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Abstract—Uncertain data are inherent in many applications studied and different probability density functions (PDBEse
such as environmental surveillance and quantitative ecomoics proposed, andivariate normaldistribution is the simplest
research. Recently, considerable research efforts have @@ put e [8]. Therefore, the commander can predicate the effect o
into the field of analysing uncertain data. In this paper, we tudy . . : .
the problem of processing the uncertain location based rargy attack by COP”“,”Q t_he number of target points which might be
aggregate in a multi-dimensional space. We first formally itro-  destroyed with likelihood at leagt which may depend on the
duce the problem, then propose a generdlitering-and-verification confidence level of the commander. Moreover, suppose there
framework to solve the problem. Two filtering techniques, naned  are different military values for the target points, thelaation
STF and PCR respectively, are proposed to signficantly reduce can pe pased on treumof the values for those target points.
the verification cost. - . : :

A straightforward solution of this problem is to compute the
appearance probabilifyof each pointe € P for Q. Then do
the aggregate computation on the points which apped in

Uncertain data are inherent in many applications suetith probability at least. Usually the appearance probability
as environmental surveillance, market analysis, infoilmnat computation is expensive because it requires costly naaileri
extraction, moving object management and quantitative easvaluation of a complex integral. So the key of the problem
nomics research. The uncertain data in those applicati@ns & how to efficiently disqualify a poinp or validate it as an
generally caused by data randomness and incompletenessult based on some pre-computed information. That is, we
limitation of measuring equipment, delayed data updates, eneed to filter as many data points as possible to reduce the
With the rapid development of various optical, infrared andumber of appearance probability computations.
radar sensors and GPS techniques, there is a huge amoum the paper, we first propose fitering-and-verification
of uncertain data collected and accumulated everyday. fsamework to solve the problem based on filtering technique.
how to efficiently analysing large collections of uncertdata Then we propose a distance based filtering techniques, named
becomes a great concern in many areas [1], [2]. An importa®TE. The basic idea of th&TF technique is to bound the
operation in those applications is the range query. Alttougippearance probability of the points by applying some well
the studies of the range query on spatial database has a IRngwn statistical inequalities where only a few statisat®ut
history, it is until very recently that the community startshe uncertain location based quefy is required. TheSTF
to investigate this problem against the uncertain data [3gchnique is simple and space efficient (only+ 2 float
[4], [S], [6], [7]. There are many applications for the rang&umbers required), and experiments show that it has a decent
guery operation against uncertain data. In this paper, wasfo filtering capacity. We also investigate how to apply exigtin
on the distance based range aggregates computation whgtshabilistically constrained region®CR) technique [5] to
the location of the query point is uncertain while the targejur problem.
data are conventional points (i.e, certain points ). In g&ne  The remainder of the paper is organized as follows. In Sec-
an “uncertain location based query”, denoted Qy is a tion II, we formally define the problem. Section IIl proposed
multi-dimensional point whose location might appear at argeneralfiltering-and-verificationframework and two filtering
location = within a region denoted by).region, subject to techniques. Section IV evaluates the proposed technigiies w
a probabilistic density functiopdf (). Then for given set of experiments. Then Section V concludes the paper.
data pointsP and query distance, we want to retrieve the
aggregate information from the data points which are within Il. PROBLEM DEFINITION
distancey to @ with probability at leas®t. A

There are many applications for the problem we studieg?

in the paper. One application is to estimate the extent Stance between two pointsandy is denoted byz — y|. An

damage a missile attack might cause [8]. As we know, ?VSBjecto in the paper has arbitrary shape which might enclose
the most advanced laser-guided missile can not exactlyait U set of data POINES [01 — 0a|min denotes themin({|z; —

aim point with100 percent guarantee. So the commander can P L
not sFi)m I redica’?e the effgect of the missile attack byiisgu U5|}) for va; € o) and vy, € 02 Slml_lar deflnmon goes to

Ply p ! YIsgu 15 "~ 02|maz- NOte that theEuclidean distancés employed as
a conventional distance based range aggregate query denif® yici2iCe metric in the paper. Nevertheless, our teakniq
at _th(_e aim point to count Fhe number O.f military targets (e'gcan be easily extended to other distance metrics as long as
buildings, missile wells, mines, parked fighters) beingered.
Instead, it is more reasonable to consider the likelihood Oleor presentation simplicity, we say a pojtappears with respect o query

being qutrOY_Ed for ea_Ch target _pOintS- The diStribUtiO_n @bint ¢ if the distance between query poiptandp is not larger thany
the falling point of various missiles has been extensivelyZobjecto is corresponding to the MBR of an entry R tree in the paper

I. INTRODUCTION

data pointp € P or query instance € @ referred in this
per, by default, is in ddimensional nhumerical space. The



the triangle inequality holds. For presentation simpficwe SupposeP is organized by aggregafetree Rp and a filterF'

use “uncertain query” to represent “uncertain locationeldlason @ is available, Algorithm 1 describes how to apply a filter

query”. Following is the definition of uncertain que&y on for the aggregate query processing inbeanch-and-bound

both continuousand discretecase. fashion. Note that the filter should support the intermediat
Definition 1 ( Uncertain Queryy (continuous) ): entry so that a group of data points can be filtered at same

Uncertain query@ is described by a probabilistic densitytime.

function Q.pdf. Let Q.region present the region wher@

might appear, therj;eQ_reqm Q.pdf (x)dx = 1;

Algorithm 1 : Filtering-and-Verification(Rp, Q, F, v, 6)

Definition 2 ( Uncertain Queryy (discrete) ): The uncer-  Input gfdnizr?a%grgggtr%tfe':e”g; data seP,
tain query@ consists of a set of instanceg, ¢z, . .- ’_qn} ~ : query distanced : Probabilistic threshold

whereg; appears with probability’, and} .o P, = 1; output : |Qo.~ (P)]|
For a point p, we use P,,,(Q,p,y) to represent the 1 Stack:=0; S:=0; C :=10;
probability of pointp located within distance of towards 2 insert root of Rp into Stack;

H : o * *
uncertain queryQ. It is called the appearance probablhtyf1 Whll?&ﬁrﬁ%ﬁife?edn?rye from Stack - I[= filtering «/
of p rega.rdlng. uncertain quer@ a_nd query dlstanqe/. _for s Load entrye from disk :
presentation simplicity. Following is the formal definitimf ¢ for each child entry e; of e do
the appearance probability gf under thecontinuousand 7 status := F.check(e; );
discretecases respectively. For tl®ntinuouscase, 8 switch status do

1?) cas% fg;f(”?d do
_ L ;
Papp(@:p:7) = /zeQ.regum A Je—pl<n Qpdf(@)dz (1) 11 case validated do
) - 12 | S:= 5+ el break;
As to the discrete case, 13 case unknown do
PaPP(Qapa /7) = Z an where |q - p| S 7 (2) 12 IfLeLC’Isgaé’aUeggy then
9€Q 16 else
Specially, we haveP,,,(Q,p,7) = 0 for any v < 0; 7 L pute; into Stack;
Note that when there is no ambiguity, we uBg,,(p,y) to 18 break;
replaceP,,,(Q,p,v). And Q andpdf are employed to rep- L =
resentQ.region and Q.pdf respectively. It is immediate thatig for data entry e in C do /+ verification «/
P,,»(p,7) is a monotonic function with respect to distange 20 it Papp(Q,e,7) = 6 then
Problem Statement. 21 L S=5+1;

In this paper we investigate the problem of uncertain locati,, return S
based range aggregate query on spatial data; it is formalty
defined below.

Definition 3 ( Uncertain Range Aggregate QueryGiven
a set of pointsP, an uncertain querg), query distancey and
probabilistic threshold), we want to compute the aggregat
information against pointy € Qg ~(P), where Qg (P)
denotes the set of poingse P and Py, (p,7y) > 6.

An immediate filtering technique is based on the distance
between the entry and uncertain query. Clearly, for é&nye
can safely prune an entry witld) — e|,.;,, > ~ or validate it
§ |Q — €|maz < 7y. We refer this as maximal/minimal distance
based filtering technique, nama&dMD. MMD technique is
.__time efficient as onlyO(d) time is required to compute
In the_ paper, we emplqy_tmnuntas the aggregate operationy, e minimal and maximal distance betweéhM BR and
That is, we want to efficiently compui€)s,, (P)|. Neverthe- 3 pp where@.M BR is the minimal bounding rectangle
less, our technique can b_e easily extended to other aggeeggtr 0. H’owever, theMMD technique does not make use of
(e.g.,sum avg maxandmin). 6, which inherently limits its filtering capacity. In the sexju

Il. Filtering-and-VerificationALGORITHM we introduce two filtering techniques which can enhance the

. . . . iltering capacity with some pre-computed information.
In this section, we first introduce a general framewor& g capacly P P

for the filtering-and-verificationAlgorithm based on filtering
techniques. Then we proposes a simple statistical filteeoky-

nigue. We also investigate how to apply tRERtechnique [5]
to tackle our problem.

B. Statistical Filter

A. A framework for filtering-and-verification Algorithm Q1 Y o

For the given uncertain quety, probability threshold and 2
distancey, the naive way is to compute th,,,(p, v) for each g§1 0° °%, )
data pointp € P based on Equation 1, then count the number
of points with P,,,(p,~) > 6. Clearly, it is inefficient as we

need to visit every point € P and the integral computation is p
expensive. To reduce the number of verifications, it is déér
to apply filtering technique to prune or validate the datanjmi Fig. 1. Motivation Example Fig. 2. Proof of Upper bound




In this subsection, we propose a statistical filtering tech-
nigue, namedTE As shown in Figure 1, for giveA = 0.5 9
we can not prune for uncertain queryQ; based onMMD g

E(Y?) - E*(Y)

technique although intuitively should be pruned. Similarly, _ _ 2
we can not validatep for ()5 either. This motivate us to = /meQ(ng Pl |z = gol)"pdf (x)d
develope a new filtering technique which is as simpl#a4D, —(lgg — p| — 10)?
but can exploit) to enhance the filtering capacity. 5 5
We first introduce three statistics and a lemma which are = 0q g+ 4ng X l9g —pl =0
employed bySTF technique. Then based on lemma 1 lgt= 2=£, if v > 4, we have
Definition 4 ( Geometric Centroid g¢) ): Informally, ge-
ometric centroid is the "average” of all points of an object.  p,(yv > ) = Pr(Y —p> ko) < 1
Let g denote the geometric centroid of uncertain quéry - - Tl (E)2
we havegg = x x pdf (v)dr andgg = > o x Iy 1
for contmuousandglscretecase respectively. < 1+ (222
Base on theyg, we have two definitions, nameg, and 7
oq respectively, which describe the variance of the distriFhen it is immediate that
bution of uncertain queryy). no represents the weighted 1
average distance ta, with 1o = [, _,, v — go| x pdf (z)dx PriY <y)21-PrY 27)21-—F—= ()
and > .o lg — gg| x P, for continuousand discrete case 1+ of

respecuvely S|m|la2rly,aQ denotes the variance 0@ With a5 to the upper bound, as illustrated in Figure 2jiebe the
0Q = [,eq |7 = 907 x pdf (z)dx and -, g - gol* x Py dummy point on the linggg with [p’ —p| = v+ +e. Let

for contmuouaand discretecase respectively. A = |p' - gol, then we have
The Cantelli’'s inequality9] described by Lemma 1 is em- .
ployed in our statistical filtering technique and it is origesl A=v+79"+e—[p—gql (4)

version of theChebyshev |nequaI|Iy. ) According to Inequality 3 and Equation 4, when< [p —
Lemma 1:Let X be a random variable with expected valu§Q| —ng — € We haveP,,,(p,+) > 1 — since

w1 and finite variances?. Then for any real numbet > 0,

Pr(X —p>ko) < 1+1,€2 for anyx € Q and|x — p’| <+ ( stripped area in Figure 2),
Then Theorem 1 indicates that we can further enhance the— p| > ~. It implies thatPapp(p v) < 1— Popp(p', ) <

filtering capacity based on some simple statistic&)of

m’

(*)2'
14+ 0 —p2

Theorem 1:For the uncertain query) and distancey, o3

. : , ]
suppose the geometric megy, We_|ghted average dlstz_;mce Following extension is immediate based on the rationale of
ng and variancesg for ) are available. Then for a given - oorem 1
point p, we have Extension 1. Supposeo is an object with arbitrary shape,
1) If v > i, Popp(p,y) > 1 — W, whereu; = we can simply use€o — gg|min and|o — gglmaz to replace
b |[p—gq| in Theorem 1 for lower and upper probabilistic bounds
9@ — pl +nq andof = o — 13 + 477@ X lgg —pl-  computation respectively.
2) If v < |gg —pl —ng — € Papp(p,y) < ﬁ Based on the Extension we can compute the upper and
=2 Jower bound for Pypp(e,y) to prune or validate entries in

Whereuz A +1q, 05 = 0q — 77 +4ng x A, A= Algorithm 1. Sincegq,nq and o are pre-computed, the
v+ +e—|p—ggl andy’ > 0. Thee represents an only dominate cost in filtering phase is distance computatio
infinitely small positive value. betweene andp which only costsO(d) time.

Following the similar rationale, another statistical filean
be proposed based the popular statistical inequidiykov’s
inequality We omit this part due to the space limitation.

Proof: As uncertain query) can be regarded as a random
variable which takest € @ with probability pdf(x), wi
construct another random varialifeas follows: forvz € @,

there is ay € Y such thaty = |x — p| and Y.pdf(y) = . PCR based Filter
Q.pdf (x). Then we haveP,,,(p,v) = Pr(Y < ~) according

C .

to the Equation 1. Based on triangle inequality, we have @™9°" R _ Q.region
[z—p| < |z—gol+|r—gol and|z—p| > | |z —go|—[p—ygql | =
foranyx € Q. Let 4 ando denote theexpectiorandstandard & 2N
deviationof random variablé” respectively, then ! /F’ ‘
' y )

po= / nypdf(y)dy:/ |z — p| x pdf (z)dx
yey z€Q
< |9Q — p| +n0 = Fig. 3. Transform query Fig. 4. Choose PCRs

Although Taoet al[5], [6] do not address the problem
Similarly, we havey > |go — p| — ng. studied in this paper, th®CR technique can be employed



as filter in Algorithm 1. In Figure 3, let’, , represent the achieve a great saving on the candidate size compared with th
circle(sphere) centred atwith radius~. Then we can regard MMD. With more space?CRcan further reduce the candidate
the uncertain querg) as an uncertain object, whi, ., serves size.

as a query. BecaudeCR technique only works for rectangle 4,

query, as suggested in [6], we can ugeandR; in Figure 3to g 25 prge—
represene,, , for pruning and validation purpose respectively.§ 200 "%
Similar transformation can be done for intermediate estrieg 1
as well. Suppose a finite set d?C'Rs are pre-computed. g '®
For given§ which is not selected for pre-computation, we® 52 e | B 2\ | B e s
can carefully choose two closest existiff’ Rs for pruning 400 80 1200 1600 400 800
and validation as illustrated in Figure 4. Since thés fixed (@ Us (b) 3d uniform
during the query, we can choose these @ Rs for all data
points before processing of the query. Then pruning/véhda
rules in [5] can be applied for pruning and validate which
are very time efficient - onlyO(d) time required for each
entry test. In order to further improve the performance ef th

filter, more sophisticate approach from [6] is applied in ourg®® @/9/9/9/6
implementation. And the worst filtering time for each ensy i 3
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IV. EXPERIMENT (@) Us (b) 3d uniform
We present results of a comprehensive performance study Fig. 6. # node accesses ys

to evaluate the efficiency of proposed techniques in therpape
Following the frame work of Algorithm 1, three different élt
ing techniquesNIMD, STFandPCR) have been implemented

We evaluate the IO cost of the techniques and report the
results in Figure 6. As expecteBCR still ranks first on both

and evaluated. All algorithms are implemented in C++ an tasets.
compiled by GNU GCC. Experiments are conducted on PCs V. CONCLUSIONS
\I,_vilrtltxmtel P4 2.8GZ CPU and 2G memory under Debian In this paper, we formally define the problem of uncertain

. . ._location based range aggregates in a multi-dimensionakspa
The spatial datasellS, is employed as target dataset Wh'di} covers a wide spectrum of applications. To efficiently

containslm 2-dimensional points representing locations in th rocess such a query, we propose a genéitaring-and-

United Staté. All of the dimensions are normalised to dlomal Verificationframework and two filtering technique, namga@iF
[0,10000]. To evaluate th.e performance c.)f the.algon.thmsand PCR respectively, such that the expensive computation
we also generate synthetic dataSeiiform with 3 dimension, ¢, for verification can be significantly reduced. As demon-
in which points are uniformly distributed. The domain sizgy 04 i the experimer8,TFfiltering technique can achieve a
IS [0’.10000] for each d|menS|or_1$. Al Of. the datasets arﬁecentfiltering capacity based on a few pre-computed Statis
organized by aggregat trees with pagesiza096 bytes. A 515t the uncertain location based query. Moreover, it is

workload consists 0200 uncertain queries in our experimentVery fast and space efficient due to its simplicity. ARCR
And the uncertain region of the.unceryam queries in our EXp?echnique is quite efficient when more space is available.
iment are circles or spheres with radigswhich varies from

200 to 1000. The centres of the queries are randomly generatfgknowledgement. The work was supported by ARC Grant
within the domain andNormal distribution is empioyed to (PP0881035 and DP0666428) and Google Research Award.

describe the PDF of the uncertain queries. Moreover, inrorddd the third author was supported by Grant CUHK 4161/07
to avoid favouring particulap value, we randomly choosefom HKRGC.
the probabilistic threshold betwe®mand1 for each uncertain REFERENCES
qu\?\g'measure the performance of the techniques by meéHsN' N. Dalvi and D. Suciu, “Management of probabilistictdafoundations

. . . - and challenges,” iPODS 2007.
of 10 cost and candidate size during the computation. e [2] M. A. Soliman, I. F. llyas, and K. C.-C. Chang, “Top-k qygprocessing
cost is the number of pages visited frddp. While candidate in uncertain databases,” ICDE, 2007.

L. . . . ... [3] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Evahgfprobabilistic
size is the number of data points which need exact probablhs[ queries over imprecise data” BIGMOD 2003

computation. [4] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitt&ffcfent

In the experiments we evaluate the impact of query distance indexing methods for probabilistic threshold queries auecertain data.”

' o : . in VLDB 2004
7 on the performance of the filtering techniques in terms @} v Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabiwak
candidate size and 10 cost agaibk§ and3d Uniform datasets. “Indexing multi-dimensional uncertain data with arbiiraprobability
Figure 5 reports the candidate size MMD, STF and PCR density functions.” invVLDB, 2005. .
. ! [6] Y. Tao, X. Xiao, and R. Cheng, “Range search on multidisienal

when query d'Stanca grows _fr0m400 to 2(_)00- ClearIY'_the_ uncertain data,ACM Trans. Database Systol. 32, no. 3, 2007.
largey results in more candidate data points for verificatiofiz] J. Chen and R. Cheng, “Efficient evaluation of impreciseation-
It is interesting that with only a few statistics, t!8TF can dependent queries,” ifCDE, 2007.

[8] G. M. Siouris, Missile Guidance and Control Systen2004.
[9] R. Meester,A Natural Introduction to Probability Theory2004.
SAvailable at http://www.census.gov/geo/wwwitiger/



