Spotting Significant Changing Subgraphs in Evolving Graphs

Zheng Liu, Jeffrey Xu Yu, Yiping Ke Xuemin Lin
The Chinese University of Hong Kong The University of New South Wales
{zliu, yu, ypke @se.cuhk.edu.hk Ixue@cse.unsw.edu.au
Lei Chen

Hong Kong University of Science and Technology
leichen@cs.ust.hk

Abstract configuration [3]. Also, in wireless sensor networks, query
processing is done by exchanging information between sen-
Graphs are popularly used to model structural relation- sors where the communication range of a sensor is limited.
ships between objects. In many application domains such asThe fact that some sensor runs out of power has impacts on
social networks, sensor networks and telecommunication,the other sensors in terms of network routing and therefore
graphs evolve over time. In this paper, we study a new prob-query processing time. In a sensor network, it is important
lem of discovering the subgraphs that exhibit significant to note, even beforehand, which subgraphs will be affected
changes in evolving graphs. This problem is challenging significantly when such a change occurs.
since it is hard to define changipg region;_ that are glosely Such changes can be modeled in a sequence of large
related to the .actual changes (|.e.Z additions/deletiohs o graphs,G = (Gi1,Ga,---), where nodes/edges can be
edges/nodes) in graphs. We formalize the problem, and degded and/or deleted into/fro; which results in an-
signan eff|C|ent_ algorithm that is able to |c_zlent|fy thechang giher large grapi&;. 1, and@ is considered as an evolving
ing subgraphs incrementally. Our experimental results on graph |n this work, we take an edge-centric view regard-
real datasets show that our ;olutlon is very efficient and the ing changes. We focus on edge changes (deletion/addition)
resultant subgraphs are of high quality. which will cause structural changes. On the other hand,
vertex changes also have impacts on structural changes.
But adding isolated vertices before they are connected to
1. Introduction any other vertices seems less important, while deleting ver
tices can be considered as removing edges connected to the

Discovering patterns in graph data is a challenging task d€leted vertices.
with many applications in Web analysis, social networks, Given two graph€7; andG;; at timet; and timet; 1,
telecommunication, sensor networks, etc. Due to the ex-there are many small subgraphs that change while the ma-
pressive power of graphs, graph patterns have to represenbrity of the graph remains unchanged. A small changing
complex structural relationships among objects in various subgraph can be a connected subgraph where every edge is
domains in the real world. In the literature, the existing changed (deleted fro®; or added inta;.1), and such a
work [5, 4, 7, 9] discovers complex relationships in a large small changing subgraph can be easily identified. However,
graph that is static. the influence of a single edge change (deletion/addition)

However, many applications show that graphs are evolv-on the other parts of the large graph is more important
ing over time. In social science, large social networks than the physical change itself. For example, when a re-
are changing, and social network changes are caused bgearcherd works with another researché& for a new re-
the proximity changes [9]. In bioinformatics, finding co- search issued’s collaborators and3’s collaborators may
evolution relationships of structure and function in the have new opportunities to work together. Consider the two
structural genomic is an important task to understand evo-researchers as two vertices. The newly added edge between
lution progresses [8]. In network, traffic jam occurs at one them may change the closeness of the vertices that are di-
link may affect the traffic routing in a large range. Monitor- rectly/indirectly connected to the two vertices. Suppbse t
ing the dynamic topology changes and their influences pro-the closeness of two vertices can be measured. A changing
vides with network administrators the insights on network subgraph is an induced subgraph in which the closeness be-

Symbol | Definition ____

G An evolving graph @ :@:\\ @

G, The snapshot of evolving grah at timet; \ \ 3 \

A; The adjacency matrix of graph; \ @7@ '

P; The transition matrix of graphy; J

v; A vertex on a graph tq @-—-"' ts

N(v;) | The set of neighbors of vertex

d(j) The sum of edge weights between vertexand N (v;) Figure 1. Changes

D; The diagonal matrix wheré;; = d(v;) at timet;

II; The vertex closeness matrix at timhe v; andv;, and there is a path betweepanduvy,. Attime s,
VI The vertex importance score at time there are more paths from to vy, where the edge between

Table 1. Notations v; andv; remains unchanged. In comparison with at

time ¢;, the closeness between andv;, becomes closer,
tween vertices changes. In this paper, we focus on the probhecause the newly added edges make it easier; far tra-
lem of spotting significant changing induced subgraphs in yerse tov;,. On the other hand, the closeness between
an evolving graph. The issues that we concentrate on in-andy, becomes looser, becausehas more opportunities to
clude how to measure the closeness changes between tW@ayerse to other vertices. This fact motivates us to cemsid
vertices that are caused by some edge changes, how to ideryy accumulative score that measures the overall impacts of
tify the boundary of the influences of a change, and how | changes on a vertex when a graph evolves. Reconsider-
to determine a changing subgraph in which changing partsing ,; in Figure 1, we need to consider the relationships be-

have influences on each other. . tweenv; andv;, between; andvy,, and between; and any
The main contributions of this paper are summarized be- other VertEX, in order to judge the Change inﬂuence;})n
low. Given such an accumulative score, it becomes possible to

find significant changing subgraphs when a graph evolves.
In this paper, we explore this issue using neighborhood
random walks on graphs to help spotting significant chang-
ing subgraphs. We first review some basic concepts of
random walks on graphs. Let; denote the adjacency
e We develop an incremental algorithm to speed up the matrix of a weighted grapls;, where A;(j, k) maintains
vertex closeness computation, as well as a novel strat-the weight for the edgév;,v;). A random walk onG;
egy about expanding the important vertex to acquire is performed in the following way. A particle starts at a
the connected induced subgraph which can reflect thecertain vertexvy, which is a vertex involved in an edge
closeness change between vertices. change. Suppose it walks to a vertexin the s-th step

. and it is about to move to one of the neighborsugf
e We present an evaluation of our proposed approach bydenoted aw, € N(v), with probability py;, wherep,

using varioqs large re_al data sgts demonstrating thatiS Ay(s,1)/3 o)Ai(s,k), and N (v,) contains all

our method is able to find the suitable subgraph effec- aighhors of Vertex,. The vertex sequence of the ran-

tively and efficiently. dom walk is a Markov chain. L&D, be the diagonal matrix
with the diagonal valuel(s) = >°, . y(,.)4i(s, k), then

e We formalize the problem of spotting significant
changing subgraphs in an evolving graph and propose
to measure the vertex closeness with structure infor-
mation using neighborhood random walks.

2. Changing Subgraph Discovery the transition probability matri®; of the Markov chain for
graphG, is
We define an evolving graph as a sequence of undirected P, = Di_lAi-

graphs, denoted a8 = (G1,Go,---), whereG;(V;, E;) -)

is a snapshot of grapé' at time¢; with a set of vertices | he probability of going fromy; to v, through a random
V; and a set of edgeB;. For simplicity, given two graphs ~ Walk of lengthi can be obtained by multiplying the transi-
G;i(Vi, E;) andG,i_1(Vi_1, Ei_1), the two sets of vertices, tion probability matrix times and is given aB(j, k).

V; andV;_1, are identical, while the two sets of edgés, A fixed step approach with restart (fixed I and0 < ¢ <
andFE;_,, are possibly different. The notations used in this 1): With a fixed!, we focus on the local structural informa-
paper are summarized in Table 1. tion using neighbors of a vertey;, from which the random

Consider an evolving graph. An edge change may makewalk starts. The vertexy;, to start random walks is the ver-
some vertices become closer and at the same time may maktx that is involved in an edge change. The neighbors of
some other vertices become looser. As shown in Figure 1,are the vertices that; can reach iri steps. Random walks
there are two graphs; andGs in an evolving graph attime are only conducted in thiestep neighborhood of the vertex
t1 andt,, respectively. At time, there is an edge between v; with a restart probability. Itis important to note that our

algorithm is designed in a way that a user can enlargé the score based on the definitions. The straightforward algo-
value if needed at run time. We adopt the similar expectedrithm iteratively calculates the respective closenesgimat
f-distance in [6, 5]. In the expectgddistance, a parameter ceslIl;_; andIl; at timet;_; andt; based on Eq. (2) by
cis used. We prove that such a parametés the restart the power method. The closeness difference matrix is sim-
probability used in [7] with minor difference which can be ply computed agC; = II; — II,_;, based on which the
ignored. Due to the space limit, we omit the proof. In short, importance scores of vertices can be easily computed by
neighborhood random walk distance, which is also called Eq. (3). The time complexity of the straightforward algo-
the vertex closenesss the expected-distance defined on rithm is O(in?). One can use the fast sparse matrix multi-
random walks whose length is smaller or equdlto plication instead of the normal matrix multiplication to-im
prove the speed, but usually that is not enough to lower the
running time especially whe' is large and there are a lot
of edge changes.

Definition 1 Neighborhood Random Walk Distance (Ver-
tex Closeness)Let P; be then x n transition probability
matrix of a graphG;. Givenl as the length that a ran-
dom walk can go, the neighborhood random walk distance

I!(4, k) fromv; to vy, is defined as follows: 3.2. A Novel Incremental Algorithm

70, k) = Z p(r)e(1 — C)length(r)’ (1) . In this section, we introduce a novgl incremerjtal algo-
rithm that computes the closeness difference directly for
those vertex pairs with changing closeness.
where0 < ¢ < 1, andr is a path fronv; to v, whose length Let us start from a simple case. Suppose that there is
is length(7) with transition probabilityp(7). only one edge: that is different between two grapld;
andG;_1. It can be either the addition efto G; or the
deletion ofe from G;_;. The question is to identify those
vertex pairs whose closenesses change due to the difference
of e, as well as the quantities changed. Recall our closeness
measure in Eq. (1). The answer to the above question is that
K if a vertex pair has at least one tour path passing through
Here, P; is the transition probability matrix for grap@;, the edge: or one of the two vertices incident to edgethe
andll; is the neighborhood random walk distance matrix closeness of the vertex pair changes. By identifying those
for graphG;. We then define thémportance scoref a paths, we can find the vertex pairs with changing close-
vertex as the accumulative change of its closeness to othenesses. Furthermore, the summation of the probability of

Twj~vg;length(T)<I

The matrix form of the neighborhood random walk dis-
tance is as follows.

It =

MN

c(1—e)P]. 2

1

vertices in Eqg. (3). these paths is exactly the quantity changed in the closeness
L of each vertex pair.
VIi(v) = Y |, (j, k) — (5, k). 3) By Eq. (2), the iterative form of the vertex closeness is
v €V
l
Here,VI;(v;) is the importance score of a vertexwhen I = Z c(1—c)PY =c(1—c)'P +17 (4)
a graph evolves from gragh;_; to G,. F=1

We propose a two-step framework to spot significant
changing subgraphs in an evolving graph. First, we com-
pute the importance scor€;(v;) for any vertexv; in ATl = (1 — o)/(P! — PL_,) + AHé—l. (5)
graphG; that is involved in edge changes. Second, based
on the importance scores, we find significant changing sub-By Eq. (5), we can see that the key step in computhigf

Therefore, the closeness difference matrix is

graphs. is to computd P/ — P!_,), which is easy wheh= 1. When
[> 1, obviously we cannot compute it in a naive way by
3. Vertex Importance Score Computation the power method since it is computational expensive. Re-

call that P (j, k) is the probability of going fromy; to vy,
In this section, we discuss in detail how to calculate the through random walks of lengthon graphG:;. We now

difference of vertex closeness in two graghs ; andG; show how to calculatéP} = P} — P/_; in an efficient
and the vertex importance scores. way. Apparently,
Lis —)
3.1. The Straightforward Algorithm PiG k) = Z pi(7); ©)
TV~ U

We can develop a straightforward algorithm to compute where r is a tour path from vertex; to vi, andp;(7)
the difference of vertex closeness and the verteximpoetanc is the probability of pathr in G,. Supposer =

(v, v2, ..., u1), Wwherevy = v; andv; = vy, thenp; (1) = wherer (j, k) denotes the firstterm af P! (j, k) in Eq. (7).

152, Ai(vm, vmi1)/d(v,y). The sum of the probability In order to compute(7; : v; ~ vy,) andp(rz : v, ~»

of all these distinct tour paths 8! (4, k). vg) correctly without missing and double-computing any
In order to compute\ P, we only need to consider the path, we do not allow a path from v; to v;, to passe ,

different paths or?; andG;_+, as well as the difference in ~ While we do not have this restriction on path

the probability of the same paths. For simplicity, we only ~ As for the other case of the path: v; ~ v, whenw,

discuss the case when there are only additions of edges 0@l v, € 7 but(vn,,v,) ¢ 7, the closeness difference can be

increase of edge weights. We will show later that our al- computed in a similar way:

gorithm can handle deletions of edges and decrease of edge AN 9

weights as well. m2(j; k) Twwv;mmwk p(r3)p(ma), (9)
Let (v, v,) be one of the added edges or one of the OF 310~V T4V ~> U,

edges whose weights increase. For any vertex{pairvs }, wherem(j, k) denotes the second term &fP!(j, k) in

if there is a tour pathr of the maximum lengtti starting Eq. (7). For the correctness of computation, we do not al-
from v;, passing through the edde;,, v,) and ending at o\ 7, to contain the vertex,, (or v, whenrs is from v,
Uk then_the vertex cIoseneH§(j, k) willincrease byp; (1), to v,,) and we do not allowr, to contain the edge. '
since this path does not exist ;. On the other hand, We handle all the changed vertices together in matrix
if there is a tour path of the maximum lengthi starting form instead of one by one. We use six arrays to store the
from v;, passingu,, or v, or both, and ending at,, but ¢orresponding probability of the four types of pathgo 74

without passing througfv,,, v), then the vertex closeness giscussed above, the total number of whose entries is much
II;(j, k) will decrease by(p;_1(7) — pi(7)), since the path gmall tham?2.

7 exists in bothz; andG; 1, and with the increase af{(m) We have discussed how to handle the additions of edges
andd(n) in G, the probability of the path decreases. We ang the increase of edge weights. In fact, our algorithm
formalize the above analysis in Theorem 3.1. can also handle the situation when there are deletions of
Theorem 3.1 Given two graphs; andG;_; of an evolv- edges and decrease of edge weights. Let us first suppose
ing graphG, let (v, v,) denote the changing edge, then that there are only deletions of edges and decrease of edge
AP!(j, k) can be computed as follows: weights fromG,;_; to G;. Itis easy to see that this is ex-

actly the same as the evolvement frémto G;_1, where
APL(j, k) = Z p(T)+ only additions of edges and increase of edge weights hap-

70~k (Vi U0) €T pen. The only difference is that the closeness difference
matrix should be multiplied by -1. In general, we can first
Z (pi(7) — pi—1(7)).

handle all the additions of edges, together with the inereas
% of edge weights, and then handle the deletions of edges and
decrease of edge weights. In order to do this, we can add

Theorem 3.1 suggests an effective way to calculate theg ghost graph¢, such that{G}, — G;_;) contains all the
change quantity of the closeness between vertex pairs. Thedges added or with increased weights &g — G") con-
key is to find all the related paths distinctly and completely tains all the edges deleted or with decreased weights. The
so that the change quantity is computed correctly. To enu-sum of these two closeness difference matrices gives the
merate all the possible positions of the edgg,v,) ina closeness difference matrix frofy_; to G;.
pathr is obviously not a good solution due to the exponen-
tial number of combinations with respect to the number of 4. Spotting Significant Subgraphs
changing edges and the range

We first discuss the case of the path v; ~» v, when
(vm,vn) € 7. We can calculate the closeness difference in
the following way. For the changing edge= (v, v,),
we first calculate the probability of a path from v; to
v, With lengthly, wherel; <1 — 1. We then calculate the
probability of a path, fromv,, to vi, with lengthly, = 1—1;.
In this way, we ensure that the computed paths figno
v, passing the edg@., v,,) is of lengthl. The closeness
difference that is accounted for such paths can be compute
as

T:ijUkQ(an;Un)gTﬂhn or v, €T

With the closeness difference matHJl(attimet; and the
vertex importance score vect®i/, we now explain how to
expand those vertices of high importance scores to obtain
significant changing subgraphs. As mentioned, a changing
subgraph is significant if the vertex closeness in the sub-
graph changes a lot. In our experiments, we find that the
vertex importance scores follow the power law distribution

herefore, instead of defining an absolute threshold for the
core, we use the valugas the threshold such that more
than80% of the scores are smaller than it. Apparently, sig-
(k) = Z p(m)Pi(m,n)p(r2), (8) nificant (_:hang_ing subgraphs shoul_d contain all the impor-
tant vertices (i.e., those with high importance scores) and

T1:Vj~Um ;T2 Un MV

Table 2. Dataset Characteristics
| Datasets | Vertices | Avg. Added Edges| Time Steps|

DB 5492 1734 10 =
DM 5574 1079 10 g
Enron2001 | 16639 320 184 , Sourlf
Enron2002 | 16639 203 164 ooy o o
most of the vertices whose closenesses with the important °"
Ver'[lceS Change a Iot We develop an expandlng S'[I’ategy 2 3Leng?host:5\ghburfamudR;ndom%l\/a\ksg 0 2 3Leng?host:5\ghburfamudR;ndom%l\/a\ksg *
which is similar to the density clustering. The basic idea is (a) DataseDB (b) DataseDM
to include the vertices whose closeness differences with th Figure 2. The Goodness

important vertices are high.)
Let the union graph ofi;_; andG; keep the informa- formation of each day from 2002-01-01 to 2002-7-31. The

tion of connectivity. The algorithm starts from an impor- characteristics of these datasets are summarized in Table 2

tant vertexy; with the maximum importance score in each ~ 10ng in [10] introduced three aggregation methods:
loop to generate a significant changing subgraph. First, it9/0bal aggregation, exponential aggregation and sliding
includesy; into the subgraph. Next, the algorithm adds all Window. It is worth noting that our proposed approaches
the neighbors of; into a maximum heagf. It then repeat- ~ €an cooperate with all these three aggregation methods.
edly includes a vertex, in the heap to the subgraph as long !N this paper, we choose global aggregation to perform
asmax(IL;(Z(V (g)), k)) is larger than the current bound OUr exper|ments,_wh|ch aggregates thg new edges or edge
¢, wheree is set to 1/10 of the maximum transition proba- Weights to the adjacency matrix of previous time. e,

bility of the important vertex lastly included into the sub- Pe the %djacency matrix of the graph at time stggthen
graph.Z(V(g)) is the index of all the vertices ip. When ~ 4i = >_;—; A4;. The average number of added edges per
max(IL;(Z(V (g)), k)) is smaller thare, we clear the heap {ime step is presented in Table 2.

and output the current significant changing subgraph. In the .

final result set of the significant changing subgraphs, two 9-2- Effectiveness

subgraphs are merged if they are directly connected.
Let us first introduce our criterion of the significant sub-

graphs. Lely; denote a significant subgraph found at time

5. Experiments t;. We evaluate the goodness of significant subgraphs as

We evaluate both the effectiveness and efficiency of our > v e A4, k)
proposed algorithms. Goodness = 5 = ‘lG AL R (10)
v;€9:,vkEG; 1\
5.1. Datasets whereAlL (5, k) = [IL(j, k) — IL,_1(4, k)|, is the close-

ness difference fov; andv, betweenG;_, andG;. The

The four real datasets are extracted from the DBLP [1] goodness is essentially the fraction of the closenessrdiffe
co-authorship dataset and the Enron email dataset [2]. Inences betwee@;_; andG; that are captured by significant
the DBLP co-authorship dataset, each author is representedubgraphs.
by a vertex and there is an edge between two authors if We usec = 0.15 in all experiments. Figures 2(a) and
they co-authored some paper. In the Enron email dataset2(b) present the average goodness for different valués of
each email sender or receiver is considered as a vertex anahen varying the length of neighborhood random wdlks
there are edges between senders and receivers. The firdtom 2 to 10. For datasédB, our algorithm captures 92%
two dataset®B andDM are from the DBLP co-authorship changes in vertex closeness, while for dat&ét, our al-
dataset.DB contains the co-authorship information of six gorithm captures more than 96%. For a higher valu¢ of
major database conferences from 1998 to 2007, includingand longer length of, the goodness scores increase.
SIGMOD, PODS, VLDB, ICDE, EDBT and ICDTDM Two significant subgraphs found are presented as exam-
contains the co-authorship information of five major data ples in Figures 3(a) and 3(b), which is from the experiments
mining conferences from 1998 to 2007, including KDD, with I = 4 and¢ = 0.8. For privacy, we replace author
ICDM, PKDD, SDM and PAKDD. The other two datasets names by abbreviations. The newly added edges are dot-
Enron2001and Enron2002 are extracted from the Enron ted in both subgraphs. Figure 3(a) shows the subgraph from
email datasetEnron2001 contains the email communica- dataseDB. There are originally three communities (dense
tion information of each day from 2001-07-01 to 2001-12- areas) and the newly added edges make three communi-
31, whileEnron2002contains the email communicationin- ties connected, which usually indicates that there is & join

/“@ 10|
bl N~
DT

Nz

(a) DataseDB (b) DataseDM

Time (Sec)
P SR

%1=4-61=6

5000 10000 15000 20000 25000 30000 0 100
of Edges in the Graph

%-1=4-6-1=6

soadseacdges
(a) The Straightforward Algorithm (b) The Incremental Algorithm

Figure 3. Significant Subgraphs _ . :
Figure 5. Average Running Time

total number of edges added. This explains why the incre-
mental algorithm is faster.

£ o 6. Conclusions

Hﬂ ﬂ Jﬂﬂ Hﬂ We study the challenging problem of spotting significant

T LiitnemtomotRaniot e Lot nakpoomoot Fando ks changing subgraphs in evolving graphs in this paper. We
propose to use the neighborhood random walk distance to
measure the vertex closeness, as well as a novel incremental

Figure 4. Overall Running Time algorithm for fast computation. The significant subgraphs

research work involving multiple research groups. Appar- are generated based on the vertex importance score. Exper-
ently, only the subgraph consisting of the added edges canimental results show that our approach can solve this prob-
not provide this information. There are other vertices con- '8m effectively and efficiently.

necting to some of the vertices in three communities, and

these vertices are not included in the significant subgraph7. Acknowledgment

because the difference of the vertex closeness between them

and the vertex importance scores are small. In Figure 3(b), This work was supported by a grant of RGC, Hong Kong
the researcheBR co-authored papers with researchers in SAR, China (No. CUHK419008).

a very dense community. Researchers in the same research

group tend to co-author a lot and form a very dense com-

munity. Therefore, it is obvious tha R should be a new References
member to some research group.

(a) DataseEnron2001 (b) DataseEnron2002

[1] http://www.informatik.uni-trier.detley/db/.

[2] http://www.cs.cmu.edutenron/.

3] H. Bunke, P. J. Dickinson, M. Kraetzl, and W. D. WalliA.
Graph-Theoretic Approach to Enterprise Network Dynam-

ics. Birkhauser, 2006.

5.3. Efficiency

We perform our efficiency testing on datasefs- [4] C.Faloutsos, K. S. McCurley, and A. Tomkins. Fast discov
ron2001andEnron2002 Figures 4(a) and 4(b) show the ery of connection subgraphs. KDD. ACM, 2004.
overall running time for the three algorithms: the straight [5] G. Jeh and J. Widom. Simrank: a measure of structural-
forward algorithm, the incremental algorithm to compute context similarity. I"KDD. ACM, 2002.

h tex i t I h di | [6] G. Jeh and J. Widom. Scaling personalized web search. In
e vertex importance scores, as well as the expanding al- WWW ACM, 2003.

gorithm to generate the significant subgraphs. Each figure [7] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Au-
shows two groups of running time fore= 4 and/ = 6. tomatic multimedia cross-modal correlation discovery. In
Figure 5(a) presents the average running time of the KDD. ACM, 2004. o
straightforward algorithm versus the average number of [8] B-E. Shakhnovich and J. M. Harvey. Quantifying struetur
edges in the graphs at each time spot, where we can see function uncertainty: A graph theoretical explorationoint

. the origins and limitations of protein annotatiordournal
that the running time of the straightforward algorithm is of Molecular Biology 4(337), 2004.

proportional to the total number of edges in the graph at [9] H. Tong, C. Faloutsos, and Y. Koren. Fast direction-avar
current time spot. The average running time of the incre- proximity for graph mining. IrKDD. ACM, 2007.

mental algorithm versus the average number of the newly[10] H.Tong, S. Papadimitriou, P. S. Yu, and C. FaloutsosxPr
added edges in the graphs is shown in Figure 5(b). The run- IMity tracking on time-evolving bipartite graphs. DM
ning time of the incremental algorithm is proportional te th 2008.

