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Abstract— Uncertain data are inherent in many applications
such as environmental surveillance and quantitative economics
research. Recently, considerable research efforts have been put
into the field of analysing uncertain data. In this paper, we study
the problem of processing the uncertain location based range
aggregate in a multi-dimensional space. We first formally intro-
duce the problem, then propose a generalfiltering-and-verification
framework to solve the problem. Two filtering techniques, named
STF and PCR respectively, are proposed to signficantly reduce
the verification cost.

I. I NTRODUCTION

Uncertain data are inherent in many applications such
as environmental surveillance, market analysis, information
extraction, moving object management and quantitative eco-
nomics research. The uncertain data in those applications are
generally caused by data randomness and incompleteness,
limitation of measuring equipment, delayed data updates, etc.
With the rapid development of various optical, infrared and
radar sensors and GPS techniques, there is a huge amount
of uncertain data collected and accumulated everyday. So
how to efficiently analysing large collections of uncertaindata
becomes a great concern in many areas [1], [2]. An important
operation in those applications is the range query. Although
the studies of the range query on spatial database has a long
history, it is until very recently that the community starts
to investigate this problem against the uncertain data [3],
[4], [5], [6], [7]. There are many applications for the range
query operation against uncertain data. In this paper, we focus
on the distance based range aggregates computation where
the location of the query point is uncertain while the target
data are conventional points (i.e, certain points ). In general,
an “uncertain location based query”, denoted byQ, is a
multi-dimensional point whose location might appear at any
location x within a region denoted byQ.region, subject to
a probabilistic density functionpdf(x). Then for given set of
data pointsP and query distanceγ, we want to retrieve the
aggregate information from the data points which are within
distanceγ to Q with probability at leastθ.

There are many applications for the problem we studied
in the paper. One application is to estimate the extent of
damage a missile attack might cause [8]. As we know, even
the most advanced laser-guided missile can not exactly hit the
aim point with100 percent guarantee. So the commander can
not simply predicate the effect of the missile attack by issuing
a conventional distance based range aggregate query centred
at the aim point to count the number of military targets (e.g.,
buildings, missile wells, mines, parked fighters) being covered.
Instead, it is more reasonable to consider the likelihood of
being destroyed for each target points. The distribution of
the falling point of various missiles has been extensively

studied and different probability density functions (PDFs) are
proposed, andbivariate normal distribution is the simplest
one [8].Therefore, the commander can predicate the effect of
attack by counting the number of target points which might be
destroyed with likelihood at leastθ, which may depend on the
confidence level of the commander. Moreover, suppose there
are different military values for the target points, the evaluation
can be based on thesumof the values for those target points.

A straightforward solution of this problem is to compute the
appearance probability1 of each pointsp ∈ P for Q. Then do
the aggregate computation on the points which appear inQ
with probability at leastθ. Usually the appearance probability
computation is expensive because it requires costly numerical
evaluation of a complex integral. So the key of the problem
is how to efficiently disqualify a pointp or validate it as an
result based on some pre-computed information. That is, we
need to filter as many data points as possible to reduce the
number of appearance probability computations.

In the paper, we first propose afiltering-and-verification
framework to solve the problem based on filtering technique.
Then we propose a distance based filtering techniques, named
STF. The basic idea of theSTF technique is to bound the
appearance probability of the points by applying some well
known statistical inequalities where only a few statisticsabout
the uncertain location based queryQ is required. TheSTF
technique is simple and space efficient (onlyd + 2 float
numbers required), and experiments show that it has a decent
filtering capacity. We also investigate how to apply existing
probabilistically constrained regions (PCR) technique [5] to
our problem.

The remainder of the paper is organized as follows. In Sec-
tion II, we formally define the problem. Section III proposeda
generalfiltering-and-verificationframework and two filtering
techniques. Section IV evaluates the proposed techniques with
experiments. Then Section V concludes the paper.

II. PROBLEM DEFINITION

A data pointp ∈ P or query instanceq ∈ Q referred in this
paper, by default, is in ad-dimensional numerical space. The
distance between two pointsx andy is denoted by|x−y|. An
objecto in the paper has arbitrary shape which might enclose
a set of data points2, |o1 − o2|min denotes themin({|xi −
yj|}) for ∀xi ∈ o1 and ∀yj ∈ o2; Similar definition goes to
|o1−o2|max. Note that theEuclidean distanceis employed as
the distance metric in the paper. Nevertheless, our technique
can be easily extended to other distance metrics as long as

1For presentation simplicity, we say a pointp appears with respect to query
point q if the distance between query pointq andp is not larger thanγ

2object o is corresponding to the MBR of an entry inR tree in the paper



the triangle inequality holds. For presentation simplicity, we
use “uncertain query” to represent “uncertain location based
query”. Following is the definition of uncertain queryQ on
both continuousanddiscretecase.

Definition 1 ( Uncertain QueryQ (continuous) ):
Uncertain queryQ is described by a probabilistic density
function Q.pdf . Let Q.region present the region whereQ
might appear, then

∫
x∈Q.region

Q.pdf(x)dx = 1;
Definition 2 ( Uncertain QueryQ (discrete) ): The uncer-

tain queryQ consists of a set of instances{q1, q2, . . . , qn}
whereqi appears with probabilityPqi

and
∑

q∈Q Pq = 1;
For a point p, we use Papp(Q, p, γ) to represent the

probability of point p located within distance ofγ towards
uncertain queryQ. It is called the appearance probability
of p regarding uncertain queryQ and query distanceγ for
presentation simplicity. Following is the formal definition of
the appearance probability ofp under thecontinuousand
discretecases respectively. For thecontinuouscase,

Papp(Q, p, γ) =

∫
x∈Q.region ∧ |x−p|≤γ

Q.pdf(x)dx (1)

As to the discrete case,

Papp(Q, p, γ) =
∑
q∈Q

Pq, where |q − p| ≤ γ. (2)

Specially, we havePapp(Q, p, γ) = 0 for any γ < 0;
Note that when there is no ambiguity, we usePapp(p, γ) to
replacePapp(Q, p, γ). And Q and pdf are employed to rep-
resentQ.region andQ.pdf respectively. It is immediate that
Papp(p, γ) is a monotonic function with respect to distanceγ.

Problem Statement.
In this paper we investigate the problem of uncertain location
based range aggregate query on spatial data; it is formally
defined below.

Definition 3 ( Uncertain Range Aggregate Query ):Given
a set of pointsP , an uncertain queryQ, query distanceγ and
probabilistic thresholdθ, we want to compute the aggregate
information against pointsp ∈ Qθ,γ(P ), where Qθ,γ(P )
denotes the set of pointsp ∈ P andPapp(p, γ) ≥ θ.
In the paper, we employ thecountas the aggregate operation.
That is, we want to efficiently compute|Qθ,γ(P )|. Neverthe-
less, our technique can be easily extended to other aggregates
(e.g.,sum, avg, maxandmin).

III. Filtering-and-VerificationALGORITHM

In this section, we first introduce a general framework
for the filtering-and-verificationAlgorithm based on filtering
techniques. Then we proposes a simple statistical filteringtech-
nique. We also investigate how to apply thePCRtechnique [5]
to tackle our problem.

A. A framework for filtering-and-verification Algorithm

For the given uncertain queryQ, probability thresholdθ and
distanceγ, the naive way is to compute thePapp(p, γ) for each
data pointp ∈ P based on Equation 1 , then count the number
of points withPapp(p, γ) ≥ θ. Clearly, it is inefficient as we
need to visit every pointp ∈ P and the integral computation is
expensive. To reduce the number of verifications, it is desirable
to apply filtering technique to prune or validate the data points.

SupposeP is organized by aggregateR treeRP and a filterF
on Q is available, Algorithm 1 describes how to apply a filter
for the aggregate query processing in abranch-and-bound
fashion. Note that the filter should support the intermediate
entry so that a group of data points can be filtered at same
time.

Algorithm 1 : Filtering-and-Verification(RP , Q, F , γ, θ)
Input : RP : an aggregateR tree on data setP ,

Q : uncertain query,F : Filter,
γ : query distance,θ : Probabilistic threshold

Output : |Qθ,γ(P )|
Stack := ∅; S := 0; C := ∅;1
insert root ofRP into Stack;2
while Stack 6= ∅ do /* filtering */3

Remove top entrye from Stack ;4
Load entrye from disk ;5
for each child entry ei of e do6

status := F.check(ei );7
switch status do8

case pruned do9
break ;10

case validated do11
S := S + |ei|; break;12

case unknown do13
if ei is data entry then14

C := C ∪ ei;15

else16
put ei into Stack;17

break;18

for data entry e in C do /* verification */19
if Papp(Q, e, γ) ≥ θ then20

S := S + 1 ;21

return S22

An immediate filtering technique is based on the distance
between the entry and uncertain query. Clearly, for anyθ we
can safely prune an entry with|Q − e|min > γ or validate it
if |Q−e|max ≤ γ. We refer this as maximal/minimal distance
based filtering technique, namedMMD. MMD technique is
time efficient as onlyO(d) time is required to compute
the minimal and maximal distance betweenQ.MBR and
e.MBR, whereQ.MBR is the minimal bounding rectangle
of Q. However, theMMD technique does not make use of
θ, which inherently limits its filtering capacity. In the sequel,
we introduce two filtering techniques which can enhance the
filtering capacity with some pre-computed information.

B. Statistical Filter
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In this subsection, we propose a statistical filtering tech-
nique, namedSTF. As shown in Figure 1, for givenθ = 0.5
we can not prunep for uncertain queryQ1 based onMMD
technique although intuitivelyp should be pruned. Similarly,
we can not validatep for Q2 either. This motivate us to
develope a new filtering technique which is as simple asMMD,
but can exploitθ to enhance the filtering capacity.

We first introduce three statistics and a lemma which are
employed bySTF technique.

Definition 4 ( Geometric Centroid (gQ) ): Informally, ge-
ometric centroid is the ”average” of all points of an object.
Let gQ denote the geometric centroid of uncertain queryQ,
we havegQ =

∫
x∈Q

x × pdf(x)dx and gQ =
∑

q∈Q q × Pq

for continuousanddiscretecase respectively.
Base on thegQ, we have two definitions, namedηQ and

σQ respectively, which describe the variance of the distri-
bution of uncertain queryQ. ηQ represents the weighted
average distance togQ with ηQ =

∫
x∈Q

|x − gQ| × pdf(x)dx

and
∑

q∈Q |q − gQ| × Pq for continuousand discrete case
respectively. Similarly,σQ denotes the variance ofQ with
σQ =

∫
x∈Q

|x − gQ|
2 × pdf(x)dx and

∑
q∈Q |q − gQ|2 × Pq

for continuousanddiscretecase respectively.
The Cantelli’s inequality[9] described by Lemma 1 is em-

ployed in our statistical filtering technique and it is one-sided
version of theChebyshev inequality.

Lemma 1:Let X be a random variable with expected value
µ and finite varianceσ2. Then for any real numberk > 0,
Pr(X − µ ≥ kσ) ≤ 1

1+k2 .
Then Theorem 1 indicates that we can further enhance the

filtering capacity based on some simple statistics ofQ.
Theorem 1:For the uncertain queryQ and distanceγ,

suppose the geometric meangQ, weighted average distance
ηQ and varianceσQ for Q are available. Then for a given
point p, we have

1) If γ > µ1, Papp(p, γ) ≥ 1 − 1

1+
(γ−µ1)2

σ2
1

, whereµ1 =

|gQ − p| + ηQ andσ2
1 = σQ − η2

Q + 4ηQ × |gQ − p|.
2) If γ < |gQ − p| − ηQ − ǫ, Papp(p, γ) ≤ 1

1+
(γ′

−µ2)2

σ2
2

,

whereµ2 = ∆ + ηQ, σ2
2 = σQ − η2

Q + 4ηQ × ∆, ∆ =
γ + γ′ + ǫ − |p − gQ| andγ′ > 0. The ǫ represents an
infinitely small positive value.

Proof: As uncertain queryQ can be regarded as a random
variable which takesx ∈ Q with probability pdf(x), we
construct another random variableY as follows: for∀x ∈ Q,
there is ay ∈ Y such thaty = |x − p| and Y.pdf(y) =
Q.pdf(x). Then we havePapp(p, γ) = Pr(Y ≤ γ) according
to the Equation 1. Based on triangle inequality, we have
|x−p| ≤ |x−gQ|+|x−gQ| and|x−p| ≥ | |x−gQ|−|p−gQ| |
for anyx ∈ Q. Let µ andσ denote theexpectionandstandard
deviationof random variableY respectively, then

µ =

∫
y∈Y

y × Y.pdf(y)dy =

∫
x∈Q

|x − p| × pdf(x)dx

≤ |gQ − p| + ηQ = µ1

Similarly, we haveµ ≥ |gQ − p| − ηQ.

σ2 = E(Y 2) − E2(Y )

≤

∫
x∈Q

(|gQ − p| + |x − gQ|)
2pdf(x)dx

−(|gQ − p| − ηQ)2

= σQ − η2
Q + 4ηQ × |gQ − p| = σ2

1

Then based on lemma 1 letk = γ−µ
σ

, if γ > µ1 we have

Pr(Y ≥ γ) = Pr(Y − µ ≥ kσ) ≤
1

1 + (γ−µ
σ

)2

≤
1

1 + (γ−µ1

σ2
1

)2

Then it is immediate that

Pr(Y ≤ γ) ≥ 1 − Pr(Y ≥ γ) ≥ 1 −
1

1 + (γ−µ1)2

σ2
1

(3)

As to the upper bound, as illustrated in Figure 2 letp′ be the
dummy point on the linepgQ with |p′ − p| = γ + γ′ + ǫ. Let
∆ = |p′ − gQ|, then we have

∆ = γ + γ′ + ǫ − |p − gQ| (4)

According to Inequality 3 and Equation 4, whenγ < |p −
gQ| − ηQ − ǫ we havePapp(p

′, γ′) ≥ 1 − 1

1+
(γ′

−µ2)2

σ2
2

, since

for any x ∈ Q and |x − p′| ≤ γ′ ( stripped area in Figure 2),
|x − p| > γ. It implies thatPapp(p, γ) ≤ 1 − Papp(p

′, γ′) ≤
1

1+
(γ′

−µ2)2

σ2
2

.

Following extension is immediate based on the rationale of
Theorem 1.
Extension 1. Supposeo is an object with arbitrary shape,
we can simply use|o − gQ|min and |o − gQ|max to replace
|p−gQ| in Theorem 1 for lower and upper probabilistic bounds
computation respectively.

Based on the Extension1, we can compute the upper and
lower bound forPapp(e, γ) to prune or validate entries in
Algorithm 1. SincegQ, ηQ and σQ are pre-computed, the
only dominate cost in filtering phase is distance computation
betweene andp which only costsO(d) time.

Following the similar rationale, another statistical filter can
be proposed based the popular statistical inequalityMarkov’s
inequality. We omit this part due to the space limitation.

C. PCR based Filter
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Although Tao et al.[5], [6] do not address the problem
studied in this paper, thePCR technique can be employed



as filter in Algorithm 1. In Figure 3, letCp,γ represent the
circle(sphere) centred atp with radiusγ. Then we can regard
the uncertain queryQ as an uncertain object, whileCp,γ serves
as a query. BecausePCR technique only works for rectangle
query, as suggested in [6], we can useR1 andR2 in Figure 3 to
representCp,γ for pruning and validation purpose respectively.
Similar transformation can be done for intermediate entries
as well. Suppose a finite set ofPCRs are pre-computed.
For given θ which is not selected for pre-computation, we
can carefully choose two closest existingPCRs for pruning
and validation as illustrated in Figure 4. Since theθ is fixed
during the query, we can choose these twoPCRs for all data
points before processing of the query. Then pruning/validating
rules in [5] can be applied for pruning and validate which
are very time efficient - onlyO(d) time required for each
entry test. In order to further improve the performance of the
filter, more sophisticate approach from [6] is applied in our
implementation. And the worst filtering time for each entry is
O(m + d log m) wherem is the number ofPCRs.

IV. EXPERIMENT

We present results of a comprehensive performance study
to evaluate the efficiency of proposed techniques in the paper.
Following the frame work of Algorithm 1, three different filter-
ing techniques (MMD, STFandPCR) have been implemented
and evaluated. All algorithms are implemented in C++ and
compiled by GNU GCC. Experiments are conducted on PCs
with Intel P4 2.8GZ CPU and 2G memory under Debian
Linux.

The spatial dataset,US, is employed as target dataset which
contains1m 2-dimensional points representing locations in the
United State3. All of the dimensions are normalised to domain
[0, 10000]. To evaluate the performance of the algorithms ,
we also generate synthetic datasetUniform with 3 dimension,
in which points are uniformly distributed. The domain size
is [0, 10000] for each dimensions. All of the datasets are
organized by aggregateR trees with pagesize4096 bytes. A
workload consists of200 uncertain queries in our experiment.
And the uncertain region of the uncertain queries in our exper-
iment are circles or spheres with radiusqr which varies from
200 to 1000. The centres of the queries are randomly generated
within the domain andNormal distribution is employed to
describe the PDF of the uncertain queries. Moreover, in order
to avoid favouring particularθ value, we randomly choose
the probabilistic threshold between0 and1 for each uncertain
query.

We measure the performance of the techniques by means
of IO cost and candidate size during the computation. TheIO
cost is the number of pages visited fromRP . While candidate
size is the number of data points which need exact probabilistic
computation.

In the experiments, we evaluate the impact of query distance
γ on the performance of the filtering techniques in terms of
candidate size and IO cost againstUSand3d Uniformdatasets.
Figure 5 reports the candidate size ofMMD, STF and PCR
when query distanceγ grows from400 to 2000. Clearly, the
largeγ results in more candidate data points for verification.
It is interesting that with only a few statistics, theSTF can

3Available at http://www.census.gov/geo/www/tiger/

achieve a great saving on the candidate size compared with the
MMD. With more space,PCRcan further reduce the candidate
size.
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We evaluate the IO cost of the techniques and report the
results in Figure 6. As expected,PCRstill ranks first on both
datasets.

V. CONCLUSIONS

In this paper, we formally define the problem of uncertain
location based range aggregates in a multi-dimensional space;
it covers a wide spectrum of applications. To efficiently
process such a query, we propose a generalfiltering-and-
verificationframework and two filtering technique, namedSTF
and PCR respectively, such that the expensive computation
cost for verification can be significantly reduced. As demon-
strated in the experiment,STFfiltering technique can achieve a
decent filtering capacity based on a few pre-computed statistics
about the uncertain location based query. Moreover, it is
very fast and space efficient due to its simplicity. AndPCR
technique is quite efficient when more space is available.
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