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Abstract We consider the problem of efficiently computing distributed geographical k-NN queries in an unstructured
peer-to-peer (P2P) system, in which each peer is managed by an individual organization and can only communicate with its
logical neighboring peers. Such queries are based on local filter query statistics, and require as less communication cost as
possible, which makes it more difficult than the existing distributed k-NN queries. Especially, we hope to reduce candidate
peers and degrade communication cost. In this paper, we propose an efficient pruning technique to minimize the number of
candidate peers to be processed to answer the k-NN queries. Our approach is especially suitable for continuous k-NN queries
when updating peers, including changing ranges of peers, dynamically leaving or joining peers, and updating data in a peer.
In addition, simulation results show that the proposed approach outperforms the existing Minimum Bounding Rectangle
(MBR)-based query approaches, especially for continuous queries.
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1 Introduction

Due to their importance in many applications in
a variety of domains, k-NN queries have been exten-
sively studied[1−5]. An often used mechanism that pro-
vides much needed retrieval efficiency is a centralized
index. However, for k-NN queries in a distributed
environment[6−9], especially in an unstructured P2P en-
vironment, centralized indexing is not a practical solu-
tion. The following example shows why new techniques
are needed and hence motivates the work of this paper.

Example 1. Consider a tsunami alarm system for a
certain area, e.g., the bay area of Indonesia. Detection
of a tsunami in many cases needs data from areas that
go across multiple nations. Assume the nations estab-
lish a logical cooperative network, in which for any two
nations, they have either direct cooperative relation-
ship, represented as logical neighbors in the network, or
indirect cooperative relationship if their logical neigh-
bors can cooperate. Each nation autonomously main-
tains a set of observation stations to monitor her own

sea area and can request data from her cooperative na-
tions. Notice that it is not necessary that two logical
neighbors are geographically bordered. For this appli-
cation, a user often needs to pay special attention to a
set of k-closest observation stations in a particular lo-
cation such that their sensed values satisfy a specified
condition, for instance, the temperatures are greater
than 80 degrees. Observation stations in the interested
area may belong to different nations. Therefore, those
autonomous nations need to cooperate in answering a
continuous distributed k-NN query efficiently. In this
application, global indexing is not available for the k-
NN query, either, since data values change continuously.

Example 1 illustrates a new constrained continuous
k-NN search problem over an unstructured P2P envi-
ronment, which can be described as follows.

Given an unstructured P2P system, in which each
autonomous peer chooses logical neighbors that are not
necessarily its physical neighbors. Assume that each
peer maintains a “dynamic” table that contains a set of
locations and the associated attribute values, with the

Regular Paper
Supported by the Program for New Century Excellent Talents in Universities (Grant No. NCET-06-0290), the National Natural

Science Foundation of China (Grant Nos. 60503036, and 60773221), the National High-Tech Development 863 Program of China (Grant
No. 2006AA09Z139), and the Fok Ying Tong Education Foundation Award (Grant No. 104027).



Bin Wang et al.: Continually Answering Constraint k-NN Queries 539

condition that the locations must be within the spatial
region covered by the peer. Here, dynamic means the
location and value information are frequently updated.
Given a query location and a value predicate, a con-
strained continuous k-NN search over such a P2P set-
ting is to find the k nearest locations whose associated
values satisfy the value predicate with the minimum
overall communication cost.

Fig.1. Example of continuous top-k queries in autonomous co-

operative peers. (Each black node in (b) represents a data item

in the peer satisfying query predicates.) (a) Logical structure of

peers. (b) Geometrical peer regions.

We demonstrate the above search problem in Fig.1.
As shown in Fig.1(a), 15 autonomous peers are con-
nected as a logical communication graph and each au-
tonomous peer can only communicate with its logical
neighbors. Fig.1(b) shows the spatial regions covered
by all the peers, and the observation stations appearing
in them. Assume that now a peer, p1, submits a query
q to find 3 closest observation stations whose observed
temperatures are greater than 80 degrees. The three
black dots in the shaded area shown in Fig.1(b) are the
answers to q. To find these observation stations, a flood-
ing approach may be used. In this approach, p1 sends

q to all its (direct and indirect) cooperative peers, and
each peer returns its own 3-NN data (if any), which are
then merged to produce the overall 3-NN results. Obvi-
ously, this approach may waste a lot of bandwidth since
many data sent are unnecessary, thus is not a desirable
solution in such a distributed environment.

In summary, a continuous constrained k-NN search
with value predicates in an unstructured P2P system
has the following features. These features pose unique
challenges in comparison with the distributed k-NN
problems on P2P that have been considered by other
authors[10,11].

1) Topology mismatch between the P2P logical over-
lay network and physical underlying network. For ex-
ample, if a peer p1 wants to probe a physically close-by
peer p3, it has to transmit a k-NN query q through a
path from p1 to p3. Fig.1(a) shows that there are sev-
eral paths from p1 to p3. Comparing the two paths,
p1 → p12 → p5 → p3 and p1 → p12 → p2 → p14 → p3,
we find the former is the shortest path which incurs
least communication cost 3(α + β · k)C0, where 3 is the
number of edges in the path, α is the data size of the
query q, β is the data size of each returned data, and
C0 is the communication cost between every two logical
neighbor peers.

However, Fig.1(b) shows that p3 only provides 2 out
of 3 nearest neighbors, and p1 must probe more peers
to get the remaining one. Probing p14 to get that result
will incur another 3(α + β · k)C0 communication cost.
If p1 probes the second path directly, then it only in-
curs 4(α + β · k)C0 communication cost to get all the
answers to q. Ideally, to get the query results, we hope
to probe as few peers as possible while it incurs as little
communication cost as possible.

2) Data in each peer is maintained autonomously in
an unstructured P2P system. Unlike structured P2P
systems, in an unstructured P2P system, we have no
global information about how a peer organizes all its
data.

3) Value predicate may contain conditions on values
that are independent of the location. A peer with shorter
distance to q may not contain data that can answer q.
Re-examine the query q: “Find 3 closest observation
stations whose sensed temperatures are greater than 80
degrees.” If a peer with shorter distance to q cannot an-
swer q, it does not mean that another peer with longer
distance to q cannot answer q.

4) The unstructured P2P system changes dynami-
cally. Updates in the system are listed as follows, which
requires technique for continuously processing a k-NN
query.
• Peers can join or leave the system at any time.
• The region covered by a peer can expand and shrink
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dynamically.
• Data maintained in each peer are changed au-

tonomously.
The existing k-NN query approaches can be cate-

gorized into radius-convergence strategy, in which the
probe radius is shrunk gradually until all peers in the
probe circle have been probed. In this paper, we pro-
pose a new framework to address the above problem.
Our frame work is based on a dominate relationship
model (DM in short), which will be used to filter out
unqualified peers during the query processing. On the
basis of the DM, we introduce two directions to effi-
ciently probe as few as possible peers to answer a new
constrained k-NN query or a constrained k-NN query
from beginning (restart the continuous query due to
the environment change) with minimized communica-
tion cost. In order to adapt to continuity property of
continuous query, we propose a novel approach that can
incrementally maintain the query results based on the
data histograms of the peers. Our contributions of this
paper are summarized as follows.
• We propose a new framework for processing con-

tinuous k-NN queries in an unstructured P2P system.
• We give a novel filtering mechanism to reduce

the communication cost and effectively terminate the
search. Instead of using existing radius-convergence
strategy, we propose a radius-expansion strategy to ef-
ficiently get k-NN results. We also give detailed com-
plexity analysis of our algorithms.
•We analyze system updates in an unstructured P2P

system, and propose techniques for continuously pro-
cessing k-NN queries.

The rest of the paper is organized as follows. Our
framework for continuous k-NN queries are presented in
Section 2. In Section 3, a novel filter model, called dom-
ination model, is proposed to efficiently prune peers.
Section 4 proposes radius-expansion strategy for search-
ing k-NN queries with least communication cost. In
Section 5, we propose histogram for optimal probing
peers. In Section 6, we present our novel techniques
to incrementally maintain continuous query results. In
Section 7, we discuss the related work. Experimental re-
sults and performance studies are discussed in Section
8. Finally, Section 9 concludes the paper.

2 Problem Definition

In this section, we formally define the query problem
studied in this paper. We assume a set of logically con-
nected cooperative peers, each of which covers a spa-
tial region. We use a non-directed graph G = (P, E)
to model the logical connections, where P is a set of

vertices representing the peers and E a set of edges ex-
pressing the logical connections between the peers.

For a peer p ∈ P , we use D(p) to denote data set
maintained by p. Each item in D(p) maintained by p has
two kinds of attributes, namely location attributes and
non-location attributes. Hence, we denote each data
item d in D(p) as a pair 〈vl(d),vn(d)〉, where vl(d)
(vn(d), resp.) is a value vector of the location (non-
location resp.) attributes of d. We can construct a
convex hull using values of the location attributes in
D(p). The convex hull is called spatial region of p, de-
noted by R(p). That is, for each d in D(p), vl(d) must
be contained in the region R(p).

A k-NN query q is composed of two parts, loca-
tion value and non-location value predicates, denoted
as 〈vl(q), qc〉, respectively. A non-location value pred-
icate qc returns, when applied to a non-location value
vector vn(d), true or false. We define the distance be-
tween a query q and data d as the following.

Definition 2.1 (Distance Between Query and
Data). Given a query q and data d, let the distance
between q and d be

dist(q, d) =
{

dist(vl(q),vl(d)), if vn(d) is true,
∞, otherwise,

where dist can be any of the Lp-norm.
Given a query q and a peer p, we use minDist(q, p)

(maxDist(q, p), resp.) to express the minimum (maxi-
mum, resp.) distance between q and all the data items
in R(p).

We assume that each peer has pre-knowledge of spa-
tial regions covered by all the other peers. This assump-
tion is reasonable since there are a variety of techniques
to get such statistical information in dynamic network
environment. For example, distance-vector-routing[12]

is one of mature techniques. Each node in the network
can exchange information with its neighbors and can get
the statistical information from the whole network in a
few steps. A peer can also collect data from different
peers and derive this knowledge in an incremental man-
ner. In fact, it is not necessary to get all initial regions
from all peers. The initial regions of peers (could be
partial peers) can help to do query estimation. That is,
our technique is used to estimate a “good” (but might
not be precise) query radius to get the closest k results
over unstructured P2P network, so that we could save
more communication cost. In the initial regions, we can
get some clue to estimate the query radius. Then, we
submit the k-NN query along the logical structure of
the P2P network to collect results. We also propose
a histogram-based approach to incrementally collecting
statistical information in Sections 5 and 6.

In this paper, we can adopt such techniques to collect
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necessary statistical information, since our emphasis fo-
cuses on how to use those pieces of statistical informa-
tion, like minimal and maximal distances between the
query q and the other peers, to continually process k-
NN queries.

We adopt the well-known local filtering mecha-
nism[13] to calculate k-NN answers. Local filtering
mechanism pushes a query q down into the network from
the query peer pq in a query dispatch phase, and the re-
sulting values are routed up along the reversed query
paths and eventually to pq in a collection phase. For
each peer p that receives q, it computes the k nearest
data items of q from the union of D(p) and the data
items returned from its neighbor peers. Then p returns
these k nearest data items to the peer that sent the
query q to it. We assume that each query q and each
data item has a similar size. If n peers are used for pro-
cessing q, then the total amount of communication cost
in sending q and receiving data items is n(α + β · k)C0,
where α is the data size of the query q, β is the data
size of each returned data, and C0 is the communication
cost between every two logical neighbor peers.

Now, we describe the continuous k-NN query on a
set of connected (autonomous) peers. Formal Prob-
lem Statement: assume we have a set of logically con-
nected peers p1, . . . , pn, each of which manages a set
of data items, denoted by D(pi), with locations of
each data item in D(pi) being in the spatial region
R(pi). Given a continuous query q issued by a peer
pi, continually search k data items {d1, . . . , dk} among
the data items in D(p1) ∪ · · · ∪ D(pn) such that there
does not exist any data item d satisfying the condition
dist(q, d) 6 dist(q, dh) for some 1 6 h 6 k. We aim at
minimizing the total communication costs.

Table 1 summarizes the notations throughout the pa-
per.

Table 1. Notations in the Paper

Notations Description

q k-NN query

R(p) Region of a peer p

dist(q, d) Distance between query q and data d

minDist(q, p) Minimal distance between query q and peer p

maxDist(q, p) Maximal distance between query q and peer p

G(P, E) Logical structure of a set of peers P , where E

is the set of neighborhood

rk Distance between q and the k-th closest data

item

rp Query radius of probe circle

ra Query radius of estimated result circle

3 Domination Model

The simplest approach to answering the continuous

constrained k-NN search is using flooding. However, it
has the following three shortcomings.
• It is very costly in terms of communication cost.
• It probes all the peers in the system. However, in

most of the cases, we only need a few peers to get the
k-NN data to the query.
• It starts the same query from beginning without

reusing the previous query results. However, for a con-
tinuous query, it is possible to reuse the previous query
results with little change on the updated data.

In this section, we propose a domination model (or
DM) to guide the probing of peers in order to signif-
icantly reduce the communication cost by limiting the
participating peers to a minimum number possible. The
DM together with the approaches proposed in Section 4
are used to address the first two shortcomings of flood-
ing. The third shortcoming of flooding is tackled in
Section 5.

The intuition of the domination model comes from
the following simple facts: if we know an upper bound
ru of the distance from the query point q to the k-
th data item in the query results, then a peer p′

does not need further probing (for possible answers)
if ru 6 minDist(q, p′). Similarly, if we know that a
peer p provides the k-th item in the answer set, then a
peer p′ does not need further probing if maxDist(q, p) 6
minDist(q, p′). These facts form the basis for our opti-
mized search algorithm.

In order to formalize the above intuition, we have
the following definitions.

Definition 3.1 (Dominate Relationship). Given
a query q, and two peers p1 and p2, if maxDist(q, p1) 6
minDist(q, p2), we then say that p1 dominates p2, de-
noted as p1 ≺q p2, or p1 ≺ p2 when q is understood.

Theorem 3.1. Given three peers p1, p2, and p3. If
p1 ≺ p2 and p2 ≺ p3, then p1 ≺ p3.

Proof. According to Definition 3.1, from p1≺ p2,
we know that maxDist(q, p1) 6 minDist(q, p2), fur-
thermore, from p2≺p3, we know that maxDist(q, p2) 6
minDist(q, p3). Since minDist(q, p2) 6maxDist(q, p2),
we conclude that maxDist(q, p1) 6minDist(q, p3).
Therefore, p1≺ p3. ¤

Definition 3.2 (Peer Domination). Given a
query q, and two groups of peers P1 and P2, if for each
peer p ∈ P1 and each peer p′ ∈ P2, p ≺ p′, we say P1

dominates P2, denoted as P1 ≺ P2.
To graphically show the domination relationships, we

plot the peers in a 2-dimensional space. Each peer is
translated into one point in the 2-dimensional space,
whose x-axis represents the minDist(q, p) value, and the
y-axis the maxDist(q, p) value. Since minDist(q, p) <
maxDist(q, p), it is immediate that every peer (repre-
sented as a point) falls into the triangle region depicted
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in Fig.2(a). To show the domination relationship, as
depicted in Fig.2(a), the triangle region may be divided
into six regions with respect to a peer p (a point in
the triangle) by drawing four lines, where the two verti-
cal lines are with Min values equal to minDist(q, p)
and maxDist(q, p), respectively, and two horizontal
lines are with Max values equal to minDist(q, p) and
maxDist(q, p), respectively. We call such a division of
the space based on the peers in the triangle region the
“domination model.” On the basis of these regions, we
have the following observation.

Fig.2. Domination model of query q. (a) Six regions. (b) Query

radius rk.

Observation 3.1. For a peer p and a query q, all
other peers must fall into one of the six regions divided
by p. The relationships between p and peers in each
region are listed as follows.

p.R1: for each peer p′ in p.R1, maxDist(q, p′) 6
minDist(q, p), i.e., p′ dominates p.

p.R2: for each peer p′ in p.R2, minDist(q, p′) 6
minDist(q, p) 6 maxDist(q, p′) 6 maxDist(q, p).

p.R3: for each peer p′ in p.R3, minDist(q, p) 6
minDist(q, p′) and maxDist(q, p′) 6 maxDist(q, p).

p.R4: for each peer p′ in p.R4, minDist(q, p′) 6
minDist(q, p) and maxDist(q, p) 6 maxDist(q, p′).

p.R5: for each peer p′ in p.R5, minDist(q, p) 6
minDist(q, p′) 6 maxDist(q, p) 6 maxDist(q, p′).

p.R6: for each peer p′ in p.R6, maxDist(q, p) 6
minDist(q, p′), i.e., p dominates p′.

Lemma 3.1. Given a peer p, p dominates all the
peers that are in region p.R6, and all the peers in region
p.R1 dominate p.

Proof. Given a query q, for any peer p, let minp

be the minimal distance between q and p, i.e., minp =
minDist(q, p), and let maxp be the maximal distance
between q and p, i.e., maxp = maxDist(q, p). Using
the two values minp and maxp, we can draw six peer
regions (see Fig.2(a)) w.r.t. p and q. For any peer
p′ in the region p.R6, the minimal distance between q
and p′ must be larger than maxDist(q, p). Therefore,
maxDist(q, p) 6 mindist(q, p′). On the basis of Defi-
nition 3.1, we conclude that for any peer p′ ∈ p.R6, p
dominates p′, i.e., p≺ p′. Similarly, for any peer p′′ in
the region p.R1, the maximal distance between q and
p′′ is larger than maxDist(q, p′′), and we conclude that
for any peer p′′ ∈ p.R1, p′′ dominates p, i.e., p′′≺ p. ¤

Assume we have probed a set P of peers, and found
the k-th closest data elements to q among the data
items contained in the peers of P . Let rk be the dis-
tance of this k-th data, and let pk ∈ P , called refer-
ence peer, be the peer providing the k-th data. Clearly,
minDist(q, pk) 6 rk 6 maxDist(q, pk). Also, if we draw
a probe circle centered at location of q with radius rk

in the geographical map, regions of the peers in pk.R6

do not overlap with the probe circle, since their Min
values are greater than rk. Hence, for each peer p, if
minDist(q, p) > rk, we can safely prune p out because
it cannot contain any data lying closer to q than the
current k-th data. From Fig.2(b), we can see that peers
located in the right part to the vertical line Min > rk

can be safely pruned. We call the rest peers probe
peers which are those who may provide data closer to
q than the current k-th data and need to be probed.
Furthermore, since pk provides the k-th current closest
data, peers in its dominated region pk.R6 can be safely
pruned.

4 Radius-Expansion Strategy

In order to collect answers to the k-NN query, the
simplest method is to start from the query peer pq to
probe all the peers P (pq 6∈ P ) using a Steiner tree
rooted at pq. The Steiner tree is denoted by T (pq, P ),
or just T (P ) when the query peer pq is clear from the
context. The communication cost of conveying satisfy-
ing data using T (P ) is shown in (1).

Cd(P ) = β
∑

pi∈P

pi.h = β · k · |E(T (P ))|, (1)



Bin Wang et al.: Continually Answering Constraint k-NN Queries 543

where pi.h is the number of data that satisfies the non-
location value predicate of q, E(T (P )) is the set of edges
in the Steiner tree T (P ), and |E(T (P ))| is the number of
edges in E(T (P )). Obviously, the communication cost
may be too high to be acceptable. In order to reduce
the communication cost, we follow two directions: 1)
directly probing P using as few peers as possible to get
the answer; 2) collecting some statics information about
and probing the “better” peers based on these statics
information. For the first direction, we propose one
probing strategy, namely the radius-expansion strategy.
The radius-expansion strategy gradually expands the
probe radius. For the second direction, we propose a
histogram-based approach which can collect distance
information about peers’ data and guide the later on
probing based on the histograms.

In the rest of this section, we present a filter ap-
proach for the radius-expansion probing strategy. After
that, we introduce a histogram-based probing approach
in Section 5.

4.1 Partition-Based Approach

The radius-expansion strategy gradually expands a
probe radius. Ideally, we hope to find a small set of
peers P1, such that if P1 can answer the k closest an-
swers, then all the other peers can be safely pruned out.
That is, if we can use our dominate diagram to classify
all the peers into h successively geographical dominated
groups P1 ≺ . . . ≺ Ph (h > 1), and the first i groups
can provide k satisfying data, then the rest h− i groups
of peers can be pruned out. We may encounter the fol-
lowing two cases when we classify the peers into groups.

Case 1: each group Pi (1 6 i 6 h) contains a small
number of peers, e.g., fewer than k peers, i.e., |Pi| < k,

Case 2: each group Pi contains a large number of
peers, i.e., |Pi| À k.

To address the first case, we propose a partition-based
approach (PA in short) that gradually extends the prob-
ing radius. For the second case, we approximately clas-
sify the peers in Pi into several “approximate” dominate
groups.

With respect to Case 1, we can probe peers in P1

first. If P1 cannot provide k satisfying data, then it
repeats the procedure by probing P2, and so on. For
each iteration, we build a Steiner tree T (P1) using the
local filtering mechanism. Note that T (P1) may con-
tain peers in the rest of group Pi, i > 1. Even though
this approach works and is simple, when the number of
dominate groups is large (an extreme case is each group
contains one peer) and we need to query several groups
to get the result, we have to exhaustively search in each
group until k answers can be found. For example, given

a source node pq, and two groups of peers P1 = {pa, pb}
and P2 = {pc, pd}, Fig.3(a) shows a partial logical graph
contains pq (white node), P1 (black node), and P2 (grey
node). Fig.3(b) is the Steiner tree of P1. The Steiner
trees of P2 are shown in Fig.3(c). If we query T (P1)
and T (P2) separately, we spend at least 5β · k commu-
nication cost, whereas, as shown in Fig.3(d), querying
P1 and P2 together (i.e., T (P1 ∪ P2)) only incurs 4β · k
communication cost. In fact, this property has been
stated and proved in the following theorem.

Fig.3. Pruning using exhaustive PA. (a) G. (b) T (P1). (c) T (P2).

(d) T (P1 ∪ P2).

Theorem 4.1. Given an undirected graph G(P, E)
and two sets of target nodes P1⊆P and P2⊆P . Let
pq ∈ P be a query peer, we have the following property:

Cd(P1) + Cd(P2) > Cd(P1 ∪ P2).

Proof. According to (1), we prove |E(T (pq, P1))| +
|E(T (pq, P2))| > |E(T (pq, P1∪P2))|. On the basis of the
undirected graph G(P, E), we constructed a Steiner tree
T (pq, P1). Let N1 be Steiner vertices in T (pq, P1). The
number of edges in T (pq, P1) is the number of nodes in
T (pq, P1) minus 1, i.e., |E(T (pq, P1))| = |{pq} ∪ P1 ∪
N1| − 1. According to the definition of Steiner tree,
N1 ∩ {{pq} ∪ P1} = ∅. In our context, {pq} ∩ P1 = ∅,
therefore, |E(T (pq, P1))| = |P1| + |N1|. For the same
reason, let N2 and N be Steiner vertices in T (pq, P2) and
T (pq, P1 ∪ P2), respectively. We know |E(T (pq, P2))| =
|P2|+ |N2| and |E(T (pq, P1 ∪ P2))| = |P1 ∪ P2|+ |N |.

Suppose the above property does not hold, then
let |E(T (P1))|+|E(T (P2))|< |E(T (P1 ∪P2))|. Now we
prove that this statement does not hold.

According to the above analysis, we rewrite the
above statement into |P1|+|N1|+|P2|+|N2| < |P1∪P2|+
|N |. Since P1 and P2 are the two sets of target peers,
we know |P1| + |P2| > |P1 ∪ P2| must hold. Therefore,
if the above statement holds, then |N1| + |N2| < |N |
should hold. That is, we can find a peer p′ in N , such
that p′ 6∈ N1, p′ 6∈ N2.

Since p′ is a Steiner vertex in the Steiner tree
T (pq, P1 ∪ P2), let P ′ ∈ P1 ∪ P2 be the set of peers
that are reached by pq using p′ in T (pq, P1 ∪ P2). We
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can use the peers in N1 and N2 to replace p′, so that
P ′ can still be reached by pq using other Steiner ver-
tices in N1 and N2. We keep removing those peers
that only in N and add peers in N1 and N2 to make
P1 ∪ P2 reachable by pq. Finally, we can construct a
new tree T ′ rooted at pq that contains all the peers in
P1 and P2. According to the definition of Steiner tree,
T (pq, P1∪P2) should be the tree with the smallest edges,
so we cannot construct such T ′. Therefore, the assump-
tion |E(T (P1))|+|E(T (P2))|<|E(T (P1∪P2))| does not
hold. We conclude |E(T (pq, P1))| + |E(T (pq, P2))| >
|E(T (pq, P1∪P2))|, that is, Cd(P1) + Cd(P2) > Cd(P1 ∪
P2) holds. ¤

The PA approach tries to find and merge groups
(such as P1 and P2) to save more communication cost.
The basic task for the PA is the following.

Definition 4.1 (Optimal Peer-Partition). Given
an undirected graph G = (V, E), a set of terminal nodes
R ⊆ V , and subsets R1, . . . , Rh, Ri ⊆ R (1 6 i 6 h),
find an optimal partition P ′ = {P1, P2}, such that nei-
ther P1 nor P2 is empty, for each Ri, it can only belong
to P1 or P2, and the sum of the numbers of edges in the
Steiner trees for P ′ is minimal.

Theorem 4.2. The problem of optimal peer-
partition is NP-hard.

Proof. We prove it by giving a reduction from the
partition problem to optimal peer-partition problem in
polynomial time.

Partition Problem : given a set S of n integers, is it
possible to partition S into two subsets S1 and S2 so
that the sum of the integers in S1 is equal to the sum
of the integers in S2?

Given a set S of n integers, we sort these n integers in
ascending order {I1, . . . , In}. We construct a tree T (v),
where v is the root node of T with level 0. We con-
struct I1 children of v, i.e., {v1, . . . , vI1}. For each node
in the i-th level (1 6 i 6 n), we construct Ii+1 children.
So, the constructed tree has n + 1 levels and contains
1 +

∑n
j=1

∏j
i=1 Ii nodes. Clearly, this construction can

be done in polynomial time. We use four integers {1, 2,
3, 4} to illustrate the construction of the tree, shown in
Fig.4. In the constructed tree, s is the root node, the
tree level is 5 and there are 34 nodes.

We show the above two problems are equivalent by
proving the following. We define the root node as source
node. For any subset S′ ⊂ S, we rank elements in S′ in
ascending order {I1, . . . , Im}(m < n). We define target
nodes by choosing

∏j
i=1 Ii nodes in the j-th level. For

example, given a subset {2,3}, target nodes consist of 2
nodes in the 2nd level and 2×3 nodes in the 3rd level
(see Fig.4(b), where the black nodes are chosen to be
target nodes). We show that if every one of the nodes in
j-th level has the same parent, and for any node in the

h-th level (j > h) the chosen nodes are ancestors of the
chosen nodes in j-th level, then constructing Steiner tree
to reach chosen nodes is minimum. Therefore, given the
two sets {1, 4} and {2, 3} with the same summation,
we can construct two Steiner trees such that their edges
are minimum.

Fig.4. Example of the constructed tree and their minimal par-

tition trees. (a) Steiner tree for {1, 4}. (b) Steiner tree for {2,
3}.

In summary, the problem of choosing a partition
S1 = S2 in S is equivalent to calculating two Steiner
trees to make the summation of their edges minimum.
Thus our optimal peer-partition problem is NP-hard.

¤
We use a greedy algorithm to approximately build

two Steiner trees, which is described in Algorithm 1.
PA combines geographical dominate relationship and
logical Steiner tree together. Given a set of dominate
groups of peers P1≺ . . .≺Ph (1 6 i 6 h), we first build
up a Steiner tree for a source node pq and each terminal
node set Pi (1 6 i 6 k) for the first k groups using the

Algorithm 1. PA

Input: k, undirected graph G, query peer pq,

peer sets P ′ = {P1, . . . , Ph}, where P1≺ · · ·≺Ph;

Output: two Steiner trees T1 and T2;

1: for (each Pi between P1 and Pk) do

2: ST i = greedyST(G, pq, Pi);

3: end for

4: find two minimal trees STu and ST v corresponding

to Pu and Pv;

5: T1 = STu; S1 = Pu;

6: T2 = ST v; S2 = Pv;

7: for (each Pi in P ′ − S1 − S2) do

8: pick a minimal tree ST i for Pi;

9: T ′1 = greedyST(T1 ∪ Ti, pq, S1 ∪ Pi);

10: T ′2 = greedyST(T2 ∪ Ti, pq, S2 ∪ Pi);

11: if (|E(T ′1)| 6 |E(T ′2)|) then

12: T1 = T ′1; S1 = S1 ∪ Pi;

13: else

14: T2 = T ′2; S2 = S2 ∪ Pi;

15: end if

16: end for

17: return T1 and T2;
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greedy Steiner approach[14]. The function greedyST,
shown in line 2, contains three parameters, the first is
an input graph G = (V, E), the second is the source
node pq ∈ V , and the last is a set of terminal nodes.
V ′ ⊆ V . The algorithm PA greedily expends a subtree
T of G that includes pq and V ′ by inserting a short-
est path from node in G to T . Lines 4∼6 describe the
initial partition by choosing two Steiner trees with the
minimal edges as the seeds of a partition. Lines 7∼16
greedily insert the remaining Steiner trees into the two
seeds and compare the numbers of edges for each pos-
sible partition S1 and S2. A partition with minimal
edges will be kept. We repeat this procedure until all
the remaining Steiner trees have been processed.

PA classifies some groups of peers into a class CP1

so that these groups can be probed together. Note
that, groups in CP2 = CP − CP1 may contain a group
Pj dominates groups in CP1 . For example, given
P1≺P2≺P3≺P4, we can get CP1 = {P1, P3} and CP2 =
{P2, P4}. If the first round probe gets k′ (6 k) closest
answers, then using the locations of these k′ answers, we
can know k1 (6k′) out of k′ answers is returned by P1.
Then it classifies P ′ −CP1 into two classes CP1 = {P2}
and CP2 = {P4} and request k−k1 to CP1 . PA iterative
repeats the above procedures until k closest answers are
returned.

The time complexity of greedyST(G, pq, Pi) is
O(mn2), where m is the number of nodes in pq ∪ Pi,
and n is the number of nodes in G. For each peer set
Pi, the average size of Pi is n

h , Algorithm 1 processes k
peer sets, therefore, the time complexity of Algorithm
1 is O( k

hn3).

4.2 Preprocessing for PA-Based Approaches

As mentioned in Subsection 4.1, we may encounter
the Case 2 that the number of peers in a group (after
we classify peers into h successively geographical dom-
inate groups) is large. It is not efficient to probe all
the peers in such a large group. In this case, we seek
to break such a group into small approximate dominate
sets, so that radius-expansion strategy can be employed
to efficiently prune out the peers.

Fig.5 describes how to approximately classify the
peers. For each radius r, there is a corresponding point
S = (r, r) in Fig.5, which divides the peers into three re-
gions R1, R2, and R3. We know that the peers in region
R1 dominate all the peers in region R3. For each peer
p in R2, minDist(q, p) 6 r 6 maxDist(q, p). We call
the peers in R2 outlier peers to R1. Ideally, the num-
ber of outlier peers to R1 equals zero, then the radius r
can classify the peers in Fig.5 into two dominate groups
corresponding to R1 and R3, respectively. However, in

the case that we cannot find a radius r such that its
corresponding R2 contains zero outlier peers, we seek
the radius whose corresponding R2 regions contains a
small number of outlier peers (i.e., less than τ% of the
number of peers, where τ is a threshold). If the number
of outlier peers in R2 is less than τ ×n (n is the number
of peers), then the corresponding radius is called sepa-
rable radius. We gradually increase r from 0 to rk (the
current probing radius). For the first separable radius
r1, we classify all the peers in region r1.R1 (ri.Rj refers
to a region Rj with ri as separable radius) into a group
P1, and all the peers in region r1.R2 in the outlier set
of P1 (denoted as O1). We then use the second sepa-
rable radius r2 to classify peers in r1.R3 into P2 and
O2, respectively. We repeat this procedure, until all the
peers have been grouped to either dominate groups or
different outlier groups.

Fig.5. Approximately classifying dominate sets.

5 Histogram for Optimal Probing Peers

When we probe m groups of peers {P1, . . . , Pm}, sep-
arately, to get k data satisfying the query from each
group, the total communication cost is

m∑

j=1

Cd(Pj). (2)

However, if we can merge all the probing peers into
one group and submit query using one Steiner tree to
cover m groups, denoted as T (∪m

j=1Pj), the communi-
cation cost may be further reduced (see Theorem 4.1).
We use (3) to describe it.

m∑

j=1

Cd(Pj) > Cd

( m⋃

j=1

Pj

)
. (3)

The left part of the inequation expresses the commu-
nication costs of probing peers in m separated Steiner
trees, each of which covers the peers in a group Pi, and
the right of the inequation expresses the communication
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costs of one large Steiner tree T (
⋃m

j=1 Pj) that covers
peers in all these m groups. Obviously, forwarding val-
ues in the Steiner tree T (

⋃m
j=1 Pj) requires less com-

munication cost than the summation costs of forward-
ing values in m Steiner trees T (P1), . . . , T (Pm), respec-
tively.

The question here is how can we determine a “good”
m? On one hand, if m is small, then we have to probe
the peers for more times to get all the candidates. On
the other hand, if m is too large, then the filterability
will be decreased.

In fact, besides directly probing the peers, we can
first collect some statistic data about minimum and
maximum distances and carry out the probing later on
based on the collected statistic information. Obviously,
collecting statistic data needs some communication cost
which seems contradict to our previous sought, reducing
the communication cost as much as possible. However,
with the help of the statistic information, we can select
much “better” peers to probe and to save more com-
munication cost as a consequence. In other words, we
are seeking a solution which can gain more communica-
tion savings overall. Moreover, as we want to propose a
solution to address the continuous queries which adapt
to the dynamic changes over the P2P system, collecting
statistic information is a must to incrementally build
the results based on previous answers, which will be
discussed in detail in the next section. Therefore, from
the whole system solution point of view (including an-
swering query and adjusting according to the updates),
collecting statistic information does not incur any extra
communication cost, since we have to do it anyway to
adapt to the dynamic environment.

In order that with less communication cost to get
to know whether the first m groups of peers can re-
turn k data, we propose a histogram-based approach to
optimal probing peers, specifically, the query peer pq

that creates a histogram to count the number of sat-
isfying data in each bucket. In order to create such a
histogram, we have to collect the data information of
the peers. The communication cost for gathering his-
tograms from m individual groups of the peers is shown
in (4).

CH = Nb · γ
m∑

j=1

|E(T (Pj))|, (4)

where γ is the size of an integer to represent a bucket
count, Nb is the number of buckets and each bucket is
associated with a distance interval in [0, rk). With the
help of this histogram, we can find a least query radius
ra (called estimated query radius) such that the peers
within ra whose minimal distances to q less than ra can
get k-NN results.

As mentioned before, we want to achieve the goal
that the cost of gathering histogram together with later
on probing is less than the communication cost of direct
probing. We do this through carefully choosing Nb. Let
Nbm be the maximal number of buckets such that the
constraint in (5) must be satisfied.

m∑

j=1

Cd(Pi) > CH + Cd

( m−1⋃

j=1

Pj ∪ P ′m
)
, (5)

where P ′m is a subset of Pm, whose minimal distances
are less than the estimated query radius ra, which is
calculated using gathered histogram. We can use Pm

to replace P ′m, and get a smaller number N ′
bm

6 Nbm

shown in (6).

N ′
bm

6



m∑

j=1

Cd(Pi)− Cd

( m⋃

j=1

Pj

)

γ
m∑

j=1

|E(T (Pj))|


. (6)

Algorithm 2. Construct Histogram with Adaptive

Buckets

Input: query q, k dominate groups P = {P1, . . . , Pk}
such that for any p ∈ P , minDist(q, p) 6 rk;

Output: buckets for P ;

1: let L be an empty set;

2: for each group Pi (1 6 i 6 k) do

3: let L′ be an empty set;

4: for each p ∈ Pi, insert minDist(q, p) and

maxDist(q, p) into L′;
5: sort L′ in ascending order;

6: L = L ∪ L′;
7: end for

8: for any two adjacent elements lj , lj+1 ∈ L do

9: construct a peer interval [lj , lj+1);

10: end for

11: calculate the maximal N ′
bm

for group P

12: h = number of elements in L;

13: probe interval = [L[0], L[h− 1]);

14: if N ′
bm

equals to 0 then

15: return ∅;
16: else if N ′

bm
> h then

17: build a bucket for each interval [lj , lj+1)

∈ [L[0], L[h− 1]);

18: else

19: build one bucket for the first h−N ′
bm

peers

intervals in [L[0], L[h− 1]);

20: build one bucket for each remaining peer

intervals in [L[0], L[h− 1]);

21: end if

22: return buckets;
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Algorithm 2 describes the steps to construct a his-
togram with adaptive buckets. Given peers overlapping
with the probe radius rk. Lines 2∼7 sort minDist(q, p)
and maxDist(q, p) of every peer p in ascending or-
der. Let L = {l1, . . . , lm} be this sorted list, where
li (1 6 li 6 m) is either minDist(q, p) or maxDist(q, p).
We call each li distant point. Lines 8∼10 produce a set
of peer intervals [l1, l2), . . ., and [lm−1, lm) using distant
points.

For each probe, we can calculate the maximal possi-
ble bucket number. In the m-th probe, assume all peers’
minimal distances and maximal distances belong to the
group interval [rm−1, rm). We probe peers Pm over-
lapping with the interval [rm−1, rm). If N ′

bm
is large

enough, then we build a bucket for each peer interval
[li, li+1) ∈ [rm−1, rm) (1 6 i < m). Such a fine gran-
ularity histogram can provide more accurate estimated
query radius. However, a larger number of buckets lead
to more communication cost. Therefore, we classify
several peer intervals [rm−1, l1), [l1, l2), . . . , [lu, rm) into
N ′

bm
buckets.

If N ′
bm

equals 0 (Line 14), peers in Pm directly con-
vey their satisfying data to the query peer pq during the
probe phases, so that the minimal communication cost
constraint can be hold. Furthermore, the query peer pq

maintains a global histogram by building one bucket for
the group interval [rm−1, rm).

If N ′
bm

is larger than the number of generated inter-
vals h (Line 16), each probe peer conveys its histogram
to the query peer pq. pq collects these local histograms
from all probed peers and merge them into the global
histogram. pq determines an estimated query radius ra

by choosing the first minimum h buckets (h < N ′
bm

)
whose number of answers can provide k answers. Then
pq queries peers overlapping with [0, ra) to get result.

Assume there are h peer intervals [rm−1, lu+1), [lu+1,
lu+2), . . . , [lu+h−1, rm) in [rm−1, rm). If h 6 N ′

bm
, then

we construct h buckets, each of which corresponds to
a peer interval. During the probe phases, each peer in
group Pm counts satisfying data for each bucket and
conveys its local histogram to pq.

In the case that h is larger than N ′
bm

, we build fine
granularity buckets for the last few peer intervals near to
rm so that the last few buckets can record more accurate
statistical information, which result in high probability
to filter a small number of peers whose minimal and
maximal distances to q are near to rm. Therefore, for
each peer p, we associate N ′

bm
− 1 buckets with the last

Nbm − 1 peer intervals, respectively. We associate the
first bucket with the rest intervals. The time complex-
ity of Algorithm 2 is linear with the number of peers in
P , i.e., O(|P |).

For example, Fig.6(a) shows three groups of peers

P1, P2, and P3 (marked using different colors, re-
spectively) associated with the query interval [r5, r6),
[r6, r7), and [r7, r8). Assume for the first group of peers
P1, there are six peer intervals [r5, l1), [l1, l2), [l2, l3),
[l3, l4), [l4, l5), [l5, r6), and the calculated N ′

bm
= 4. We

use one bucket to associate the first three peer intervals
[r5, l1), [l1, l2), and [l2, l3), and the other three buckets
to associate the rest three peer intervals, respectively
(shown in Figs.6(b), 6(c), and 6(d)).

Fig.6. Histogram of four groups of peers. (a) Peer groups and the

query intervals [r5, r6), [r6, r7), and [r7, r8). (b) Local histogram

for the peer group P1. (c) Local histogram for the peer group P2.

(d) Local histogram for the peer group P3.

For simply maintaining global histogram, pq does
not collect histogram of outlier peers during the probe
phase. For example, no local histogram count the num-
ber of satisfying data in the outlier peer (expressed as
black box) in Fig.6. During the query phase, using the
calculated estimated query radius ra, an outlier peer
whose minimal distance less than ra should be added
for query processing. Using the returned satisfying data
during query phase, pq can classify data of outlier peers
into different buckets of the global histogram to make
it more accurate.

Furthermore, as discussed in Section 6, we utilize
these computations for the efficient handling of updates.

6 Continuous k-NN Queries

Continuous k-NN queries are issued once and long-
running continuously to generate k closest results along
with the updates of the peers. In this section, our task is
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to maintain the results of the queries upon the arrival of
peers or their data updates. Therefore, we first analyze
behaviors of peers and their data. We then propose al-
gorithms for the efficient handling of updates using the
constructed histogram in the above section.

6.1 Updates of Peers and Data

For a cooperative peer in an unstructured P2P sys-
tem, when a peer or its managed data changes, it has
responsibility to inform the whole system about its up-
date, so that the system can make quickly response to
the update. Now we analyze the peer updates in an
unstructured P2P system.

As we know, a peer in a P2P system can freely join
or leave in the system momentarily, and their coopera-
tive relationship among peers can also be changed dy-
namically. We consider the change of cooperative rela-
tionships as a peer joins and leaves. A peer’s join or
leaving from the system can be expressed as a node in-
sertion or deletion from the dominate model. As shown
in Fig.7(a), a peer pa leaves and a new peer ph joins.
Furthermore, a peer region can also expand or shrink
dynamically, since its managed spatial data may change
its shape.

Lemma 6.1. Given a query q, if a peer p expands to

Fig.7. Updates of autonomous peers. (Black nodes and boxes

represent the peers and data satisfying query predicates, respec-

tively.) (a) Peer updates. (b) Data updates.

p′, then minDist(q, p′) 6 minDist(q, p) and maxDist
(q, p′) > maxDist(q, p). If a peer p shrinks to p′,
then minDist(q, p′) >minDist(q, p) and maxdist(q, p′)
6maxDist(q, p).

Proof. According to the definition of spatial region
R(p) of a peer p, when p expands to p′, there must exist
data d, whose value of location attribute exceeds the
spatial region R(p) (convex hull) of data in D(p). That
is, the location value of d, vl(d), is a new convex to ex-
pand the convex hull from R(p) to R(p′). The distances
minDist(q, p) and maxDist(q, p) could be changed due
to the insertion of d. If vl(d) is in between q and
minDist(q, p), then minDist(q, p′) < minDist(q, p). If
vl(d) is outside maxDist(q, p), then maxDist(q, p′) >
maxDist(q, p). For other cases, minDist(q, p′) and
maxDist(q, p′) do not change.

When removing a convex d from D(p), the spatial
region R(p) for the peer p will shrink to R(p′). If d is
the only one convex that determines minDist(q, p) in
R(p), then minDist(q, p) < minDist(q, p′). If d is the
only one convex that determines maxDist(q, p) in R(p),
then maxDist(q, p) > maxDist(q, p′). For the remaining
cases, minDist(q, p′) and maxDist(q, p′) do not change.

¤
According to Lemma 6.1, if a peer expands, its cor-

responding node in the dominate diagram either moves
to its left upper corner or does not move, and if a peer
shrinks, its corresponding node either moves to its right
lower corner or does not move. For example, pj expands
its region to p′j and pd shrinks its region to p′d. Since
a peer region can be changed to any shape, simply, we
regard this change as an expand plus a shrink.

Besides peer update, data in each peer is also
changed dynamically. Fig.7(b) shows three kinds of
data update. (i) Data is inserted into or deleted from a
peer, e.g., data d1 is removed from the peer, whereas d4

is inserted. Note that, data insertion or deletion may
cause the shape change of the corresponding peer (see
the dark grey area). (ii) Location of data changes, e.g.,
d3 moves to d′3 and d7 moves to d′7. A movement of
data can be treated as delete and insertion of data. (iii)
Value of data changes, e.g., the temperature detected by
a sensor changes from 40 degree to 90 degree. We can
regard this kind of update as deletion of a sensor of 40
degree and insertion of a sensor of 90 degree, i.e., data
value change can be treated as data deletion and inser-
tion with unknown data value. In summary, updates (i)
and (ii) may cause the change of a peer’s shape. For any
update data d′ in a peer p, if dist(q, d′) < minDist(q, p)
or dist(q, d′) > maxDist(q, p), then it causes p to ex-
pand or shrink.

Table 2 summarizes the above updates of a peer
p′ and its data d′. We only show the cases where
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p′ is changed within the estimated query radius ra,
i.e., minDist(q, p′) < ra, because update outside of ra

will not affect the k-NN result. In Cases 1) and 2),
a peer p′ joins into the system or p′ expands its re-
gion. In Case 1), update of p′ affects k-NN result
(minDist(q, p′) < rp), i.e., we need to decrease rp to
a new perfect query radius r′p, if p′ can provide at least
one satisfying data. In Case 2), update of p′ does not
affect the k-NN result, since dist(q, d) > rp.

Table 2. Update of a Peer p′ (minDist(q, p′) < ra)

Type Condition Case

Peer Insertion/Expand minDist(q, p′) < rp 1)

minDist(q, p′) > rp 2)

Peer Delete/Shrink p′ provides answer 3)

else 4)

Data Update minDist(q, p′) < rp 5)

minDist(q, p′) > rp 6)

In Cases 3) and 4), a peer p′ leaves from the system or
p′ shrinks its region. In Case 3), if a leaving peer p′ pro-
vides m (< k) answers in the k-NN result, then we need
to find other peers to provide m closest answers. If a
peer p shrinks to p′, i.e., minDist(q, p′) > minDist(q, p)
and maxDist(q, p′) 6 maxDist(q, p) due to some data
delete or movement, then the previous k-NN result may
not provide enough answers. The query radius rp should
be extended to a larger r′p so that the peers within r′p
can provide enough answers. Case 4) will not change
answers to the query since p′ does not provide answers
to q.

In Cases 5) and 6), when data in a peer p′ changes, p′

notifies the system that its data has changed so that the
system can correspondingly reflect. In Case 5), data is
inserted or deleted. We treat p′ as a new insertion peer
shown in Case 1). Similar with Case 2), update of data
in p′ cannot affect the result since minDist(q, p′) > rp.

6.2 Efficiently Query Using Histogram

Based on the analysis in the above subsection, we
classify the reaction of the query peer pq into two cat-
egories, which are increasing the result radius rp and
decreasing the result radius rp.

6.2.1 Increasing the Result Radius rp

In Case 3), when a peer p is deleted or its region
shrinks, we need to extend rp to get enough answers
to the k-NN query q. Assume that p provides h (6 k)
answers, then the result radius rp has to be increased
to probe more peers to get another h closest answers.
Algorithm 3 describes the procedure of maintaining and
using the global histogram to incrementally query a
small set of peers.

Algorithm 3. Increasing rp

Input: global histogram, a delete peer p that provides

h answers, answer set ASet;

Output: the global histogram after update of p;

1: find distant points L equal to minDist(q, p) or

maxDist(q, p);

2: for each distant point li ∈ L do

3: if li is only associated with p then

4: remove li from the distant points set in

the histogram;

5: merge buckets [li−1, li) and [li, li+1) into

one bucket [li−1, li+1);

6: end if

7: end for

8: find minimum closest buckets B to answer h data;

9: query q to peers and outliers associated with B;

10: insert answers to ASet;

11: choose k closest data from ASet;

12: r′p = distance between q and the k-th data;

13: return global histogram;

Fig.8. Adjusting global histogram by merging buckets and in-

creasing rp to r′p. (a) Global histogram before deleting peer p.

(b) Global histogram after deleting peer p.

To update a peer p may cause some distant radiuses
disappear. Line 1 finds distant points who are equiv-
alent to minDist(q, p) or maxDist(q, p) in the global
histogram. For example, Fig.8(a) shows a global his-
togram, which contains six distant points {l0, . . . , l5}. A
removed peer p has two distant radiuses minDist(q, p) =
l2 and maxDist(q, p) = l′ (l3 6 l′ 6 l4). l2 is a distant
point that equals minDist(q, p). In Algorithm 3, Lines
2∼7 adjust buckets in the global histogram. For in-
stance, there are two buckets with intervals [l2, l3) and
[l3, l4) that are affected and should be adjusted when p
is removed from the system. Assume l2 is only associ-
ated with p, then l2 is no longer a distant point after
deleting p. We need to merge [l1, l2) and [l2, l3) into one
bucket [l1, l3) (shown in Fig.8(b)).

In Fig.8, rp is the result radius of the current k-NN
result and ra is the estimated query radius. Let h be the
invalid answer (represented as grey color) of p within rp.
We then get a new global histogram (without grey part
in Fig.8(a)) by removing invalid answers in the bucket
[l1, l3).
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Line 8 determines how many additional peers within
the estimated query radius ra can provide the missing h
closest answers to q. We then extend rp to r′p. We find
minimal additional buckets that can provide at least h
data in the global histogram, i.e.,

minimize i, s.t.
N∑

i=Bc

freq(i) > h, (7)

where N is the number of buckets in the global his-
togram, Bc is the bucket intersect with rp (called critical
bucket). Lines 9∼11 find associated peers and outliers
with the calculated buckets, and submit q to those peers
to get h satisfying data. Then the query peer pq chooses
k closest data from the exiting answer set ASet and Line
12 changes radius from rp to r′p.

The time complexity of Algorithm 3 is O(n), where n
is the number of buckets in the global histogram. Notice
that, if the frequency summation of the buckets between
the critical bucket and ra is less than h, i.e., the global
histogram has no enough statistical information within
ra, then rp need re-compute peers in rk and get the new
h closest answers.

6.2.2 Decreasing the Result Radius rp

In Cases 1) or 5), the update of a peer p may cause
decreasing rp to r′p. The query peer pq first submits q to
p along the shortest path from pq ro p to get satisfying
data whose distance to q less than rp. Then pq chooses
k closest data from the current answer set and the new
returned data.

In order to incrementally probe affected peers in Case
3), pq adjusts the global histogram using the returned
data of p. For example, the grey part in Fig.9(a) is the
increased number of answers in the buckets [l1, l2) and
[l2, l3).

When the number of answers in one bucket is larger
than a specified number (e.g., k), we split this bucket
into two buckets. In Fig.9(a), the frequency of bucket
[l1, l2) is H(>k), so we split buckets as described in Al-
gorithm 4. For an insert or expand peer p, Lines 1∼2
calculate new distant radius using p. Lines 4∼14 choose
a separate radius to split a bucket into two buckets. For
example, if minDist(q, p) = l′ and maxDist(q, p) = l3,
then l′ is a new distant radius. We use l′ as a separate
point to split bucket [l1, l2) into two buckets [l1, l′) and
[l′, l2). Let h1 be the number of satisfying data locates
in [l1, l′) and h2 be the number of satisfying data locates
in [l′, l2). Then the frequency of the bucket [l1, l′) is be-
tween h1 and h1+H, and the frequency of the bucket
[l′, l2) is between h2 and h2+H. The global histogram
records such frequency interval instead of the accurate
frequencies for split buckets.

Fig.9. Adjusting global histogram by splitting buckets and de-

creasing r′p to rp. (a) Global histogram before updating peer p.

(b) Global histogram after updating peer p.

Algorithm 4. Lazy Split Buckets

Input: an insert or expand peer p, H value, a set of

satisfying data D = {d1, . . . , dn} from p,

dist(q, di) < rk;

Output: two split buckets B1 and B2;

1: distant radius r1 = minDist(q, p);

2: distant radius r2 = maxDist(q, p);

3: find bucket B that crosses r1 (or r2, resp.);

4: if fequency of B is larger than H then

5: if r1 or r2 is a new distant radius then

6: random choose r1 or r2 as the separate

radius l′;
7: else l′ = 1

2
(B.min + B.max);

8: end if

9: split B into B1 and B2 into [B.min, l′) and

[l′, B.max);

10: h1 = |D1|, D1 ⊆ D and ∀d ∈ D1, dist(q, d) 6 l′;
11: h2 = |D2|, D2 ⊆ D and ∀d ∈ D2, dist(q, d) > l′;
12: let freq(B1) be [h1, h1 + H];

13: let freq(B2) be [h2, h2 + H];

14: end if

15: return B1 and B2;

Note that, the global histogram maintains a fre-
quency interval for the split buckets. We do not cal-
culate the precise frequency since we have no clue of
the data distribute in the bucket B. We call this pro-
cedure lazy split. On the basis of this interval, we can
estimate a set of affected peers when a peer leaves or its
region shrinks. Those affected peers should be probed
and precise frequencies of the associated buckets can be
got.

7 Related Work

As far as we know there is no similar work on the pro-
posed problem setting. The work most closed to ours
falls into two categories: continuous k-NN searches over
spatial database and k-NN queries over structured P2P
systems. We will review the work in these two directions
and explain the difference between our work and theirs.
There are many methods that have been proposed for
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continuous k-NN queries over moving objects in spatial
database domain. Most of them focus on reducing the
number of updates to the indexes. In order to achieve
this, the trajectories of moving objects are modelled by
some linear functions, thus an R-tree can be built us-
ing time as a function[15,16]. Compared to these work,
our problem setting is for distributed environment and
we do not assume the existence of a centralized index.
Moreover, we have the logical communication cost as a
constraint to the k-NN queries.

k-NN queries over P2P systems can be classified into
search over unstructured P2P and structured P2P. For
structured P2P systems, data allocation strategies are
important for k-NN search. Distributed Hashing Table
(DHT) is often used to allocate data, such as CAN[17],
Chord[18], Pastry[19], and Tapestry[20], which use uni-
form hash functions and achieve good load balance.
However, these hashing functions destroy data local-
ity (data that are similar should be allocated near to
each other in the space). Complicated queries such as
k-NN have to rely on multi-cast or additional indexes.
Some locality-preserving data allocation approaches are
also proposed, such as P-Grid[21], P-Ring[22], Baton[11],
Vbi-tree[10], and Mercury[23]. The basic idea of these
approaches is to keep data locality over the attribute
as much as possible. For unstructured P2P systems,
very little work has been done so far. Gnutella[24] uses
flooding techniques to do k-NN search. Compared to
the above work, our work focuses on continuous con-
strained k-NN search over unstructured P2P system.
Besides finding the k-NN, we have to guarantee that
searched value satisfies the value predicate specified in
the query. Furthermore, in contrast to the traditional
setting of P2P systems that each peer maintains static
data, a peer in our system maintains dynamic data.

Basically, the research in this area can be classified
into two categories: indexing structures and search-
ing algorithms. In the first category, many indexing
structures have been proposed to speed up the retrieval
efficiency, such as R-tree[25], K-d tree[26], TV-tree[27],
SR-tree[28], and X-tree[29]. If the distance function dist
on D is a metric distance function, indexing structures
on metric space can be applied, such as GH-tree[30],
GNAT[31], SA-tree[32], M-tree[33], and MVP-tree[34]. In
the second category, many efficient search algorithms
have been proposed to reduce the number of disk page
access during a k-NN search[1,2,4]. One common as-
pect of the above indexing structures and searching al-
gorithms is that they work on a single (central) data
set. On the contrary, our work on k-NN search fo-
cuses on a distributed environment, specifically, in an
unstructured P2P system. Furthermore, in contrast to
the traditional setting of P2P systems that each peer

maintains static data, a peer in our system maintains
dynamic data.

8 Experimental Study

In this section, we built a peer-to-peer simulator to
evaluate the performance of our proposed system over
large-scale networks. The simulator simulates an un-
structured P2P network by randomly producing input
parameters including (1) the number of peers, (2) k
value, (3) various distribution, (4) the number of groups
of peers, and (5) the number of update peers. We used
the number of conveying message (labeled as “# of mes-
sage”) to measure the performance of the system and
each message consists of a 2D location and a value.

To evaluate the cost of query processing, we tested
the network with different number of peers N from 200
to 3000. Each peer contains a set of data from 1K to
200K with two dimensional location values and one non-
location value. We generated two data sets. Data set
1 conforms to uniform distribution and data set 2 con-
forms to normal distribution. We constructed all kinds
of the physical relationships among the peers, which are
the semi-surrounded, embedded, and non-overlapping
relationship. We randomly built the logical relation-
ship among the peers. All the approaches were imple-
mented in C++ and run on Intel XEON(TM) 3.2GHz
dual-CPU with 2GB RAM on Windows 2003 Server.
For each setting, we tested algorithms by running it 10
times to compute the average result.

Comparison of Different k-NN Searches. We com-
pared the communication cost (represented as # of mes-
sages) of getting k-NN results using different search
strategies. We ran 10 different k-NN queries whose
locations and predicate values are randomly speci-
fied. Besides flooding search, we tested two radius-
convergence approaches and two radius-expansion ap-
proaches. Radius-convergence approaches include ran-
dom search and RA-based search[35], whereas radius-
expansion approaches include exhausted search every
dominate groups (EX in short) and partition-based
search (PA in short). We used two data sets with
the uniform and normal distributions, respectively. In
addition, we also compared three straightforward ap-
proaches according to the ranking of the minimal and
the maximal geographical distances and the shortest
path in logical graph, respectively.

Fig.10 shows the conveying of messages of these al-
gorithms uses two data sets conforming to the uniform
and normal distributions. We let the number of peers
vary between 500 and 3000, and ran 10 different 100-NN
queries. Figs.10(a) and 10(b) compare five approaches
using data set 1. They show that flooding search costs
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Fig.10. Comparison of different k-NN searches. (a) (b) Uniform distribution. (c) (d) Normal distribution.

Fig.11. Effectiveness of geographical distances and logical paths.

the most conveying messages, whereas PA uses the least
conveying messages. Similar to RA approach, our pro-
posed PA approach is independent on the number of
peers. Fig.10(c) shows the similar result using data set
2. Figs.10(b) and 10(d) show the number of convey-
ing messages when fixing the number of peers to 1000
and varying k from 20 to 100. They all show that PA
outperforms the other approaches, and PA always uses
least messages to get k-NN nearest results.

We further compared PA with three heuristic ap-
proaches, which are (i) peers with shortest logical paths
take precedence (LP in short), (ii) peers with short-

est minimum distances to q take precedence (MIND
in short), and (iii) peers with shortest maximum dis-
tances to q take precedence (MAXD in short). Fig.11
shows the number of conveying messages on data set 1.
Fig.11(a) shows the result of 100-NN queries when the
number of peers (i.e., the size of the system) vary from
300 to 3000. Fig.11(b) shows the result of k-NN queries
when varying k from 20 to 100 over 1000 peers. LP uses
the most messages to get the results since a shorter log-
ical path does not mean a shorter geographical distance
to q. MIND and MAXD have the similar performances
since both of them give priority to geographical dis-
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tances. When we increased the number of peers in the
system, MIND uses less messages than MAXD since
MIND takes larger probabilities to get closer data than
MAXD. The reason why PA always uses the least mes-
sages is that PA considers not only geographical dis-
tances but also logical probing paths.

Comparison of Filtering Capabilities. We tested the
capabilities of filtering peers using PA and RA ap-
proaches on data set 1. We first changed the number
of k values from 20 to 70. Fig.12(a) shows the filtering
capability decreased when k values is increased. RA
has less filtering capability than PA. The reason is RA
is a radius-convergence approach that gradually shrink
query radius. It keeps probing at least k peers for each
iteration until all peers in the shrinking query radius
have been probed. Whereas, PA is a radius-expansion

approach that when k closest data is met, it can stop.
Fig.12(b) shows the filter capabilities when varying the
number of peer groups. It shows that PA has better fil-
tering capability than RA. When the peer group number
increased to 16, the filtering capability of PA climbs to
a peak value 52%, whereas RA has no peak value. It
proved that the filtering capability of PA depends on
the chosen number of groups in all dominate group set,
whereas RA does not since RA only considers the first
k ranked peers using geographical distances and logical
graphs.

Effectiveness of Histogram. Now we show the effec-
tiveness of histogram. We compared two PA algorithms,
one is the approach by which probe and query peers are
executed at the same round (i.e., without histogram),
the other is the approach by which histograms are used

Fig.12. Filtering capabilities.

Fig.13. Effectiveness of histogram for continuous query. (a) Insertion. (b) Deletion. (c) Expansion. (d) Shrinking.



554 J. Comput. Sci. & Technol., July 2008, Vol.23, No.4

during the first probe round. On the basis of the col-
lected histograms from peers, we calculated an esti-
mated query radius to process the query. Fig.13 shows
that for different numbers of peers, the histogram tech-
nique always helps to save significant conveying mes-
sages than the PA approach without histogram.

DM vs. R-Tree Experiment. We compared the up-
date performance of peers’ join and leave using our pro-
posed domination model (DM) and the representative
R-tree, respectively. We applied the insertion and dele-
tion operations on DM and the R-tree. Fig.14 shows
the CPU time as a function of the number of update
peers using data set 1. We used 2500 as the number
of peers that were managed by DM and R-tree, respec-
tively. We randomly selected a certain number of up-
date peers (insertion or deletion), let it vary from 300
to 1800. Fig.14 shows that DM spends much less CPU
time on maintaining updates than R-tree when peers
dynamically change.

Fig.14. Comparison of R-tree and DM model.

To summarize, the PA with a histogram outperforms
other approaches significantly under all settings. Fur-
thermore, according to our experiments, we obtained
the final results: (i) the proposed PA approach outper-
forms most of the other heuristic algorithms, (ii) the
novel adaptive histogram can save more communica-
tion cost, and (iii) our technique can efficiently process
continuous k-NN queries in a distributed, dynamic, and

large scale environment.

9 Conclusion

This paper has investigated the new problem of pro-
cessing the continuous constrained k-NN queries over an
unstructured P2P system, and proposed a domination
model to dynamically partition the search space and
several methods to efficiently filter peers in the search
space. Moreover, this paper has also extended our tech-
niques to cope with updates of peers and their data.
The experimental results on the two synthetic data sets
have shown that the PA with a histogram outperforms
the other approaches significantly under all the cases.
Furthermore, the experiments have also shown that (i)
the algorithms proposed outperform most of the other
heuristic algorithms, (ii) the novel adaptive histogram
can save more communication cost, and (iii) our tech-
nique can efficiently process continuous k-NN queries
in a distributed, dynamic and large scale environment.
Future work includes incorporating local index to the
proposed domination model to efficiently maintain up-
dates in the unstructured P2P system.
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