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Abstract

Multi-resolution Triangular Mesh (MTM) models are widely used to improve the performance of large terrain

visualization by replacing the original model with simplified one. MTM models, which consist of both original and

simplified data, are commonly stored in spatial database systems due to their size. The relatively slow access speed

of disk makes data retrieval the bottle-neck of such terrain visualization systems. Existing spatial access methods

proposed to address this problem rely on main-memory MTM models, which leads to significant overhead during

query processing. In this paper, we approach the problem from a new perspective and propose a novel MTM called

Direct Meshes that is designed specifically for secondary storage. It supports available indexing methods natively

and requires no modification to MTM structure. Experiment results, which are based on two real-world datasets,

show an average of 5-10 times performance improvement over the existing methods.

Index Terms

Multi-resolution visualization, spatial database systems

I. I NTRODUCTION

T Errain visualization plays an essential role in a wide range of applications such as gaming [1],

[2], virtual reality [3], [4], 3D environmental analysis [5], [6], and many GIS applications [7], [8].

Terrain data obtained from the natural environment is usually very large. For instance, the US Geology

Survey (www.usgs.gov) provides digital elevation data covering most parts of the US, sampled at 10-

or 30-meter resolution. The volume of entire dataset is measured in terabytes. The visualization of such
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datasets usually requires excessive resources and the resolution can be unnecessarily high in many cases.

A typical scenario is that when a terrain with millions of polygons is displayed on a device with limited

resolution, it appears to be overly dense and illegible. Fig. 1(a) shows an example with a relatively small

number of triangles (10,000), but the top-right part of the terrain already appears to be unnecessarily

dense.Multi-resolutiontechniques are introduced to address this problem by replacing the original terrain

(a) 10,000 triangles (b) 10,000 triangles with texture (c) 1,000 triangles (d) 1,000 triangles with texture

Fig. 1. Terrain at multiple resolutions

model with a simplified approximation (mesh) constructed according to application requirements [9]. It

reduces the resource requirements significantly while introducing an acceptable sacrifice of visual quality.

Following the previous example, a simplified mesh is shown in Fig. 1(c) with only 1000 triangles. The

difference is hardly noticeable after texture is applied (Fig. 1(b) and 1(d)).

Mesh construction, which is essentially the simplification of the original model, is expensive due to

the usually large size of the terrain dataset. The possible benefit of using a mesh can be overcome by its

expensive construction. The fact that terrain data can be used at any resolution and one mesh can have

varying resolutions means that it is not feasible to pre-generate meshes at a fixed number of resolutions.

An example that requires mesh with varying resolution is shown in Figure 2; to have a uniform-resolution

mesh on display (Fig. 2(a)), the actual resolution needs to decrease with the distance from the viewpoint

(Fig. 2(b)).

Multi-resolution Triangular Mesh (MTM)models are proposed to address this problem. Most MTM

models adopt a tree-like data structure, and each node stores an approximation of the union of its child

nodes’ data. Mesh construction starts from the root, which contains the least detailed data, and this coarse
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(a) Display (b) Mesh

Fig. 2. Mesh with variable resolution

mesh is refined progressively by recursively replacing part of it with the more detailed data stored at child

nodes until the desired resolution is achieved (the details are provided in Section II). Since it starts with

a very simple mesh rather that the original model, this procedure can significantly reduce construction

costs. The initial coarse mesh can be refined to any resolution available and every part can be refined to

a different level of detail, which results in a mesh with varying resolution.

MTMs are usually very large because they include both the original model and simplified data. This

makes spatial database systems a common choice for their storage. Since the disk access speed is several-

order slower than that of main memory, data retrieval becomes the bottle-neck for terrain visualization

systems relying on spatial database systems [10], [11]. This problem has attracted significant research

attention from both the computer graphics and database research communities. While the graphics com-

munity mainly focuses on designing new MTMs suitable for secondary storage [12], [13], [14], database

researchers have been proposing spatial access methods to improve data retrieval efficiency [15], [16], [17],

[10], [11]. The former approach usually requires the rebuilding of MTM, which is very time consuming;

the latter can avoid this problem, but they rely on the tree-like MTM structure, which commonly leads to

significant retrieval overhead during query processing. In this paper, we follow the spatial-access-method

approach but address the problem from a new perspective. We propose a new MTM calledDirect Meshes.

Different from both existing approaches, the Direct Meshes is a secondary-storage MTM that requires

no change to the original MTM structure (no rebuilding) and is designed to seamlessly integrate with
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well-studied spatial access methods (such as the R∗-tree [18] used in this paper). An average improvement

of 5-10 times is observed from the evaluation results when comparing against the best existing methods.

A shorter version of this work appeared in [19]. The previous work is extended from several aspects.

First, formal definitions of the problem and relevant concepts are included; a general multi-resolution

visualization query is introduced to unify the two types of queries in the previous work. Secondly, the

Direct Meshes construction algorithm is presented, together with its correctness proof and running time

/ storage requirement analysis; the design issues such as the topology encoding scheme and the choice

of spatial access method are discussed in detail. Thirdly, the query processing algorithm based on the

new multi-resolution visualization query replaces the old one; its cost analysis and comparison against

existing methods are also added. Fourth, the core of the Direct Meshes, the topology encoding scheme,

is enhanced to eliminate the inefficient data retrieval discovered in the previous performance study. Last

but not least, extensive test results, including the comparison between the Direct Meshes with different

encoding schemes, are added to make the performance evaluation more comprehensive.

The remainder of this paper is organized as follows. The problem is defined in Section II after the

introduction to MTM visualization. Related work is reviewed in Section III. The topological information

required for multi-resolution visualization and its encoding scheme in Direct Meshes are discussed in

Section IV. The Direct Meshes is introduced in Section V, together with its construction algorithm,

correctness proof, and complexity analysis. Section VI discusses the query processing using the Direct

Meshes, which includes the choice of spatial access methods, cost analysis, and two optimization tech-

niques. A performance study using two sets of real-life terrain data is reported in Section VII. Finally,

the paper is concluded in Section VIII.

II. M ULTI -RESOLUTION V ISUALIZATION

In this section, we start with an overview of multi-resolution visualization, followed by the definition

of selective refinement query, which is the main focus of this paper. After that,Progressive meshes— one

of the most popular MTMs — is used as an example to illustrate selective refinement query processing.
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A. Subdivision and Mesh

Let V = {v1, ..., vn} be a finite set of vertices in a domainD ⊆ R2. A subdivisiondefined byV is a

plane connected straight-line graph havingV as set of vertices [20]. Such subdivision can be expressed

as a tripleS = (V,E, F ), where the pair(V,E) is the above mentioned graph, andF is the set of

polygonal regions (or faces) induced by this graph. Common choices forS are: triangular subdivision,

where every regionfi ∈ F is a triangle;quadrilateral subdivision, where every regionfi a quadrilateral.

In this paper we only consider the former case, since it is always possible to convert a quadrilateral

quadrilateral subdivision into a triangular one.

Given a triangular subdivisionS = (V, E, F ) and a set of functionsΦ : V → R, a meshM(S, Φ) is a

three-dimensional connected straight-line graph that can be expressed as a triple(V ′, E ′, F ′) so that:

1) ∃ vi = (vi.x, vi.y) ∈ V iff ∃ v′i ∈ V ′ so thatv′i = ψ(vi) = (vi.x, vi.y, φi(vi.x, vi.y));

2) ∃ ei = (ei.vi1, ei.vi2) ∈ E iff ∃ e′i ∈ E ′ so thate′i = (ψ(ei.vi1), ψ(ei.vi2));

3) ∃ fi = (fi.vi1, fi.vi2, fi.vi3) ∈ F iff ∃ f ′i ∈ F ′ so thatf ′i = (ψ(fi.vi1), ψ(fi.vi2), ψ(fi.vi3)).

where

• Φ = {φ1, φ2, . . . , φn};

• ψ : V → V ′ is a function that mapsvi to v′i according toφi;

• vi.x andvi.y are thex andy coordinates ofvi respectively;

• ei.vi1 andei.vi2 are the two end vertices of edgeei;

• fi.vi1, fi.vi2, andfi.vi3 are the three end vertices of trianglefi.

B. Simplification and Refinement

A mesh M(S, Φ) provides an approximation for the original terrain surface and it can be further

simplified or refined by increasing or reducing the number of vertices respectively. To define mesh

simplification and refinement, we introduce some preliminary notations. The boundary of a meshM ,

a circular path of connected vertices and edges, is denoted asθ(M). Two meshesM1 and M2 are
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compatibleif they have the same boundary, i.e.,θ(M1) ≡ θ(M2), and this is denoted asM1 ↔ M2.

A mesh modificationconstructs a new mesh by replacing a subset of the original mesh, which is a mesh

itself, with a compatible mesh. A mesh modificationγ that changes meshM1 into meshM2 is denoted

asM1
γ−→ M2. A mesh modification is a:

1) Simplification, if |M1.V | > |M2.V |;

2) Refinement, if |M1.V | < |M2.V |.

where |M1.V | and |M2.V | are the vertex number ofM1 andM2 respectively. Note that a simplification

(M1
γ−→ M2) is invertible to a refinement (M2

γ′−→ M1), and vice versa.

C. Approximation Error and Selective Refinement Condition

A simplified meshM i = (V i, Ei, F i) is an approximation of the original meshMn = (V n, En, F n).

The similarity betweenM i andMn can be measured by the approximation error of vertices inM i. The

approximation error of a vertexvi ∈ V i relating to the original meshMn is:

ε(vi) = |φ(vn.x, vn.y)− φi(v
i.x, vi.y)|

wherevn is on Mn and (vn.x, vn.y) = (vi.x, vi.y). In the case thatvn is not in V n, φ(vn.x, vn.y) can

be obtained from the facefn ∈ F n that containsvn.

With approximation error, required mesh can be specified byselective refinement condition, which

defines the maximum acceptable error for every part of the mesh. Formally, given a domainD ⊆ R2, a

selective refinement condition is a functionδ : D → R that determines the maximum acceptable error

δ(v.x, v.y) for everyv ∈ D. A meshM satisfiesa selective refinement conditionδ if all its vertices have

approximation error no greater than the value specified by the condition, i.e.∀v ∈ M.V ,

ε(v)




≤ δ(v.x, v.y), v ∈ D (1)

arbitrary value, otherwise (2)
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D. Multi-Resolution Triangular Mesh

A multi-resolution triangular mesh (MTM) representation of a meshMn can be built by recursively

applying a sequence of simplifications( αn−1, αn−2, ..., α0) to Mn. Each simplification step produces a

simpler mesh, i.e.,M i−1 (results fromM i αi−1−→ M i−1) has fewer vertices thanM i. The sequence of

meshes

Mn αn−1−→ Mn−1 αn−2−→, · · · , α1−→ M1 α0−→ M0

have a monotonically reducing number of vertices. Due to the large size of the original meshMn and the

fact that mesh simplification is invertible, the common approach stores the simplest mesh together with a

sequence of refinement, i.e.,

M0 β0−→ M1 β1−→, · · · , βn−2−→ Mn−1 βn−1−→ Mn

whereβi is the inverse of theαi, 0 ≤ i ≤ n− 1. If we regard the initial meshM0 as a refinement from

a null mesh, the set of refinementsR = {M0, β0, β1, . . . , βn−1} is the multi-resolution triangular mesh

(MTM) representation of meshMn.

Early MTM models only allow construction of meshes that appear during simplification. This is achieved

by only allowing a refinement sequence that follows the exact reverse order of simplification. Such an

approach guarantees a proper triangulated mesh given it is checked during MTM construction. However,

this total ordering can be quite restrictive for selective refinement query. Later approaches adopt a less

restrictive partial ordering, which can be described as a directed acyclic graph (DAG) whose nodes

represent refinement and edges are the dependency among refinements. An MTM based on such partial

ordering can be defined as a DAGG = (R, ER), whereR = {M0, β0, β1, . . . , βn−1} is the set of mesh

refinements andER is a set of directed edges defined onR × R such that there is a directed edge

(βi, βj), i 6= j if βj refines part of the mesh results fromβi. To avoid confusion, we refer to the point in

a mesh as “vertex” and the point in an MTM as “node” from here on.
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E. Selective Refinement Query

Selective refinement constructs a mesh according to a given conditionδ. Usually there are multiple

meshes that meet the selective refinement condition because only the upper bound of mesh error is given.

Among them, the one with the least number of vertices is commonly preferred as the result of a selective

refinement. Given an MTMG and selective refinement conditionδ, a selective refinement queryQ(G, δ)

returns a meshM where:

1) M satisfiesδ;

2) |M.V | ≤ |M i.V | for all δ-satisfying meshesM i that can be constructed fromG.

We say meshM is feasiblerelating toδ.

In this paper we focus on selective refinement query processing in multi-resolution terrain databases.

Our goal is to reduce the data retrieval for a selective refinement query. One of the main constraints is to

support selective refinement with varying resolution as described in Section I. Formally, given an MTM

G and a selective refinement conditionδ, we try to minimize the overall I/O costDA(Q(G, δ)), whereδ

is a function of mesh vertex location.

F. Progressive Meshes

For this paper we use theProgressive Meshes[21], one of the most popular MTMs, as an example to

illustrate our work. The Progressive Meshes is built upon a simplification process callededge collapse, in

which one edge collapses into a new vertex (Fig. 3(a)). The new vertex (v9) is recorded as the parent node

of the two end nodes (v1 andv2) of the collapsed edge (Fig. 3(b)). Edge collapse is repeated recursively

on the resulting mesh until only one vertex is left, and the resulting structure is an unbalanced binary tree

(Fig. 3(c)). Progressive Meshes stores the final mesh (one vertex) and a set ofvertex splits(the inverse

of edge collapses, Fig. 3(a)). Progressive Meshes can be defined as a directed binary treeGp = (Np, Ep)

where every noden in Np represents a vertex and every edgee in Ep pointing from the parent to its

children.
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(a) Edge collapse and vertex split (b) Edge collapse

structure

(c) Tree structure of Progressive

Meshes

Fig. 3. Progressive Meshes

A linear-time incremental algorithm is proposed in [22] for selective refinement query. The algorithm

starts with a mesh with root only and iterates through its vertex list, during which vertex, whose approx-

imation error is greater than the maximum acceptable error, is replaced with its children recursively. The

algorithm stops when the mesh satisfies the selective refinement condition. The pseudo code in Algorithm

1 outlines the majors steps.

Algorithm 1 : Selective Refinement Algorithm for Progressive Meshes

Input : Progressive MeshesGp = (Np, Ep), selective refinement conditionδ

Output : meshM

M ← M0;1

for every vertexv ∈ M.V do2

if ε(v) > δ(v) then3

removev from M.V ;4

appendv1, v2 (the children ofv) to M.V ;5

endif6

endfor7

return M8
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III. R ELATED WORK

In this section, we survey previous work that employs spatial access methods to improve the I/O

performance of selective refinement query processing. These methods require little or no modification

to the existing MTM. Not included are methods that require MTM rebuilding and those that can only

support grid or right-triangle mesh.

Algorithm 1 discussed in the last section was designed for main-memory Progressive Meshes. Its

progressive refinement nature makes it inefficient for secondary-storage data access. The fact that the

necessity of every node (except the root) depends on its parent, i.e., a node is required only if its parent’s

approximation error is greater than the value specified by the selective refinement condition, makes it

difficult to retrieve all necessary data together. In fact, the data for every vertex split (two child nodes)

has to be fetched individually. Therefore, the data fetch of a selective refinement query is composed of

many retrievals with every small amounts, which is very inefficient in terms of query processing. Similar

problem exists for any MTM that is based on a DAG structure.

The LOD-R-tree [23] is one of the first attempts among the various spatial access methods proposed

to address this problem. An LOD-R-tree is constructed by building a traditional R-tree into an MTM in

the following way. First, a two-dimensional R-tree is created on the vertices of the original model. Then

approximation mesh is added to the internal node in a bottom-up fashion by merging and simplifying the

meshes stored at its child nodes. Selective refinement query is converted to a range query whose query

window is the domain of the selective refinement condition. The query processing algorithm traverses down

the LOD-R-tree and stops at the level where the mesh resolution is sufficient for the LOD condition. The

main problem of the LOD-R-tree is that it relies on the hierarchical structure of the MTM and uses a

progressive refinement approach similar to that of the main-memory algorithm. This introduces significant

overhead caused by multiple retrievals. Also, the LOD-R-tree does not support mesh with continuously

changing resolution because data stored at the internal nodes always have uniform LOD. Another problem

is that the mesh size at internal nodes is pre-defined, and the entire mesh needs to be retrieved even if
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only a fraction is needed, which can cause considerable redundant data retrieval.

Hoppe [15] suggests an approach similar to the LOD-R-tree, but using a two-dimensional Region

Quadtree [24] instead. Its construction and query processing are analogous to those of the LOD-R-tree;

therefore they share the same problems.

Shou et al. improved the LOD-R-tree by including visibility data and proposed a new indexing structure

called the HDoV-tree [10]. Visibility information is stored at every node of the LOD-R-tree, so occluded

parts can be excluded during query processing and low resolution is used for areas that are partially

visible. However, the HDoV-tree does not address the problems associated with the LOD-R-tree.

The LOD-quadtree proposed by Xu [11] treats every node in an MTM as a point in thex− y− e (“e”

stands for “approximation error”) three-dimensional space and ignores the DAG structure. The selective

refinement query is translated into a three-dimensional range query defined by the selective refinement

conditionδ and its domainD. Therefore, one retrieval fetches the majority of data. However, not all the

necessary nodes are included, and the missing ones still need to be retrieved individually.

In summary, all these methods try to improve the retrieval efficiency of selective refinement query

by avoiding fetching data separately. However, this can be totally avoided and it is usually achieved at

the cost of being less flexible and retrieving extra data. More importantly, they all keep the progressive

refinement routine for mesh construction, which is inherited from the main-memory MTM. We believe

avoiding progressive refinement is the fundamental approach that secondary-storage MTM should follow,

which is the main motivation of our work on the Direct Meshes.

IV. M ESH TOPOLOGY

Before introducing the Direct Meshes, we discuss the selective refinement query processing in more

detail. Essentially, the feasible meshM of a selective refinement conditionδ defines a subtreeT of

the Progressive Meshes. Fig. 4 shows a sequence of refinements during a selective refinements query

processing and the subtree of Progressive Meshes defined by this query. The leaf nodes of this subtree

L(T ) are the vertices in the resulting meshM , i.e., L(T ) ≡ M.V . The topology ofM , i.e., edges among
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the vertices, are obtained implicitly from the structure ofT . For instance, there is always an edge between

two children by the definition of vertex split. We believe that storing the topology information using MTM

tree structure — which is the key characteristic of main-memory MTM — is the major cause of the poor

performance of selective refinement query processing, because it is well known that the relational model

used in many spatial database systems cannot efficiently handle deductive reasoning, such as processing

the parent-children relationship in the Progressive Meshes.

(a) Selective refinements (b) Subtree in Progressive

Meshes

Fig. 4. Selective refinement and its subtree in the Progressive Meshes

A naive solution is to pre-compute and store the mesh topology information, which consists of every

possible edge between vertices represented by MTM nodes. The fact that a vertex can connect to other

vertices with a wide range of approximation error makes the total number of possible edges prohibitively

large. Specifically, if vertexv can connect to vertexv′, it can also connect to the parent ofv′, because a

parent vertex connects to all the neighboring vertices of its children. Similarly,v can connect to the child

vertices ofv′, because at least one child vertex ofv′ connects tov. To be precise:

1) If v can connect tov′, v can connect to any ancestor ofv′ up to v′′ (excludingv′′) wherev′′ is the

common ancestor ofv andv′ of the lowest height in the Progressive Meshes;

2) If v can connect tov′, v can connect to at least one descendant ofv′ recursively till leaf level.

Theorem 4.1:Given a Progressive MeshesGp = (Np, Ep), the total number of possible edges is

O(|Np|2), where|Np| is the cardinality ofNp.

Proof: The previous observation implies that the number of possible edges for a given vertex is
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proportional to the level of vertices it can connect to, which is proportional to the height of the Progressive

Meshes. Since a Progressive Meshes is an unbalanced binary tree, its height is betweenO(log |Np|) and

O(|Np|). Therefore, the total number of possible edges isO(|Np|2) in the worst case.

A naive method to store all possible edges is not practical due to the substantial storage overhead and

resulting increased I/O costs.

Another option is to encode each node as an MBR (minimum bounding rectangle) of its descendants.

As a result, the MBRs of required nodes intersect with the domain of selective refinement conditionδ.

This, combined with the approximation error range defined byδ, can be used to identify the needed

nodes in MTM. However, the MBRs of the nodes in the upper part of MTM cover a large area and tend

to overlap with each other. Such overlapping can significantly degrade the search performance of most

available spatial access methods, which are based on data partition.

The Direct Meshes only encodes selected topology information, which avoids storing the large amount

of possible edges and can answer a selective refinement query without relying on MTM structure. The

details are elaborated in the next section.

V. D IRECT MESHES

To introduce Direct Meshes, we need to definenode approximation error. Note that this is different

from the vertex approximation error (defined in Section II), which is the absolute difference between the

height of a vertex (φi(v
i)) and that of its corresponding vertex in the original model (φ(vn)). In an MTM,

the error introduced by a node should reflect the error of all its descendants, i.e., this vertex accumulates

the distortion that all its descendant nodes bring to the mesh. Therefore, given a Progressive Meshes

Gp = (Np, Ep), the approximation error of noden ∈ Np that represents vertexv is:

e(n) =





0, if n is a leaf node (3)

max(ε(v), e(n.child1), e(n.child2)), otherwise (4)

wheren.child1 andn.child2 are the two children ofn. This definition guarantees that node approximation
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error value increases monotonically along any path from a leaf to the root.

Another important concept of the Direct Meshes isLOD interval (“LOD” stands for “Level Of Detail”).

For a nodeni ∈ Np, its LOD interval σ(ni) ⊆ R is an interval that

σ(ni) =





[ e(ni), +∞ ), if ni is the root (5)

[ e(ni), e(ni.parent) ), otherwise (6)

whereni.parent is the parent node ofni.

Given a Progressive MeshesGp = (Np, Ep), a Direct MeshesGd = (Np, Ep, Ed) is a multi-relational

graph with an additional relationEd, which is a subset of the cartesian productNp ×Np. Specifically:

Ed = {(ni, nj) | ni, nj ∈ Np, i 6= j, ni ∼ nj, σ(ni) ∩ σ(nj) 6= ∅}

whereni ∼ nj denotes thatni can connect tonj. Ed is the set of possible edges whose end nodes have

overlapping LOD intervals. We name themcandidate edges. The candidate edge set is a subset of all

possible edges, and its size is much less than that of the latter because the LOD-interval-overlapping

constraint limits the number of different resolution levels a candidate edge can cross. In fact, the average

number of candidate edges for each node is a constant (proof is given later in this section). Thus, the size

of Ed is linear to the number of nodesO(|Np|).

Each node of a Direct Meshes has the following data structure:

ClassDirectMeshNode{

Integer NodeID;

Doublex, y, z;

Doublee; // node approximation error

DirectMeshNodeparent, child1, child2;

DirectMeshNodeArrayNb; // the other end node of candidate edges

}
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Algorithm 2 : Direct Meshes Construction

Input : Progressive MeshesGp = (Np, Ep)

Output : Direct MeshesGd = (Np, Ep, Ed), every noden ∈ Np has a list of candidate edgesNb

Ne ← the ordered set of all nodes inNp with a descending approximation error (ancestor is ahead1

of descendant if they have the same error) ;

while Ne is not emptydo2

n0 ← the first node inNe;3

removen0 from Ne;4

if n0.parent 6= null then5

n1 ← the other child node ofn0.parent;6

n0.Nb ← n0.Nb ∪ {n1} ;7

for every nodeni ∈ n0.parent.Nb do8

if n0.Nb ∩ {ni} = ∅ AND σ(ni) ∩ σ(n0) 6= ∅ AND ni ∼ n0 then9

n0.Nb ← n0.Nb ∪ {ni} ;10

Nd
i ← the set of descendent nodes ofni whose LOD interval overlaps with that ofn0;11

for every nodend
j ∈ Nd

i do12

if n0.Nb ∩ {nd
j} = ∅ AND ni ∼ n0 then13

n0.Nb ← n0.Nb ∪ {nd
j} ;14

endif15

endfor16

endif17

endfor18

endif19

endw20

Algorithm 2 outlines the major steps of the Direct Meshes construction. The algorithm scans the node
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setNp in a descending-approximation-error order and finds the candidate edge setNb for every node. It

starts with ordering the nodes according to their approximation error (line 1). For every noden, the first

candidate edge is the one between itself and the node sharing the same parent (line 5-7). To find other

candidate edges, the algorithm checks the nodes in the parent candidate edge set and their descendants

(line 8-18). For algorithm correctness proof, we need the following lemma:

Lemma 5.1:Given a noden and its candidate edge listn.Nb, n′ (the parent node ofn) and its candidate

edge listn′.Nb, for every nodeni ∈ n.Nb (except the node (n0) sharing the same parent),ni ∈ n′.Nb or

there is a noden′i ∈ n′.Nb such thatn′i is an ancestor ofni.

Proof: First, we show that for a nodeni, if ni ∼ n, thenni ∼ n′. Becauseni ∼ n, we can construct

a mesh that has(ni, n) as one of its edge and(n, n0) as another edge. Then, we can simplify the mesh

by collapsing edge(n, n0) into n′. There will be an edge(ni, n
′) in the new mesh, thereforeni ∼ n′.

This can be extended to any ancestor ofn, i.e., n′′ ∼ ni if n ∼ ni andn′′ is an ancestor ofn.

For a nodeni ∈ n.Nb, ni ∼ n, thereforeni ∼ n′. If σ(ni) ∩ σ(n) 6= ∅, ni ∈ n.Nb, proved. Otherwise,

e(ni.parent) < e(n′) becauseσ(ni) ∩ σ(n) = ∅ and e(n) ≤ e(n′). Let n′i be one of the ancestors

of ni. Becauseni ∼ n′, n′i ∼ n′. Becausee(n′i) ≥ e(ni), there is always an ancestorn′i such that

σ(n′i) ∩ σ(n′) 6= ∅, thereforen′i ∈ n′.Nb, proved.

Theorem 5.1:Algorithm 2 finds all the candidate edges in a Progressive Meshes.

Proof: To prove this, it is sufficient to show that the algorithm finds all the candidate edges for

every node. The root is the only node that has no parent. It is obvious that the root has no candidate edge,

because the only possible mesh that has the root is the one that has the root as the only vertex. Except

the root, every node has a parent. From Lemma 5.1 we know all the candidate edges of a node can be

found by searching the nodes in its parent candidate edge set and their descendants. The ordering of the

nodes guarantees that parent candidate edges are always computed before that of its children. Therefore,

the algorithm finds all the candidate edges for every node.

Next, we discuss the time complexity and storage requirement of the algorithm, which requires the
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following lemmas.

Lemma 5.2:Given two intervalsA,B ⊆ R that are both partitioned into a set of sub-intervals, i.e.,

A = ∪m
k=1ak, ai ∩ aj = ∅, i 6= j, 1 ≤ i, j ≤ m

B = ∪n
k=1bk, bi ∩ bj = ∅, i 6= j, 1 ≤ i, j ≤ n

For 1 ≤ i ≤ m, 1 ≤ j ≤ n, there is ainterval edge(ai, bj) if ai ∩ bj 6= ∅. The maximum total number

of interval edges (max(|Ei|)) is m + n− 1.

Proof: This can be proved by induction.

• Base case:m = 1, n = 1. |Ei| = 0 whenA ∩B = ∅; |Ei| = 1 otherwise. Therefore,max(|Ei|) = 1

• Inductive step: assume thatmax(|Ei|) = k − 1 whenm + n = k.

Let m+n = k+1. Without loss of generality, we assume that the increased partition is introduced by

dividing an existing partitionai ⊂ A at pointp. It is obvious that|Ei| will not change if{p}∩B = ∅;

|Ei| will increase by 1 otherwise. Thereforemax(|Ei|) = (k − 1) + 1 = k.

Based on Lemma 5.2, we have the following lemma.

Lemma 5.3:Given a Direct MeshesGd = (Np, Ep, Ed), the total number of candidate edges|Ed| is

O(|Np|).

Proof: The Progressive MeshesGp = (Np, Ep), which is a binary tree, can be divided into a set

of paths whose approximation error changes monotonically. For instance, Fig. 5 shows a partition of the

Progressive Meshes in Fig. 4(b) into a set of such paths. Every path is an approximation error interval that

is the union of the LOD interval of every node. For example the left-most path is an error interval[0, +∞)

and it is the union of the LOD interval ofv15 ( [e(v15), +∞) ), v14 ( [e(v14), e(v15)) ), etc. According to

Lemma 5.2, the total number of candidate edges, which is equivalent to interval edge, is linear to the

total number of interval partitions, which in this case equals|Np|.

However, each path can be paired with more than one other path. If we take any mesh that can be

constructed fromGp, the average node degree is constant because it is a triangulation. In other words, on
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average one path can pair with a constant number of paths. Thus, the total number of interval edges is

k ·Np wherek is a constant, i.e., the total number of candidate edges isO(|Np|).

Fig. 5. Partition of a Progressive Meshes into a set of paths

Given the Lemma 5.3, we have the following theorem.

Theorem 5.2:Given a Progressive MeshesGp = (Np, Ep), the running time of Algorithm 2 isO(|Np|)

and it requiresO(|Np|) space for the candidate edge set of the resulting Direct Meshes.

Proof: The algorithm starts with sorting all the nodes inNp according to their approximation error.

Because the error decreases monotonically along any path from the root to leaf, this can be done in

O(|Np|) time. Within the main loop (line 2-20), removing the first noden0 from the sorted node setNe

takes constant time (line 3-4). It is the same for finding the noden1 sharing the same parent (line 6-7),

given that every node stores links to its parent and children. From Lemma 5.3, we know on average every

node has a constant number of candidate edges, therefore the next loop (line 8-18) repeats a constant

time. Similarly, we can show that the average node number inNd
i (line 11) is also constant. Thus, the

next loop (line 12-15) runs in constant time. Therefore, the running time of Algorithm 2 isO(|Np|). From

Lemma 5.3 we know there areO(|Np|) candidate edges in total, so it requiresO(|Np|) space.

In summary, the Direct Meshes requires no modification to the original MTM structure; it adds an

candidate edge set for every node, which can be done in linear time with linear space. Selective refinement

query processing using the Direct Meshes is discussed in the next section.
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VI. SELECTIVE REFINEMENT QUERY PROCESSING

Once the Direct Meshes is constructed, an important issue is the choice of spatial access method,

which needs to support the characteristics of the Direct Meshes database and selective refinement query.

As mentioned in [11], the distribution of MTM nodes in thex-y-e three-dimensional space is highly

skewed, which makes it unsuitable for spatial access methods based on regular space partition, such as

Region Quadtree [24]. As we will see later in this section, selective refinement query can be converted

to range query inx-y-e space, which makes it unnecessary for any particular method to support graph

traversing (the Direct Meshes is essentially a DAG), such as the connectivity-clustered access method

[25]. The results in [26] showed that the R-tree and the R+-tree have much better query performance than

the K-D-B-tree [27] when the datasets contain rectangles of varying size, which is very similar to the

case of selective refinement query (as we shall see later in this section). We did not use variations of Grid

File, such as the Multilevel Grid File [28], as they share a similar indexing structure as the K-D-B-tree.

Eventually, we choose the R*-tree [29] because it is reported to have the best performance among the

R-tree variations [29]. Every noden in a Direct Meshes is indexed using a R*-tree as a three-dimensional

line segment

((n.x, n.y, e(n)), (n.x, n.y, e(n.parent))

representing its LOD interval in thex− y − e space.

Given a Direct MeshesGd = (Np, Ep, Ed) and a selective refinement conditionδ (with domainD),

Algorithm 3 outlines the main steps of processing the queryQ(Gd, δ). The algorithm retrieves all the

nodes withinD and having an LOD interval that overlaps with the error interval(δmin, δmax) defined by

the selective refinement conditionδ (line 2). Thebase meshM0 is then built according to the selective

refinement conditionδ′ : D → δmax (line 3-11). M0 is further refined using the Algorithm 1 until the

required meshM is obtained. Note that only one retrieval is performed (line 2) and it fetches all the data

used by the algorithm.
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Algorithm 3 : Selective refinement using Direct Meshes
Input : Direct MeshesGd = (Np, Ep, Ed), selective refinement conditionδ

Output : meshM that is feasible regarding toδ

δmin/δmax ← the minimal / maximal approximation error value defined byδ over domainD;1

N ← set of nodes that are withinD and their LOD interval overlaps with(δmin, δmax);2

N0 ← set of nodes that are withinD and their LOD interval containsδmax;3

MeshM0 = (N0, E0), E0 ← ∅;4

for every nodeni ∈ N0 do5

for every nodenj ∈ ni.Nb do6

if nj ∈ N0 AND E0 ∩ {(ni, nj)} = ∅ then7

E0 ← E0 ∪ {(ni, nj)};8

endif9

endfor10

endfor11

MeshM ← Algorithm 1(M0,N );12

return M ;13

Theorem 6.1:Given a Direct MeshesGd = (Np, Ep, Ed), the meshM returned by Algorithm 3 is

feasible for the selective refinement conditionδ.

Proof: First, we show that meshM0 produced by the algorithm is a proper mesh. For every node

ni ∈ N0, its LOD interval containsδmax, therefore their LOD intervals all overlap with each other. Because

the Direct Meshes contains every possible candidate edge andE0 is a subset ofEd, then every edge in

E0 is contained in the candidate edge list of nodes inN0. Since all the nodes have overlapping LOD

intervals, meshM0 should be checked during the Direct Meshes construction. Any candidate edge that

may breach the validity of a mesh (such as causing an improper triangulation) should be excluded from

the Direct Meshes. Therefore, every candidate edge inE0 is necessary forM0. Thus, M0 is a proper
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mesh. OnceM0 is constructed, it is further refined by Algorithm 1, which is proved in the previous work

to produce the feasible mesh for the given selective refinement conditionδ.

A. Cost Analysis

The I/O cost of processing a selective refinement query using the Direct Meshes can be modeled as:

DA(Q) = I + t0 · d|N |/Be (7)

whereI is the cost of searching the R*-tree of the Direct Meshes to find the required nodes,t0 is the

cost of retrieving one disk page,|N | is the total number of nodes needed, andB is the number of nodes

each disk page can hold. Here we assume that the required nodes are stored continuously on the disk.

Although this cannot be fully achieved in practice, it can be seen as a close estimation of the real cost.

Similarly, the cost of previous methods can be modeled as:

DA(Q) = (I ′ + k · t0) · d|N ′|/(k ·B)e (8)

wherek is a nature number and indicates the node size of the indexing structure, because these methods

with customized index can have node size more than one disk page.

From the cost models we can see that the Direct Meshes incurs less I/O cost than the previous methods:

1) Less index scan. While index scan only occurs once using the Direct Meshes,d|N ′|/(k ·B)e scans

are needed previously because one is needed for every retrieval of child nodes during progressive

refinement.

2) Less redundant data. A node could contain unnecessary data, especially when the area it covers is

on the boundary of the domainD. Though this is unavoidable, the smaller the index node size, the

less the redundant data. The Direct Meshes, which have the minimal index node size one, retrieve

less redundant data than previous methods (index node sizek) when answering the same query.

3) Less MTM node retrieval. Previous methods always start from the MTM root to find the feasible

mesh; whereas the Direct Meshes can start from the lowest mesh resolution (δmax) and skip all
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the MTM nodes with lower resolution. The saving can be significant, especially when the required

mesh has a uniform resolution.

B. Query Optimization

The Direct Meshes works best when the selective refinement conditionδ specifies a constantδ0 overD,

in which case the base meshM0 is feasible and no redundant data is retrieved. Whenδ is not a constant,

we consider the case that the required resolution reduces linearly to the vertex distance to a reference

(such as the viewpoint). Such selective refinement produces a uniform resolution mesh on display (Fig.

2), and is arguably the most common query in multi-resolution visualization. Specifically, for a vertex

v ∈ D its required resolution valueδ(v) is:

δ(v) = δ0 − k · | v − τ0| (9)

wherek is a constant and| v − τ0| is the Euclidean distance betweenv and the referenceτ0. In this case

the total amount of data retrieval can be further reduced by using multiple queries. The idea is illustrated

in Fig. 6. For simplicity, we assume the reference is thex-axis, so we can use the projection on the

(a) Single-base

approach

(b) Multi-base approach

Fig. 6. Possible optimization using multiple queries.

(y, e) plane for discussion hereafter. Note that the results can be easily extended to the case where the

mesh is arbitrarily positioned. The area of rectangle in Fig. 6(a) indicates the total amount of data to

be fetched by thesingle-basealgorithm (Algorithm 3), whereas Fig. 6(b) shows a possible optimization
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using two queries. In the latter case the total data retrieval amount (indicated as the sum of the area

of two query rectangles) is less than that of using one query only (Fig. 6(a)). However, themulti-query

approach has its own overhead such as the cost of index scan for each query. Therefore, to minimize

the overall retrieval, the optimization algorithm should partition the domainD into a set of sub-domains

S(D) = {d1, d2, . . . , dn} so that the total retrieval costDA(D) = DA(d1) + DA(d2) + . . . + DA(dn) is

minimized. In practice, it is difficult to find the optimal partitionS(D) that minimized the retrieval cost.

Here we propose a heuristic approach that partitions the domain recursively, based on the retrieval cost

estimation.

The problem of analyzing the I/O cost of range queries using the R-tree and its variants has been

extensively studied in the past ([30], [31], [32], [33], [34], [35]). The number of disk accesses (DA) using

a three-dimensional R-tree indexTr with Nr nodes to process a range queryq can be estimated using the

following formula [32], [33]:

DA(Tr, q) =
Nr∑
i=1

(qx + wi) · (qy + hi) · (qz + di) (10)

whereqx, qy andqz are the width, height and depth of the query cube respectively, andwi, hi anddi are

the width, height and depth of nodeni of Tr respectively. All the values are normalized according to the

data space, which has a unit size (1× 1× 1). The value ofDA(Tr, q) includes the I/O cost of both index

scan and data retrieval. Formula (10) provides an estimation of I/O cost for single-base approach (Fig.

6(a)); when two queries are used (Fig. 6(b)), the total costDA′(Tr, q) is:

DA′(Tr, q) =
Nr∑
i=1

(qx1 + wi) · (qy1 + hi) · (qz1 + di) +
Nr∑
i=1

(qx2 + wi) · (qy2 + hi) · (qz2 + di) (11)

whereqx1, qy1, qz1 andqx2, qy2, qz2 are the width, height and depth of the two query cubes respectively.

More queries should be used only if it incurs less total I/O cost, i.e.,

DA(Tr, q)−DA′(Tr, q) > 0 (12)
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From Fig. 6, we have:

qx = qx1 = qx2 (13)

qy = qy1 + qy2 (14)

qz = qz1 + qz2 (15)

Note that formula (13) to (15) still holds if the query plane is not parallel to thex-axis, because this

change only affects the position of the query plane, not its size. Combining (10)-(15), we have:

Nr∑
i=1

(qx1 + wi)(qyqz − (qy1qz1 + qy2qz2)− hidi) > 0 (16)

i.e., so long as condition (16) holds, more queries should be used. As the size of the R-tree nodes (hi,

di, wi) can be obtained from the R-tree index, all the data required for this optimization is available.

From formula (16), we can know that the maximum reduction can be achieved when the value below is

maximized:

qy · qz − (qy1 · qz1 + qy2 · qz2) (17)

This gives the area difference between the rectangle of the single-base case (Fig. 5(a)) and the sum of

the area of the rectangles of the multi-base case (Fig. 5(b)). Asqy and qz are given by the query,qy · qz

is a constant. Therefore:

qy1 · qz1 + qy2 · qz2 (18)

is the only variable element. To maximize the value of (17), the value of (18) should be minimized,

which means that dividing the original query into two equal-sized sub-queries will give the maximum

I/O reduction. Given a Direct MeshesGd = (Np, Ep, Ed), its R*-tree indexTr, and a selective refinement

condition δ, Procedure “SelectiveRefinement-MultiBase” outlines the main steps of a query processing

algorithm that adopts the multi-base approach.
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Procedure SelectiveRefinement-MultiBase( Gd, Tr, δ)

MeshM ← ∅;1

D1, D2 ← the two partitions result from dividingD equally;2

if DA(D1) + DA(D2) < DA(D) then3

MeshM1 ← SelectiveRefinement-MultiBase(D1);4

MeshM2 ← SelectiveRefinement-MultiBase(D2);5

M ← M1 + M2;6

else7

M ← Algorithm3(Gd, δ(D));8

endif9

return M ;10

C. ROI Region

During performance analysis, we find that some vertices required for a selective refinement query are

not retrieved at step 2 in Algorithm 3 and need to be fetched individually during mesh construction,

which introduces I/O overhead and can be substantial for large datasets. After close examination, we find

that these points are not covered by the selective refinement domainD (indicated as the black points in

Fig. 7(a)), and are missed by the algorithm. However, they are essential for a correct mesh boundary.

ExpandingD so that it can cover these points is not a feasible solution because it is difficult to estimate

the amount of expansion, and unnecessary data can also be included.

To address this problem, we propose to associate every node with aROI region (“ROI” stands for

“Region Of Interest”). ROI region is the minimal two-dimensional interval that covers the node itself and

all its candidate edges. The ROI region of vertexv is shown in Fig. 7(b). Formally, given a noden with

its candidate edge listn.Nb, its ROI regionn.r is a two dimensional interval so that:

n.r = {(x, y) |xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax}
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(a) ROI feasible points that

are outside ROI

(b) ROI region ofv

b

Fig. 7. ROI region

where:

• xmin = min(n.x, ni.x |ni ∈ n.Nb);

• xmax = max(n.x, ni.x |ni ∈ n.Nb);

• ymin = min(n.y, ni.y |ni ∈ n.Nb);

• ymax = max(n.y, ni.y |ni ∈ n.Nb);

ROI region can be computed in constant time once all the candidate edges are identified; therefore including

ROI region will not change the running time of the Direct Meshes construction algorithm. Also, each

node requires constant space for an ROI region, thus it will not change the storage requirement of the

Direct Meshes.

With ROI region, each node in a Direct Meshes is encoded as a cube whose spatial extent is the ROI

region and the resolution extent is the LOD interval (Fig. 8). Accordingly, nodes can be identified by

Fig. 8. Direct Meshes nodes in thex-y-LOD space.

their ROI region, i.e., a node is retrieved if its ROI region intersects with the selective refinement domain.
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This is the only modification required for the query processing algorithm (Algorithm 3).

VII. PERFORMANCEEVALUATION

In this section, we evaluate the performance of the selective refinement query processing based on the

Direct Meshes. Two different versions of the Direct Meshes are implemented: one does not apply “ROI

region” (as described in Section V); the other does (as described in Section VI). Both Direct Meshes have

a three-dimensional R∗-tree built upon them for query processing. For comparison we also include the

LOD-quadtree and the HDoV-tree, because they provide the best performance among the available methods

that support MTM with DAG structure. The Progressive Meshes is implemented as described in [21]. The

LOD-quadtree is created according to [11]. The HDoV tree is constructed following the algorithms in

[10]. For the HDoV tree, the terrain is partitioned into grids, which serve as the objects in the HDoV tree.

Visibility data is stored using the “indexed-vertical storage scheme”, which is reported to have the best

performance among the proposed schemes for the HDoV-tree. Two types of selective refinement queries

are tested: one is theuniform-LOD querywhere the selective refinement condition specifies a constant

value over its domain, the other is thevariable-LOD querywhere the selective refinement condition

specifies a value reducing linearly to the vertex distance. For the latter, the test results of both single-base

and multi-base methods are included.

The total cost of the MTM query processing is composed of two parts: the cost of data access (I/O

cost) and the cost of mesh construction (CPU cost). In terms of running time, it is found that the former

dominates the overall cost. Therefore, we focus our performance evaluation on the I/O cost, which is

measured by the number of disk accesses (obtained from Oracle’s performance statistics report). Note

that the CPU cost of the Direct Meshes is generally smaller than that of the other two methods due to the

fact that it retrieves less data, and thus requires less computation for refinement, if there is any. All the

values in the results are the average value of repeating the same query at 20 randomly-selected locations.

Terrain data is arranged on the disk in such a way that their(x, y) clustering is preserved as much as

possible.
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We use Oracle Enterprise Edition Release 9.0.1 in our tests. Its object-relational features and the Oracle

Spatial Option are not used in order to have a better control and understanding of the query execution

performance. All spatial indexes used are implemented by ourselves. B+-tree indexes are created wherever

necessary. The database and system buffer is flushed before each test to minimize the effect of caching.

Other software packages used are Java SDK 1.3 (for data retrieval) and Java3D SDK (openGL) 1.2 (for

mesh visualization). The hardware used is a Pentium III 700 with 512MB memory. Two real-world terrain

datasets are used in the tests. The first one is a 2-million-point terrain model from a local mining software

company. The second dataset is the DEM model of “Crater Lake National Park” from U.S. Geological

Survey (www.usgs.gov) with 17 million points.

A. Uniform-LOD Query Performance

The two main parameters that affect the performance of the uniform-LOD queries are the resolution

value specified by the selective refinement condition and the size of its domain. Generally, the I/O cost

increases as the resolution value decreases (which implies a more detailed mesh) or the domain size

increases. To separate their effects we conducted two sets of tests. The first set has varying domain size

and fixed resolution value, whereas the second set is the opposite. Figures 9(a) and 9(c) show the results

of the first set with 2 and 17 million points respectively. Thex-axis measures the domain size (indicated

as “ROI”), shown as the percentage of the dataset area, andy-axis measures the number of disk accesses.

The mesh resolution is set to the average value of the dataset, and the range of domain size is chosen to

allow for a mesh with reasonable data density when displayed, i.e., avoid meshes that are overly crowded

when displayed. The LOD-quadtree is indicated as “PM” (stands for “Progressive Meshes” because it

does not change its structure), the HDoV tree as “HDoV”, and the Direct Meshes as “SB” (single-base

method). Similarly, figures 9(b) and 9(d) show the results of the second set. Thex-axis denotes resolution

(indicated as “LOD”), shown as the percentage of maximum LOD value in the dataset. The domain size

is set to 10% for the 2M dataset and 5% for the 17M dataset. We include the results of a resolution

range that contains a substantial number of points. Performance changes are hardly noticeable when the
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resolution value is beyond this range.

(a) Varying ROI - 2M dataset (b) Varying LOD - 2M dataset (c) Varying ROI - 17M dataset (d) Varying LOD - 17M dataset

Fig. 9. Uniform mesh.

The Direct Meshes clearly outperforms the other two methods in these tests, and the performance gap

grows as the mesh size increases. This complies well with our analysis in Section VI, since the Direct

Meshes incurs much less retrieval overhead than the other two methods. The slow increase of the Direct

Meshes also indicates that it scales much better with the mesh size than the other two.

To illustrate the effect of “ROI region”, we also compare the performance of the Direct Meshes with and

without this encoding scheme. The results are shown in Fig. 10. The Direct Meshes without ROI-region

encoding is labeled as “Old”, whereas the one with encoding is labeled as “New”. The improvement

(a) Varying ROI - 2M dataset (b) Varying LOD - 2M dataset (c) Varying ROI - 17M dataset (d) Varying LOD - 17M dataset

Fig. 10. Uniform mesh.

made by the ROI-region encoding is not significant in these tests. We think the reason is that we have

little control over the query processing in the database system. We empty the buffer at the beginning of

every test to reduce its effect, but we have no control over buffer usage during query processing. As a
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result, the cost of individually retrieving necessary nodes outside selective refinement condition domain

is considerably reduced, because the index scanning associated with such retrieval is very likely to be

performed in the buffer with considerably reduced cost. Nevertheless, the new encoding scheme still

achieves reasonable reduction on retrieval cost.

B. Variable-LOD Query Performance

For variable-LOD queries, the resolution changing ratek is the third parameter that affects the cost of

a variable-LOD query, besides the mesh size and average resolution value. In the tests we use anangle

parameterθ, which is the angle between the mesh and the horizontal plane (Fig. 11 whereδmin andδmax

are the minimum and maximum approximation error of the mesh), to describe the resolution changing

rate. The larger the angle, the more rapid the change of resolution. Three sets of tests are conducted to

Fig. 11. Angle of variable-LOD mesh.

illustrate the effect of each parameter. The first two sets are similar to those of the uniform-LOD queries:

the performance of the variable-LOD query is tested with varying domain size and average resolution

value respectively. The third set of tests assess the performance with different angles. In this set, the mesh

has a fixedδmin, and theδmax changes according to the variation of angle. The angle values in the results

are shown as the percentage of the maximum possible angle valueθmax given by the following formula:

θmax = arctan
(Emax

|D|
)

where theEmax is the maximum approximation error of the dataset and|D| is the dimension of theD.
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(a) Varying ROI - 2M dataset (b) Varying LOD - 2M dataset (c) Varying angle - 2M dataset

(d) Varying ROI - 17M dataset (e) Varying LOD - 17M dataset (f) Varying angle - 17M dataset

Fig. 12. Variable-LOD mesh.

Figures 12(a) and 12(d) show the test results of the first set. The Direct Meshes query processing using

single and multiple query are shown as “SB” and “MB” (“Multi-Base”) respectively. Thex-axis denotes

the mesh size and they-axis indicates the number of disk accesses. We set the angle to half the value

of θmax. Other parameters are the same as those of analogous tests in the uniform-LOD query section.

Figures 12(b) and 12(e) show the test results of the second set. Thex-axis is theδmin of the query and

y-axis is the number of the disk accesses. The angle is the same as in the previous set and theδmax is

decided by theδmin and angle. All other parameters are the same as those in the uniform mesh section.

Figures 12(c) and 12(f) show the test results of the third set. Thex-axis is the angle andy-axis is the

number of the disk accesses. The mesh size setting is the same as the one in the previous set and the

δmin is set to 1% to allow for a large angle range.

The tests results are consistent with those in the previous sub-section. The LOD-quadtree and the

HDoV-tree have similar costs, which are much larger than that of the Direct Meshes. The LOD-quadtree
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retrieves substantially more data than the Direct Meshes, which is the main cause of its poor performance.

Visibility selection does not help the HDoV-tree much because obstruction among the areas of the tested

terrain is not as much as in the synthetic city model described in [10]. Hence, the visibility constraint

does not always significantly reduce data amount. The multi-base approach performs best. Its comparison

against the single-base method shows that the optimization can significantly reduce retrieval cost. Note

that the performance of approaches based on the Direct Meshes decreases as the angle increases (Fig.

12(c) and 12(f)). The reason is that the increase of angle implies a bigger difference between theδmin

andδmax; thus, a larger query cube for single-base method (similar to multi-base method) as theδmin is

fixed. However, even the single-base method still has a considerable performance advantage against the

other two methods.

Test results of similar comparison against the improved Direct Meshes with ROI-region encoding is

presented in Fig. 13. Here the improved version (labeled as “New”) is compared against Direct Meshes

using multiple-base method (labeled as “Old”), which has the best performance in the tests so far. The new

encoding scheme exhibits more performance advantage here. We think the reason is that, in the variable-

LOD query, the amount of nodes outside of ROI has a larger proportion than that in the uniform-LOD

query. Therefore, its improvement has a larger impact on the total cost. This is clearly shown in Fig.

13(c) and 13(f): the gap between the two methods increases as the angle increases, i.e., the performance

improvement grows with the query window volume.

VIII. C ONCLUSIONS

In this paper we presented a novel multi-resolution terrain data structure called the Direct Meshes.

It is a secondary-storage MTM particularly suitable for selective refinement query processing with a

relational DBMS. It achieves a good balance between the need of tree-like traversal in order to obtain

mesh topology information and the overhead of materializing such information by allowing each node

to record selected topology information only. It requires no modification to the original MTM structure

and can be constructed in linear time with linear space. Selective refinement query processing using the
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(a) Varying ROI - 2M dataset (b) Varying LOD - 2M dataset (c) Varying angle - 2M dataset

(d) Varying ROI - 17M dataset (e) Varying LOD - 17M dataset (f) Varying angle - 17M dataset

Fig. 13. Variable-LOD mesh.

Direct Meshes improves the performance by avoiding multiple retrievals and reducing the total amount of

required data. The multi-base approach further reduces the cost of varying-LOD queries. The introduction

of ROI region encoding provides a solution for retrieving necessary data outside of the selective refinement

condition domain. Significant performance improvement is observed from tests based on the real-world

datasets. The scalability of the Direct Meshes is demonstrated when comparing against best available

methods with different data sizes.
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