A Multi-Resolution Terrain Model for Efficient

Visualization Query Processing

Kai Xu, Xiaofang Zhou,Member, IEEE Xuemin Lin, Heng Tao Shen, and Ke Deng

Abstract

Multi-resolution Triangular Mesh (MTM) models are widely used to improve the performance of large terrain
visualization by replacing the original model with simplified one. MTM models, which consist of both original and
simplified data, are commonly stored in spatial database systems due to their size. The relatively slow access speed
of disk makes data retrieval the bottle-neck of such terrain visualization systems. Existing spatial access methods
proposed to address this problem rely on main-memory MTM models, which leads to significant overhead during
query processing. In this paper, we approach the problem from a new perspective and propose a novel MTM called
Direct Meshes that is designed specifically for secondary storage. It supports available indexing methods natively
and requires no modification to MTM structure. Experiment results, which are based on two real-world datasets,

show an average of 5-10 times performance improvement over the existing methods.

Index Terms

Multi-resolution visualization, spatial database systems

I. INTRODUCTION

Errain visualization plays an essential role in a wide range of applications such as gaming [1

[2], virtual reality [3], [4], 3D environmental analysis [5], [6], and many GIS applications [7], [8].
Terrain data obtained from the natural environment is usually very large. For instance, the US Geolo
Survey (www.usgs.gov) provides digital elevation data covering most parts of the US, sampled at 1

or 30-meter resolution. The volume of entire dataset is measured in terabytes. The visualization of st

datasets usually requires excessive resources and the resolution can be unnecessarily high in many c
A typical scenario is that when a terrain with millions of polygons is displayed on a device with limited
resolution, it appears to be overly dense and illegible. Fig. 1(a) shows an example with a relatively sm
number of triangles (10,000), but the top-right part of the terrain already appears to be unnecessa

dense Multi-resolutiontechniques are introduced to address this problem by replacing the original terrai

(a) 10,000 triangles (b) 10,000 triangles with texture (c) 1,000 triangles (d) 1,000 triangles with texture

Fig. 1. Terrain at multiple resolutions

model with a simplified approximationmesh constructed according to application requirements [9]. It
reduces the resource requirements significantly while introducing an acceptable sacrifice of visual qual
Following the previous example, a simplified mesh is shown in Fig. 1(c) with only 1000 triangles. The
difference is hardly noticeable after texture is applied (Fig. 1(b) and 1(d)).

Mesh construction, which is essentially the simplification of the original model, is expensive due t
the usually large size of the terrain dataset. The possible benefit of using a mesh can be overcome by
expensive construction. The fact that terrain data can be used at any resolution and one mesh can |
varying resolutions means that it is not feasible to pre-generate meshes at a fixed number of resolutic
An example that requires mesh with varying resolution is shown in Figure 2; to have a uniform-resolutio
mesh on display (Fig. 2(a)), the actual resolution needs to decrease with the distance from the viewpc
(Fig. 2(b)).

Multi-resolution Triangular Mesh (MTMmodels are proposed to address this problem. Most MTM
models adopt a tree-like data structure, and each node stores an approximation of the union of its cl

nodes’ data. Mesh construction starts from the root, which contains the least detailed data, and this cosc

Low resolution

High resolution

View point

(a) Display (b) Mesh

Fig. 2. Mesh with variable resolution

mesh is refined progressively by recursively replacing part of it with the more detailed data stored at chi
nodes until the desired resolution is achieved (the details are provided in Section Il). Since it starts wi
a very simple mesh rather that the original model, this procedure can significantly reduce constructi
costs. The initial coarse mesh can be refined to any resolution available and every part can be refinec
a different level of detail, which results in a mesh with varying resolution.

MTMs are usually very large because they include both the original model and simplified data. Thi
makes spatial database systems a common choice for their storage. Since the disk access speed is se
order slower than that of main memory, data retrieval becomes the bottle-neck for terrain visualizatic
systems relying on spatial database systems [10], [11]. This problem has attracted significant resea
attention from both the computer graphics and database research communities. While the graphics c
munity mainly focuses on designing new MTMs suitable for secondary storage [12], [13], [14], databa:
researchers have been proposing spatial access methods to improve data retrieval efficiency [15], [16], [
[10], [11]. The former approach usually requires the rebuilding of MTM, which is very time consuming;
the latter can avoid this problem, but they rely on the tree-like MTM structure, which commonly leads t
significant retrieval overhead during query processing. In this paper, we follow the spatial-access-meth
approach but address the problem from a new perspective. We propose a new MTMaatdeshes
Different from both existing approaches, the Direct Meshes is a secondary-storage MTM that requir

no change to the original MTM structure (no rebuilding) and is designed to seamlessly integrate wi

well-studied spatial access methods (such as thd® [18] used in this paper). An average improvement
of 5-10 times is observed from the evaluation results when comparing against the best existing metho

A shorter version of this work appeared in [19]. The previous work is extended from several aspect
First, formal definitions of the problem and relevant concepts are included; a general multi-resolutic
visualization query is introduced to unify the two types of queries in the previous work. Secondly, th
Direct Meshes construction algorithm is presented, together with its correctness proof and running tir
|/ storage requirement analysis; the design issues such as the topology encoding scheme and the ct
of spatial access method are discussed in detail. Thirdly, the query processing algorithm based on
new multi-resolution visualization query replaces the old one; its cost analysis and comparison agail
existing methods are also added. Fourth, the core of the Direct Meshes, the topology encoding sche
is enhanced to eliminate the inefficient data retrieval discovered in the previous performance study. L.
but not least, extensive test results, including the comparison between the Direct Meshes with differe
encoding schemes, are added to make the performance evaluation more comprehensive.

The remainder of this paper is organized as follows. The problem is defined in Section Il after th
introduction to MTM visualization. Related work is reviewed in Section Ill. The topological information
required for multi-resolution visualization and its encoding scheme in Direct Meshes are discussed
Section IV. The Direct Meshes is introduced in Section V, together with its construction algorithm
correctness proof, and complexity analysis. Section VI discusses the query processing using the Dir
Meshes, which includes the choice of spatial access methods, cost analysis, and two optimization te
niques. A performance study using two sets of real-life terrain data is reported in Section VII. Finally

the paper is concluded in Section VIII.

II. MULTI-RESOLUTIONVISUALIZATION

In this section, we start with an overview of multi-resolution visualization, followed by the definition
of selective refinement quenyhich is the main focus of this paper. After thRrpgressive meshes- one

of the most popular MTMs — is used as an example to illustrate selective refinement query processir

A. Subdivision and Mesh

Let V = {vy,...,v,} be a finite set of vertices in a domain C R?. A subdivisiondefined byV is a
plane connected straight-line graph havivigas set of vertices [20]. Such subdivision can be expressed
as a tripleS = (V, E, F), where the pair(V, E) is the above mentioned graph, a#dis the set of
polygonal regions (or faces) induced by this graph. Common choiceS§ fme: triangular subdivision
where every regiory; € F' is a triangle;quadrilateral subdivisionwhere every regiorf; a quadrilateral.

In this paper we only consider the former case, since it is always possible to convert a quadrilatel
guadrilateral subdivision into a triangular one.

Given a triangular subdivisio§ = (V, E, ') and a set of function® : V' — R, ameshM/ (S,) is a
three-dimensional connected straight-line graph that can be expressed as @tigle F’) so that:

1) Fv; = (v, v.y) € Viff 30 € V' so thatv, = o (v;) = (vi.x, vy, ¢i(vi.z, v:.y));

2) Jde; = (e;.v51,6;,.00) € Eiff 3 € € E' so thate, = (¢¥(e;.vi1), ¥(€;.v52));

3) Afi= (fiva, fiviz, fiviz) € Fiff 3 fi € F' so thatf] = (¢(fi-vin), ¥(fi-vie), Y(fiviz))-
where

o & ={d1,02,..., 00}

. ¥ :V — V'is a function that maps; to v; according tog;;

. v;.x andv;.y are thex andy coordinates ofy; respectively;

. ¢;.v;; ande;.v;p are the two end vertices of edgg

e fivi, fi-vio, and f;.v;5 are the three end vertices of triangle

B. Simplification and Refinement

A mesh M(S, ®) provides an approximation for the original terrain surface and it can be further
simplified or refined by increasing or reducing the number of vertices respectively. To define mes
simplification and refinement, we introduce some preliminary notations. The boundary of aMhesh

a circular path of connected vertices and edges, is denotet| dd$. Two meshesM; and M, are

compatibleif they have the same boundary, i.6(M;) = 0(M,), and this is denoted ad/; < M.
A mesh modificatiomonstructs a new mesh by replacing a subset of the original mesh, which is a mes
itself, with a compatible mesh. A mesh modificatigrthat changes mesh/; into mesh/; is denoted
as M; — M,. A mesh modification is a:
1) Simplification if |M;.V| > |M,.V;
2) Refinementif |M,.V| < |My.V|.
where|M;.V| and |M,.V| are the vertex number af/; and M, respectively. Note that a simplification

(M, - M) is invertible to a refinementi(, 7, M), and vice versa.

C. Approximation Error and Selective Refinement Condition
A simplified meshM* = (V) E*, F) is an approximation of the original mesi™ = (V" E™ F").
The similarity between\/? and A" can be measured by the approximation error of vertices/in The

approximation error of a vertex’ € V' relating to the original mesh/™ is:

e(v') = p(v".z,v"y) — ¢i(v".x, 0" y)|
wherev™ is on M™ and (v".z, v".y) = (vi.z, v'.y). In the case that" is not in V", ¢(v".z,v".y) can
be obtained from the facg™ € F that contains™.

With approximation error, required mesh can be specifiedsélgctive refinement conditipmvhich
defines the maximum acceptable error for every part of the mesh. Formally, given a dbndaiR?, a
selective refinement condition is a function D — R that determines the maximum acceptable error
d(v.x,v.y) for everyv € D. A meshM satisfiesa selective refinement conditionif all its vertices have
approximation error no greater than the value specified by the conditiowpie. M.V,

< d(v.x,v.y), veD Q)
e(v)

arbitrary value, otherwise (2)

D. Multi-Resolution Triangular Mesh

A multi-resolution triangular mesh (MTM) representation of a mégh can be built by recursively
applying a sequence of simplificatiofigv,_i, a, o, ..., ap) to M™. Each simplification step produces a

Q-1

simpler mesh, i.e. M (results fromM/® M=) has fewer vertices than/‘. The sequence of

meshes

Qn—1
e

— Qn—2 aq [e7h)
M" 1Y A |V A=y V/ A

have a monotonically reducing number of vertices. Due to the large size of the originalMfieahd the
fact that mesh simplification is invertible, the common approach stores the simplest mesh together witt

sequence of refinement, i.e.,

ﬁn72

MO Loy oyt B e et Bt gy

where j3; is the inverse of they;,0 < i < n — 1. If we regard the initial mest/° as a refinement from
a null mesh, the set of refinements = {M°, 3y, 51, ..., B,_1} is the multi-resolution triangular mesh
(MTM) representation of mesh/™.

Early MTM models only allow construction of meshes that appear during simplification. This is achieve
by only allowing a refinement sequence that follows the exact reverse order of simplification. Such &
approach guarantees a proper triangulated mesh given it is checked during MTM construction. Howev
this total ordering can be quite restrictive for selective refinement query. Later approaches adopt a ¢
restrictive partial ordering, which can be described as a directed acyclic graph (DAG) whose nod
represent refinement and edges are the dependency among refinements. An MTM based on such pe
ordering can be defined as a DAG = (R, Eg), where R = {M°, 3y, 31,...,B._1} is the set of mesh
refinements andE is a set of directed edges defined éhx R such that there is a directed edge
(Bi, B;), 1 # j if B, refines part of the mesh results frosp To avoid confusion, we refer to the point in

a mesh as “vertex” and the point in an MTM as “node” from here on.

E. Selective Refinement Query

Selective refinement constructs a mesh according to a given conditibisually there are multiple
meshes that meet the selective refinement condition because only the upper bound of mesh error is gi
Among them, the one with the least number of vertices is commonly preferred as the result of a select
refinement. Given an MTM~ and selective refinement condition a selective refinement quety(G, 0)
returns a mesh/ where:

1) M satisfiess;

2) |M.V| < |M"V] for all §-satisfying meshed/* that can be constructed frof.

We say meshV/ is feasiblerelating toJ.

In this paper we focus on selective refinement query processing in multi-resolution terrain databas
Our goal is to reduce the data retrieval for a selective refinement query. One of the main constraints is
support selective refinement with varying resolution as described in Section I. Formally, given an MTN
G and a selective refinement conditionwe try to minimize the overall I/0 cosD A(Q(G, 9)), whered

is a function of mesh vertex location.

F. Progressive Meshes

For this paper we use tHerogressive Meshg1], one of the most popular MTMs, as an example to
illustrate our work. The Progressive Meshes is built upon a simplification process edtiedcollapsgin
which one edge collapses into a new vertex (Fig. 3(a)). The new vereis(recorded as the parent node
of the two end nodesv(andw,) of the collapsed edge (Fig. 3(b)). Edge collapse is repeated recursively
on the resulting mesh until only one vertex is left, and the resulting structure is an unbalanced binary tr
(Fig. 3(c)). Progressive Meshes stores the final mesh (one vertex) and awestext splits(the inverse
of edge collapses, Fig. 3(a)). Progressive Meshes can be defined as a directed binapy=tre¥,, £,)
where every node: in N, represents a vertex and every edge E, pointing from the parent to its

children.

V. Vs

B AR VA VARV

Vertex split 5 s Vi Vs,
(a) Edge collapse and vertex split (b) Edge collapse (c) Tree structure of Progressive

structure Meshes

Fig. 3. Progressive Meshes

A linear-time incremental algorithm is proposed in [22] for selective refinement query. The algorithn
starts with a mesh with root only and iterates through its vertex list, during which vertex, whose appro:
imation error is greater than the maximum acceptable error, is replaced with its children recursively. TI
algorithm stops when the mesh satisfies the selective refinement condition. The pseudo code in Algorit|

1 outlines the majors steps.

Algorithm 1: Selective Refinement Algorithm for Progressive Meshes

Input: Progressive MesheS, = (N, E,), selective refinement condition
Output: meshM

1 M «— MY

2 for every vertex € M.V do

3 if e(v) > o(v) then

4 removev from M.V

(&)

appendv,, v, (the children ofv) to M.V
6 endif
7 endfor

8 return M

10
I1l. RELATED WORK

In this section, we survey previous work that employs spatial access methods to improve the |/
performance of selective refinement query processing. These methods require little or no modificati
to the existing MTM. Not included are methods that require MTM rebuilding and those that can only
support grid or right-triangle mesh.

Algorithm 1 discussed in the last section was designed for main-memory Progressive Meshes.
progressive refinement nature makes it inefficient for secondary-storage data access. The fact that
necessity of every node (except the root) depends on its parent, i.e., a node is required only if its parel
approximation error is greater than the value specified by the selective refinement condition, makes
difficult to retrieve all necessary data together. In fact, the data for every vertex split (two child nodes
has to be fetched individually. Therefore, the data fetch of a selective refinement query is composed
many retrievals with every small amounts, which is very inefficient in terms of query processing. Simila
problem exists for any MTM that is based on a DAG structure.

The LOD-R-tree [23] is one of the first attempts among the various spatial access methods propos
to address this problem. An LOD-R-tree is constructed by building a traditional R-tree into an MTM ir
the following way. First, a two-dimensional R-tree is created on the vertices of the original model. The
approximation mesh is added to the internal node in a bottom-up fashion by merging and simplifying tf
meshes stored at its child nodes. Selective refinement query is converted to a range query whose qt
window is the domain of the selective refinement condition. The query processing algorithm traverses do
the LOD-R-tree and stops at the level where the mesh resolution is sufficient for the LOD condition. Tt
main problem of the LOD-R-tree is that it relies on the hierarchical structure of the MTM and uses
progressive refinement approach similar to that of the main-memory algorithm. This introduces significa
overhead caused by multiple retrievals. Also, the LOD-R-tree does not support mesh with continuous
changing resolution because data stored at the internal nodes always have uniform LOD. Another probl

is that the mesh size at internal nodes is pre-defined, and the entire mesh needs to be retrieved eve

11

only a fraction is needed, which can cause considerable redundant data retrieval.

Hoppe [15] suggests an approach similar to the LOD-R-tree, but using a two-dimensional Regic
Quadtree [24] instead. Its construction and query processing are analogous to those of the LOD-R-tr
therefore they share the same problems.

Shou et al. improved the LOD-R-tree by including visibility data and proposed a new indexing structur
called the HDoV-tree [10]. Visibility information is stored at every node of the LOD-R-tree, so occluded
parts can be excluded during query processing and low resolution is used for areas that are parti
visible. However, the HDoV-tree does not address the problems associated with the LOD-R-tree.

The LOD-quadtree proposed by Xu [11] treats every node in an MTM as a point in-the— e (“e”
stands for “approximation error”) three-dimensional space and ignores the DAG structure. The select
refinement query is translated into a three-dimensional range query defined by the selective refinem
conditiond and its domainD. Therefore, one retrieval fetches the majority of data. However, not all the
necessary nodes are included, and the missing ones still need to be retrieved individually.

In summary, all these methods try to improve the retrieval efficiency of selective refinement quer
by avoiding fetching data separately. However, this can be totally avoided and it is usually achieved
the cost of being less flexible and retrieving extra data. More importantly, they all keep the progressi
refinement routine for mesh construction, which is inherited from the main-memory MTM. We believe
avoiding progressive refinement is the fundamental approach that secondary-storage MTM should follc

which is the main motivation of our work on the Direct Meshes.

IV. MESHTOPOLOGY

Before introducing the Direct Meshes, we discuss the selective refinement query processing in mc
detail. Essentially, the feasible mesti of a selective refinement conditioh defines a subtre& of
the Progressive Meshes. Fig. 4 shows a sequence of refinements during a selective refinements q
processing and the subtree of Progressive Meshes defined by this query. The leaf nodes of this sub

L(T) are the vertices in the resulting mesh, i.e., L(T) = M.V. The topology ofM, i.e., edges among

12

the vertices, are obtained implicitly from the structurelofFor instance, there is always an edge between

two children by the definition of vertex split. We believe that storing the topology information using MTM
tree structure — which is the key characteristic of main-memory MTM — is the major cause of the poc
performance of selective refinement query processing, because it is well known that the relational mo
used in many spatial database systems cannot efficiently handle deductive reasoning, such as proce:

the parent-children relationship in the Progressive Meshes.

Via Viz Ve
Vis Via
C— S~ — ba v,
V7 V7
V1o Vio

(a) Selective refinements (b) Subtree in Progressive

Meshes

Fig. 4. Selective refinement and its subtree in the Progressive Meshes

A naive solution is to pre-compute and store the mesh topology information, which consists of evel
possible edge between vertices represented by MTM nodes. The fact that a vertex can connect to o
vertices with a wide range of approximation error makes the total number of possible edges prohibitive
large. Specifically, if vertex can connect to vertex/, it can also connect to the parentdf because a
parent vertex connects to all the neighboring vertices of its children. Simitadgn connect to the child
vertices ofv’, because at least one child vertexwvdfconnects taw. To be precise:

1) If v can connect ta’, v can connect to any ancestor @fup tov” (excludingv”) wherev” is the

common ancestor af andv’ of the lowest height in the Progressive Meshes;

2) If v can connect ta’, v can connect to at least one descendant’ aecursively till leaf level.

Theorem 4.1:Given a Progressive Meshes, = (N,, E,), the total number of possible edges is
O(|N,|?), where|N,| is the cardinality ofN,,.

Proof: The previous observation implies that the number of possible edges for a given vertex |

13

proportional to the level of vertices it can connect to, which is proportional to the height of the Progressi\
Meshes. Since a Progressive Meshes is an unbalanced binary tree, its height is lseflwgeéeN,|) and
O(|N,|). Therefore, the total number of possible edge®{sV,|?) in the worst case. u

A naive method to store all possible edges is not practical due to the substantial storage overhead
resulting increased I/O costs.

Another option is to encode each node as an MBR (minimum bounding rectangle) of its descendan
As a result, the MBRs of required nodes intersect with the domain of selective refinement condition
This, combined with the approximation error range definedibgan be used to identify the needed
nodes in MTM. However, the MBRs of the nodes in the upper part of MTM cover a large area and ten
to overlap with each other. Such overlapping can significantly degrade the search performance of m
available spatial access methods, which are based on data partition.

The Direct Meshes only encodes selected topology information, which avoids storing the large amot
of possible edges and can answer a selective refinement query without relying on MTM structure. T

details are elaborated in the next section.

V. DIRECT MESHES

To introduce Direct Meshes, we need to defmmle approximation errorNote that this is different
from the vertex approximation error (defined in Section 1), which is the absolute difference between tt
height of a vertexd;(v")) and that of its corresponding vertex in the original modgb()). In an MTM,
the error introduced by a node should reflect the error of all its descendants, i.e., this vertex accumula
the distortion that all its descendant nodes bring to the mesh. Therefore, given a Progressive Mes
G, = (N,, E,), theapproximation error of node: € N, that represents vertexis:

0, if n is a leaf node 3)

e(n) =
max(e(v), e(n.childl), e(n.child2)), otherwise 4)

wheren.child1l andn.child2 are the two children of. This definition guarantees that node approximation

14

error value increases monotonically along any path from a leaf to the root.
Another important concept of the Direct Meshe& @D interval (“LOD” stands for “Level Of Detail”).
For a noden; € N, its LOD interval o(n;) C R is an interval that
[e(n;), +00), if n; is the root (5)

O'(nz) =
[e(n;),e(n;.parent)), otherwise (6)

wheren;.parent is the parent node at;.
Given a Progressive Meshés, = (N, £,), a Direct MeshesG, = (N, E,, E,) is a multi-relational

graph with an additional relatiof;, which is a subset of the cartesian prodd&tx N,. Specifically:
Ed = {(ni,nj) ’ ni,nj < Np,) 7é j, n; ~ TL]', O'(Tbl) ﬂa(nj) 7£ @}

wheren; ~ n; denotes that; can connect toy;. £, is the set of possible edges whose end nodes have
overlapping LOD intervals. We name thecandidate edgesThe candidate edge set is a subset of all
possible edges, and its size is much less than that of the latter because the LOD-interval-overlapp
constraint limits the number of different resolution levels a candidate edge can cross. In fact, the avere
number of candidate edges for each node is a constant (proof is given later in this section). Thus, the ¢
of E, is linear to the number of nodes(|N,|).

Each node of a Direct Meshes has the following data structure:

Class DirectMeshNode{

Integer NodelD;

Doublex, vy, z;

Doublee; // node approximation error

DirectMeshNodearent, childl, child2;

DirectMeshNodeArrayV,; // the other end node of candidate edges

}

15

Algorithm 2: Direct Meshes Construction

1

2

3

10

11

12

13

14

15

16

17

18

19

20

Input: Progressive MesheS, = (N,, E,)
Output: Direct Meshes=, = (N,, E,, E,;), every noden € N, has a list of candidate edges,
N, — the ordered set of all nodes N, with a descending approximation error (ancestor is ahead
of descendant if they have the same error) ;
while N, is not emptydo
ng < the first node inV,;
removen, from N,;
if ng.parent # null then
n, < the other child node ohg.parent,;
no.-Np < no.Npy U {n1} ;
for every noden; € ng.parent.N, do
if n9.Ny N {n;} =0 AND o(n;) No(ng) # 0 AND n; ~ ng then
no.Np < ng. Ny U {n;} ;
N¢ « the set of descendent nodesrgfwhose LOD interval overlaps with that of;;
for every noden! € N{ do
if ng.Ny N {n;l} = () AND n; ~ ng then
no.Ny — 19.Ny U {n} ;
endif
endfor
endif
endfor

endif

endw

Algorithm 2 outlines the major steps of the Direct Meshes construction. The algorithm scans the no

16

set N, in a descending-approximation-error order and finds the candidate eddg &=t every node. It
starts with ordering the nodes according to their approximation error (line 1). For everyhntiae first
candidate edge is the one between itself and the node sharing the same parent (line 5-7). To find of
candidate edges, the algorithm checks the nodes in the parent candidate edge set and their descen
(line 8-18). For algorithm correctness proof, we need the following lemma:

Lemma 5.1:Given a node: and its candidate edge listV,, n’ (the parent node of) and its candidate
edge listn’.N,, for every noden; € n.N, (except the nodeng) sharing the same parent); € n’.N, or
there is a nodex; € n’. N, such that; is an ancestor of;.

Proof: First, we show that for a node,, if n; ~ n, thenn; ~ n/. Because:; ~ n, we can construct
a mesh that hagn;,n) as one of its edge angh, ny) as another edge. Then, we can simplify the mesh
by collapsing edgén,ny) into n’. There will be an edgén;,n’) in the new mesh, therefore; ~ n’.

This can be extended to any ancestomgpi.e.,n” ~ n; if n ~n; andn” is an ancestor of.

For a noden; € n.Ny, n; ~ n, thereforen; ~ n’. If o(n;) No(n) # 0, n; € n.N,, proved. Otherwise,
e(n;.parent) < e(n’) becauses(n;) N o(n) = @ ande(n) < e(n’). Let n, be one of the ancestors
of n;. Becausen;, ~ n’, n, ~ n'. Becausee(n;) > e(n;), there is always an ancestaef such that
o(n}) N o(n') # 0, thereforen, € n’.N,, proved. u

Theorem 5.1:Algorithm 2 finds all the candidate edges in a Progressive Meshes.

Proof: To prove this, it is sufficient to show that the algorithm finds all the candidate edges for
every node. The root is the only node that has no parent. It is obvious that the root has no candidate ec
because the only possible mesh that has the root is the one that has the root as the only vertex. Ex
the root, every node has a parent. From Lemma 5.1 we know all the candidate edges of a node can
found by searching the nodes in its parent candidate edge set and their descendants. The ordering o
nodes guarantees that parent candidate edges are always computed before that of its children. There
the algorithm finds all the candidate edges for every node. [|

Next, we discuss the time complexity and storage requirement of the algorithm, which requires tt

17

following lemmas.

Lemma 5.2:Given two intervalsA, B C R that are both partitioned into a set of sub-intervals, i.e.,
Bzuzzlbk, bzﬂbJZ@, Z7éj> 1§Z>]§n

Forl <i<m, 1< j <n, there is ainterval edge(a;,b;) if a; Nb; # 0. The maximum total number
of interval edgesrthax(|E;|)) is m +n — 1.
Proof. This can be proved by induction.
« Base casein =1,n=1. |E;| =0 whenAN B = {; |E;| = 1 otherwise. Thereforepax(|E;|) = 1
« Inductive step: assume thatax(|E;|) = k — 1 whenm +n = k.
Letm+n = k+ 1. Without loss of generality, we assume that the increased partition is introduced b
dividing an existing partitior; C A at pointp. It is obvious that F;| will not change if{p} N B = {);

|E;| will increase by 1 otherwise. Thereforeax(|F;|) = (kK — 1)+ 1 = k.

Based on Lemma 5.2, we have the following lemma.

Lemma 5.3:Given a Direct Meshes&:; = (N,, E,, E;), the total number of candidate edgéds;| is
O(IN,|).

Proof: The Progressive Mesh&s, = (N,, E,,), which is a binary tree, can be divided into a set

of paths whose approximation error changes monotonically. For instance, Fig. 5 shows a partition of t
Progressive Meshes in Fig. 4(b) into a set of such paths. Every path is an approximation error interval tl
is the union of the LOD interval of every node. For example the left-most path is an error irjteryab)
and it is the union of the LOD interval afi; ([e(v15), +00)), vi4 ([e(v14), €(v15))), €tc. According to
Lemma 5.2, the total number of candidate edges, which is equivalent to interval edge, is linear to tl
total number of interval partitions, which in this case equalg|.

However, each path can be paired with more than one other path. If we take any mesh that can

constructed fron:,,, the average node degree is constant because it is a triangulation. In other words,

18

average one path can pair with a constant number of paths. Thus, the total number of interval edge:

k- N, wherek is a constant, i.e., the total number of candidate edgé¥|i&/,|). u

L
Vie Ve
Vs Vo Vg Viz

Vi l Vz Vi [VA
Vs I Ve

Fig. 5. Partition of a Progressive Meshes into a set of paths

Given the Lemma 5.3, we have the following theorem.
Theorem 5.2:Given a Progressive Meshés, = (N, £,), the running time of Algorithm 2 i€)(|NV,,|)
and it requiresO(|N,|) space for the candidate edge set of the resulting Direct Meshes.

Proof: The algorithm starts with sorting all the nodesAf according to their approximation error.
Because the error decreases monotonically along any path from the root to leaf, this can be done
O(|N,|) time. Within the main loop (line 2-20), removing the first nodgfrom the sorted node séY,
takes constant time (line 3-4). It is the same for finding the nedsharing the same parent (line 6-7),
given that every node stores links to its parent and children. From Lemma 5.3, we know on average ev:
node has a constant number of candidate edges, therefore the next loop (line 8-18) repeats a con:s
time. Similarly, we can show that the average node numbe¥in(line 11) is also constant. Thus, the
next loop (line 12-15) runs in constant time. Therefore, the running time of AlgorithmO2|i§,|). From
Lemma 5.3 we know there a@(|N,|) candidate edges in total, so it requi@$|NV,|) space. [

In summary, the Direct Meshes requires no modification to the original MTM structure; it adds at
candidate edge set for every node, which can be done in linear time with linear space. Selective refinem

guery processing using the Direct Meshes is discussed in the next section.

19
VI. SELECTIVE REFINEMENT QUERY PROCESSING

Once the Direct Meshes is constructed, an important issue is the choice of spatial access meth
which needs to support the characteristics of the Direct Meshes database and selective refinement qt
As mentioned in [11], the distribution of MTM nodes in they-e three-dimensional space is highly
skewed, which makes it unsuitable for spatial access methods based on regular space partition, suc
Region Quadtree [24]. As we will see later in this section, selective refinement query can be convert
to range query inc-y-e space, which makes it unnecessary for any particular method to support grap
traversing (the Direct Meshes is essentially a DAG), such as the connectivity-clustered access mett
[25]. The results in [26] showed that the R-tree and the R+-tree have much better query performance tt
the K-D-B-tree [27] when the datasets contain rectangles of varying size, which is very similar to th
case of selective refinement query (as we shall see later in this section). We did not use variations of G
File, such as the Multilevel Grid File [28], as they share a similar indexing structure as the K-D-B-tree
Eventually, we choose the R*-tree [29] because it is reported to have the best performance among
R-tree variations [29]. Every nodein a Direct Meshes is indexed using a R*-tree as a three-dimensional
line segment

((n.x,n.y,e(n)), (n.x,n.y, e(n.parent))

representing its LOD interval in the — y — e space.

Given a Direct Meshes:; = (N, E,, E;) and a selective refinement condition(with domain D),
Algorithm 3 outlines the main steps of processing the que(y,,). The algorithm retrieves all the
nodes withinD and having an LOD interval that overlaps with the error inteal;,, d,....) defined by
the selective refinement condition(line 2). Thebase mesh\/, is then built according to the selective
refinement condition’ : D — 4, (line 3-11). M, is further refined using the Algorithm 1 until the
required mesh\/ is obtained. Note that only one retrieval is performed (line 2) and it fetches all the date

used by the algorithm.

20

Algorithm 3: Selective refinement using Direct Meshes
Input: Direct Meshes&,; = (N, E,, E;), selective refinement condition

Output: meshM/ that is feasible regarding

[N

Omin/Omaz < the minimal / maximal approximation error value defineddgver domainD;
2 N « set of nodes that are withifv and their LOD interval overlaps witf¥,,i,, dmaz);

3 N, < set of nodes that are withi® and their LOD interval containg,,,.;

4 Mesh My = (Ny, Ey), Ey « 0;

for every noden; € Ny do

(&)

[«2)

for every noder; € n;. NV, do

7 if n; € No AND Ey N {(n;,n;)} =0 then
8 Ey — EyU{(n;,n;)};

9 endif

10 endfor

11 endfor

12 Mesh M « Algorithm 1(M,,N);

13 return M;

Theorem 6.1:Given a Direct Meshe&y; = (N,, E,, E4), the mesh)M returned by Algorithm 3 is

feasible for the selective refinement conditi@n
Proof. First, we show that mesh/, produced by the algorithm is a proper mesh. For every node

n; € Ny, its LOD interval containg,,,..., therefore their LOD intervals all overlap with each other. Because
the Direct Meshes contains every possible candidate edgd-amsl a subset of;, then every edge in
Ey is contained in the candidate edge list of nodesVin Since all the nodes have overlapping LOD
intervals, mesh\/, should be checked during the Direct Meshes construction. Any candidate edge th:
may breach the validity of a mesh (such as causing an improper triangulation) should be excluded frc

the Direct Meshes. Therefore, every candidate edgé&iins necessary foVl,. Thus, M, is a proper

21

mesh. Oncéll, is constructed, it is further refined by Algorithm 1, which is proved in the previous work

to produce the feasible mesh for the given selective refinement condition [|

A. Cost Analysis

The 1/0 cost of processing a selective refinement query using the Direct Meshes can be modeled a
DA(Q) =1 +to-[[N|/B] (7)

where [is the cost of searching the R*-tree of the Direct Meshes to find the required ngdessthe

cost of retrieving one disk pagey| is the total number of nodes needed, dhds the number of nodes
each disk page can hold. Here we assume that the required nodes are stored continuously on the
Although this cannot be fully achieved in practice, it can be seen as a close estimation of the real co

Similarly, the cost of previous methods can be modeled as:
DA(Q) = (I'+ k- to) - [IN"|/(k - B)] (8)

wherek is a nature number and indicates the node size of the indexing structure, because these meth
with customized index can have node size more than one disk page.

From the cost models we can see that the Direct Meshes incurs less 1/O cost than the previous meth

1) Less index scan. While index scan only occurs once using the Direct Mg$h&g,(k - B)] scans
are needed previously because one is needed for every retrieval of child nodes during progress
refinement.

2) Less redundant data. A node could contain unnecessary data, especially when the area it cover
on the boundary of the domailR. Though this is unavoidable, the smaller the index node size, the
less the redundant data. The Direct Meshes, which have the minimal index node size one, retrie
less redundant data than previous methods (index node:sieaen answering the same query.

3) Less MTM node retrieval. Previous methods always start from the MTM root to find the feasible

mesh; whereas the Direct Meshes can start from the lowest mesh resolutigh &nd skip all

22

the MTM nodes with lower resolution. The saving can be significant, especially when the require

mesh has a uniform resolution.

B. Query Optimization

The Direct Meshes works best when the selective refinement condigpgacifies a constang over D,
in which case the base mesdl, is feasible and no redundant data is retrieved. Whennot a constant,
we consider the case that the required resolution reduces linearly to the vertex distance to a refere
(such as the viewpoint). Such selective refinement produces a uniform resolution mesh on display (F
2), and is arguably the most common query in multi-resolution visualization. Specifically, for a verte:

v € D its required resolution valué(v) is:
(5(’(}):50—]{"11—7'0‘ (9)

wherek is a constant andv — 7| is the Euclidean distance betweerand the reference,. In this case
the total amount of data retrieval can be further reduced by using multiple queries. The idea is illustrat

in Fig. 6. For simplicity, we assume the reference is thaxis, so we can use the projection on the

AC AC
Query rectangle

@ Single-base (b) Multi-base approach

approach
Fig. 6. Possible optimization using multiple queries.
(y,e) plane for discussion hereafter. Note that the results can be easily extended to the case where

mesh is arbitrarily positioned. The area of rectangle in Fig. 6(a) indicates the total amount of data

be fetched by theingle-basealgorithm (Algorithm 3), whereas Fig. 6(b) shows a possible optimization

23

using two queries. In the latter case the total data retrieval amount (indicated as the sum of the a
of two query rectangles) is less than that of using one query only (Fig. 6(a)). Howevenultiequery
approach has its own overhead such as the cost of index scan for each query. Therefore, to minin
the overall retrieval, the optimization algorithm should partition the donfaimto a set of sub-domains
S(D) = {dy,ds,...,d,} so that the total retrieval cog?A(D) = DA(dy) + DA(dy) + ...+ DA(d,) is
minimized. In practice, it is difficult to find the optimal partitigfy D) that minimized the retrieval cost.
Here we propose a heuristic approach that partitions the domain recursively, based on the retrieval ¢
estimation.

The problem of analyzing the I/O cost of range queries using the R-tree and its variants has be
extensively studied in the past ([30], [31], [32], [33], [34], [35]). The number of disk accessé¥ fsing
a three-dimensional R-tree ind&k with N, nodes to process a range quergan be estimated using the

following formula [32], [33]:

N,

DA(T,,q) =Y (o +w:) - (g, + hi) - (g= +) (10)

i=1

whereg,, g, andg, are the width, height and depth of the query cube respectivelyyant; andd; are

the width, height and depth of nodg of 7, respectively. All the values are normalized according to the
data space, which has a unit sizex(1 x 1). The value of DA(T,, q) includes the 1/O cost of both index
scan and data retrieval. Formula (10) provides an estimation of I/O cost for single-base approach (F

6(a)); when two queries are used (Fig. 6(b)), the total ¢odt(7,,q) is:

N

Ny
DA (T,,q) = Z(Qxl +w;) - (@ + hi) - (g +d;) + Z(Qw +w;) - (qy2 + hi) - (g2 + d;) (11)

=1 =1

whereq,1, ¢,1, ¢:1 andq,a, ¢,2, ¢.2 are the width, height and depth of the two query cubes respectively.

More queries should be used only if it incurs less total I1/O cost, i.e.,

DA(TT’7Q) - DA/(TMQ) >0 (12)

24

From Fig. 6, we have:

r = Gz1 = Q4x2 (13)
Qy = qy1 T qy2 (14)
q: = -1 1+ Q22 (15)

Note that formula (13) to (15) still holds if the query plane is not parallel totkeis, because this

change only affects the position of the query plane, not its size. Combining (10)-(15), we have:

Nr
D (gor + i) gy — (@01 + Gy24:2) — had;) > 0 (16)

i=1

i.e., so long as condition (16) holds, more queries should be used. As the size of the R-treehpnodes |
d;, w;) can be obtained from the R-tree index, all the data required for this optimization is available
From formula (16), we can know that the maximum reduction can be achieved when the value below

maximized:

Qy - @z — (Qy1* =1 + Qy2 - Gz2) (17)

This gives the area difference between the rectangle of the single-base case (Fig. 5(a)) and the sun
the area of the rectangles of the multi-base case (Fig. 5(b)), Adg. are given by the query, - ¢.

is a constant. Therefore:

qy1 * 421 + Qy2 * qz2 (18)

is the only variable element. To maximize the value of (17), the value of (18) should be minimizec
which means that dividing the original query into two equal-sized sub-queries will give the maximun
I/0 reduction. Given a Direct Meshés, = (N, E,, E,), its R*-tree indexZ;, and a selective refinement

condition §, Procedure “SelectiveRefinement-MultiBase” outlines the main steps of a query processir

algorithm that adopts the multi-base approach.

25

Procedure SelectiveRefinement-MultiBase(Gy, T,9)

1 Mesh M — §;

Dy, Dy — the two partitions result from dividing equally;

N

3 if DA(D;y) + DA(Dy) < DA(D) then

4 Mesh M; «— SelectiveRefinement-MultiBase();
5 Mesh M, «— SelectiveRefinement-MultiBase();
6 M — M, + Ms;

7 else

8 M « Algorithm3(G4,d(D));

9 endif

10 return M;

C. ROI Region

During performance analysis, we find that some vertices required for a selective refinement query ¢
not retrieved at step 2 in Algorithm 3 and need to be fetched individually during mesh constructior
which introduces 1/O overhead and can be substantial for large datasets. After close examination, we f
that these points are not covered by the selective refinement ddméimdicated as the black points in
Fig. 7(a)), and are missed by the algorithm. However, they are essential for a correct mesh bounde
ExpandingD so that it can cover these points is not a feasible solution because it is difficult to estimat
the amount of expansion, and unnecessary data can also be included.

To address this problem, we propose to associate every node VRl aegion (“ROI” stands for
“Region Of Interest”). ROI region is the minimal two-dimensional interval that covers the node itself anc
all its candidate edges. The ROI region of verteis shown in Fig. 7(b). Formally, given a nodewith

its candidate edge list. V,, its ROI regionn.r is a two dimensional interval so that:

n.rTr = {(%y) |xmm S oy S Tmazs Ymin S Yy S ymax}

26

2
|

ROI }

region — ™

(a) ROI feasible points that (b) ROI region ofv

are outside ROI

Fig. 7. ROI region

where:

o Tpin = min(n.z,n;.x|n; € n.Ny);

o Tpar = max(n.x,n;.x|n; € n.Ny);

o Ymin = Min(n.y,n;.y | n; € n.Ny);

o Ymaz = Mmax(n.y,n;.y|n; € n.Ny);
ROI region can be computed in constant time once all the candidate edges are identified; therefore includ
ROI region will not change the running time of the Direct Meshes construction algorithm. Also, eacl
node requires constant space for an ROI region, thus it will not change the storage requirement of 1
Direct Meshes.

With ROI region, each node in a Direct Meshes is encoded as a cube whose spatial extent is the F

region and the resolution extent is the LOD interval (Fig. 8). Accordingly, nodes can be identified b

LOD

Fig. 8. Direct Meshes nodes in they-LOD space.

their ROI region, i.e., a node is retrieved if its ROI region intersects with the selective refinement domail

27

This is the only modification required for the query processing algorithm (Algorithm 3).

VII. PERFORMANCEEVALUATION

In this section, we evaluate the performance of the selective refinement query processing based on
Direct Meshes. Two different versions of the Direct Meshes are implemented: one does not apply “R(
region” (as described in Section V); the other does (as described in Section VI). Both Direct Meshes ha
a three-dimensional ‘Riree built upon them for query processing. For comparison we also include the
LOD-quadtree and the HDoV-tree, because they provide the best performance among the available mett
that support MTM with DAG structure. The Progressive Meshes is implemented as described in [21]. Tt
LOD-quadtree is created according to [11]. The HDoV tree is constructed following the algorithms i
[10]. For the HDoV tree, the terrain is partitioned into grids, which serve as the objects in the HDoV tree
Visibility data is stored using the “indexed-vertical storage scheme”, which is reported to have the be
performance among the proposed schemes for the HDoV-tree. Two types of selective refinement que
are tested: one is theniform-LOD querywhere the selective refinement condition specifies a constant
value over its domain, the other is thariable-LOD querywhere the selective refinement condition
specifies a value reducing linearly to the vertex distance. For the latter, the test results of both single-b:
and multi-base methods are included.

The total cost of the MTM query processing is composed of two parts: the cost of data access (I/
cost) and the cost of mesh construction (CPU cost). In terms of running time, it is found that the forme
dominates the overall cost. Therefore, we focus our performance evaluation on the 1/0O cost, which
measured by the number of disk accesses (obtained from Oracle’s performance statistics report). N
that the CPU cost of the Direct Meshes is generally smaller than that of the other two methods due to t
fact that it retrieves less data, and thus requires less computation for refinement, if there is any. All t|
values in the results are the average value of repeating the same query at 20 randomly-selected locati
Terrain data is arranged on the disk in such a way that theiy) clustering is preserved as much as

possible.

28

We use Oracle Enterprise Edition Release 9.0.1 in our tests. Its object-relational features and the Ore
Spatial Option are not used in order to have a better control and understanding of the query execut
performance. All spatial indexes used are implemented by ourselveseB indexes are created wherever
necessary. The database and system buffer is flushed before each test to minimize the effect of cact
Other software packages used are Java SDK 1.3 (for data retrieval) and Java3D SDK (openGL) 1.2 (
mesh visualization). The hardware used is a Pentium Il 700 with 512MB memory. Two real-world terrai
datasets are used in the tests. The first one is a 2-million-point terrain model from a local mining softwa
company. The second dataset is the DEM model of “Crater Lake National Park” from U.S. Geologic:

Survey (www.usgs.gov) with 17 million points.

A. Uniform-LOD Query Performance

The two main parameters that affect the performance of the uniform-LOD queries are the resolutic
value specified by the selective refinement condition and the size of its domain. Generally, the 1/O cc
increases as the resolution value decreases (which implies a more detailed mesh) or the domain
increases. To separate their effects we conducted two sets of tests. The first set has varying domain
and fixed resolution value, whereas the second set is the opposite. Figures 9(a) and 9(c) show the res
of the first set with 2 and 17 million points respectively. Thaxis measures the domain size (indicated
as “ROI"), shown as the percentage of the dataset areay-axts measures the number of disk accesses.
The mesh resolution is set to the average value of the dataset, and the range of domain size is chose
allow for a mesh with reasonable data density when displayed, i.e., avoid meshes that are overly crowc
when displayed. The LOD-quadtree is indicated as “PM” (stands for “Progressive Meshes” because
does not change its structure), the HDoV tree as “HDoV”, and the Direct Meshes as “SB” (single-bas
method). Similarly, figures 9(b) and 9(d) show the results of the second set:-@kis denotes resolution
(indicated as “LOD”), shown as the percentage of maximum LOD value in the dataset. The domain si
is set to 10% for the 2M dataset and 5% for the 17M dataset. We include the results of a resolutic

range that contains a substantial number of points. Performance changes are hardly noticeable when

resolution value is beyond this range.

2000

1600

Disk accesses
@ N
1] 3
o o

N
S
S

o

——SB
—=— HDoV
- PM

0

(a) Varying ROI - 2M dataset

Fig. 9.

% 5%

10%
ROI

Uniform mesh.

15% 20% 25%

1200

——SB
—=—HDoV
——PM

1000 A
800 +
600 1
400 4

200 ‘\\F‘\‘\‘

o]

Disk accesses

0% 10% 20% B30% 40% 50% 60%
LOD

(b) Varying LOD - 2M dataset

4000

Disk accesses

1000 A

0

3000

2000

—~—SB
—+—HDoV
——PM

0% 2% 4% 6% 8% 10%

ROI

29

2000

@
S
o

1000 4

Disk accesses

o
o
o

o]

\\“*\M‘,

——SB
—=—HDoV
—PM

0%

10% 20% 30% 40% 50% 60%

LOD

(c) Varying ROI - 17M dataset (d) Varying LOD - 17M dataset

The Direct Meshes clearly outperforms the other two methods in these tests, and the performance ¢
grows as the mesh size increases. This complies well with our analysis in Section VI, since the Dire
Meshes incurs much less retrieval overhead than the other two methods. The slow increase of the Di
Meshes also indicates that it scales much better with the mesh size than the other two.

To illustrate the effect of “ROI region”, we also compare the performance of the Direct Meshes with an
without this encoding scheme. The results are shown in Fig. 10. The Direct Meshes without ROI-regic

encoding is labeled as “Old”, whereas the one with encoding is labeled as “New”. The improvemer

300 250 600 - 450 -

250

—e—0Old
—a— New

—e—0Old

200 - —a— New

-
=3
=3

[}
=3
1=

| —e—0Id

—a— New

400 4

350 4

—e—Old
—a— New

N
=]
=3

Disk accesses
@
o

Disk accesses

& 300 1
w

o
S
=1

150 4 0

© 250
[$]
[$]

© 200 4
100 A x

%}
S
=3

g
Disk accesses
5
8

@
& 150

N
=
=}

50 | 100

@
=3
e
o
=}

50 4

=3
o

0

0

0% 10% 20% 30% 40% 50% 60%
LOD

4% 6% 8% 10%

ROI

2%

N
R

0% 10% 20% 30% 40% 50% 60%
LOD

10% 15% 20% 25%

ROI

5%

N
R

(a) Varying ROI - 2M dataset (b) Varying LOD - 2M dataset (c) Varying ROI - 17M dataset (d) Varying LOD - 17M dataset

Fig. 10. Uniform mesh.

made by the ROI-region encoding is not significant in these tests. We think the reason is that we he
little control over the query processing in the database system. We empty the buffer at the beginning

every test to reduce its effect, but we have no control over buffer usage during query processing. As

30

result, the cost of individually retrieving necessary nodes outside selective refinement condition dome
is considerably reduced, because the index scanning associated with such retrieval is very likely to
performed in the buffer with considerably reduced cost. Nevertheless, the new encoding scheme ¢

achieves reasonable reduction on retrieval cost.

B. Variable-LOD Query Performance

For variable-LOD queries, the resolution changing rfais the third parameter that affects the cost of
a variable-LOD query, besides the mesh size and average resolution value. In the tests wangle an
paramete¥, which is the angle between the mesh and the horizontal plane (Fig. 11 wherandd,, ...
are the minimum and maximum approximation error of the mesh), to describe the resolution changil

rate. The larger the angle, the more rapid the change of resolution. Three sets of tests are conducte

A

6ma)(

6min

Fig. 11. Angle of variable-LOD mesh.

illustrate the effect of each parameter. The first two sets are similar to those of the uniform-LOD querie
the performance of the variable-LOD query is tested with varying domain size and average resolutit
value respectively. The third set of tests assess the performance with different angles. In this set, the m
has a fixed,,;,, and the),,,, changes according to the variation of angle. The angle values in the result:

are shown as the percentage of the maximum possible angle 8alyeiven by the following formula:

0 ; (Emm)
maz = arctan
|D|

where theFE,,.. is the maximum approximation error of the dataset gfiflis the dimension of the.

31

1400

——MB —+«MB 1000 4 ——MB
1200 1 =SB =SB -=—SB
—+—HDoV . —+—HDoV
& 1000 7 +PMO 83 +E,3|OV o 8007 +PM0
7] « 17}
%3 1 7] 73
8 800 8 8 600 |
8] bs] o
$ 600 1 ® g
0 5 % 400
A 400 4 & 300 '_\-\‘\'\F\‘ a
200 1 150 «.\‘\‘M“ 200 1 /ﬁjg
0 i i ; ; o i i i . . 0 ; ; ; i i
0% 5% 10% 15% 20% 25% 0% 10% 20% 30% 40% 50% 60% 0% 10% 20% 30% 40% 50% 60%
ROI LOD Angle
(a) Varying ROI - 2M dataset (b) Varying LOD - 2M dataset (c) Varying angle - 2M dataset
3500 1600
—~—MB e MB 2000
3000 1 —=—SB =SB
e HDOV —+— HDoV
1200
§2500 1 e PM g ePM $1500
7] a @
@ 2000 a o
Q a Q
] o 800 £1000
T 1500 | @ ©
~ ~ x
e ° \‘\‘_ "
400 500
500 4 \\‘\k’%“< %::ﬁ
0 : . 0 0
0% 2% 4% 6% 8% 10% 0% 10% 20% 30% 40% 50% 60% 0% 10% 20% 30% 40% 50% 60%
ROI LOD Angle
(d) Varying ROI - 17M dataset (e) Varying LOD - 17M dataset (f) Varying angle - 17M dataset

Fig. 12. Variable-LOD mesh.

Figures 12(a) and 12(d) show the test results of the first set. The Direct Meshes query processing us
single and multiple query are shown as “SB” and “MB” (“Multi-Base”) respectively. Tkexis denotes
the mesh size and the-axis indicates the number of disk accesses. We set the angle to half the valu
of 0,.... Other parameters are the same as those of analogous tests in the uniform-LOD query secti
Figures 12(b) and 12(e) show the test results of the second set:-&kis is the),,;,, of the query and
y-axis is the number of the disk accesses. The angle is the same as in the previous setjgpg ithe
decided by the,,;, and angle. All other parameters are the same as those in the uniform mesh sectia
Figures 12(c) and 12(f) show the test results of the third set. ZFhgis is the angle ang-axis is the
number of the disk accesses. The mesh size setting is the same as the one in the previous set anc
Omin IS Set to 1% to allow for a large angle range.

The tests results are consistent with those in the previous sub-section. The LOD-quadtree and

HDoV-tree have similar costs, which are much larger than that of the Direct Meshes. The LOD-quadtr

32

retrieves substantially more data than the Direct Meshes, which is the main cause of its poor performan
Visibility selection does not help the HDoV-tree much because obstruction among the areas of the tes
terrain is not as much as in the synthetic city model described in [10]. Hence, the visibility constrair
does not always significantly reduce data amount. The multi-base approach performs best. Its compari
against the single-base method shows that the optimization can significantly reduce retrieval cost. N
that the performance of approaches based on the Direct Meshes decreases as the angle increases
12(c) and 12(f)). The reason is that the increase of angle implies a bigger difference betwégp, the
andd,...; thus, a larger query cube for single-base method (similar to multi-base method) &s,the
fixed. However, even the single-base method still has a considerable performance advantage against
other two methods.

Test results of similar comparison against the improved Direct Meshes with ROI-region encoding !
presented in Fig. 13. Here the improved version (labeled as “New”) is compared against Direct Mesh
using multiple-base method (labeled as “Old”), which has the best performance in the tests so far. The n
encoding scheme exhibits more performance advantage here. We think the reason is that, in the varia
LOD query, the amount of nodes outside of ROI has a larger proportion than that in the uniform-LOIL
query. Therefore, its improvement has a larger impact on the total cost. This is clearly shown in Fi
13(c) and 13(f): the gap between the two methods increases as the angle increases, i.e., the perform

improvement grows with the query window volume.

VIIl. CONCLUSIONS

In this paper we presented a novel multi-resolution terrain data structure called the Direct Meshe
It is a secondary-storage MTM particularly suitable for selective refinement query processing with
relational DBMS. It achieves a good balance between the need of tree-like traversal in order to obte
mesh topology information and the overhead of materializing such information by allowing each noo
to record selected topology information only. It requires no modification to the original MTM structure

and can be constructed in linear time with linear space. Selective refinement query processing using

33

300 - 160 250 4

140

——0ld ——0Old

—a—New 120 4 —a— New

100

80

=)
S}

60 4

Disk accesses
- n n
(4, (=] w
(=} o o
Disk accesses
Disk accesses
Iy S
2 g

—e—Old
50 407 50 4 —a—New
20 +
0 | 0 | 0 : ! ! ! . i
0% 5% 10% 15% 20% 25% 0% 10% 20% 30% 40% 50% 60% 0% 10% 20% 30% 40% 50% 60%
ROI LOD Angle
(a) Varying ROI - 2M dataset (b) Varying LOD - 2M dataset (c) Varying angle - 2M dataset
700 400 350
600 { —e—Old 350 4 —e—0ld 300 4
—a— New B —m— New
o 500 q @ 800 ¢ 250 4
[® [
@ n 250 4 @
& 400 - 3 @ 200 1
8 3 200 §
Sa00 S x 1507
5 w 150 4 ©»
5200, [a] O 40 4 —e—0ld
100 —a— New
100 50 50 4
0 . | o i i i i i | 0 i
0% 2% 4% 6% 8% 10% 0% 10% 20% 30% 40% 50% 60% 0% 10% 20% 30% 40% 50% 60%
ROl LOD Angle
(d) Varying ROI - 17M dataset (e) Varying LOD - 17M dataset (f) Varying angle - 17M dataset

Fig. 13. Variable-LOD mesh.

Direct Meshes improves the performance by avoiding multiple retrievals and reducing the total amount
required data. The multi-base approach further reduces the cost of varying-LOD queries. The introducti
of ROI region encoding provides a solution for retrieving necessary data outside of the selective refineme
condition domain. Significant performance improvement is observed from tests based on the real-wo
datasets. The scalability of the Direct Meshes is demonstrated when comparing against best availe

methods with different data sizes.

REFERENCES

[1] W. Piekarski and B. Thomas, “Arquake: the outdoor augmented reality gaming sy&kemfhunications of the ACMol. 45, no. 1,
pp. 36-38, 2002.

[2] M. C. Whitton, “Making virtual environments compellingCommunications of the ACMol. 46, no. 7, pp. 40 — 47, 2003.

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

34

D. Green, J. Cosmas, T. Itagaki, M. Waelkens, R. Degeest, and E. Grabczewski, “A real time 3D stratigraphic visual simulation syste
for archaeological analysis and hypothesis testing,Conference on Virtual Reality, Archeology, and Cultural Heritageéslyfada,
Greece: ACM Press, 2001, pp. 271 — 278.

S. Kiss and A. Nijholt, “Viewpoint adaptation during navigation based on stimuli from the virtual environmemggih International
Conference On 3D Web TechnologySaint Malo, France: ACM Press, 2003, pp. 19 — 26.

B. Benes and R. Forsbach, “Parallel implementation of terrain erosion applied to the surface of mi®s,International Conference

on Computer Graphics, Virtual Reality and VisualisatiorCamps Bay, Cape Town, South Africa: ACM Press, 2001, pp. 53 — 57.

T. Gerstner, D. Meetschen, S. Crewell, M. Griebel, and C. Simmer, “A case study on multiresolution visualization of local rainfal
from weather radar measurements,”Gonference on Visualization Boston, Massachusetts: IEEE Computer Society, 2002, pp. 533
— 536.

J. Randall W. Hill, Y. Kim, and J. Gratch, “Anticipating where to look: predicting the movements of mobile agents in complex terrain,”
in International Joint Conference on Autonomous Agents and Multiagent Syst&okogna, Italy: ACM Press, 2002, pp. 821 — 827.
B. Ben-Moshe, J. S. B. Mitchell, M. J. Katz, and Y. Nir, “Visibility preserving terrain simplification: an experimental study,” in
Eighteenth Annual Symposium on Computational Geome®arcelona, Spain: ACM Press, 2002, pp. 303 — 311.

M. Garland, “Multiresolution modeling: Survey & future opportunities,”BEarographics '99 — State of the Art RepartsAire-la-Ville
(CH), 1999, pp. 111-131.

L. Shou, Z. Huang, and K.-L. Tan, “HDoV-tree: The structure, the storage, the speetiJtlininternational Conference on Data
Engineering (ICDE) 2003Bangalore, India, 2003, pp. 557-568.

K. Xu, “Database support for multiresolution terrain visualization,Tire 14th Australian Database Conference, ADC 20@@lelaide,
Australia: Australian Computer Society, 2003, pp. 153-160.

C. DeCoro and R. Pajarola, “Xfastmesh: fast view-dependent meshing from external mem@uyiference on VisualizationBoston,
Massachusetts: IEEE Computer Society, 2002, pp. 363 — 370.

P. Lindstrom, “Out-of-core construction and visualization of multiresolution surfaces3yimposium on Interactive 3D graphics
Monterey, California: ACM Press, 2003, pp. 93 — 102.

M. Isenburg and S. Gumhold, “Out-of-core compression for gigantic polygon me#@s|" Transactions on Graphicsol. 22, no. 3,

pp. 935 — 942, 2003.

H. Hoppe, “Smooth view-dependent level-of-detail control and its application to terrain renderitigEnVisualization '98 Research
Triangle Park, NC, USA: IEEE Piscataway NJ USA, 1998, pp. 35-42.

M. Kofler, M. Gervautz, and M. Gruber, “R-trees for organizing and visualizing 3D GIS databimeshal of Visualization and
Computer Animationno. 11, pp. 129-143, 2000.

L. Shou, C. Chionh, Y. Ruan, Z. Huang, and K. L. Tan, “Walking through a very large virtual environment in real-tin&7thin
International Conference on Very Large Data Bas@ema, Italy, 2001, pp. 401-410.

N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “Thér&e: an efficient and robust access method for points and rectangles,” in

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

35

9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systéasville, TN: ACM Press, 1990, pp. 322—-331.

K. Xu, X. Zhou, and X. Lin, “Direct mesh: a multiresolution approach to terrain visualization20ih International Conference on
Data Engineering Boston, USA, 2004, pp. 766-777.

F. P. Preparata and M. |. Sham&pmputational Geometry: an Introduction Springer-Verlag, 1985.

H. Hoppe, “Progressive meshes,”28rd International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’96)
New Orleans, LA, USA: ACM press, 1996, pp. 99-108.

H.Hoppe, “View-dependent refinement of progressive meshe24ti International Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH '97) Los Angeles, CA, USA: ACM press, 1997, pp. 189-198.

M. Kofler, “R-trees for visualizing and organizing large 3D GIS databases,” Ph.D. dissertation, Technische Universitat Graz, 1998.
R. A. Finkel and J. L. Bentley, “Quad trees: A data structure for retrieval on composite Kata, Informatica vol. 4, pp. 1-9, 1974.

S. Shekhar and D.-R. Liu, “CCAM: A connectivity-clustered access method for aggregate queries on transportation networks:
summary of results,” irProceedings of the Eleventh International Conference on Data Engined?irg. Yu and A. L. P. Chen, Eds.
IEEE Computer Society, 1995, pp. 410-419.

D. Greene, “An implementation and performance analysis of spatial data access methdtetdadings of the Fifth International
Conference on Data Engineerin989, pp. 606—615.

J. T. Robinson, “The K-D-B-tree: A search structure for large multidimensional dynamic indexe&CNh SIGMOD Int. Conf. on
Management of Data ACM Press, 1981, pp. 10-18.

K.-Y. Whang and R. Krishnamurthy, “The multilevel grid file - a dynamic hierarchical multidimensional file structuferdaeedings

of the Second International Symposium on Database Systems for Advanced Applicatiorid Scientific Press, 1992, pp. 449—-459.

N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The R*-tree: an efficient and robust access method for points and rectangle
in 9th ACM-SIGMOD Symposium on Principles of Database Systdashville, TN, 1990, pp. 322-331.

C. Faloutsos and I. Kamel, “Beyond uniformity and independence: Analysis of R-trees using the concept of fractal dimeris3tm,” in
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systetineapolis, MN: ACM Press, 1994, pp. 4-13.

J. Jin, N. An, and A. Sivasubramaniam, “Analyzing range queries on spatial dat&ttinnternational Conference on Data Engineering
San Diego, California, 2000, pp. 525-534.

I. Kamel and C. Faloutsos, “On packing R-trees,2ind ACM International Conference on Information and Knowledge Management
Washington, DC, 1993, pp. 490—499.

B. Pagel, H. Six, H. Toben, and P. Widmayer, “Towards an analysis of range query performan@SMi8IGMOD Symposium on
Principles of Database System#/ashington, DC, 1993, pp. 214-221.

G. Proietti and C. Faloutsos, “I/O complexity for range queries on region data stored using an R-tt&#;' international Conference

on Data Engineering Sydney, Australia: IEEE Computer Society, 1999, pp. 628-635.

Y. Theodoridis and T. Sellis, “A model for the prediction of R-tree performancel5ih ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database SystemdMontreal, Canada: ACM Press, 1996, pp. 161-171.

\

systems, high performance query processing, Web information systems, multimedia databases, data mining and bioinformatics.

AN

interests lie in data streams, approximate query processing, spatial data analysis, and graph visualization.

36

Kai Xu is currently a researcher at National ICT Australia. He is also an Honorary Associate of School of Information
Technologies at University of Sydney. He received his PhD in Computer Science in 2004 from the University of
Queensland. Before that, he received his bachelor degrees in Computer Science and Business from Shanghai .
Tong University in 1999. His main research interests are information visualization, bioinformatics, and spatial databas

systems.

Xiaofang Zhou is currently a Professor at the University of Queensland, Australia. He is the Research Director of
Australia Research Council (ARC) Research Network in Enterprise Information Infrastructure (Ell), a Chief Investigator
of ARC Centre in Bioinformatics, and a Senior Researcher of National ICT Australia (NICTA). He received his BSc
and MSc degrees in Computer Science from Nanjing University, China, in 1984 and 1987 respectively, and PhL

in Computer Science from the University of Queensland in 1994. His research interests include spatial informatior

Xuemin Lin is an Associate Professor in the School of Computer Science and Engineering, the University of New
South Wales. He has been the head of database research group at UNSW since 2002. Before joining UNSW, Xuen
held various academic positions at the University of Queensland and the University of Western Australia. Dr. Lin gof
his PhD in Computer Science from the University of Queensland in 1992 and his BSc in Applied Math from Fudan

University in 1984. During 1984-1988, he studied for PhD in Applied Math at Fudan University. His current research

37

Heng Tao Shenis a Lecturer in School of Information Technology and Electrical Engineering, The University of
Queensland. He obtained his BSc (with 1st class Honors) and PhD from Computer Science, National University c
Singapore in 2000 and 2004 respectively. His research interests include Database, Web/multimedia search, mok

Peer-to-Peer computing. He has served as a PC member for international conferences including ICDE’06, EDBT’Of

SAC’'06, DASFFA05, and publication chair for APWEBOG6. His papers appeared in ACM SIGMOD, ACM MM, ICDE,

VLDB Journal, TKDE, ACM Multimedia Sysmte Journal, and other major venues.

Ke Dengis currently a PhD student in the School of Information Technology and Electrical Engineering, University
of Queensland, Australia. He holds a Master degree in compute science from Griffith University and a Bachelor degre

in Electrical Engineering. His research area is in the spatial database systems.

