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Abstract— Skyline computation has many applications includ- exactly as described in the advertisement in terms of dglive
ing multi-criteria decision making. In this paper, we study the and quality. A customer may want to select a product, say
problem of efficient processing of continuous skyline queries laptops, according to multi-criteria based ranking, sushoa
over sliding windows on uncertain data elements regarding . ’ it . L
given probability thresholds. We first characterize what kind of price, good condition, and brand preference. For simpliv
elements we need to keep in our query Computation_ Then we assume the customer prefers ThlnkPad T61 Only and remove
show the size of dynamically maintained candidate set and the the brand dimension from ranking. Table | lists four quatifie
size of skyline. We develop novel, efficient techniques to processresults. BothL; and L, are skyline pointsL; is better than
a continuous, probabilistic skyline query. Finally, we extend (dominates)L,, and L, is better thanl;. NeverthelessL; is

our techniques to the applications where multiple probability h - .
thresholds are given or we want to retrieve “top-k” skyline posted long time agd, is better than (dominated); but the

data objects. Our extensive experiments demonstrate that th trustability of the seller ofL, is low.
proposed techniques are very efficient and handle a high-speed TABLE |
data stream in real time.

LAPTOPADVERTISEMENTS

|. INTRODUCTION Product ID Time Price | Condition | Trustability
. o . . ) L1 107 days ago| $ 550 | excellent 0.80
Uncertain data analysis is an important issue in many emerg 5 days ago | $ 680 | excellent 0.90

ing important applications, such as sensor networks, trend  Ls 2 days ago | $ 530 good 1.00
prediction, moving object management, data cleaning an Ls today $ 200 good 0.48
integration, economic decision making, and market surveil In such applications, customers may want to continuously
lance. In many scenarios of such applications, uncertaia daonitor on-line advertisements by selecting the candife
is collected in a streaming fashion. Uncertain streamintg ddhe best deal - skyline points. Clearly, we need to “discbunt
computation has been studied very recently and the existithg dominating ability from offers with too low trustabifit
work mainly focuses on aggregates and togderies [8], [14], Moreover, too old offers may not be quite relevant. We model
[28]. such an on-line selection problem as probabilistic skyline
Skyline analysis has been shown as a useful tool [3], [Against sliding windows by regarding on-line advertisetsen
[21], [24] in multi-criterion decision making. Given a cait as a data stream (see Section |l for details).
data setD, an objects; € D dominates another objegt € D Such a data stream may have a very high speed. Consider
if s1 is better thans, in at least one aspect and not worséhe stock market application where clients may want to on-
than s, in all other aspects. The skyline o comprises line monitor good deals (transactions) for a particulaclsto
of objects inD that are not dominated by any other objecA deal is recorded by two aspects (price, volume) where
from D. Skyline computation against uncertain data has alpoice is the average price per share in the deal and volume
been studied recently [22]. In this paper, we will investiiga is the number of shares. In such applications, customers may
the problem of efficient skyline computation over uncertaiwant to know the top deals so far, as one of many kinds
streaming data where each data element has a probabilityofostatistic information, before making trade decisions. A
occur. deal a is better than another dealif o involves a higher
Skyline computation over uncertain streaming data ha&slume and is cheaper (per share) than thoge mdspectively.
many applications. For instance, in an on-line shoppintesys Nevertheless, recording errors caused by systems or human
products are evaluated in various aspects sugiries, condi- beings may make unsuccessful deals be recorded successful,
tion (e.g., brand new, excellent, good, average, etc)bmadd and vise versa; consequently each successful deal recorded
In addition, each seller is associated with a “trustabitglue has a probability to be true. Therefore, a stream of deals may
which is derived from customers’ feedback on the sellerlse treated as a stream of uncertain elements and some clients
product quality, delivery handling, etc. This “trustatyifivalue may only want to know “top” deals (skyline) among the most
can also be regarded as occurrence probability of the ptodtecent N deals (sliding windows); and we have to take into
since it represents the probability that the product occucensideration the uncertainty of each deal. This is another
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example of probabilistic skyline against sliding windows.

In this paper we investigate the problem of efficiently pro- |, many applications, a data streafS is append-only
cessing probabilistic skyline against sliding windows. tfie [15], [20], [25]; that is, there is no deletion of data elemen
best of our knowledge, there is no similar work existing ia thin oived. In this paper, we study the skyline computation
literature in the context of skyline computation over u.ma'mr. problem restricted to the append-only data stream model.
data steams. In the light of data stream computation, it i$ 5 data stream, elements are positioned according to their
highly desirable to develop on-line, efficient, memory lihse g |ative arrival ordering and labelled by integers. Not the

incremental techniques using small memory. Our contiouti hosjtion/labelk(a) means that the elemeatarrivess(a)th in
may be summarized as follows. the data stream.

o We characterize the minimum information needed Broblem Statement.In this paper, we study the problem of

cc'>n.t|nu0L.Jst computing probabilistic skyline against %fﬁciently retrieving skyline elements from the most retcah
sliding window.

. We show that the volume of such minimum informatior?lemems’ seen so far, with the skyline probabilities natlen

. e than a given thresholdg (0 < ¢ < 1); that is, ¢g-skyline.
IS expepted to be boundeq by Iogarlthm]c sizeina Iowpsrpecifically, we will investigate the problem of efficiently
dimensional space regarding a given window size.

) . ._processing such eontinuousguery, as well aad-hocqueries
« We develop novel, incremental techniques to contlnLﬁ)— 9 uery g

: . ,
ously compute probabilistic skyline over sliding Windows\.NIth a probability threshold” = g.
« We extend our techniques to support multiple pre-giveél. Preliminaries

probability thresholds, as well as “top-k” probabilistic

skyline. Various Dominating Probabilities. Let DSy denote the most
Besides theoretical guarantee, our extensive experimergsent N elements. For each element € DSy, we use

demonstrate that the new techniques can support on-liRg..,(a) to denote the probability that none of the new arrival

computation against very rapid data streams. elements dominates; that is,
The rest of the paper is organized as follows. In Section ,
II, we formally define the problem of sliding-window skyline Prew(a) = arepsy a'<an(a)>r(a) (1 = Pa’)) )

computation on uncertain data streams and present bacidyrou Note thatk(a’) > r(a) means that’ arrives aftera. We
information. Section Il and Section IV present our theiwretyse P,,,(a) to denote the probability that none of the early
foundation and techniques for processing probability shve arrival elements dominates that is,

old based sliding window queries. Results of comprehensive

performance studies are discussed in Section V. Section VI Poia(a) = Iy epsy.a<a.n(a)<s(a)(l — P(a’)) ()

extends our techniques to tapskyline, time-based sliding  pe following equation (4) can be immediately verified.
windows, and a data object with multiple instances. Section

VIl summaries related work and Section VIII concludes the Pgpy(a) = P(a) x Pyg(a) X Ppew(a). (4)
paper. y y
a a =05
Il. BACKGROUND a L % g(a1)=0.9 a, %L oM

We use DS to represent a sequence (stream) of data p(a,)=0.4 °
elements in ad-dimensional numeric space such that each | a, ® p(a5)=0.3 a; ®
elementa has a probabilityP(a) (0 < P(a) < 1) to occur ®as p(as)=0.9 ®a;
wherea.i (for 1 < ¢ < d) denotes the-th dimension value. » x P(as)=0.1 > X
For two elements, andv, v dominatesy, denoted byu < v, (a) (b)
if u.i <w.iforeveryl <i <d, and there exists a dimension Fig. 1. A Sequence of Data Elements

J with u.j < v.j. Given a set of elements, tisiylineconsists

of all points which are not dominated by any other element. Ex@mple 1:Regarding the example in Figure 1(a) where
the occurrence probability of each element is as depicted,

A. Problem Definition assume thalv = 5, and elements arrive according the element

Given a sequenc® S of uncertain data elementspassible subindex order; that isq; arrives first,a, arrives second,
world W is a subsequence dpS. The probability of W to ..., andas arrives last.P,c,,(as) = 1 — P(as) = 0.9 and
appear isP(W) = Ilyew P(a) x Iugw (1 — P(a)). LetQ be  Pyg(as) = (1—P(az))(1— P(as))(1— P(a1)) = 0.042, and
the set of all possible worlds, thén,;, ., P(W) = 1. Pyjy(as) = P(as)Prew(as)Pog(as) = 0.034. O

We useSKY (W) to denote the set of elements ¥ that
form the skyline ofW. The probability that an element
appears in the skylines of the possible worldsPig,(a) =
>acskywywea P (W). Pagy(a) is called theskyline proba-
bility of a. The equation (1) below can be immediately verifie

Dominance Relationships.Our techniques will be based on
R-trees. Below we define various relationships between each
pair of entriest’ and E. We useE.min to denote the lower-
deft corner of the minimum bounding box (MBB) of the
elements contained by, and E.max to denote the upper-
Pyy(a) = P(a) X Iyeps,ar<a(1 — P(a’)) (1) right corner of MBB of the elements contained iy Note



that when E degenerates to a single element E.min
E.max = a.

An entry E fully dominatesanother entryE’, denoted by
E < E'if Eomaxr < E' min or E.max = E'.min with the
property that there is no element i allocated atE'.max or
there is no element i’ allocated atE’.min. E partially
dominatesE’ if E.min < E’.max but E does not fully
dominatesE’; this is denoted byE <,..1ii E’. Otherwise,
E doesnot dominateFE’, denoted byF <,,.; E'.

y /

A

E
=] 8
Ez
E
> X
Fig. 2. Dominance relationships.

As depicted in Figure 2f fully dominatesFEs, and partially
dominatesE; and E5. Note thatE; does not dominate®
but Ey <pertiar E. Clearly, some elements ift; may be
dominated by elements iy but elements inE' cannot be
dominated by any elements ;. This can be formally stated

A. Using Sy 4 Only

In this subsection, we will show the following two things:
1) Sn,4 contains all skyline points withPy,, > ¢; and 2)
computing Ps, and Py, againstSy , will not lead tofalse
positive nor false negativeo continuously identifySy , and
SKYn . where SKYy 4 is the solution set; that is, for each
elementa in SKYy 4, Psry(a) > q.

No Missing Elements.The following Lemma is immediate
based on (4).

Lemma 1:Eachg-skyline pointa (i.e., Py, (a) > ¢) must
be in Sy 4.

No False Hits to DetermineSy ;. Suppose thab,,c..|s , (a),
Poud| sy ,(a) and Psgylsy ,(a) denotePpey(a), Poqa(a) and
P,y (a) restricted toSy 4, respectively.

Example 2:Regarding the example in Figure 1, suppose
that elementsuy, as, as, a4, andas arrive at timel, 2, 3,
4, and 5, respectively, andV = 5, ¢ = 0.5. We have that
Sn,g = {az2,as,a4,a5} since values ofP,.,, for as, as,
and as are the samd, while P, (as) = 0.9 as shown in
Example 1. It can be immediately verified that thét.,,
values restricted t&'y , remain unchanged. Example 1 also
shows thatPold(a4) = 0.042, while Pold(a4)|SN,q = 0.6 x

below which can be verified immediately according to th@7 = 0.42 sincea, is not contained ISy 4. O

definitions.

Theorem 1:Suppose thall <,qtia1 E'. Then some ele-
ments inE’ might be dominated by elements . However,
if £/ <, E. Then elements it” cannot be dominated by
any element ink’.

Ill. FRAMEWORK

Given a probability threshold and a sliding window with
length N, below in Algorithm 1 is the framework where, 4
is the oldest element in current windo@Sy and inserting
(anew) iINcrementally computeg-skyline.

Algorithm 1: Continuous Probabilistic Skyline Computa-
tion over a Sliding Window

1 while a new element,,.,, arrives do

2 if K(anew) < N then Inserting @new);
3 else Expiring (ao1q); INserting @,eq);
4 end while

Let Sy, denote the set of elements fromSy with their
P,.., values not smaller thag; that is,

SNJI = {CL‘CL S DSN&Pnew(a) > q} (5)

Next, we show that for each elemenin Sy 4, calculating
Pew(a) againstSy , is the same as calculating against the
whole window DSy .

Theorem 2:For each element € Sy 4, Prew|sy,(a) =
Pnew(a)-

Theorem 2 immediately follows from the following Lemma.

Lemma 2:For each element € Sy 4, if there is an element
a’ € DSy such thata’ < a anda’ is newer thana, then
a € SN7q.

Proof: Sinced’ < a and a’ is newer thana, each
element that is newer thari and dominatea’ must dominate
a. Consequently,P,,c.,(a) < Ppew(a'). AS Ppew(a) > g,
Ppew(a’) > q. Thus, the theorem holds. [ |

Note thatP,;4 values againsby , are imprecise; neverthe-
less, below we will show that these will not affect a correct
determination ofSKYy 4.

No False Negative to DetermineSKYy ,. We show that
there is noa € SKYy , such thatPy, s, ,(a) < q.

Theorem 3:For each element € Sy, if Pya(a) X
Prew (a) > q then PoldlSNﬁq(a) = Pold(a)-

Theorem 3 immediately follows the following lemma -
Lemma 3

Lemma 3:For an element’ such thata’ < a, a’ arrives
earlier thana, and Pyq(a) X Phew(a) > g, thena’ € Sy 4.

Proof: Sincea’ < a, any element dominating’ must

A critical requirement in data stream computation is to havdminatea. ConsequentlyP,,..,(a') > Phew(a) X Pyg(a) >

small memory space and fast computation. In our algorithmg, Thus,a’ € Sy .

instead of conducting the computation against a wholersglidi

[
Note thatP;, (a) = P(a)P,q(a)Ppew(a) whereP(a) < 1.

window (N elements), we do the computation restricted t®his, together with Lemma 1, Theorems 2 and 3, immediately

Sn,q which will be shown logarithmic in size regardiig on

implies the following corollary.

average. Next, we first show the correctness of restrictieg t Corollary 1: For each element € Sy 4, if Py > ¢ then

computation taSy 4.

Pory(a) = Psgylsy,, (@)



Corollary 1 immediately implies there is no false negative.5 leading to the false result, becaus¥, (a4) should be
that is, there is n@ € SKYx 4 such thatP,|s,  (a) <gq. (1 — P(az2))(1 — P(a3))(1 — P(as))P(as) < 0.5.

Assume thatr; anday expire,as is as illustrated, andg
does not dominate,. Regarding the window containing;,
a4, as, andag, Pspy(as) = 0.9 x (1 -0.3) x (1—-0.1) > 0.5;
thus, a4 is a skyline point.J

No False Positive to DetermineS K'Yy ,. We show that there
is noa € Sy,4 such thatP,|s,  (a) > q and Py, (a) < q.
Theorem 4:For each element € Sy, if Pyaa) x
Pnew(a) <4q, thenPold|5Nyq (a) X Pnew|SN,q (a) <gq. . ) ) .
Proof: If every element dominatin@ is in SN,(] then EStImatIng Sizes.Next we show that the eXpeCted sizes of
Poa(a)|sy., % Prew(a)|sy., = Poa(a) X Poew(a) < g. The Sn,q and SKYy , are bounded by a logarithmic number
theorem holds. ' regarding/N'. _ . _
Suppose that at least one element that dominaiesiotin ~ SUPPOse tha ; is a random variable such that it takes
Sy.q. From Lemma 2, all such elements must be older than Valuel if the ith arrival element is g-skyline point; andy,,;
Let Dom(a) denote the set of elements that dominatand t@kes0 otherwise. Clearly, the expected siZ#SKYy q) of
are not inSy . Suppose that’ is the youngest element in SKYn,q is as follows.
Dom(a). Itis clear that all elements, which arrive afiérand N N
dominatea’, must be contained bgy , since they dominate BE(SKYn4) = BE(Y  Xgi) = Y Plxgi =1) (6)

a and younger tham'. ) =1 =1 -
Note that Py (a’) < q. Consequentlyg > Poow(a’) > Let Iy = {j]1 < j < N}. Given a set ofN probab|I|Ly
Pold|SNq(a) XPnew|SNq(a)- - vaIues{Pj|1 <j <N & 0 < P < 1}, let P(—w) :
Note that Py, (a) = P(a)Poa(a)Prew(a) and P(a) < 1. [[jew (1 — P;) whereW is a subset ofly. Let P(W < i)

These, together with Theorems 2, 3, and 4, immediately impqggnote the probability that théh elem'ent is dominated and
the following corollary. only dominated by the elements {m;|j € W}.

Corollary 2: For each element € Sy g, if Psgylsy,(a) < 'J]he?()rgzb'?:t!—eestPDSg be aPseq_lt_J;]agr(]:e aV data elements
q, thenpsky(a) <q. WI p HIT 1, L2, ... , I'N. y

Therefore, in our techniques we only need to maingiry,, E(SKYn.g) = ) P(W <i) x P, x P(-W)  (7)

calculate all probabilities againsiy ,, and select elements VW,igW,P; x P(=W)>q

a With Pyyls,  (a) > ¢. For notation simplification, in the . e
remaining of the papewy, s, .. Poidlsy ,» ANd Poew]sy . Below we show that (7) is bounded by a logarithmic size.

, . AN
are abbreviated t0 Puy,, Poia, Prew, respectively if there is Given a P, let g, ; = max{P; x P(=W)| [W] = k}.

no ambiguity. Removing the probability value from each data element in
DSy to makeDSy be a sequenc®S§, of N certain data
B. Estimating sizes ofy , and SKYy, elements. Le?(DOM}) denote the probability that there are

exactly £ elements inDS§, dominating an element. The

Minimality. It can be immediately verified that in orderfollowing lemma immediately follows from (6). Clearlyy. ;

to avoid getting a wrong solutionSy , is the minimum IS monotonically decreasing regardikgthat is, g i >= qx.i

information to be maintained. if " < k. Let k; denote the largest integer such that > ¢
Theorem 5:Each element in the currentSy , with P(a)x O @ giveng. N .

Prew(a) < q will never become a-skyline point; however, ~Lemma 4 E(SKYy ) <372, 3252, P(DOM]) X ;.

there is a data stream such that removingway will lead o~ Let P(DOMT}) denote the probability that there are

false positive. Moreover, am € Sy, with P(a) X Pye,(a) > @t most k elements dominating the kellemem't Clearly,

¢ and Py, < ¢ may become a skyline point if old elements”(POM}) = P(DOMT}) — P(DOMT; ™).

dominating e expire and newly arriving elements do not Corollary 3: N R
dominatee. . j N

Theorem 5 is quite intuitive and we omit the proof due to BlEKYwg) < ;(; PIDOMT) x @i — ag+n.) @)
space limits. Below we give an example. +  P(DOMTF)qy, ).

Example 3:Regarding the example in Figure 1 (a), assume
that N = 4. Considering the first window, there atelements  Let H;; = 22:1 1. The d-th order harmonic mean (for
a1, az, az, anday. Sy = {az,a3,a4} SINCe Pyey(a1) = integersd > 1andl > 1)is Hy; = 22—1 Hd% The theorem

0.6 x 0.7 < 0.5, while P,,, values foras, a3, as are all1l. below presents the value ¢{(DOMTF).

Note that Py, |sy ,(as) = 0.378; consequentlya, is not a  Theorem 7:For a sequenc®S5; of N certain data points

g-skyline point based on the current window. in ad-dimensional space, suppose that the value distribution of
Regarding the second window when expires andas; each element on any dimension is the same and independent.

arrives.Sn,q = {az, as, a4, a5} whereP,.,,(as) = 0.9. Other Moreover, we assume the values of the data elements in each

Ppew values arel, Pyy(as) = P(as) = 0.3 < 0.5, and dimension are distinct. Them?(DOMT}) < &L x (1 +

Pyiy(as) = 0.34 < 0.5. If we do not recordaz anday in Hy_1 n — Hy—14+1) whend > 2 and P(DOMTY) = (k +

SN,q» thenPg, (aq) will be calculated agl — P(as))P(as) > 1)/N whend = 1.



Proof: Without lose of generality, we assume that the Theorem 8:In a d-dimensional space, suppose that the
data elements iS¢, are sorted on the first dimension. Sincéistribution on each dimension, including arriving ordee a
the value distribution of each element on any dimensionds tindependent. On each dimension, the values of the data items
same and independent, an element has the equal probabdity distinct. LetP(skyt]) denote the probability that there
to take jth position on the first dimension among tot&l are at mostj elements inDS§, (remove element probabil-
positions; that isy; probability to takejth position ( <j < ities from DSy) dominating theith element. Letp,; =
N) on the first dimensiorNote that whem; takesjth position.  yax{p(-Ww)| |W| = k}
any element takeg'th position cannot dominate; if ;' > j.

Whend = 1, elementa; must take the firstk+1) positions N
to ensure there are at mostother elements dominating,. E(SKYng) < 3
ConsequentlyP(DOMTF) = (k+1)/N. =

We use mathematic induction to prove the theoremdfor
2. Ford = 2, clearly whena; takes the firstk + 1) positions,
there are at mogtk + 1) other elements dominating. When
a; takes ajth position forj > k41, the conditional probability
that there must be at mostelements dominating,; is %
since for each permutation withy at jth position on the first
dimension, the the value a@f; on the second dimension must
take one of thek + 1) smallest value among theelements A trivial execution of Algorithm 1 is to visit each element in
with the j smallest values on the first dimension. Thus, wén,q to update skyline probability when an element inserts or

ki—1
P(skyt]) x (pji —P(j+1),s) (20)
7=0
+ P(skyty)pr, i-

Note thatP(skyt¥") can be estimated in the same way as
that in Theorem 7 by replacing by d + 1. Therefore, the
expected size oby , is poly-logarithmic regardingV with
the order ofd.

IV. ALGORITHMS

have: deletes; then choose elementdrom Sy, with Py, (a) >
k1) 1 & k41 q. Note a new data element may cause several elements
POOMTY) = =+ 5( 3 —) (9 to be deleted fromSy ,, nevertheless, the amortized time
b J=kt2 complexity isO(|Sn.4|) per element which is poly-logarithmic
= X (1+Hy N — Hygr1) regardingN with the order ofd (Section 111-B).

In this section, we present novel techniques to efficiently
_ Assume that the theorem holds fdr=[. Ford = 1 +1, gyxecute Algorithm 1 based on aggregatetrees with the
it still holds that whena;’s value on the first dimension is 5iy, to visit as few elements as possible. We continuously.
allocated at the firs{k + 1) positions, then there must beincrementally maintairs K Yy, and Sy .
a}t most_@ other‘elements dommatm_g_i. When a; t_a_kes 4  The rest of the section is organizéd as follows. We first
Jth position forj > k + 1, the conditional probabllltx that present data structures to be used. Then we present our effi-
there are at most elements dominating; is P(DOM;");1  gient techniques to deal with the arrival of a new elementfor
regarding al-dimensional space ang elements for each i en probability threshold. This is followed by our techués
permutation witha; at jth position on the f|rkthr1d|menS|on.to deal with the expiration of an old element for a given
Based on our assumptio?(DOM;)l;; < W x (1 .+ probability threshold. Then, we extend our techniques &l de
Hi1,j — Hi—1141); consequently, thé(DOM;") regarding with applications where multiple probability thresholdee a

the (I + 1)-dimensional space anf data elements is: given. Finally, correctness and complexity of our techeu
N are shown.
k+1 1 k
P(DOMTF) < el 2 > + x (L4+Hj—1; — Hi—1+1)
N N ey i .

A. AggregateR-trees

i < : . . o
Sincel < Hi-k+1, We have SinceSKYx,, C Sy .4, We continuously maintai$ K Yy,

PDOMTY) < k4l 1 T LR (Hi15) and(Sy,, — SKYy ) to avoid store a data element twice.
N N S5, T ' In-memory R-treesR; and R, on SKYy , and (Sn 4 —
k41 SKYn ), respectively will be used and continuously main-

=y U HNy = Higen) tained. We aim to conduct an efficient computation. Thus, we

develop in-memory aggregafe-trees based on the following
observation.
Observation. Regarding the example in Figure 3, assume that
= 13, ¢ = 0.2, the occurrence probabilities are as depicted,
and DSy = {a;]1 < i < 13}. Suppose that elements arrive
according to the increasing order of elements sub-indexes.
Size of Sy 4. Elements in the candidate set can be regardéidcan be immediately verified thaP,..,(a1) < 0.2, Sy 4
as skyline points in &d + 1)-space by including the time ascontainsa; for 2 < ¢ < 13, and SKYy , contains only the
an additional dimension sincg,..,, can be regarded as theelements inR;. Two R-trees are built: 1}z, is built against the
non-dominance probability in such(d + 1)-space. We have elements inSKYy ,; and 2) R, is built against the elements
the following theorem. in (Sn,g — SKYnNq).

It can be immediately verified thafl, y = O(In? NE
consequentlyP(DOMTF) = O(kIn®~' N). This together
with Theorem 7 and Corollary 3 immediately implies that th
expected size o6 KYy , in a d-dimensional space is poly-
logarithmic regardingV with order(d — 1) .



probability of the elements rooted &Atwithout including

a1 R lobal
© e E, P97 and P9t at E. Prew min(E) and Py, maz (E)

E, E,E Eq store the minimum and maximur®,.,, values of the
elements rooted ab without including P7l°b! at E.
aio dg a5 ag d7 a3 dg A1g

ais

o Pd £ first 13 elements.
L2 7 8 global global . CURT
N P and P, at each internal entry are initialized to

Example 4:Continue the example in Figure 3 against the

I T T T T T
[SaI S Jep Rte o e o B o N

new

2% 812 813 1. Whena, arrives, we updatédiebe!(E,) from 1 to (1 —
P(a1p)) = 0.8 sincea;, dominates the MBB ofE,, while
other Pglobal values remairi.

Here, Pnoc(E3) = (1 - P(CLIO))(l - P(a8)) = 0.64.
Similarly, we can calculate values d?,,. at entries Ey,

When a new element,, arrives anda; expires. We need Ej5, and Fg. Then, P,o.(E1) = Proc(E3) X Phoc(Ey) and
to find out the elements which are dominatedddy and then P, ,.(F3) = Proc(Es) X Proc(Eg). The multiplication of
to determine the elements which need to be removed fram),.(F;) andP,,.(E>) gives P, at the root. Similarly?,,.
SN, andSKYy . In facta;4, dominates entrie&;, >, and values at each internal entry i, can be calculated.
R2.root (root entry of Ry). If we keep the maximum and The information thata;, dominates bothus and ag has
minimum values off,.,, for the elements contained by thoseot been pushed down to leaf-level and is only captured at
entries, respectively, we have a chance not to visit the@hsn the entry E4; consequently the captured skyline probabilities
of those entries. Specifically, at an entry if the maximufor a5 and a5 are P(ag) x (1 — P(ag)) (0.64) and P(as)
values ofP,.,, multiplied by (1 — P(a14)) smaller thany, the (0.8). Therefore, at,, Piky.maz = 0.8 and Psgy min = 0.64;
entry (i.e. all elements contained) will be removed ffM,.  Prymee = 1 and Poew.min = (1 — P(as)) (0.8). These
On the other hand if the minimum value &f,.,, multiplied multiplied by Pg*e give the exact values oPiiy maz,
by (1 — P(a14)) is not smaller thar, then the entry (i.e. all Piky.mins Prew maz, and Phey min at Ey, respectively. At
elements contained) remains $t . Similarly, at each entry other entries,Psiy mazs Pskymins Prew.maz @Nd Prew min
we keep the minimum and maximum values &f;, for the take exact values.
elements contained to possibly terminate the determimatfo  Oncea, removes, ats, pgll;bal is updated froml to (1 —
whether elements contained areSi Yy 4. P(ay)) = 0.9. O

Moreover, in this exarr_lple elements containedlbyis_ in Removing an Entry. When an entryF removes fromR; or
Sn.q» We can update theiP,,.,, values globally by keeping a i, we first push down the aggregate information along the
global valuePg* = Py x (1— P(aw)) at By to avoid  path from the root toF and update the siblings’ aggregate
individually update all elements contained f. information for each entry on the path. For example, when

Furthermore, in this exampte, will be removed fromSy ;  remove,, we first recalculate the max and min probabilities
oncea,, arrives. To avoid update each element contained By the root by CalProb K.root), Algorithm 2. Then we
Eys individually due to the removal af,, we can keep a global push-down P,..,, and P,y to E; and E,, respectively by

lobal lobal
value P37 = P3 ;" x (1 — P(az)) at B so that we know ypdateOldNew Ry.root, E;) and UpdateOldNewR, .root,
that the P,;; values for elements irff; will be updated by E,) (Algorithm 3). Then we reseP?%! and Pold at R.root

old new

multiplying W From time to time, we may remove anpy 1 \We perform the same operations frdi to E5 and E.
entry E from"Sy, and E fully dominates another entrf’
which stays inSy 4. If we keep the no-occurrence probability Algorithm 2: CalProb )
of the elements irE' - P,,,. = l,cr(1 — P(a)), then we can — Slobal
updateP4/?"* at E' by multiplying Py 1if P (E) <1 then o
2 updatePsky min(E), Psky.maz(E) by multiplying
1

O = Y

S5

So oo

q =02
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Fig. 3. AggregateR-trees

Aggregate Information. Motivated by the observation above,
we maintaink; andRs as aggregat&-trees to keep the above
information at each entry. We summarize it below. 8
« At each entryF, the following information will be stored. ‘
Pglobal( B stores the captured multiplication of non-"
occurrence probabilities of the elements which dominate
all elements rooted a. P4'?"* (E) stores the multipli-
cation of non-occurrence probability of the elements that
expired and dominate the elements rootedvat
« At each entryE, we useP,,.(E) to store]]
P(e)).
o At each entryE, Py min(E) and Psiy mas(E) Store Inserting an Entry. In our algorithm, we may need to remove
the minimum skyline probability and maximum skylinean entry fromR; and insert it toR,, and vice versa. When

end if
if Pglobal(E) < 1 then

updatePsk%mm(E), Psk:y,ma:r(E)v Pnew,min(E)a
Prcw.maz(E) by multiplying Pglobal
end if

After E removes fromR, we recalculate min and max
probabilities, as well ag,,. along the path in a bottom-up

(- fashion fromE.

eck



Algorithm 3: UpdateOldNew E, E’) Algorithm 4: Inserting @new)

: global Input : N: window size;q: skyline probability thresholda e :
L if Pold (E) <1 then data elementR; and R: two aggregate trees afiK Yy 4

2 ‘ Pgllgbal(El> = Pogllc(z)bal(El) X Pfffb“l(E) ; and (Sn,q; — SKYn q) respectively.
3 end if Output : UpdatedR; and Ro
i lobal 1 Psky(anew) = P(anew); Pold(anew) =1 Pnew(a'new) =1
a if P (E£) <1 then 2 for each E € {R;.root, R2.Toot} do
5 | Py (E) =PI (E') x PLLN(E) 3 | if B < anew then
6 end if 4 Psky(aneu;) = sky(anew) X Pnoc(E);
5 Pyg(anew) := Pold((lnew) X Pnoc(E);
6 else
an entry £ inserts intoR; (or R,), we find an appropriate 7 if anew < F then add E to R;
i ; i i 8 if &< artial Anew & Anew =not E then add E to Cl,
level to insertE; that is, the level with the length to the leaf it el e e 2 B then
. artia ) e artia
to be the same as the depthof We also first push down thes | addEtocCiz
aggregate information, in the same way as a deletion, to the | i anew <partiat E & E <not dnew then add E to C2;

level. After insertingF’, we also recalculate the same aggregate

; PSR ; ; 12 if¥01 # ( then Probe C1, Psgy(anew));
information in the same way as that in a deletion. 13 if C2 % 0 then Probe (2. R): Y

_ : _ : _ 14 if C'12 # () then Probe C12, R, Pspy(anew));
Re-balancing.When a re-balancing ak; or R, as ank-tree 5 if R % 0 then UpdateProb K): y

is called, we treat it as a deletion followed by an insertion.sg i Piy(anew) > g then Add apeq to Ry elseadd anew to Ro

B. Inserting a New Element (new and then updat@, ., and P,y Of dpey. In Algorithm 5,

As depicted in the last subsection, once a new eleméhg use Dequeue () combining with UpdateOldNew () (Algo-
anew arrives, we need to conduct the following tasks: 1§thm 3) to push down the aggregate information. Algorithm
update P,.,, values of the elements dominated by.,, by 6 gives details of Dequeue ().
multiplying (1 — P(anew)), 2) remove the elements with Algorithm 5: Probe (1, Py,)
updatedP,.,,(a) < ¢ from R, and R, 3) updateP;y, (via T whie 01 20 do
P,;q and P,.,,) values for the elements dominated by somg E = Dequeue C'1);
of those removed elements, 4) move elemenia R; with for each Children E’ of E do
P.iy(a) < q to Ry, and 5) calculateP,s, (ane.) and insert it il#‘ﬁ?foaldNe\;vhgﬁ E';
to Ry or Ry accordingly sinceP,,cy (anew) = 1. psky?ae:ﬁw) = Puy (anew) X Proc(E');

According to Lemma 2, if a remaining elememtin Sy 4 ‘ Porg(anew) = Poa(anew) X Pnoc(E');
is dominated by a removed elemerit thena’ must be older e'ieif B ~partiat anew then add 5 10 C1:
than a; consequently in the task 3) above, we only need to e .

. L 1 if E’is the last child of E then
updateP,;; values. Moreover, by dominance transitivity all th?1 L resetP2'2e () and PY% () to 1
tasks 1) - 4) only need to be conducted against the elements| L e otd '
dominated bya,,.,,. Clearly, the task 5) is conducted againsb return P,
entries/elements which dominaig.,,. Therefore, it is critical
to identify entries/elements iR, and R, which are fully Algorithm 6 Dequeue (1)
dominated bya,..,, as well as the entries/elements which—
dominatea,,..,. Algorithm 4 is an outline of our techniques. ; " Cge’f 2,1‘2‘*{; c1: [+ remove E from C1 +/:

In Algorithm 4, we useC1 to store the entries partially 3 L CalProb E); [+ Algorithm2 «/;
dominatea,,..,, C2 to store the entries partially dominateds return E;
by a,.., and C12 to store the entries which are partially

dominated byu,,.., and partially dominate....,. Then, we use prope (2, R). Note that entries inC2 do not contain
Probe (1, Psky(anew)) and Probe €12, R, Psky(anew)) 10 any elements that dominate,.,, according to Theorem 1.
traverrsel the two aggregafe-trees to get all entrles/elementsSim"a”y, Probe (2, R) is to iteratively traverse to get all
dominatinga,..,. We also use Prob&®, R) and Probe’12, gntries/elements which are dominateddyy,, and then place
R, Pypy(anew)) to traverse the two aggregafetrees to get them in R. As a by-product, we push down the aggregate in-
all entries/elements fully dominated ..., and put inR.  formation and updaté?°*! values of those entries/elements
Finally, UpdateProbR) conducts tasks 2)-4) and the task 5) iy r. The details are pfesented in Algorithm 7.

conducted in line 16 by the inserting operation to an agdesga

R-tree (R, or Ry) as described in Section IV-A. Next, we L .

provide details for the procedures Prob () and UpdateP.rob{irObe €12, R, PSky(a”e“’))'. Entries |_nCl2 partially dom-
ate a,.,, and are also partially dominated ly;.,,. Conse-

Probe (C1, Psgy(anew)) (Algorithm 5). According to The- quently, elements contained by entrieg(i2 might dominate

orem 1, entries inC; cannot contain any element which isa,.,, or are dominated by,,..,. Probe C12, R, Py (anew))

dominated bya,,..,. Probe C1, Psyy(anew)) is to iteratively combing with Algorithms 5 and 7, is to iteratively traverbet

traverse the aggregat@-trees to get entries which dominateaggregateR-trees to possibly further updaf,, (a,e.,) and

© 00N g W

ky (anew);




Algorithm 7: Probe (2, R) Algorithm 9: UpdateProb R)
1 while C2 # 0 do 1 while R # 0 do

2 E = Dequeue (2); 2 E = Dequeue R);
3 for each Children E’ of E do 3 if Prew,min(E) < q < Prew,maz(E) then
4 UpdateOldNew E’); 4 for each Children E’ of E do
5 if anew < E’ then 5 UpdateOldNew £’, E);
6 PAE (B) = (1 = Planew)) x Pty (B'); 6 addF'to Ry
7 add E’ to R; 7 if E’is the last child of E then
8 else 8 L resetPILot* () and Pfll;b“l(E) to 1;
9 | if anew <partiar E' thenadd E to C2;
o ) 9 else
10 if £ isthe Ig?flzaclhlld of £ thge;gbal . 10 if Poew.min(E) > q then add E to Rq;
1 | resetP{el ! (B) and PSS (E) to 1; 11 | elseadd E to Rs; I* Prewmaz(E) <q *I;
12 return R: 12 if R # 0 and Ry # 0 then UpdateOld 3, Ra);

13 if R3 # () then Remove R3);

. . . 14 if R4 # 0 then Place Ra4);
add more toR. We present the details below in Algorithm 8:

Algorithm 8: Probe (12, R, Py (dnew)) dominatesk2 then put the children of’'1 to R3 and
1 while 012 2 0 do the children of E2 to R, for the next iteration.
2 E := Dequeue ('12); In our implementation, we mark entries frof (i.e., R3 and
3 for each Children E’ of £ do R4) within R; andR,. Then, we use thgynchronous traversal
‘5‘ #Fjldateoldg?"t"hfnx paradigm [11] to traverse?; and R, by following the R-
° n;g%mz(E,) = (1 = P(anew)) x PIPL(E1): tree structures of the entries iR3 and R,. Here, we create
7 add E’ to R; a dummy root forR3 with all entries inR3 to be children of
8 eise the root; similar treatments are done Bj.
9 if anew <partial E' & E' <not Anew then . .
10 | addE’ to C2; lines 13:We remove entries/elements Ry from R; and Ry
1 if Gnew <not B & B’ <partial Gnew then as what discussed in Section IV-A.
12 _L add £” to C'1; lines 14: Place R,) is to determine elements/entries Ry
13 if ancw <partial E' & E' <partial anew then to be in R, or R,. In fact, we only need to check, N R,
14 L add E’ to C'12; . . 2
il hen according to Corollaries 1 and 2; it is conducted as follows.
. i E;k“z‘;f“ Y1 Py (anew) X Proc(E') For each entryf € R, N Ry, we use depth-first search to find
17 L Popi(mew) i= Pog(anew) X Proo(E") ;' out all its highest level decedent entries Wity.,, ,.;, greater
= _ than ¢ - Algorithm 10. In lines 10-11 of Algorithm 10, we
18 if £’ is the last child of E then . . . . .
19 | resetpZ!sbe! () and P2 () to 1; first remove F from R; in the way as described in Section
L e otd ' IV-A. Then, we insertE into R, in the way as described in
20 if C'1 # 0 then Probe (1, Pyy,) (Algorithm 5); Section IV-A.
21 elsereturn Py, (anew); i :
22 if C2 + 0 then Probe ("2, R) (Algorithm 7); Algorithm 10: Place {4)
23 elsereturn R; 1 while R N Ry # 0 do
2 E := Dequeue R1 N R4);
. . . 3 if Psky,min(E) <q S Psky,maz then
UpdateProb (R). R contains all entries/elements which are: for each Children E’ of E do
fully dominated bya,.,, and obtained by ProbeC(2, R, 5 UpdateOldNew £);
. . 6 add E’ to Ry N Ry;
Pqpy(anew)) and Probe €2, R). Note that in our implemen- - it £’ is the last child of E then
tation, we use a link list to point to all these entries/elatae ¢ | resetPgleb®!(B) and PSSP (E) to 1;
in R. UpdateProb R) is to traverse those entries iR,
f 9 else
along the aggreg.até’/-trees to Whlch they belong, to detect, it Potymas (E) < q then
and remove entries/elements with the updatéd,, values 11 | Move E from Ry to Ro;
smaller thanq. Moreover, it also updates th&,; values L =

of remaining elements iR which are dominated by some
removed elements, as well as detects the remaining elem%]tsExpiration
in R with Py, < ¢. Algorithm 9 provides details. '

Lines 1-11:Iteratively detect the elements/entries to be r
moved (i.e. withP,..,, < #) and put them taRs.

Once an element,;q expires, we first check if it is i¥y 4.
8 it is in Sn,q then we need to increase t&,,; values for
elements dominated hy,;4. After that, we need to determine
Lines 12: UpdateOld {3, R4) is to update the values of the elements that need to be moved frémto R;. Algorithm
PY*! of elements/entries ik, dominated by some ilR; 11 below presents details.
as follows. For each paiE'l € R3 and E2 € Ry, In Algorithm 11, Move RN Ry) is to move the elements in
if £1 fully dominatesE?2, then updateP?/ <" (E2) RN R, with updated skyline probability not smaller tharto
by multiplying P,,,.(E1); otherwise, ifE'1 partially R;. It is executed in the same way as Plaég)(but replace



Algorithm 11: Expiring (@c1q) Lemmas and Corollaries in Section 1lI-A ensure that our

1 if agiq € Sy 4 then algorithms are correct.

2 Remove &.;4); . . .

3 for E € { Iy root, Ry.root} do Space Complexity. Clearly, in our algorithm we use

4 if apig < E then aggregateR trees to keep each element By, and each

5 Poa(E) = Poa(£)/(1 — P(aotd)); element is kept only once. Thus, the space complexity is

6 add E to R; O(\S )

7 else N.ql):

8 | if @otd <partiar E thenadd E to C; Time Complexity. It seems hard to provide a sensible time

9 W;mec?é@do complexity analy_sis; ngvertheless, _our_experiment demon-

10 E := Dequeue C); strates the algorithms in this section is much faster than

1 for each Children £’ of £ do the trivial algorithm againstSy, as what discussed in the

12 UpdateOldNew E’); beginni f thi fi '

12 it aog < ' then eginning of this section.

14 Pora(E") := Pora(E')/(1 — P(acia);

15 addE’ to R; V. PERFORMANCEEVALUATION

16 else . . . . .

17 | if @oid <partiar E then add E/ to C; In this section, we only evaluate our techniques since this

18 if B is the last child of E then is the firsF paper stgd_ying t_he problem o.f.probabilis_,tic sig/l

19 | resetPfl0* (E) and PSS (E) to 1; computation over sliding windows. Specifically, we implarme

L - and evaluate the following techniques.

20 | if R0 then Move (RN Rz); SSKY Techniques presented in Section IV to continuously
computeg-skyline (i.e., skyline with the probability

R1 N Ry by RN Ry and move fromR, to R, instead ofR; not less than a given) against a sliding window.

to Rs. MSKY Techniques in Section IV-D to continuously com-

puting multipleg-skylines currently regarding multi-
ple given probability thresholds.

Continuous queries Different users may specify different QSKY Techniques in Section IV-D to processing an ad-hoc
confidences. Suppose that users spekifyonfidencesy:, g2, skyline query with a probability threshold.

-y ax Where g; < g;_;. Our techniques for a single given  ay gigorithms are implemented in C++ and compiled by

confidence can be immediately extended to cover mulUp@NU GCC. Experiments are conducted on PCs with Intel

confidences as folloyys. . . . . Xeon 2.4GHz dual CPU and 4G memory under Debian Linux.
Instead of maintaining a single solution gt in Algorithm Our experiments are conducted on both real and synthetic

11, we maintaink solution setsR;, Ra, ..., Rx such that datasets

glements Inf2; éfor 2 Sigl k) h da\g thekskyllnethproblabllltlets Real datasetis extracted from the stock statistics from NYSE

n [(g’qj"l) w er; 0 = 5;2 ; ’ffl_eleris ke elemens(NeW York Stock Exchange). We choose million stock

ml (SN0 ;.Uiél i)- Osgeeti or Z't; i o (k+1) are ttransaction records of Dell Inc. fro@ec 1st 2000to May

gfso ma}[[n ained as aggregaietrees wi € same aggredalSong 2001 For each transaction, the average price per volume

information. . . . : and total volume are recorded. This 2-dimensional dataset i
All the techniques from Algorithm 11 are immediately ferred to asstockin the following. We randomly assign a

. . . r
applicable except that now in Algorithm 9, we need to dete Giobability value to each transaction; that is, probapitalues

where tg tplace s_?jmea;;eTenFs R],m R;’{; forlz |§ ,]Ail thz_itth's' follows uniform distribution. Elements’ arrival order is based
we need to consider alR; for i < j < k + 1. In Algorithm on their transaction time.

11, now we need to detect where to move some .EIements§3r/'nthetic datasets are generated as follows. We first use the
Ry41; that is, we need to considét; (for 1 < j < k) instead

of just R, in the case of single confidence methpdologies ip [3] to generatemillion dqta elements with

' the dimensionality fron2 to 5 and the spatial location of data
Ad-hoc Queries.Users may also issue an ad-hoc query, “findlements follow two kinds of distributionsndependentand
the skyline with skyline probability at leagt”. Assume that anti-correlated Then, we use two modelsiform or normal
currently we maintairk skylines as discussed above arid> distributions to randomly assign occurrence probabilitgach
qr- Then, we first find ar?; such thaty; < ¢’ < ¢;_1; clearly element to make them be uncertain. Uniform distribution,
elements{R;: j <i—1} } are contained in the solution. Wethe occurrences probability of each element takes a random
can apply the search paradigm in Plaég ) (Algorithm 10) value betweerd and 1, while in the normal distribution, the
to get all elements ink; with skyline probabilities> ¢ but mean valueP, varies from0.1 to 0.9 and standard deviation
without updating aggregate probabilities information. Sy is set0.3. We assign a random order for elements’ arrival
in a data stream.
Choosing ¢q. ¢ is the probability threshold in evaluating
Correctness.Our sliding window techniques maintain aggreefficiency of query processing. To evaluate SSKY, we use
gate information againsty , and then get skyline according0.3 as a default value of, while to evaluate MSKY with
to the skyline probabilities restricted t§y ,, Theorems, k given probability thresholdsy, ..., ¢, we let thesek

D. Multiple Confidences

E. Algorithm Analysis



Anti (5d) Stock —k————

Anti (2d) Anti (3d) Ant (4d)

values evenly sprea).3,1]. To evaluate QSKY, we issue

&l

1000 queries acrogg, 1] whereq is the minimum probability o ° 10
threshold when multiple thresholds are pre-given for mldti = 2, e S0 ﬂ
continuous skylines. We record average time to processethes}é - — éms
1000 queries. I A
Table Il summarizes parameters and corresponding defauf® [ ¢ ¢— %= gmz T —— e——

. =
values. In our experlr_nents, a_ll_ parameters take default P I o
values unless otherwise specified. (a) Max. Candidate Sizegiform) ) (b) Max. Skyline Size @niform)

TABLE I

SYSTEM PARAMETERS Fig. 5. Space Usage vs Window Size

Anti (2d) Anti (3d) Anti (4d) } Anti (50) Stock ——h——

Notation | Definition (Default Values) 108 105
n Number of points in the datase2Nl) 8 o R
N Sliding Window size (M) U I VR (5 P11 M
d Dimensionality of the of the dataset (3) g , *\ﬂ\*\+\k 2 :
D Dataset (Anti) gt T, e
Dp Probabilistic distribution of appearancen{form) 5_103 M % 102
P, expected appearance probabilityH) 3 = @’;ﬁﬂ:?:‘e
q probabilistic threshold(3) Pl
q probabilistic threshold (¢ < ¢" < 1) ( ) M ’ c 'd_d . IS' ) .(b) M. Sk.I'ne S'- . )
a, ax. Canaiaate Size ax. | 1Z
In our experiments, we evaluate the efficiency of our algo- ¢
rithm as well as space usage against dimensionality, size of Fig. 6. Space Usage vs Appearance Probability

indir_lg windc_>w, probabilistic threshold, di.s_tribu_tior.] olbjects’ Figure 6 reports the impact of occurrence probability distr
spatial location and appearance probability distribution bution against the space usage and number of skyline paints o
o different datasets. The occurrence probability follavesmal

A. Evaluate Space Efficiency distribution and the mean of the appearance probabifity

We evaluate the space usage in terms of the numberig§reases frond.1 to 0.9. It demonstrates that the smaller the
uncertain elements kept ifiy , against different settings. Asaverage appearance probability of the points, the moretpaoin
this number may change as the window slides, we record tdl be kept inSy ;. As shown in Figure 6(a), the size of the
maximal value over the whole stream. Meanwhile, we al§ghdidate decreases with the increase of average appearanc
keep the maximal number K Yy . probability. Interestingly, although the candidate sigdarge

The first set of experiments is reported in Figure 4 whet4th smaller average occurrence probability, the number of
4 datasets are used: Inde-Uniform (Independent distributigrobabilistic skyline is small, as illustrated in Figurebj(
for spatial locations and Uniform distribution for occurge  This IS because the small occurrence probability preveres t
probability values), Anti-Uniform, Anti-Normal, and Stec uncertain objects from becoming probabilistic skyline.
Uniform. We record the maximum sizes 8§ , andSKYy . e o ) i S
It is shown that very small portion of the 2-dimensional data 1c°

=
o
Gl

(]
needs to be kept. Although this proportion increases Withﬁ:ms —e B0t %
the dimensionality rapidly, our algorithm can still acrees g | T 2y A\A\A\A
89% space saving even in the worst caselimensionalanti- £t —e—s—u] 2.0
correlated data. Size ofSKYy , is much smaller than that 2103 —e——o——o | i’ %\i\‘\\@ﬁ
of candidates. Since thanti-correlated dataset is the most =, 100
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

challenging, it will be employed as the default dataset m th _ . _ _ _
following. (a) Max. Candidate Sizefiform) (b) Max. Skyline Size (niform)

Inde-Uniform @ Anti-Uniform R Anti-Normal Stock-Uniform [ ] Fig 7 Space Usage VS Probability threshold

Figure 7 reports the effect of probabilistic threshgldn
space efficiency. As expected, both candidate set size and
skyline set size drop ag increases.

>

=
o o
&l

[
o o
IR N

Max. Candidate size
o

B. Evaluation Time Efficiency

=
o
%

2d 3d 4d 5d 2d 3d 4d 5d

(a) Max. Candidate Size (b) Max. Skyline Size We evaluate the time efficiency of our continuous query

Fig. 4. Space Usage vs Diff. Data set processing techniques, SSKY and MSKY, as well as ad-hoc

The second set of experiment evaluates the impact eguiery processing technique QSKY. We first compare SSKY
sliding window sizeN on the space efficiency. As depicted irwith the trivial algorithm againss K'Yy , as described in the
Figure 5, the space usage is sensitive towards the incremieeginning of Section IV. We find it is abo0 times slower

of window size. than SSKY against anti (3d). Thus, we exclude the trivial



algorithm from further evaluation. nigues MSKY and ad-hoc query processing techniques. Re-

Since the processing time of one element is too short $!tS are reported in Figures 12(a) and 12(b), respectively
capture precisely, we record the average time for each bafefpected, Figure 12(a) shows that cost to process eachreleme
of 1K elements to estimate the delay per element. by MSKY increases wherk increases, while Figure 12(b)
shows the ad-hoc query processing cost decreases Wwhen

10° » m5d increases.

@ 4d 100 Wm

z =

§ . § "% C. Summary

. 10 Ve 3 O . . .

g EE JURIDNEENNESS W P As a short summary, our performance evaluation indicates

bbbt el pddienl20 e—e—a—=e—4g2  that we only need to keep a small portion of stream objects

105 105 stock

in order to compute the probabilistic skyline over slidingw

dows. Moreover, our continuous query processing algosthm

are very efficient and can support data streams with high
The first set of experiment is depicted in Figure 8. It showspeed for2d and3d datasets. Even for the most challenging

that SSKY is very efficient, especially when the dimensiipal data distributionanti-correlated we can still support the data

is low. For 2 dimensional dataset, SSKY can support stream with medium speed of more th@f0 elements per

workload where elements arrive at the speed of more thascond when dimensionality is

38K per second even fostock and anti-correlated dataset.

For 5d anti-correlateddata, our algorithm can still support up VI. APPLICATIONS

to 728 elements per second, which is a medium speed for datarpe techniques developed in this paper can be immediately
streams. extended to the following applications.

Figure 9 evaluates the system scalability towards the Sizegygpapilistic Top-k Skyline Elements. Given an uncertain
the sliding window. The performance of SSKY is not sensitivgata stream, a threshold and a sliding window siz&V, find

to the size of sliding window. This is because the candidage 1. skyline points with the highest skyline probabilities (but
size increases slowly withV, as reported in Figure 5. not smaller tharny).

iM  12M 14M 16M 1.8M 2M 200K 400K 600K 800K M

Fig. 8. Time Efficiency vsn Fig. 9. Avg. Delay vsW

e e e e oA We can apply our algorithms in Section IV to remove points
w* 107 with P,.., < ¢, update aggregate information at each entry,
) NN - probabilitigs Csieyr Potdr Prew,etc). We do not move any
5“3 — g — elements inR, N R; to R,. Instead, we treaR; and R, as
Sitlt—a o, lFwota ., | two “heap trees”. In fact, botli; and R, maintain two heaps
e @ on Ps,: 1) min-heap, and 2) max-heap; this is because we
10° 10°

keep Psky min and Psiy mq, at each entry. We use min-heap

on R, and max-heap o, to move elements in top-from

Ry to R; and move elements iR, but not in topk to Rs.
Figure 10 evaluates the impact of occurrence probabilifyme Stamp based Sliding Windows.In such a model, we

distribution on time efficiency of SSKY where normal diStri-expire an old element if it is not within a pre_given most mece

bution is used for probability values. As expected, lafye time period7. Our techniques can be immediately extended

leads to better performance since the candidate size id sni@lsliding windows based on the most recent time pefiod
when P, is large.

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

Fig. 10. Avg. Delay vsP, Fig. 11. Avg. Delay vsq

Object with Multiple Elements. Suppose that an uncertain
Figure 11 evaluates the effect of probability threshgpldn  stream contains a sequence of objects such that each object

SSKY. Since both size of candidate set and skyline obje@snsists of a set of instances [22] or PDF. In fact, our slkylin

set are small whepg is large as depicted in Figure 7, SSKYprobability model is a special case of the model in [22]. In ou

is more efficient whery increases. sliding window model, we assume that each objectt@mic?

e i@ B ook —A—— Then we want to compute objects with skyline probabilities
102 @102 not smaller thany. It can be immediately verified that all our
H £ e — technigues are immediately applicable to discrete casepéx
g10° ﬂ gma we compute skyline probability in a different way; that is,
5 &.0s E based on the definition in [22]. For continuous cases, we can
£v R use Monte-Carlo sampling method [16] to discrete them.
z10'5 ? 7

=
o
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10 VII.

We review related work in two aspects, skylines and uncer-

. Query Cost viQ)| N tain data streams. To the best of our knowledge, this paper
The last experiment evaluates the emC'enCy of our multi lwhen an object arrives, all its instances arrive; when ancblggpires,

probability thresholds based continuous query processicigy

RELATED WORK

4 6 4 6
(a) continuous (b) ad-hoc

Fig. 12.

all its instances expire.



is the first one to address the problem of skyline queries sapport processing a set of continuous queries with diftere
uncertain data streams. thresholds, as well as to process an ad-hoc skyline query.

Skylines. Borzonyi et al [3] first study the skyline op- Finally, we show that our techniques can also be extended
erator in the context of databases and propose an St9LSupport probabilistic tog-skyline against sliding windows
syntax for the skyline query. They also develop two confver an uncertain data streams. Our extensive experiments
putation techniques based dmocknestedoop and divide- demonstrate_that our techniques can deal with a high-speed
and-conquer paradigms, respectively. Anothdilocknested data stream in real time.

loop based technique SFSqrtfilter-skyling is proposed by Acknowledgement.The work was supported by ARC Grant
Chomicki et al [7], which takes advantage of a pre-sortindDP0881035, DP0666428, DP0987557 and DP0987273) and
step. SFS is then significantly improved by Godfe#yal [10]. a Google Research Award. The fifth author was supported by
The progressiveparadigm that aims to output skyline pointsa grant of RGC, Hong Kong SAR, China (No. 418206)
without scanning the whole dataset is firstly proposed by Tan
et al [24]. It is supported by two auxiliary data structures,
b|tmap and search tree Kossmannret al [18] present another [1] C.C. Aggarwal and P. S. Yu. A framework for clustering urtai data
progressive technique based on the nearest neighbor Sea{fih\s/\t/??né;kle“,%?gjr?gir, and J. X. Zheng. Efficient distried skylining
technique. Papadiast al [21] develop abranchandbound for web information systems. IEDBT 2004

algorithm (BBS) to progressively output skyline points dxhs [3] ISC-DBSFESSEVL D. Kossmann, and K. Stocker. The skylinerafme. In
on R-trees_with the guarantee of minimal I/O cc_)st. Variation 4] C.-Y. Chan, P-K. Eng, and K.-L. Tan. Stratified compudatif skylines
of the skyline operator have also been extensively explored” with paritally ordered domains. I8IGMOD 2005

including skylines in a distributed environment [2], [12], [5] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, and A. K. H. Tung. @igh

. . . . dimensional skylines. IEDBT 2006
skylines for partially-ordered value domains [4], skylitgbes [6] C.-Y. Chan, H. V. Jagadish, K-L. Tan, A. K. H. Tung, and Zhang.

[23], [26], [27], reverse skylines [9], approximate sk@m[5], Finding k-dominant skylines in high dimensional space. SIEMOD
[6], [17], etc. 2006

. . . . L . [7] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skylinetwjiresorting.
Skyline queries processing in data streams is investigated In ICDE 2003

Lin et al [20] against various sliding windows. Tat al [25]  [8] G. Cormode and M. Garofalakis. Sketching probabilistitadstreams.
independently develop efficient techniques to computengjid In SIGMOD 2007 - _ _ ,

. . [9] E. Dellis and B. Seeger. Efficient computation of revelsdise queries.
window skylines. In VLDB 2007
The skyline query processing on uncertain data is firstfyo] p. Godfrey, R. Shipley, and J. Gryz. Maximal vector corafioh in

approached by Peit al[22] whereBoundingpruningrefining large data sets. INLDB 2005

. - : : [11] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. Spatéhg using r-
technlques are developed for efficient computation. leaal trees: Breadth-first traversal with global optimizations.MLDB 1997

[19] combine reverse skylines [9] with uncertain semantigs2] z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline eqsesgainst
and model theprobabilistic reverse skylinguery in both mobile lightweight devices in MANETs. ItCDE 2006

. . . . . . [13] T. Jayram, S. Kale, and E. Vee. Efficient aggregation rtigms for
mono_chromatlc and bichromatic fashion. Efficient prumnB probabilistic data, I'SODA 2007
techniques are developed to reduce the search space for qgel T. s. Jayram, A. McGregor, S. Muthukrishan, and E. VeetinEsing
processing. statistical aggregrates on probabilistic data stream$QDS 2007
. [15] C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin. Sliding-windo top-k
Uncertain Data Streams. Although numerous research as- ~ qgueries on uncertain streams. i.DB 2008

pects have been addressed on managing certain stream d]mtilM H. Kalos gﬂéiG P. A. Whitlock. Monte Carlo Methods. Wiley
. nterscience, .

works on uncertain data Streamslhave abounded Only V?f‘)ﬁ V. Koltun and C. Papadimitriou. Approximately dominatirgpresenta-

recently. Aggregates over uncertain data streams have been tves. InICDT 2005

studied recently [8], [13], [14]. Problems such as clusigri [18] D-IKOSSPanr;], F-f Ramkslak, and S. RstLt-D I§hzootgi2ng stars inkiheAs

H H H H online algorithm for skyline queries.

u.n.ce.rtaln data stream [1], frequ?n.t Items retrieval in anb 19] X. Lian and L. Chen. Monochromatic and bichromatic reeeskyline

bilistic data streams [28], and sliding window top-k querie ~ search over uncertain databasesSIGMOD 2008

on uncertain streams [15] are also investigated. Sincergkyl[20] X.Lin, Y. Yuan, W. VI\_/céii_ng. ar_lddH. Lu-I %Stébizn(?otshe sky: Eiéiat skyline
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