
Spotting Significant Changing Subgraphs in Evolving Graphs

Zheng Liu, Jeffrey Xu Yu, Yiping Ke
The Chinese University of Hong Kong

{zliu, yu, ypke}@se.cuhk.edu.hk

Xuemin Lin
The University of New South Wales

lxue@cse.unsw.edu.au

Lei Chen
Hong Kong University of Science and Technology

leichen@cs.ust.hk

Abstract

Graphs are popularly used to model structural relation-
ships between objects. In many application domains such as
social networks, sensor networks and telecommunication,
graphs evolve over time. In this paper, we study a new prob-
lem of discovering the subgraphs that exhibit significant
changes in evolving graphs. This problem is challenging
since it is hard to define changing regions that are closely
related to the actual changes (i.e., additions/deletions of
edges/nodes) in graphs. We formalize the problem, and de-
sign an efficient algorithm that is able to identify the chang-
ing subgraphs incrementally. Our experimental results on
real datasets show that our solution is very efficient and the
resultant subgraphs are of high quality.

1. Introduction

Discovering patterns in graph data is a challenging task
with many applications in Web analysis, social networks,
telecommunication, sensor networks, etc. Due to the ex-
pressive power of graphs, graph patterns have to represent
complex structural relationships among objects in various
domains in the real world. In the literature, the existing
work [5, 4, 7, 9] discovers complex relationships in a large
graph that is static.

However, many applications show that graphs are evolv-
ing over time. In social science, large social networks
are changing, and social network changes are caused by
the proximity changes [9]. In bioinformatics, finding co-
evolution relationships of structure and function in the
structural genomic is an important task to understand evo-
lution progresses [8]. In network, traffic jam occurs at one
link may affect the traffic routing in a large range. Monitor-
ing the dynamic topology changes and their influences pro-
vides with network administrators the insights on network

configuration [3]. Also, in wireless sensor networks, query
processing is done by exchanging information between sen-
sors where the communication range of a sensor is limited.
The fact that some sensor runs out of power has impacts on
the other sensors in terms of network routing and therefore
query processing time. In a sensor network, it is important
to note, even beforehand, which subgraphs will be affected
significantly when such a change occurs.

Such changes can be modeled in a sequence of large
graphs,G = (G1, G2, · · ·), where nodes/edges can be
added and/or deleted into/fromGi which results in an-
other large graphGi+1, andG is considered as an evolving
graph. In this work, we take an edge-centric view regard-
ing changes. We focus on edge changes (deletion/addition)
which will cause structural changes. On the other hand,
vertex changes also have impacts on structural changes.
But adding isolated vertices before they are connected to
any other vertices seems less important, while deleting ver-
tices can be considered as removing edges connected to the
deleted vertices.

Given two graphsGi andGi+1 at timeti and timeti+1,
there are many small subgraphs that change while the ma-
jority of the graph remains unchanged. A small changing
subgraph can be a connected subgraph where every edge is
changed (deleted fromGi or added intoGi+1), and such a
small changing subgraph can be easily identified. However,
the influence of a single edge change (deletion/addition)
on the other parts of the large graph is more important
than the physical change itself. For example, when a re-
searcherA works with another researcherB for a new re-
search issue,A’s collaborators andB’s collaborators may
have new opportunities to work together. Consider the two
researchers as two vertices. The newly added edge between
them may change the closeness of the vertices that are di-
rectly/indirectly connected to the two vertices. Suppose that
the closeness of two vertices can be measured. A changing
subgraph is an induced subgraph in which the closeness be-

Symbol Definition

G An evolving graph
Gi The snapshot of evolving graphG at timeti

Ai The adjacency matrix of graphGi

Pi The transition matrix of graphGi

vj A vertex on a graph
N(vj) The set of neighbors of vertexvj

d(j) The sum of edge weights between vertexvj andN(vj)
Di The diagonal matrix wheredjj = d(vj) at timeti

Πi The vertex closeness matrix at timeti

V Ii The vertex importance score at timeti

Table 1. Notations

tween vertices changes. In this paper, we focus on the prob-
lem of spotting significant changing induced subgraphs in
an evolving graph. The issues that we concentrate on in-
clude how to measure the closeness changes between two
vertices that are caused by some edge changes, how to iden-
tify the boundary of the influences of a change, and how
to determine a changing subgraph in which changing parts
have influences on each other.

The main contributions of this paper are summarized be-
low.

• We formalize the problem of spotting significant
changing subgraphs in an evolving graph and propose
to measure the vertex closeness with structure infor-
mation using neighborhood random walks.

• We develop an incremental algorithm to speed up the
vertex closeness computation, as well as a novel strat-
egy about expanding the important vertex to acquire
the connected induced subgraph which can reflect the
closeness change between vertices.

• We present an evaluation of our proposed approach by
using various large real data sets demonstrating that
our method is able to find the suitable subgraph effec-
tively and efficiently.

2. Changing Subgraph Discovery

We define an evolving graph as a sequence of undirected
graphs, denoted asG = (G1, G2, · · ·), whereGi(Vi, Ei)
is a snapshot of graphG at time ti with a set of vertices
Vi and a set of edgesEi. For simplicity, given two graphs
Gi(Vi, Ei) andGi−1(Vi−1, Ei−1), the two sets of vertices,
Vi andVi−1, are identical, while the two sets of edges,Ei

andEi−1, are possibly different. The notations used in this
paper are summarized in Table 1.

Consider an evolving graph. An edge change may make
some vertices become closer and at the same time may make
some other vertices become looser. As shown in Figure 1,
there are two graphsG1 andG2 in an evolving graph at time
t1 andt2, respectively. At timet1, there is an edge between

v1

v j vk

v i

vn

v2

v3

v1

v j vk

v i

vn

v2

v3

t2t1

Figure 1. Changes

vi andvj , and there is a path betweenvj andvk. At time t2,
there are more paths fromvj to vk, where the edge between
vi andvj remains unchanged. In comparison withG1 at
time t1, the closeness betweenvj andvk becomes closer,
because the newly added edges make it easier forvj to tra-
verse tovk. On the other hand, the closeness betweenvj

andvi becomes looser, becausevj has more opportunities to
traverse to other vertices. This fact motivates us to consider
an accumulative score that measures the overall impacts of
all changes on a vertex when a graph evolves. Reconsider-
ing vj in Figure 1, we need to consider the relationships be-
tweenvj andvi, betweenvj andvk, and betweenvj and any
other vertex, in order to judge the change influence onvj .
Given such an accumulative score, it becomes possible to
find significant changing subgraphs when a graph evolves.

In this paper, we explore this issue using neighborhood
random walks on graphs to help spotting significant chang-
ing subgraphs. We first review some basic concepts of
random walks on graphs. LetAi denote the adjacency
matrix of a weighted graphGi, whereAi(j, k) maintains
the weight for the edge(vj , vk). A random walk onGi

is performed in the following way. A particle starts at a
certain vertexv0, which is a vertex involved in an edge
change. Suppose it walks to a vertexvs in the s-th step
and it is about to move to one of the neighbors ofvs,
denoted asvt ∈ N(vs), with probability pst, wherepst

is Ai(s, t)/
∑

vk∈N(vs)
Ai(s, k), and N(vs) contains all

neighbors of vertexvs. The vertex sequence of the ran-
dom walk is a Markov chain. LetDi be the diagonal matrix
with the diagonal valued(s) =

∑
vk∈N(vs) Ai(s, k), then

the transition probability matrixPi of the Markov chain for
graphGi is

Pi = D−1
i Ai.

The probability of going fromvj to vk through a random
walk of lengthl can be obtained by multiplying the transi-
tion probability matrixl times and is given asP l

i (j, k).

A fixed step approach with restart (fixed l and0 < c <
1): With a fixedl, we focus on the local structural informa-
tion using neighbors of a vertex,vj , from which the random
walk starts. The vertex,vj , to start random walks is the ver-
tex that is involved in an edge change. The neighbors ofvj

are the vertices thatvj can reach inl steps. Random walks
are only conducted in thel-step neighborhood of the vertex
vj with a restart probabilityc. It is important to note that our

algorithm is designed in a way that a user can enlarge thel
value if needed at run time. We adopt the similar expected
f -distance in [6, 5]. In the expectedf -distance, a parameter
c is used. We prove that such a parameterc is the restart
probability used in [7] with minor difference which can be
ignored. Due to the space limit, we omit the proof. In short,
neighborhood random walk distance, which is also called
thevertex closeness, is the expectedf -distance defined on
random walks whose length is smaller or equal tol.

Definition 1 Neighborhood Random Walk Distance (Ver-
tex Closeness): Let Pi be then × n transition probability
matrix of a graphGi. Given l as the length that a ran-
dom walk can go, the neighborhood random walk distance
Πl(j, k) fromvj to vk is defined as follows:

π(j, k) =
∑

τ :vj vk;length(τ)≤l

p(τ)c(1 − c)length(τ), (1)

where0 < c < 1, andτ is a path fromvj tovk whose length
is length(τ) with transition probabilityp(τ).

The matrix form of the neighborhood random walk dis-
tance is as follows.

Πl
i =

l∑

γ=1

c(1 − c)γP γ
i . (2)

Here,Pi is the transition probability matrix for graphGi,
andΠi is the neighborhood random walk distance matrix
for graphGi. We then define theimportance scoreof a
vertex as the accumulative change of its closeness to other
vertices in Eq. (3).

V Ii(vj) =
∑

vk∈Vi

|Πl
i−1(j, k) − Πl

i(j, k)|. (3)

Here,V Ii(vj) is the importance score of a vertexvj when
a graph evolves from graphGi−1 to Gi.

We propose a two-step framework to spot significant
changing subgraphs in an evolving graph. First, we com-
pute the importance scoreV Ii(vj) for any vertexvj in
graphGi that is involved in edge changes. Second, based
on the importance scores, we find significant changing sub-
graphs.

3. Vertex Importance Score Computation

In this section, we discuss in detail how to calculate the
difference of vertex closeness in two graphsGi−1 andGi

and the vertex importance scores.

3.1. The Straightforward Algorithm

We can develop a straightforward algorithm to compute
the difference of vertex closeness and the vertex importance

score based on the definitions. The straightforward algo-
rithm iteratively calculates the respective closeness matri-
cesΠi−1 andΠi at time ti−1 and ti based on Eq. (2) by
the power method. The closeness difference matrix is sim-
ply computed asCi = Πi − Πi−1, based on which the
importance scores of vertices can be easily computed by
Eq. (3). The time complexity of the straightforward algo-
rithm is O(ln3). One can use the fast sparse matrix multi-
plication instead of the normal matrix multiplication to im-
prove the speed, but usually that is not enough to lower the
running time especially whenG is large and there are a lot
of edge changes.

3.2. A Novel Incremental Algorithm

In this section, we introduce a novel incremental algo-
rithm that computes the closeness difference directly for
those vertex pairs with changing closeness.

Let us start from a simple case. Suppose that there is
only one edgee that is different between two graphsGi

andGi−1. It can be either the addition ofe to Gi or the
deletion ofe from Gi−1. The question is to identify those
vertex pairs whose closenesses change due to the difference
of e, as well as the quantities changed. Recall our closeness
measure in Eq. (1). The answer to the above question is that
if a vertex pair has at least one tour path passing through
the edgee or one of the two vertices incident to edgee, the
closeness of the vertex pair changes. By identifying those
paths, we can find the vertex pairs with changing close-
nesses. Furthermore, the summation of the probability of
these paths is exactly the quantity changed in the closeness
of each vertex pair.

By Eq. (2), the iterative form of the vertex closeness is

Πl
i =

l∑

γ=1

c(1 − c)γP γ
i = c(1 − c)lP l

i + Πl−1
i . (4)

Therefore, the closeness difference matrix is

∆Πl
i = c(1 − c)l(P l

i − P l
i−1) + ∆Πl−1

i . (5)

By Eq. (5), we can see that the key step in computing∆Πl
i

is to compute(P l
i −P l

i−1), which is easy whenl = 1. When
l > 1, obviously we cannot compute it in a naive way by
the power method since it is computational expensive. Re-
call thatP l

i (j, k) is the probability of going fromvj to vk

through random walks of lengthl on graphGi. We now
show how to calculate∆P l

i = P l
i − P l

i−1 in an efficient
way. Apparently,

P l
i (j, k) =

∑

τ :vj vk

pi(τ), (6)

where τ is a tour path from vertexvj to vk, and pi(τ)
is the probability of pathτ in Gi. Supposeτ =

〈v1, v2, ..., vl〉, wherev1 = vj andvl = vk, thenpi(τ) =∏l−1
m=1 Ai(vm, vm+1)/d(vm). The sum of the probability

of all these distinct tour paths isP l
i (j, k).

In order to compute∆P l
i , we only need to consider the

different paths onGi andGi−1, as well as the difference in
the probability of the same paths. For simplicity, we only
discuss the case when there are only additions of edges or
increase of edge weights. We will show later that our al-
gorithm can handle deletions of edges and decrease of edge
weights as well.

Let (vm, vn) be one of the added edges or one of the
edges whose weights increase. For any vertex pair{vj , vk},
if there is a tour pathτ of the maximum lengthl starting
from vj , passing through the edge(vm, vn) and ending at
vk, then the vertex closenessΠi(j, k) will increase bypi(τ),
since this path does not exist inGi−1. On the other hand,
if there is a tour pathτ of the maximum lengthl starting
from vj , passingvm or vn or both, and ending atvn, but
without passing through(vm, vn), then the vertex closeness
Πi(j, k) will decrease by(pi−1(τ) − pi(τ)), since the path
τ exists in bothGi andGi−1, and with the increase ofd(m)
andd(n) in Gi, the probability of the pathτ decreases. We
formalize the above analysis in Theorem 3.1.

Theorem 3.1 Given two graphsGi andGi−1 of an evolv-
ing graphG, let (vm, vn) denote the changing edge, then
∆P l

i (j, k) can be computed as follows:

∆P l
i (j, k) =

∑

τ :vj vk;(vm,vn)∈τ

p(τ)+

∑

τ :vj vk;(vm,vn) 6∈τ ;vm or vn∈τ

(pi(τ) − pi−1(τ)).

(7)

Theorem 3.1 suggests an effective way to calculate the
change quantity of the closeness between vertex pairs. The
key is to find all the related paths distinctly and completely
so that the change quantity is computed correctly. To enu-
merate all the possible positions of the edge(vm, vn) in a
pathτ is obviously not a good solution due to the exponen-
tial number of combinations with respect to the number of
changing edges and the rangel.

We first discuss the case of the pathτ : vj vk when
(vm, vn) ∈ τ . We can calculate the closeness difference in
the following way. For the changing edgee = (vm, vn),
we first calculate the probability of a pathτ1 from vj to
vm with lengthl1, wherel1 ≤ l − 1. We then calculate the
probability of a pathτ2 fromvn tovk with lengthl2 = l−l1.
In this way, we ensure that the computed paths fromvj to
vk passing the edge(vm, vn) is of lengthl. The closeness
difference that is accounted for such paths can be computed
as

π1(j, k) =
∑

τ1:vj vm;τ2:vn vk

p(τ1)Pi(m, n)p(τ2), (8)

whereπ1(j, k) denotes the first term of∆P l
i (j, k) in Eq. (7).

In order to computep(τ1 : vj vm) andp(τ2 : vn

vk) correctly without missing and double-computing any
path, we do not allow a pathτ1 from vj to vm to passe ,
while we do not have this restriction on pathτ2.

As for the other case of the pathτ : vj vk whenvm

or vn ∈ τ but (vm, vn) 6∈ τ , the closeness difference can be
computed in a similar way:

π2(j, k) =
∑

τ3:vj vm;τ4:vm vk
or τ3:vj vn;τ4:vn vk

p(τ3)p(τ4), (9)

whereπ2(j, k) denotes the second term of∆P l
i (j, k) in

Eq. (7). For the correctness of computation, we do not al-
low τ3 to contain the vertexvm (or vn whenτ3 is from vj

to vn) and we do not allowτ4 to contain the edgee.
We handle all the changed vertices together in matrix

form instead of one by one. We use six arrays to store the
corresponding probability of the four types of pathsτ1 to τ4

discussed above, the total number of whose entries is much
small thann2.

We have discussed how to handle the additions of edges
and the increase of edge weights. In fact, our algorithm
can also handle the situation when there are deletions of
edges and decrease of edge weights. Let us first suppose
that there are only deletions of edges and decrease of edge
weights fromGi−1 to Gi. It is easy to see that this is ex-
actly the same as the evolvement fromGi to Gi−1, where
only additions of edges and increase of edge weights hap-
pen. The only difference is that the closeness difference
matrix should be multiplied by -1. In general, we can first
handle all the additions of edges, together with the increase
of edge weights, and then handle the deletions of edges and
decrease of edge weights. In order to do this, we can add
a ghost graph,G′

i, such that(G′
i − Gi−1) contains all the

edges added or with increased weights and(Gi − G′
i) con-

tains all the edges deleted or with decreased weights. The
sum of these two closeness difference matrices gives the
closeness difference matrix fromGi−1 to Gi.

4. Spotting Significant Subgraphs

With the closeness difference matrixΠl
i at timeti and the

vertex importance score vectorV I, we now explain how to
expand those vertices of high importance scores to obtain
significant changing subgraphs. As mentioned, a changing
subgraph is significant if the vertex closeness in the sub-
graph changes a lot. In our experiments, we find that the
vertex importance scores follow the power law distribution.
Therefore, instead of defining an absolute threshold for the
score, we use the valueξ as the threshold such that more
than80% of the scores are smaller than it. Apparently, sig-
nificant changing subgraphs should contain all the impor-
tant vertices (i.e., those with high importance scores) and

Table 2. Dataset Characteristics
Datasets Vertices Avg. Added Edges Time Steps

DB 5492 1734 10
DM 5574 1079 10

Enron2001 16639 320 184
Enron2002 16639 203 164

most of the vertices whose closenesses with the important
vertices change a lot. We develop an expanding strategy
which is similar to the density clustering. The basic idea is
to include the vertices whose closeness differences with the
important vertices are high.

Let the union graph ofGi−1 andGi keep the informa-
tion of connectivity. The algorithm starts from an impor-
tant vertexvj with the maximum importance score in each
loop to generate a significant changing subgraph. First, it
includesvj into the subgraph. Next, the algorithm adds all
the neighbors ofvj into a maximum heapH . It then repeat-
edly includes a vertexvk in the heap to the subgraph as long
asmax(Πi(I(V (g)), k)) is larger than the current bound
ε, whereε is set to 1/10 of the maximum transition proba-
bility of the important vertex lastly included into the sub-
graph.I(V (g)) is the index of all the vertices ing. When
max(Πi(I(V (g)), k)) is smaller thanε, we clear the heap
and output the current significant changing subgraph. In the
final result set of the significant changing subgraphs, two
subgraphs are merged if they are directly connected.

5. Experiments

We evaluate both the effectiveness and efficiency of our
proposed algorithms.

5.1. Datasets

The four real datasets are extracted from the DBLP [1]
co-authorship dataset and the Enron email dataset [2]. In
the DBLP co-authorship dataset, each author is represented
by a vertex and there is an edge between two authors if
they co-authored some paper. In the Enron email dataset,
each email sender or receiver is considered as a vertex and
there are edges between senders and receivers. The first
two datasetsDB andDM are from the DBLP co-authorship
dataset.DB contains the co-authorship information of six
major database conferences from 1998 to 2007, including
SIGMOD, PODS, VLDB, ICDE, EDBT and ICDT.DM
contains the co-authorship information of five major data
mining conferences from 1998 to 2007, including KDD,
ICDM, PKDD, SDM and PAKDD. The other two datasets
Enron2001andEnron2002are extracted from the Enron
email dataset.Enron2001contains the email communica-
tion information of each day from 2001-07-01 to 2001-12-
31, whileEnron2002contains the email communication in-

2 3 4 5 6 7 8 9 10
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Length of Neighborhood Random Walks

G
oo

dn
es

s

0.80
0.85
0.90
0.95

(a) DatasetDB

2 3 4 5 6 7 8 9 10
0.95

0.96

0.97

0.98

0.99

1

Length of Neighborhood Random Walks

G
oo

dn
es

s

0.80
0.85
0.90
0.95

(b) DatasetDM

Figure 2. The Goodness

formation of each day from 2002-01-01 to 2002-7-31. The
characteristics of these datasets are summarized in Table 2.

Tong in [10] introduced three aggregation methods:
global aggregation, exponential aggregation and sliding
window. It is worth noting that our proposed approaches
can cooperate with all these three aggregation methods.
In this paper, we choose global aggregation to perform
our experiments, which aggregates the new edges or edge
weights to the adjacency matrix of previous time. Let∆Ai

be the adjacency matrix of the graph at time stepti, then
Ai =

∑i
t=1 ∆At. The average number of added edges per

time step is presented in Table 2.

5.2. Effectiveness

Let us first introduce our criterion of the significant sub-
graphs. Letgi denote a significant subgraph found at time
ti. We evaluate the goodness of significant subgraphs as

Goodness =

∑
vj ,vk∈gi

∆Πi(j, k)
∑

vj∈gi,vk∈Gi
∆Πi(j, k)

, (10)

where∆Πi(j, k) = |Πi(j, k) − Πi−1(j, k)|, is the close-
ness difference forvj andvk betweenGi−1 andGi. The
goodness is essentially the fraction of the closeness differ-
ences betweenGi−1 andGi that are captured by significant
subgraphs.

We usec = 0.15 in all experiments. Figures 2(a) and
2(b) present the average goodness for different values ofξ,
when varying the length of neighborhood random walksl
from 2 to 10. For datasetDB, our algorithm captures 92%
changes in vertex closeness, while for datasetDM , our al-
gorithm captures more than 96%. For a higher value ofξ
and longer length ofl, the goodness scores increase.

Two significant subgraphs found are presented as exam-
ples in Figures 3(a) and 3(b), which is from the experiments
with l = 4 andξ = 0.8. For privacy, we replace author
names by abbreviations. The newly added edges are dot-
ted in both subgraphs. Figure 3(a) shows the subgraph from
datasetDB. There are originally three communities (dense
areas) and the newly added edges make three communi-
ties connected, which usually indicates that there is a joint

SB

PC

AL

LG

MISC

SP

LB

PB

PP

RK

TS

DS

GR

(a) DatasetDB

BR

RF

YA

YL

YS

YY

DL

OL

MF

AZ

YK

MR

OZ

(b) DatasetDM

Figure 3. Significant Subgraphs

l = 4 l = 6
0

500

1000

1500

2000

2500

3000

3500

4000

Length of Neighborhood Random Walks

T
im

e
(S

ec
)

Straightforward Alg.
Incremental Alg.
Expanding Alg.

(a) DatasetEnron2001

l = 4 l = 6
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Length of Neighborhood Random Walks

T
im

e
(S

ec
)

Straightforward Alg.
Incremental Alg.
Expanding Alg.

(b) DatasetEnron2002

Figure 4. Overall Running Time

research work involving multiple research groups. Appar-
ently, only the subgraph consisting of the added edges can-
not provide this information. There are other vertices con-
necting to some of the vertices in three communities, and
these vertices are not included in the significant subgraph
because the difference of the vertex closeness between them
and the vertex importance scores are small. In Figure 3(b),
the researcherBR co-authored papers with researchers in
a very dense community. Researchers in the same research
group tend to co-author a lot and form a very dense com-
munity. Therefore, it is obvious thatBR should be a new
member to some research group.

5.3. Efficiency

We perform our efficiency testing on datasetsEn-
ron2001andEnron2002. Figures 4(a) and 4(b) show the
overall running time for the three algorithms: the straight-
forward algorithm, the incremental algorithm to compute
the vertex importance scores, as well as the expanding al-
gorithm to generate the significant subgraphs. Each figure
shows two groups of running time forl = 4 andl = 6.

Figure 5(a) presents the average running time of the
straightforward algorithm versus the average number of
edges in the graphs at each time spot, where we can see
that the running time of the straightforward algorithm is
proportional to the total number of edges in the graph at
current time spot. The average running time of the incre-
mental algorithm versus the average number of the newly
added edges in the graphs is shown in Figure 5(b). The run-
ning time of the incremental algorithm is proportional to the

5000 10000 15000 20000 25000 30000
0

2

4

6

8

10

12

of Edges in the Graph

T
im

e
(S

ec
)

l = 4 l = 6

(a) The Straightforward Algorithm

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

10

of Added Edges

T
im

e
(S

ec
)

l = 4 l = 6

(b) The Incremental Algorithm

Figure 5. Average Running Time

total number of edges added. This explains why the incre-
mental algorithm is faster.

6. Conclusions

We study the challenging problem of spotting significant
changing subgraphs in evolving graphs in this paper. We
propose to use the neighborhood random walk distance to
measure the vertex closeness, as well as a novel incremental
algorithm for fast computation. The significant subgraphs
are generated based on the vertex importance score. Exper-
imental results show that our approach can solve this prob-
lem effectively and efficiently.

7. Acknowledgment

This work was supported by a grant of RGC, Hong Kong
SAR, China (No. CUHK419008).

References

[1] http://www.informatik.uni-trier.de/∼ley/db/.
[2] http://www.cs.cmu.edu/∼enron/.
[3] H. Bunke, P. J. Dickinson, M. Kraetzl, and W. D. Wallis.A

Graph-Theoretic Approach to Enterprise Network Dynam-
ics. Birkhauser, 2006.

[4] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discov-
ery of connection subgraphs. InKDD. ACM, 2004.

[5] G. Jeh and J. Widom. Simrank: a measure of structural-
context similarity. InKDD. ACM, 2002.

[6] G. Jeh and J. Widom. Scaling personalized web search. In
WWW. ACM, 2003.

[7] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Au-
tomatic multimedia cross-modal correlation discovery. In
KDD. ACM, 2004.

[8] B. E. Shakhnovich and J. M. Harvey. Quantifying structure-
function uncertainty: A graph theoretical exploration into
the origins and limitations of protein annotation.Journal
of Molecular Biology, 4(337), 2004.

[9] H. Tong, C. Faloutsos, and Y. Koren. Fast direction-aware
proximity for graph mining. InKDD. ACM, 2007.

[10] H. Tong, S. Papadimitriou, P. S. Yu, and C. Faloutsos. Prox-
imity tracking on time-evolving bipartite graphs. InSDM,
2008.

