYN,q such thatPsky|SN,q

(a) < q.

No False Positive to DetermineSKYN,q. We show that there
is no a ∈ SN,q such thatPsky|SN,q

(a) ≥ q andPsky(a) < q.
Theorem 4:For each elementa ∈ SN,q, if Pold(a) ×

Pnew(a) < q, thenPold|SN,q
(a) × Pnew|SN,q

(a) < q.
Proof: If every element dominatinga is in SN,q then

Pold(a)|SN,q
× Pnew(a)|SN,q

= Pold(a) × Pnew(a) < q. The
theorem holds.

Suppose that at least one element that dominatesa is not in
SN,q. From Lemma 2, all such elements must be older thana.
Let Dom(a) denote the set of elements that dominatea and
are not inSN,q. Suppose thata′ is the youngest element in
Dom(a). It is clear that all elements, which arrive aftera′ and
dominatea′, must be contained bySN,q since they dominate
a and younger thana′.

Note thatPnew(a′) < q. Consequently,q > Pnew(a′) ≥
Pold|SN,q

(a) × Pnew|SN,q
(a).

Note thatPsky(a) = P (a)Pold(a)Pnew(a) and P (a) ≤ 1.
These, together with Theorems 2, 3, and 4, immediately imply
the following corollary.

Corollary 2: For each elementa ∈ SN,q, if Psky|SN,q
(a) <

q, thenPsky(a) < q.
Therefore, in our techniques we only need to maintainSN,q,

calculate all probabilities againstSN,q, and select elements
a with Psky|SN,q

(a) ≥ q. For notation simplification, in the
remaining of the paper,Psky|SN,q

, Pold|SN,q
, and Pnew|SN,q

are abbreviated to Psky, Pold, Pnew, respectively if there is
no ambiguity.

B. Estimating sizes ofSN,q and SKYN,q

Minimality. It can be immediately verified that in order
to avoid getting a wrong solution,SN,q is the minimum
information to be maintained.

Theorem 5:Each elementa in the currentSN,q with P (a)×
Pnew(a) < q will never become aq-skyline point; however,
there is a data stream such that removinga away will lead to
false positive. Moreover, ana ∈ SN,q with P (a)×Pnew(a) ≥
q and Psky < q may become a skyline point if old elements
dominating e expire and newly arriving elements do not
dominatee.

Theorem 5 is quite intuitive and we omit the proof due to
space limits. Below we give an example.

Example 3:Regarding the example in Figure 1 (a), assume
thatN = 4. Considering the first window, there are4 elements
a1, a2, a3, and a4. SN,q = {a2, a3, a4} since Pnew(a1) =
0.6 × 0.7 < 0.5, while Pnew values fora2, a3, a4 are all 1.
Note thatPsky|SN,q

(a4) = 0.378; consequently,a4 is not a
q-skyline point based on the current window.

Regarding the second window whena1 expires anda5

arrives.SN,q = {a2, a3, a4, a5} wherePnew(a4) = 0.9. Other
Pnew values are1, Psky(a3) = P (a3) = 0.3 < 0.5, and
Psky(a4) = 0.34 < 0.5. If we do not recorda3 and a4 in
SN,q, thenPsky(a4) will be calculated as(1−P (a5))P (a4) >

0.5 leading to the false result, becausePsky(a4) should be
(1 − P (a2))(1 − P (a3))(1 − P (a5))P (a4) < 0.5.

Assume thata1 and a2 expire,a5 is as illustrated, anda6

does not dominatea4. Regarding the window containinga3,
a4, a5, anda6, Psky(a4) = 0.9× (1− 0.3)× (1− 0.1) > 0.5;
thus,a4 is a skyline point.�

Estimating Sizes.Next we show that the expected sizes of
SN,q and SKYN,q are bounded by a logarithmic number
regardingN .

Suppose thatχq,i is a random variable such that it takes
value1 if the ith arrival element is aq-skyline point; andχq,i

takes0 otherwise. Clearly, the expected sizeE(SKYN,q) of
SKYN,q is as follows.

E(SKYN,q) = E(

N∑

i=1

χq,i) =

N∑

i=1

P (χq,i = 1) (6)

Let IN = {j|1 ≤ j ≤ N}. Given a set ofN probability

values {Pj |1 ≤ j ≤ N & 0 < Pj ≤ 1}, let P (¬w)
4
=∏

j∈W (1 − Pj) whereW is a subset ofIN . Let P (W ≺ i)
denote the probability that theith element is dominated and
only dominated by the elements in{aj |j ∈ W}.

Theorem 6:Let DSN be a sequence ofN data elements
with probabilitiesP1, P2, ... , PN . Then,

E(SKYN,q) =
∑

∀W,i/∈W,Pi×P (¬W )≥q

P (W ≺ i) × Pi × P (¬W ) (7)

Below we show that (7) is bounded by a logarithmic size.

Given a Pi, let qk,i
4
= max{Pi × P (¬W )| |W | = k}.

Removing the probability value from each data element in
DSN to makeDSN be a sequenceDSc

N of N certain data
elements. LetP (DOMk

i ) denote the probability that there are
exactly k elements inDSc

N dominating an elementi. The
following lemma immediately follows from (6). Clearly,qk,i

is monotonically decreasing regardingk; that is,qk′,i >= qk,i

if k′ < k. Let ki denote the largest integer such thatqk,i ≥ q
for a givenq.

Lemma 4:E(SKYN,q) ≤
∑N

i=1

∑ki

j=0 P (DOM j
i ) × qj,i.

Let P (DOMT k
i ) denote the probability that there are

at most k elements dominating the elementi. Clearly,
P (DOMk

i ) = P (DOMT k
i ) − P (DOMT k−1

i ).
Corollary 3:

E(SKYN,q) ≤
N∑

i=1

(

ki−1∑

j=0

P (DOMT j
i ) × (qj,i − q(j+1),i) (8)

+ P (DOMT
ki
i )qki,i).

Let H1,l =
∑l

i=1
1
i
. The d-th order harmonic mean (for

integersd ≥ 1 andl ≥ 1) is Hd,l =
∑l

i=1
Hd−1,i

i
. The theorem

below presents the value ofP (DOMT k
i ).

Theorem 7:For a sequenceDSc
N of N certain data points

in ad-dimensional space, suppose that the value distribution of
each element on any dimension is the same and independent.
Moreover, we assume the values of the data elements in each
dimension are distinct. Then,P (DOMT k

i ) ≤ k+1
N

× (1 +
Hd−1,N − Hd−1,k+1) whend ≥ 2 andP (DOMT k

i ) = (k +
1)/N whend = 1.



Proof: Without lose of generality, we assume that the
data elements inDSc

N are sorted on the first dimension. Since
the value distribution of each element on any dimension is the
same and independent, an element has the equal probability
to take jth position on the first dimension among totalN
positions; that is1

N
probability to takejth position (1 ≤ j ≤

N ) on the first dimension.Note that whenai takesjth position.
any element takesj′th position cannot dominateai if j′ > j.

Whend = 1, elementai must take the first(k+1) positions
to ensure there are at mostk other elements dominatingai.
Consequently,P (DOMT k

i ) = (k + 1)/N .
We use mathematic induction to prove the theorem ford ≥

2. For d = 2, clearly whenai takes the first(k +1) positions,
there are at most(k +1) other elements dominatingai. When
ai takes ajth position forj > k+1, the conditional probability
that there must be at mostk elements dominatingai is k+1

j

since for each permutation withai at jth position on the first
dimension, the the value ofai on the second dimension must
take one of the(k + 1) smallest value among thej elements
with the j smallest values on the first dimension. Thus, we
have:

P (DOMT k
i ) =

(k + 1)

N
+

1

N
(

N∑

j=k+2

k + 1

j
) (9)

=
k + 1

N
× (1 + H1,N − H1,k+1)

Assume that the theorem holds ford = l. For d = l + 1,
it still holds that whenai’s value on the first dimension is
allocated at the first(k + 1) positions, then there must be
at most k other elements dominatingai. When ai takes a
jth position for j > k + 1, the conditional probability that
there are at mostk elements dominatingai is P (DOMk

i )j,l

regarding al-dimensional space andj elements for each
permutation withai at jth position on the first dimension.
Based on our assumption,P (DOMk

i )|j,l ≤ k+1
j

× (1 +

Hl−1,j − Hl−1,k+1); consequently, theP (DOMk
i ) regarding

the (l + 1)-dimensional space andN data elements is:

P (DOMT k
i ) ≤

k + 1

N
+

1

N

N∑

j=k+2

k + 1

j
× (1 + Hl−1,j − Hl−1,k+1)

Since1 ≤ Hl−1,k+1, we have:

P (DOMT k
i ) ≤

k + 1

N
+

1

N

N∑

j=k+2

k + 1

j
× (Hl−1,j)

=
k + 1

N
(1 + Hl,N − Hl,k+1)

It can be immediately verified thatHd,N = O(lnd N);
consequentlyP (DOMT k

i ) = O(k lnd−1 N). This together
with Theorem 7 and Corollary 3 immediately implies that the
expected size ofSKYN,q in a d-dimensional space is poly-
logarithmic regardingN with order (d − 1) .

Size of SN,q. Elements in the candidate set can be regarded
as skyline points in a(d + 1)-space by including the time as
an additional dimension sincePnew can be regarded as the
non-dominance probability in such a(d + 1)-space. We have
the following theorem.

Theorem 8:In a d-dimensional space, suppose that the
distribution on each dimension, including arriving order are
independent. On each dimension, the values of the data items
are distinct. LetP (skytji ) denote the probability that there
are at mostj elements inDSc

N (remove element probabil-

ities from DSN ) dominating theith element. Letpk,i
4
=

max{P (¬W )| |W | = k}

E(SKYN,q) ≤
N∑

i=1

ki−1∑

j=0

P (skytji ) × (pj,i − p(j+1),i) (10)

+ P (skyt
ki
i )pki,i.

Note thatP (skytki

i ) can be estimated in the same way as
that in Theorem 7 by replacingd by d + 1. Therefore, the
expected size ofSN,q is poly-logarithmic regardingN with
the order ofd.

IV. A LGORITHMS

A trivial execution of Algorithm 1 is to visit each element in
SN,q to update skyline probability when an element inserts or
deletes; then choose elementsa from SN,q with Psky(a) ≥
q. Note a new data element may cause several elements
to be deleted fromSN,q, nevertheless, the amortized time
complexity isO(|SN,q|) per element which is poly-logarithmic
regardingN with the order ofd (Section III-B).

In this section, we present novel techniques to efficiently
execute Algorithm 1 based on aggregate-R trees with the
aim to visit as few elements as possible. We continuously,
incrementally maintainSKYN,q andSN,q.

The rest of the section is organized as follows. We first
present data structures to be used. Then we present our effi-
cient techniques to deal with the arrival of a new element fora
given probability threshold. This is followed by our techniques
to deal with the expiration of an old element for a given
probability threshold. Then, we extend our techniques to deal
with applications where multiple probability thresholds are
given. Finally, correctness and complexity of our techniques
are shown.

A. AggregateR-trees

SinceSKYN,q ⊆ SN,q, we continuously maintainSKYN,q

and (SN,q − SKYN,q) to avoid store a data element twice.
In-memory R-treesR1 and R2 on SKYN,q and (SN,q −

SKYN,q), respectively will be used and continuously main-
tained. We aim to conduct an efficient computation. Thus, we
develop in-memory aggregateR-trees based on the following
observation.
Observation. Regarding the example in Figure 3, assume that
N = 13, q = 0.2, the occurrence probabilities are as depicted,
and DSN = {ai|1 ≤ i ≤ 13}. Suppose that elements arrive
according to the increasing order of elements sub-indexes.
It can be immediately verified thatPnew(a1) < 0.2, SN,q

containsai for 2 ≤ i ≤ 13, and SKYN,q contains only the
elements inR1. TwoR-trees are built: 1)R1 is built against the
elements inSKYN,q; and 2)R2 is built against the elements
in (SN,q − SKYN,q).
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Fig. 3. AggregateR-trees

When a new elementa14 arrives anda1 expires. We need
to find out the elements which are dominated bya14 and then
to determine the elements which need to be removed from
SN,q andSKYN,q. In fact a14 dominates entriesE4, E2, and
R2.root (root entry of R2). If we keep the maximum and
minimum values ofPnew for the elements contained by those
entries, respectively, we have a chance not to visit the elements
of those entries. Specifically, at an entry if the maximum
values ofPnew multiplied by (1−P (a14)) smaller thanq, the
entry (i.e. all elements contained) will be removed fromSN,q.
On the other hand if the minimum value ofPnew multiplied
by (1 − P (a14)) is not smaller thanq, then the entry (i.e. all
elements contained) remains inSN,q. Similarly, at each entry
we keep the minimum and maximum values ofPsky for the
elements contained to possibly terminate the determination of
whether elements contained are inSKYN,q.

Moreover, in this example elements contained byE2 is in
SN,q, we can update theirPnew values globally by keeping a
global valueP global

new = P global
new × (1−P (a14)) at E2 to avoid

individually update all elements contained inE2.
Furthermore, in this examplea2 will be removed fromSN,q

oncea14 arrives. To avoid update each element contained by
E8 individually due to the removal ofa2, we can keep a global
valueP global

old = P global
old × (1−P (a2)) at E2 so that we know

that thePold values for elements inE2 will be updated by
multiplying 1

P
global

old

. From time to time, we may remove an

entry E from SN,q and E fully dominates another entryE′

which stays inSN,q. If we keep the no-occurrence probability
of the elements inE - Pnoc = Πa∈E(1−P (a)), then we can
updateP global

old at E′ by multiplying Pnoc.

Aggregate Information. Motivated by the observation above,
we maintainR1 andR2 as aggregateR-trees to keep the above
information at each entry. We summarize it below.

• At each entryE, the following information will be stored.
P global

new (E) stores the captured multiplication of non-
occurrence probabilities of the elements which dominate
all elements rooted atE. P global

old (E) stores the multipli-
cation of non-occurrence probability of the elements that
expired and dominate the elements rooted atE.

• At each entryE, we usePnoc(E) to store
∏

e∈E(1 −
P (e)).

• At each entryE, Psky,min(E) and Psky,max(E) store
the minimum skyline probability and maximum skyline

probability of the elements rooted atE without including
P global

old andP global
new atE. Pnew,min(E) andPnew,max(E)

store the minimum and maximumPnew values of the
elements rooted atE without includingP global

new at E.

Example 4:Continue the example in Figure 3 against the
first 13 elements.

P global
old andP global

new at each internal entry are initialized to
1. Whena10 arrives, we updateP global

new (E4) from 1 to (1 −
P (a10)) = 0.8 since a10 dominates the MBB ofE4, while
otherP global

new values remain1.
Here, Pnoc(E3) = (1 − P (a10))(1 − P (a8)) = 0.64.

Similarly, we can calculate values ofPnoc at entriesE4,
E5, and E6. Then, Pnoc(E1) = Pnoc(E3) × Pnoc(E4) and
Pnoc(E2) = Pnoc(E5) × Pnoc(E6). The multiplication of
Pnoc(E1) andPnoc(E2) givesPnoc at the root. Similarly,Pnoc

values at each internal entry inR2 can be calculated.
The information thata10 dominates botha5 and a6 has

not been pushed down to leaf-level and is only captured at
the entryE4; consequently the captured skyline probabilities
for a6 and a5 are P (a6) × (1 − P (a8)) (0.64) and P (a5)
(0.8). Therefore, atE4, Psky,max = 0.8 andPsky,min = 0.64;
Pnew,max = 1 and Pnew,min = (1 − P (a8)) (0.8). These
multiplied by P global

new give the exact values ofPsky,max,
Psky,min, Pnew,max, and Pnew,min at E4, respectively. At
other entries,Psky,max, Psky,min, Pnew,max and Pnew,min

take exact values.
Oncea2 removes, atE8, P global

old is updated from1 to (1−
P (a2)) = 0.9. �

Removing an Entry. When an entryE removes fromR1 or
R2, we first push down the aggregate information along the
path from the root toE and update the siblings’ aggregate
information for each entry on the path. For example, when
removeE3, we first recalculate the max and min probabilities
at the root by CalProb (R.root), Algorithm 2. Then we
push-downPnew and Pold to E1 and E2, respectively by
UpdateOldNew (R1.root, E1) and UpdateOldNew (R1.root,
E2) (Algorithm 3). Then we resetP global

old andP old
new at R.root

by 1. We perform the same operations fromE1 to E3 andE4.

Algorithm 2 : CalProb (E)

if P global
old (E) < 1 then1

updatePsky,min(E), Psky,max(E) by multiplying2
1

P
global

old

;

end if3

if P global
new (E) < 1 then4

updatePsky,min(E), Psky,max(E), Pnew,min(E),5

Pnew,max(E) by multiplying P global
new ;

end if6

After E removes fromR, we recalculate min and max
probabilities, as well asPnoc along the path in a bottom-up
fashion fromE.

Inserting an Entry. In our algorithm, we may need to remove
an entry fromR1 and insert it toR2, and vice versa. When



Algorithm 3 : UpdateOldNew (E, E′)

if P global
old (E) < 1 then1

P global
old (E′) := P global

old (E′) × P global
old (E) ;2

end if3

if P global
new (E) < 1 then4

P global
new (E′) := P global

new (E′) × P global
new (E) ;5

end if6

an entryE inserts intoR1 (or R2), we find an appropriate
level to insertE; that is, the level with the length to the leaf
to be the same as the depth ofE. We also first push down the
aggregate information, in the same way as a deletion, to the
level. After insertingE, we also recalculate the same aggregate
information in the same way as that in a deletion.

Re-balancing.When a re-balancing ofR1 or R2 as anR-tree
is called, we treat it as a deletion followed by an insertion.

B. Inserting a New Element

As depicted in the last subsection, once a new element
anew arrives, we need to conduct the following tasks: 1)
updatePnew values of the elements dominated byanew by
multiplying (1 − P (anew)), 2) remove the elementsa with
updatedPnew(a) < q from R1 and R2, 3) updatePsky (via
Pold and Pnew) values for the elements dominated by some
of those removed elements, 4) move elementsa in R1 with
Psky(a) < q to R2, and 5) calculatePsky(anew) and insert it
to R1 or R2 accordingly sincePnew(anew) = 1.

According to Lemma 2, if a remaining elementa in SN,q

is dominated by a removed elementa′, thena′ must be older
than a; consequently in the task 3) above, we only need to
updatePold values. Moreover, by dominance transitivity all the
tasks 1) - 4) only need to be conducted against the elements
dominated byanew. Clearly, the task 5) is conducted against
entries/elements which dominateanew. Therefore, it is critical
to identify entries/elements inR1 and R2 which are fully
dominated byanew, as well as the entries/elements which
dominateanew. Algorithm 4 is an outline of our techniques.

In Algorithm 4, we useC1 to store the entries partially
dominateanew, C2 to store the entries partially dominated
by anew, and C12 to store the entries which are partially
dominated byanew and partially dominateanew. Then, we use
Probe (C1, Psky(anew)) and Probe (C12, R, Psky(anew)) to
traverse the two aggregateR-trees to get all entries/elements
dominatinganew. We also use Probe (C2, R) and Probe (C12,
R, Psky(anew)) to traverse the two aggregateR-trees to get
all entries/elements fully dominated byanew and put inR.
Finally, UpdateProb (R) conducts tasks 2)-4) and the task 5) is
conducted in line 16 by the inserting operation to an aggregate
R-tree (R1 or R2) as described in Section IV-A. Next, we
provide details for the procedures Prob () and UpdateProb().

Probe (C1, Psky(anew)) (Algorithm 5). According to The-
orem 1, entries inC1 cannot contain any element which is
dominated byanew. Probe (C1, Psky(anew)) is to iteratively
traverse the aggregateR-trees to get entries which dominate

Algorithm 4 : Inserting (anew)
Input : N : window size;q: skyline probability threshold.anew:

data element.R1 andR2: two aggregate trees onSKYN,q

and (SN,q − SKYN,q) respectively.
Output : UpdatedR1 andR2

Psky(anew) := P (anew); Pold(anew) := 1; Pnew(anew) := 1;1
for each E ∈ {R1.root, R2.root} do2

if E ≺ anew then3
Psky(anew) := Psky(anew) × Pnoc(E);4
Pold(anew) := Pold(anew) × Pnoc(E);5

else6
if anew ≺ E then addE to R;7
if E ≺partial anew & anew ≺not E then addE to C1;8
if E ≺partial anew & anew ≺partial E then9

addE to C12;10

if anew ≺partial E & E ≺not anew then addE to C2;11

if C1 6= ∅ then Probe (C1, Psky(anew));12
if C2 6= ∅ then Probe (C2, R);13
if C12 6= ∅ then Probe (C12, R, Psky(anew));14
ifR 6= ∅ then UpdateProb (R);15
if Psky(anew) ≥ q then Add anew to R1 elseaddanew to R216

anew and then updatePsky andPold of anew. In Algorithm 5,
we use Dequeue () combining with UpdateOldNew () (Algo-
rithm 3) to push down the aggregate information. Algorithm
6 gives details of Dequeue ().

Algorithm 5 : Probe (C1, Psky)
while C1 6= ∅ do1

E := Dequeue (C1);2
for each Children E′ of E do3

UpdateOldNew (E, E′);4
if E′ ≺ anew then5

Psky(anew) := Psky(anew) × Pnoc(E′);6
Pold(anew) := Pold(anew) × Pnoc(E′);7

else8
if E′ ≺partial anew then addE′ to C1;9

if E′ is the last child of E then10

resetP global
new (E) andP global

old (E) to 1;11

returnPsky(anew);12

Algorithm 6 : Dequeue (C1)
if C1 6= ∅ then1

get anE in C1; /* remove E from C1 */;2
CalProb (E); /* Algorithm 2 */;3

returnE;4

Probe (C2, R). Note that entries inC2 do not contain
any elements that dominateanew according to Theorem 1.
Similarly, Probe (C2, R) is to iteratively traverse to get all
entries/elements which are dominated byanew and then place
them inR. As a by-product, we push down the aggregate in-
formation and updateP global

new values of those entries/elements
in R. The details are presented in Algorithm 7.

Probe (C12, R, Psky(anew)). Entries inC12 partially dom-
inateanew and are also partially dominated byanew. Conse-
quently, elements contained by entries inC12 might dominate
anew or are dominated byanew. Probe (C12, R, Psky(anew)),
combing with Algorithms 5 and 7, is to iteratively traverse the
aggregateR-trees to possibly further updatePsky(anew) and



Algorithm 7 : Probe (C2, R)
while C2 6= ∅ do1

E := Dequeue (C2);2
for each Children E′ of E do3

UpdateOldNew (E′);4
if anew ≺ E′ then5

P global
new (E′) := (1 − P (anew)) × P global

new (E′);6
addE′ to R;7

else8
if anew ≺partial E′ then addE′ to C2;9

if E′ is the last child of E then10

resetP global
new (E) andP global

old (E) to 1;11

returnR;12

add more toR. We present the details below in Algorithm 8.

Algorithm 8 : Probe (C12, R, Psky(anew))
while C12 6= ∅ do1

E := Dequeue (C12);2
for each Children E′ of E do3

UpdateOldNew (E′);4
if anew ≺ E′ then5

P global
new (E′) := (1 − P (anew)) × P global

new (E′);6
addE′ to R;7

else8
if anew ≺partial E′ & E′ ≺not anew then9

addE′ to C2;10

if anew ≺not E′ & E′ ≺partial anew then11
addE′ to C1;12

if anew ≺partial E′ & E′ ≺partial anew then13
addE′ to C12;14

if E′ ≺ anew then15
Psky(anew) := Psky(anew) × Pnoc(E′) ;16
Pold(anew) := Pold(anew) × Pnoc(E′) ;17

if E′ is the last child of E then18

resetP global
new (E) andP global

old (E) to 1;19

if C1 6= ∅ then Probe (C1, Psky) (Algorithm 5);20
elsereturnPsky(anew);21
if C2 6= ∅ then Probe (C2, R) (Algorithm 7);22
elsereturnR;23

UpdateProb (R). R contains all entries/elements which are
fully dominated byanew and obtained by Probe (C12, R,
Psky(anew)) and Probe (C2, R). Note that in our implemen-
tation, we use a link list to point to all these entries/elements
in R. UpdateProb (R) is to traverse those entries inR,
along the aggregateR-trees to which they belong, to detect
and remove entries/elements with the updatedPnew values
smaller thanq. Moreover, it also updates thePold values
of remaining elements inR which are dominated by some
removed elements, as well as detects the remaining elements
in R with Psky < q. Algorithm 9 provides details.

Lines 1-11: Iteratively detect the elements/entries to be re-
moved (i.e. withPnew < θ) and put them toR3.

Lines 12: UpdateOld (R3, R4) is to update the values of
P global

old of elements/entries inR4 dominated by some inR3

as follows. For each pairE1 ∈ R3 andE2 ∈ R4,
if E1 fully dominatesE2, then updateP global

old (E2)
by multiplying Pnoc(E1); otherwise, ifE1 partially

Algorithm 9 : UpdateProb (R)
while R 6= ∅ do1

E := Dequeue (R);2
if Pnew,min(E) < q ≤ Pnew,max(E) then3

for each Children E′ of E do4
UpdateOldNew (E′, E);5
addE′ to R;6
if E′ is the last child of E then7

resetP global
new (E) andP global

old (E) to 1;8

else9
if Pnew,min(E) ≥ q then addE to R4;10
elseaddE to R3; /* Pnew,max(E) < q */;11

if R3 6= ∅ andR4 6= ∅ then UpdateOld (R3, R4);12
if R3 6= ∅ then Remove (R3);13
if R4 6= ∅ then Place (R4);14

dominatesE2 then put the children ofE1 to R3 and
the children ofE2 to R4 for the next iteration.

In our implementation, we mark entries fromR (i.e., R3 and
R4) within R1 andR2. Then, we use thesynchronous traversal
paradigm [11] to traverseR3 and R4 by following the R-
tree structures of the entries inR3 and R4. Here, we create
a dummy root forR3 with all entries inR3 to be children of
the root; similar treatments are done forR4.

lines 13:We remove entries/elements inR3 from R1 andR2

as what discussed in Section IV-A.

lines 14: Place (R4) is to determine elements/entries inR4

to be in R1 or R2. In fact, we only need to checkR4 ∩ R1

according to Corollaries 1 and 2; it is conducted as follows.
For each entryE ∈ R4 ∩R1, we use depth-first search to find
out all its highest level decedent entries withPsky,min greater
than q - Algorithm 10. In lines 10-11 of Algorithm 10, we
first removeE from R1 in the way as described in Section
IV-A. Then, we insertE into R2 in the way as described in
Section IV-A.

Algorithm 10 : Place (R4)
while R1 ∩ R4 6= ∅ do1

E := Dequeue (R1 ∩ R4);2
if Psky,min(E) < q ≤ Psky,max then3

for each Children E′ of E do4
UpdateOldNew (E′);5
addE′ to R1 ∩ R4;6
if E′ is the last child of E then7

resetP global
new (E) andP global

old (E) to 1;8

else9
if Psky,max(E) < q then10

Move E from R1 to R2;11

C. Expiration

Once an elementaold expires, we first check if it is inSN,q.
If it is in SN,q then we need to increase thePold values for
elements dominated byaold. After that, we need to determine
the elements that need to be moved fromR2 to R1. Algorithm
11 below presents details.

In Algorithm 11, Move (R∩R2) is to move the elements in
R∩R2 with updated skyline probability not smaller thanq to
R1. It is executed in the same way as Place (R4) but replace



Algorithm 11 : Expiring (aold)
if aold ∈ SN,q then1

Remove (aold);2
for E ∈ {R1.root, R2.root} do3

if aold ≺ E then4
Pold(E) = Pold(E)/(1 − P (aold));5
addE to R;6

else7
if aold ≺partial E then addE to C;8

while C 6= ∅ do9
E := Dequeue (C);10
for each Children E′ of E do11

UpdateOldNew (E′);12
if aold ≺ E′ then13

Pold(E′) := Pold(E′)/(1 − P (aold);14
addE′ to R;15

else16
if aold ≺partial E then addE′ to C;17

if E′ is the last child of E then18

resetP global
new (E) andP global

old (E) to 1;19

if R 6= ∅ then Move (R ∩ R2);20

R1 ∩ R4 by R ∩ R2 and move fromR2 to R1 instead ofR1

to R2.

D. Multiple Confidences

Continuous queries Different users may specify different
confidences. Suppose that users specifyk confidencesq1, q2,
..., qk where qi < qi−1. Our techniques for a single given
confidence can be immediately extended to cover multiple
confidences as follows.

Instead of maintaining a single solution setR1 in Algorithm
11, we maintaink solution setsR1, R2, ..., Rk such that
elements inRi (for 2 ≤ i ≤ k) have the skyline probabilities
in [qi, qi−1) where q0 = 1 and Rk+1 keeps the elements
in (SN,qk

− ∪k
i=1Ri). ThoseRi for i = 1 to (k + 1) are

also maintained as aggregateR-trees with the same aggregate
information.

All the techniques from Algorithm 11 are immediately
applicable except that now in Algorithm 9, we need to detect
where to place some elements inR ∩ Ri for i ≤ k; that is,
we need to consider allRj for i < j < k + 1. In Algorithm
11, now we need to detect where to move some elements in
Rk+1; that is, we need to considerRj (for 1 ≤ j ≤ k) instead
of just R1 in the case of single confidence.

Ad-hoc Queries.Users may also issue an ad-hoc query, “find
the skyline with skyline probability at leastq′”. Assume that
currently we maintaink skylines as discussed above andq′ ≥
qk. Then, we first find anRi such thatqi ≤ q′ < qi−1; clearly
elements{Rj : j < i− 1} } are contained in the solution. We
can apply the search paradigm in Place (R4) (Algorithm 10)
to get all elements inRi with skyline probabilities≥ q but
without updating aggregate probabilities information.

E. Algorithm Analysis

Correctness.Our sliding window techniques maintain aggre-
gate information againstSN,q and then get skyline according
to the skyline probabilities restricted toSN,q, Theorems,

Lemmas and Corollaries in Section III-A ensure that our
algorithms are correct.

Space Complexity. Clearly, in our algorithm we use
aggregate-R trees to keep each element inSN,q and each
element is kept only once. Thus, the space complexity is
O(|SN,q|).

Time Complexity. It seems hard to provide a sensible time
complexity analysis; nevertheless, our experiment demon-
strates the algorithms in this section is much faster than
the trivial algorithm againstSN,q as what discussed in the
beginning of this section.

V. PERFORMANCEEVALUATION

In this section, we only evaluate our techniques since this
is the first paper studying the problem of probabilistic skyline
computation over sliding windows. Specifically, we implement
and evaluate the following techniques.

SSKY Techniques presented in Section IV to continuously
computeq-skyline (i.e., skyline with the probability
not less than a givenq) against a sliding window.

MSKY Techniques in Section IV-D to continuously com-
puting multipleq-skylines currently regarding multi-
ple given probability thresholds.

QSKY Techniques in Section IV-D to processing an ad-hoc
skyline query with a probability threshold.

All algorithms are implemented in C++ and compiled by
GNU GCC. Experiments are conducted on PCs with Intel
Xeon 2.4GHz dual CPU and 4G memory under Debian Linux.
Our experiments are conducted on both real and synthetic
datasets.
Real datasetis extracted from the stock statistics from NYSE
(New York Stock Exchange). We choose2 million stock
transaction records of Dell Inc. fromDec 1st 2000to May
22nd 2001. For each transaction, the average price per volume
and total volume are recorded. This 2-dimensional dataset is
referred to asstock in the following. We randomly assign a
probability value to each transaction; that is, probability values
follows uniform distribution. Elements’ arrival order is based
on their transaction time.
Synthetic datasets are generated as follows. We first use the
methodologies in [3] to generate2 million data elements with
the dimensionality from2 to 5 and the spatial location of data
elements follow two kinds of distributions,independentand
anti-correlated. Then, we use two modelsuniform or normal
distributions to randomly assign occurrence probability of each
element to make them be uncertain. Inuniform distribution,
the occurrences probability of each element takes a random
value between0 and 1, while in thenormal distribution, the
mean valuePµ varies from0.1 to 0.9 and standard deviation
Sd is set0.3. We assign a random order for elements’ arrival
in a data stream.
Choosing q. q is the probability threshold in evaluating
efficiency of query processing. To evaluate SSKY, we use
0.3 as a default value ofq, while to evaluate MSKY with
k given probability thresholdsq1, ..., qk, we let thesek



values evenly spread[0.3, 1]. To evaluate QSKY, we issue
1000 queries across[q, 1] whereq is the minimum probability
threshold when multiple thresholds are pre-given for multiple
continuous skylines. We record average time to process these
1000 queries.

Table II summarizes parameters and corresponding default
values. In our experiments, all parameters take default
values unless otherwise specified.

TABLE II

SYSTEM PARAMETERS

Notation Definition (Default Values)
n Number of points in the dataset (2M)
N Sliding Window size (1M)
d Dimensionality of the of the dataset (3)
D Dataset (Anti)

DP Probabilistic distribution of appearance (uniform)
Pµ expected appearance probability (0.5)
q probabilistic threshold (0.3)
q′ probabilistic thresholdq′ (q ≤ q′ ≤ 1)

In our experiments, we evaluate the efficiency of our algo-
rithm as well as space usage against dimensionality, size of
sliding window, probabilistic threshold, distribution ofobjects’
spatial location and appearance probability distribution.

A. Evaluate Space Efficiency

We evaluate the space usage in terms of the number of
uncertain elements kept inSN,q against different settings. As
this number may change as the window slides, we record the
maximal value over the whole stream. Meanwhile, we also
keep the maximal number ofSKYN,q.

The first set of experiments is reported in Figure 4 where
4 datasets are used: Inde-Uniform (Independent distribution
for spatial locations and Uniform distribution for occurrence
probability values), Anti-Uniform, Anti-Normal, and Stock-
Uniform. We record the maximum sizes ofSN,q andSKYN,q.
It is shown that very small portion of the 2-dimensional dataset
needs to be kept. Although this proportion increases with
the dimensionality rapidly, our algorithm can still achieve a
89% space saving even in the worst case,5 dimensionalanti-
correlated data. Size ofSKYN,q is much smaller than that
of candidates. Since theanti-correlated dataset is the most
challenging, it will be employed as the default dataset in the
following.

Inde-Uniform
 ��Anti-Uniform
 Anti-Normal
�� Stock-Uniform
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Fig. 4. Space Usage vs Diff. Data set

The second set of experiment evaluates the impact of
sliding window sizeN on the space efficiency. As depicted in
Figure 5, the space usage is sensitive towards the increment
of window size.
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Fig. 5. Space Usage vs Window Size
Anti (2d)
 Anti (3d)
 Anti (4d)
 Anti (5d)
 Stock


102

103

104

105

106

0.1 0.3 0.5 0.7 0.9

M
ax

. C
an

di
da

te
 S

iz
e 

(a) Max. Candidate Size

101

102

103

104

105

0.1 0.3 0.5 0.7 0.9

M
ax

. S
ky

lin
e 

S
iz

e

(b) Max. Skyline Size
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Figure 6 reports the impact of occurrence probability distri-
bution against the space usage and number of skyline points on
different datasets. The occurrence probability followsnormal
distribution and the mean of the appearance probabilityPµ

increases from0.1 to 0.9. It demonstrates that the smaller the
average appearance probability of the points, the more points
will be kept in SN,q. As shown in Figure 6(a), the size of the
candidate decreases with the increase of average appearance
probability. Interestingly, although the candidate size is large
with smaller average occurrence probability, the number of
probabilistic skyline is small, as illustrated in Figure 6(b).
This is because the small occurrence probability prevents the
uncertain objects from becoming probabilistic skyline.
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Fig. 7. Space Usage vs Probability threshold

Figure 7 reports the effect of probabilistic thresholdq on
space efficiency. As expected, both candidate set size and
skyline set size drop asq increases.

B. Evaluation Time Efficiency

We evaluate the time efficiency of our continuous query
processing techniques, SSKY and MSKY, as well as ad-hoc
query processing technique QSKY. We first compare SSKY
with the trivial algorithm againstSKYN,q as described in the
beginning of Section IV. We find it is about20 times slower
than SSKY against anti (3d). Thus, we exclude the trivial



algorithm from further evaluation.

Since the processing time of one element is too short to
capture precisely, we record the average time for each batch
of 1K elements to estimate the delay per element.
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The first set of experiment is depicted in Figure 8. It shows
that SSKY is very efficient, especially when the dimensionality
is low. For 2 dimensional dataset, SSKY can support a
workload where elements arrive at the speed of more than
38K per second even forstock and anti-correlated dataset.
For 5d anti-correlateddata, our algorithm can still support up
to 728 elements per second, which is a medium speed for data
streams.

Figure 9 evaluates the system scalability towards the size of
the sliding window. The performance of SSKY is not sensitive
to the size of sliding window. This is because the candidate
size increases slowly withN , as reported in Figure 5.
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Figure 10 evaluates the impact of occurrence probability
distribution on time efficiency of SSKY where normal distri-
bution is used for probability values. As expected, largePµ

leads to better performance since the candidate size is small
whenPµ is large.

Figure 11 evaluates the effect of probability thresholdq on
SSKY. Since both size of candidate set and skyline objects
set are small whenq is large as depicted in Figure 7, SSKY
is more efficient whenq increases.
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The last experiment evaluates the efficiency of our multi
probability thresholds based continuous query processingtech-

niques MSKY and ad-hoc query processing techniques. Re-
sults are reported in Figures 12(a) and 12(b), respectively. As
expected, Figure 12(a) shows that cost to process each element
by MSKY increases whenk increases, while Figure 12(b)
shows the ad-hoc query processing cost decreases whenk
increases.

C. Summary

As a short summary, our performance evaluation indicates
that we only need to keep a small portion of stream objects
in order to compute the probabilistic skyline over sliding win-
dows. Moreover, our continuous query processing algorithms
are very efficient and can support data streams with high
speed for2d and3d datasets. Even for the most challenging
data distribution,anti-correlated, we can still support the data
stream with medium speed of more than700 elements per
second when dimensionality is5.

VI. A PPLICATIONS

The techniques developed in this paper can be immediately
extended to the following applications.

Probabilistic Top-k Skyline Elements. Given an uncertain
data stream, a thresholdq, and a sliding window sizeW , find
thek skyline points with the highest skyline probabilities (but
not smaller thanq).

We can apply our algorithms in Section IV to remove points
with Pnew < q, update aggregate information at each entry,
probabilities (Psky, Pold, Pnew, etc). We do not move any
elements inR4 ∩ R1 to R2. Instead, we treatR1 and R2 as
two “heap trees”. In fact, bothR1 andR2 maintain two heaps
on Psky: 1) min-heap, and 2) max-heap; this is because we
keepPsky,min andPsky,max at each entry. We use min-heap
on R1 and max-heap onR2 to move elements in top-k from
R2 to R1 and move elements inR1 but not in top-k to R2.

Time Stamp based Sliding Windows.In such a model, we
expire an old element if it is not within a pre-given most recent
time periodT . Our techniques can be immediately extended
to sliding windows based on the most recent time periodT .

Object with Multiple Elements. Suppose that an uncertain
stream contains a sequence of objects such that each object
consists of a set of instances [22] or PDF. In fact, our skyline
probability model is a special case of the model in [22]. In our
sliding window model, we assume that each object isatomic.1

Then we want to compute objects with skyline probabilities
not smaller thanq. It can be immediately verified that all our
techniques are immediately applicable to discrete cases except
we compute skyline probability in a different way; that is,
based on the definition in [22]. For continuous cases, we can
use Monte-Carlo sampling method [16] to discrete them.

VII. R ELATED WORK

We review related work in two aspects, skylines and uncer-
tain data streams. To the best of our knowledge, this paper

1When an object arrives, all its instances arrive; when an object expires,
all its instances expire.



is the first one to address the problem of skyline queries on
uncertain data streams.

Skylines. Börzs̈onyi et al [3] first study the skyline op-
erator in the context of databases and propose an SQL
syntax for the skyline query. They also develop two com-
putation techniques based onblock-nested-loop and divide-
and-conquer paradigms, respectively. Anotherblock-nested-
loop based technique SFS (sort-filter-skyline) is proposed by
Chomicki et al [7], which takes advantage of a pre-sorting
step. SFS is then significantly improved by Godfreyet al [10].
The progressiveparadigm that aims to output skyline points
without scanning the whole dataset is firstly proposed by Tan
et al [24]. It is supported by two auxiliary data structures,
bitmap and search tree. Kossmannet al [18] present another
progressive technique based on the nearest neighbor search
technique. Papadiaset al [21] develop abranch-and-bound
algorithm (BBS) to progressively output skyline points based
on R-trees with the guarantee of minimal I/O cost. Variations
of the skyline operator have also been extensively explored,
including skylines in a distributed environment [2], [12],
skylines for partially-ordered value domains [4], skylinecubes
[23], [26], [27], reverse skylines [9], approximate skylines [5],
[6], [17], etc.

Skyline queries processing in data streams is investigatedby
Lin et al [20] against various sliding windows. Taoet al [25]
independently develop efficient techniques to compute sliding
window skylines.

The skyline query processing on uncertain data is firstly
approached by Peiet al [22] whereBounding-pruning-refining
techniques are developed for efficient computation. Lianet al
[19] combine reverse skylines [9] with uncertain semantics
and model theprobabilistic reverse skylinequery in both
monochromatic and bichromatic fashion. Efficient pruning
techniques are developed to reduce the search space for query
processing.

Uncertain Data Streams. Although numerous research as-
pects have been addressed on managing certain stream data,
works on uncertain data streams have abounded only very
recently. Aggregates over uncertain data streams have been
studied recently [8], [13], [14]. Problems such as clustering
uncertain data stream [1], frequent items retrieval in proba-
bilistic data streams [28], and sliding window top-k queries
on uncertain streams [15] are also investigated. Since skyline
queries are inherently different from these problems, tech-
niques proposed in none of the above papers can be applied
directly to the problems studied in this paper.

VIII. C ONCLUSION

In this paper, we investigate the problem of efficiently
computing skyline against sliding windows over an uncertain
data stream. We first model the probability threshold based
skyline problem. Then, we present a framework which is
based on efficiently maintaining a candidate set. We show
that such a candidate set is the minimum information we need
to keep. Efficient techniques have been presented to process
continuous queries. We extend our techniques to concurrently

support processing a set of continuous queries with different
thresholds, as well as to process an ad-hoc skyline query.
Finally, we show that our techniques can also be extended
to support probabilistic top-k skyline against sliding windows
over an uncertain data streams. Our extensive experiments
demonstrate that our techniques can deal with a high-speed
data stream in real time.
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