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Abstract —Duplicates in data streams may often be observed by the projection on a subspace and/or multiple recordings of objects.
Without the uniqueness assumption on observed data elements, many conventional aggregates computation problems need to be
further investigated due to their duplication sensitive nature. In this paper, we present novel, space-efficient, one-scan algorithms to
continuously maintain duplicate insensitive order sketches so that rank-based queries can be approximately processed with a relative
rank error guarantee ǫ in the presence of data duplicates. Besides the space efficiency, the proposed algorithms are time-efficient and
highly accurate. Moreover, our techniques may be immediately applied to the heavy hitter problem against distinct elements and to the
existing fault-tolerant distributed communication techniques. A comprehensive performance study demonstrates that our algorithms
can support real-time computation against high speed data streams.
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1 INTRODUCTION

A rank query is essentially to find a data element with
a given rank against a monotonic order specified on
data elements. Rank queries have several equivalent
variations [13], [24], [38] and play very important roles
in many real data stream applications [1], [3], [11],
[12], [15], [20], [21], [22], [35], [36], including monitoring
high speed networks, trends and fleeting opportunities
detection in the stock market, sensor data analysis, Web
ranking aggregation and log mining, and summarizing
data distributions via equal-depth histograms. It has been
shown in [28] that an exact computation of rank queries
requires memory size linearly proportional to the size
of a dataset by any one-scan technique; this may be
impractical in on-line data stream computation where
streams are massive in size and fast in arrival speed.
Approximately computing rank queries over data
streams has been investigated in the form of quantile
computation. A φ-quantile (φ ∈ (0, 1]) of a collection of
N data elements is the element with rank ⌈φN⌉ against
a monotonic order specified on data elements. The main
paradigm is to continuously and efficiently maintain a
small space data structure (sketch/summary) over data
elements to be on-line queried. It has been shown in
[2], [19], [20], [32] that a space-efficient ǫ-approximate
quantile sketch can be maintained so that, for a quantile
φ, it is always possible to find an element at rank r′ with
the uniform precision guarantee |r′−r| ≤ ǫN (r = ⌈φN⌉).
Observe that many real datasets often exhibit skew
towards heads (or tails depending on a given monotonic
order). Relative rank error (or biased) quantile compu-
tation techniques have been recently developed in [12],
[13], [38], which aim to give finer rank error guarantees
towards heads; that is, enforce the precision |r′ − r| ≤ ǫr

instead of a uniform precision guarantee |r′ − r| ≤ ǫN
for each rank r.

In many data stream applications, duplicates may of-
ten occur due to the projection on a subspace if elements
have multiple attributes. For example, in the stock mar-
ket a deal with respect to a particular stock is recorded by
the transaction ID (TID), volume (vol), and average price
(av) per share. To study purchase trends, it is important
to estimate the number of different types of deals (i.e.
deals with the same vol and the same av are regarded as
the same type of deal) with their total prices (i.e. vol*av)
higher (or lower) than a given value. It is also interesting
to know the total price (of a deal) ranked as a median, or
25th percentile, or 10th, or 5th percentile, etc. among all
different types of deals. These two types of rank queries
are equivalent [13], [24]; we focus on the later form in
this paper. To accommodate processing such queries,
each deal transaction (TID, vol, av) is projected on (vol,
av) and then is summarized the distribution of distinct
(vol, av)s according to a decreasing (or increasing) order
of vol*av; that is, (TID, vol, av) is mapped to (vol,
av). Clearly, any generated duplicates (vol, av) must be
removed while processing such rank queries. Moreover,
relative (or biased) rank error metrics need to be used
to provide more accurate results towards heads (or tails
depending on which monotonic order is adopted). Note
that the generality of rank queries (quantiles) remains
unchanged in this application since two different types
of deals (i.e., (vol, av)s) may also have the same value
vol*av. The unique challenge is to detect and remove
the effect of duplicated elements without keeping every
element.

Duplicates may also occur when data elements are
observed and recorded multiple times at different data
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sites. For instance, as pointed out in [12], [14] the same
packet may be seen at many tap points within an IP
network depending on how the packet is routed; thus
it is important to discount those duplicates while sum-
marizing data distributions by rank queries (quantiles).
Moreover, to deal with possible communication loss TCP
retransmits lost packets and leads to the same packet
being seen even at a given monitor more than once.
In such applications, continuously maintaining order
sketches for processing rank queries may be conducted
either centrally at one site or at a set of co-ordinating
sites depending on the computing environment and the
availability of software and hardware devices. Neverthe-
less, in either situation a crucial issue is to efficiently
and continuously maintain a small space sketch with
a precision guarantee, at a single site, by discounting
duplicates.
While most existing quantile approximate computa-
tion techniques are duplicate-sensitive (i.e. cannot dis-
count duplicates appropriately), the techniques in [14],
[25], [31] can provide a duplicate-insensitive approxi-
mate quantile solution, with the uniform rank precision
ǫn and confidence 1−δ, by space O( 1

ǫ3 log 1
δ log m). Here,

n is the number of distinct elements and m is the
maximal possible number of distinct elements. Never-
theless, the techniques do not provide relative rank error
guarantee ǫr unless linear space O(n) is used.
Motivated by this, in this paper we present novel,
space-efficient algorithms to continuously maintain or-
der sketches over data streams, in the presence of arbi-
trary data duplicates, with relative rank error guarantee.
To the best of our knowledge, this is the first work
regarding such a problem. Our contributions may be
summarized as follows:

1) We develop a novel, one-scan theoretical frame-
work with the relative rank error guarantee ǫr by
1 − δ confidence and O( 1

ǫ2 log 1
δ log m) space. This

significantly reduces the space requirement in [14],
[25], [31] from O( 1

ǫ3 log 1
δ log m) to O( 1

ǫ2 log 1
δ log m),

and also improves rank error precision guarantee
from ǫn in [14], [25], [31] to ǫr for any given rank
r.

2) To accommodate an on-line processing requirement
against high speed data streams, two space- and
time- efficient algorithms are also developed fol-
lowing the framework.

3) Finally, we show that our techniques may be imme-
diately applied to computing duplicate-insensitive
heavy hitters with the space bound the same as or
better than those in [14], [31], and to the exist-
ing fault-tolerant distributed communication tech-
niques.

A comprehensive performance study demonstrates
that our techniques can efficiently compute approximate
quantiles over high speed data streams with high accu-
racy and a small space requirement.
The rest of the paper is organised as follows. Section 2
presents problem definitions and related work. Section
3 presents some necessary preliminaries. In section 4,
we present our theoretical framework to continuous
maintain space-efficient sketches. Section 5 presents two

time-efficient algorithms. In section 6, we report our
experiment results. Section 7 shows applications of our
techniques to various other problems. Section 8 con-
cludes the paper.

2 BACKGROUND INFORMATION

We first state the problem. Then we present the related
work. Below in Table 2 we summarize the math notation
used throughout the paper.
Notation Definition

S a collection of data elements

S|v− elements in S with values not greater than v

D a set of distinct data elements

N number of elements

m maximal number of distinct elements

n actual number of distinct elements

A estimated number of distinct elements

s a sketch

l number of sketches

k number of elements in a sketch

e a data element

P probability

δ failure probability

ǫ precision

TABLE 1
Math Notation

2.1 Problem Statement

In our problem setting, an element x may be either an
original element in data streams or the “image” of a
projection on an original element (e.g. (vol, av) in the
example in section 1). Each element x is augmented
to (x, v) in our computation where v = f(x) (called
“value”) is to rank elements according to a monotonic
order of v, and f is a pre-defined function; for instance
f could be specified as vol ∗ av (or just av) regarding
the example in section 1. Without loss of generality, we
assume v > 0 and a monotonic order is always an
increasing order.
In a collection S of elements, there may be many
duplicated elements; DS denotes the set of distinct data
elements in S. In this paper, we study the following rank
query over a data stream S.

Rank Query (RQ) : Given a rank r, find the rank r
element in DS .

We investigate the problem of processing RQ queries
with ranks to be approximated where ranks are obtained
from DS rather than S. Suppose that r is the given rank
in a RQ query, and r′ is the rank of an approximate
solution. We could use the constant-based absolute error
metric; that is, enforce |r′ − r| ≤ ǫ for a given ǫ. It is im-
mediate that such an absolute error precision guarantee
leads to the space requirement Ω(m) even for an off-
line computation. In this paper, we use the relative error

metric: |r′−r|
r . An answer to a RQ regarding r is relative

ǫ-approximate if its rank r′ has the precision |r′ − r| ≤ ǫr.
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In DS , there are no duplicates; however, many differ-
ent elements may happen to have the same values. With
the presence of duplicated element values, the rank of
an element against its value is not well defined; it can
take any rank in [rmin,v, rmax,v]. Here, rmin,v and rmax,v

denote the minimum rank and the maximum rank of an
element inDS with value v, respectively, against a mono-
tonic order (the increasing order as assumed above).
Consequently, the definition of relative ǫ-approximate
may be equivalently stated as follows. An answer x (with
value v) to RQ regarding r is relative ǫ-approximate iff:

[rmin,v , rmax,v] ∩ [(1− ǫ)r, (1 + ǫ)r] 6= ∅ (1)

Example 1. A data stream consists of the 19 augmented
elements: (x1, 15), (x3, 8), (x4, 10), (x5, 9), (x6, 1), (x7, 8),
(x8, 10), (x9, 9), (x10, 6), (x11, 7), (x12, 8), (x3, 8), (x13, 13),
(x12, 8), (x14, 5), (x15, 4), (x14, 5), (x16, 2), (x2, 3). After
removing 3 duplicated data elements, the sorted DS (over val-
ues) consists of the 16 augmented elements: (x6, 1), (x16, 2),
(x2, 3), (x15, 4), (x14, 5), (x10, 6), (x11, 7), (x12, 8), (x3, 8),
(x7, 8), (x5, 9), (x9, 9), (x8, 10), (x4, 10), (x13, 13), (x1, 15).
It may be immediately verified that rmin,8 = 8 and

rmax,8 = 10. For a rank 10, any of x12, x3, and x7 can
be regarded as the exact answer of the RQ query regarding
r = 10. Clearly, any of x5 and x9 can be treated as a relative
ǫ-approximate answer to this RQ query if ǫ = 0.1.

Quantile Computation VS RQ. Without loss of gener-
ality, we assume that a φ-quantile is an element with
rank φn against n distinct elements. Although n is not
pre-known in a data stream, our techniques can always
guarantee an ǫ-approximate estimation A of n; that is,
|A − n| ≤ ǫn (∀ǫ > 0). Consequently, we use φA in the
corresponding rank query instead of φn. Immediately,
we can verify that a relative ǫ-approximate answer (with
rank r′) to RQ regarding φA leads to a φ′ (φ′ = r′/n)

such that |φ−φ′|
φ ≤ 2.5ǫ if ǫ ≤ 2

9 ; that is, φ′ is relative
2.5ǫ-approximate to φ.

Problem Description. We investigate the problem of
continuously maintaining a sketch (consisting of several
sub-sketches) over a data stream S such that at any time,
the sketch can be used to return a relative ǫ-approximate
answer to a RQ against DS . The aim is to minimize
the maximum memory space required in such a continuous
computation.

2.2 Related Work
With recent data-intensive applications in sensor/P2P
networks, the FM technique [18] has been first applied
in [5], [9], [35] to developing duplicate-insensitive tech-
niques for approximately computing sum, count (number
of sensor nodes), average to achieve high communication
fault-tolerance. The most related work has been pre-
sented in [14], [25], [31].
In [31], Manjhi, Nath, and Gibbons propose an ef-
fective adaption paradigm for in-network aggregates
computation over stream data with the aim to mini-
mize communication costs and to achieve high fault-
tolerance. As indicated, a duplicate-insensitive technique
for approximately computing quantiles may be imme-
diately obtained by a combination of their tree-based

approximation technique and the existing distinct count-
ing technique in [4]. It can be immediately applied to a
single site, where a data stream has duplicated elements,
with the uniform precision guarantee |r′ − r| ≤ ǫn by
confidence 1− δ and space O(1/ǫ3 log 1/δ log m).
In [14], Cormode and Muthukkrishnan present a DIS-
TINCT RANGE SUMS technique by applying the FM [18]
technique on the top of the count-min [10]. The technique
can be immediately used to approximately processing
RQ with the uniform precision guarantee |r′ − r| ≤ ǫn,
confidence 1 − δ, and space O( 1

ǫ3 log 1
δ log2 m). Inde-

pendently, Hadjieleftheriou, Byers, and Kollios [25] also
developed two novel duplicate-insensitive techniques
to approximately compute quantiles in a distributed
environment. Applying their techniques to a single site
immediately leads the uniform precision guarantee |r′−
r| ≤ ǫn by confidence 1− δ and space O( 1

ǫ3 log 1
δ log m).

Clearly, our results, as stated in section 1, significantly
improves these results in both precision guarantee and
space usage.

Other Related Work. As summarized below, there is
great amount of recent work on the problem of con-
ventional quantile computation (i.e., no duplicated el-
ements).
In [2], [20], [19], [30], [32], many space efficient tech-
niques have been developed for whole data streams,
sliding windows, and stream data with updates, re-
spectively. Communication-efficient quantile query pro-
cessing algorithms in sensor networks have also been
recently reported in [21], [11], [36]. The gossip commu-
nication method is proposed in [8], [29] for efficiently
computing aggregates, including quantile computation,
over networks. In [35], a sampling technique is presented
for computing quantiles where transmission duplicates
are removed by the nodeID information. Rank queries
against multi-dimensional datasets have been recently
investigated in [26], [37]. All of them guarantee the
uniform precision |r′ − r| ≤ ǫN .
In [12], [13], [24], [38], space efficient techniques have
been developed for quantile computation with relative
error guarantee |r′ − r| ≤ ǫr, while a space efficient
technique in [23] enforces a finer rank error guarantee
|r′ − r| = O(r0.5+ǫ).
The techniques cited above do not cover our problem.

3 PRELIMINARIES

We present briefly the two sampling algorithms in [18]
and [4]. They will be used in our algorithms.

3.1 FM Algorithm
Suppose that S is a collection of elements whose domain
is D. The FM algorithm [18] proceeds as follows.
Let B be a bitmap of length k with subindexes [0, k−1].
Suppose that h() is a randomly generated hash function
D → B, such that ∀x ∈ D, 1) for each bit, h(x) has the
equal opportunity to have 0 or 1, 2) h(x) is enforced to
have one and only one bit with value 1, and 3) h(x)
assigns the last bit (the bit with subindex k − 1) with
value 1 iff the first k− 1 bits (from left) take value 0. To
enforce property 2), h(x) may be interpreted as a serial
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binary hash functions that start from the first bit and
terminate once the current bit is assigned by value 1.
It can be immediately shown [9] that on average, h()
runs in time O(1) (two calls of a binary hash function)
per data element and the probability of having the ith
bit with value 1 is 1

2i+1 . In our implementation, we use
the public code from Massive Data Analysis Lab [33] to
randomly generate such hash functions.
A FM sketch on S is defined as FM(S) =

∨
x∈S h(x),

where FM(S) is a bitmap with length k and the ith bit
of FM(S) takes value 1 iff ∃x ∈ S such that h(x) assigns
the value 1 to the ith bit. We define FMmin(S) as follows:

• If i is the least bit (from left) with value 0, FMmin(S)

is defined as i.
• Otherwise, FMmin(S) is defined as ∞ (in our im-
plementation, we define FMmin(S) as k).

To improve the accuracy of FM algorithm, multiple
copies (say, l) of FM sketches are constructed. Therefore,
each data element is hashed into l FM sketches, FM1(S),
FM2(S), ... , FMl(S), respectively. The number nS of
distinct elements in S is estimated by:

AS =
1

ϕ
2

Pl
i=1

FMi,min(S)/l. (2)

Here, ϕ
def
= 2E(FM1,min(S))/nS,

1 and each FMi,min(S) re-
lated to FMi(S) is defined in the same way as FMmin(S)
related to FM(S). As shown in [18], E(FMi,min(S)) =
E(FMj,min(S)) (1 ≤ i < j ≤ l). From the insight in
Section 3.2 in [15], Theorem 2 in [18], and the Central
Limit Theorem (pp 229 in [17]), the following lemma
can be immediately verified using the independence
assumption.

Lemma 1. Suppose that AS is returned by FM algorithm as
shown in (2). Then, P (|AS − nS | > ǫnS) < δ, for any given
0 < δ < 1 and 0 < ǫ < 1, if k = O(log m+log ǫ−1+log δ−1)
and l = O( 1

ǫ2 log δ−1), where m = |D|.

An important feature of FM algorithm is that the
bitwise-or operator provides an equivalent way to gen-
erate a set of FM sketches over P ∪ Q. The following
lemma can be immediately verified.

Lemma 2. Given a set of l hash functions and two collections,
P and Q, of data points, we have
FM(P ∪Q) = FM(P )

∨
FM(Q).

3.2 BJKST algorithm

In [4], a novel variation of FM algorithm, BJKST algo-
rithm, has been proposed to speed-up the computation,
while the accuracy and the space-efficiency can be re-
tained. It proceeds as follows. First, we pick at random
a pairwise independent hash function h to hash D to
[1, m3] where D is the domain of data elements x and
|D| = m. The following Lemma has been shown as
folklore.

Lemma 3. If m ≥ δ−1 then h is injective over S with
probability at least 1− δ.

1. As E(FM1,min(S)) cannot be explicitly represented and nS

is unknown, in our implementation we approximately choose ϕ as
0.775351 according to the approximate results in [18].

Based on this, BJKST algorithm always keeps the k
smallest elements (i.e. with the k smallest distinct hash
values) and uses the following AS to estimate nS

AS =
k ×m3

fk min
. (3)

Here, fk min is the kth smallest distinct hash value. If
there are less than k distinct values, then AS = ∞ (in
our implementation, we put AS = k′×m3

fk′ min
in case if

there are only k′ distinct hash values). To improve the
accuracy, BJKST algorithm picks at random l pairwise
independent hash functions hi (hashing D to [1, m3]),
and outputs Ai,S for each hi where Ai,S (for 1 ≤ i ≤ l)
related to hi is defined in the same way as AS related
to h. BJKST algorithm outputs AS as the medium of
these Ai,S to estimate nS . BJKST algorithm keeps only
k elements with the k smallest distinct hash values. The
following Lemma 4 has been proved in [4].
Lemma 4. Suppose that 0 < ǫ, δ < 1. If m ≥ δ−1, k =
O( 1

ǫ2 ), l = O(log δ−1), and nS ≥ k, then P (|AS − nS | >
ǫnS) < δ.

4 RELATIVE ERROR SKETCHES

Our technique to construct sketches is based on the
following observation. For a dataset S, if we first select
the data elements from S with element values not greater
than a given v (the result is denoted by S|v−) and apply
FM Algorithm on S|v− , then the obtained estimation
AS,v of the number nS,v of distinct data elements in S|v−

follows Lemma 1. Recall that rmax,v is the maximum
rank of the data element with value v in DS against the
non-decreasing order of v. Consequently, rmax,v = ns,v .
Intuitively, we can get a good approximate solution if
for each v, nS,v may be estimated accurately. Note that
maintaining sketches with the presence of every value
v is not only expensive in space but also expensive in
running time in case that the total number of distinct
values is Ω(|DS |). Below, we present a novel, space-
efficient data structure (sketch) to be continuously main-
tained to achieve a relative ǫ-approximation. We also
present a theoretic analysis towards space complexity,
time complexity, and correctness.

4.1 The Framework
The following example illustrates the basic idea in our
framework based on FM algorithm.

(x1, 4)

1 00 0 0 00 1 1 00 0 0 00 1 0 00 1

(x2, 5)(x3, 6) (x1, 4) (x4, 8)

(a): first hash function

(b): second hash function

(x1, 4)

0 01 0 1 00 0 0 01 0 0 1 00 0

(x2, 5)(x3, 6) (x1, 4) (x4, 8)

0 01

Fig. 1. An Example
As shown in Figure 1, 5 elements (depicted by the
augmented form (x, v)) are collected where the first and
the third are the same. Suppose that in FM algorithm
l = 2 and k = 4; thus two hash functions h1 and h2

are randomly picked to hash each element, respectively.
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A total of 10 bitmaps with length 4 are generated,
respectively, by h1 and h2, as depicted in Figure 1(a)-
(b).
In our approach, to effectively keep values information
we map a bitmap into an array by replacing the bit with
value 1 by its corresponding data element value. Figure
2 illustrates the corresponding arrays converted from the
bitmaps in Figure 1.

(x1, 4)

4 00 0 0 00 6 4 00 0 0 00 8 0 00 5

(x2, 5)(x3, 6) (x1, 4) (x4, 8)

(a): first hash function

(b): second hash function

(x1, 4)

0 04 0 6 00 0 0 04 0 0 5 00 0

(x2, 5)(x3, 6) (x1, 4) (x4, 8)

0 08

Fig. 2. Transformed from Figure 1
For a value v and a j, to estimate nS,v by using FM
algorithm we first select the arrays generated hj such
that their corresponding non-zero values not greater
than v, then find the left-most common element with
value 0 and return its subindex as fj,v.

Example 2. Let v = 6 and j = 2. Regarding Figure 2 (b),
the 1st array, 2nd array, 3rd array, and 5th array are selected.
Then, f2,6 = 2 (i.e. the subindex of the 3rd element). In this
query, the 2nd and 3rd arrays are redundant.

Clearly, computing fj,v, by this way, is equivalent
to what have been discussed in the beginning of this
section; that is, we do a selection on S to output S|v− ;
then apply hj on S|v− and use FM Algorithm to get
FMj,min(S|v−) (= fj,v). Moreover, this example also
demonstrates that if two arrays have non-zero values
allocated in the same position, the one with larger
values will never be used in any query (i.e., regarding
any v); consequently, this redundant array should be
removed. Therefore, in the worst case we keep only k
arrays where k is the length of bitmaps in the hash
functions. Furthermore, after removing redundant arrays
the remaining arrays generated by hj can be merged
into one array with non-zero values remain in the same
positions, respectively.

Example 3. Regarding the example in Figure 2(a), 2nd, 3rd,
and 4th arrays are redundant and thus, are removed. The
merged result is depicted in Figure 3(a). For the example in
Figure 2(b), 2nd and 3rd arrays are redundant. The merged
result is depicted in Figure 3(b).

(a): result from 1st hash function (b): result from 2nd hash function

0 4 5 0 4 5 8 0

Fig. 3. Compressed from Figure 2
Below, we present our continuous sketch construction
and maintenance algorithm in Algorithm 1. We maintain
l arrays {si : 1 ≤ i ≤ l} each of which is generated, as
described above, by a randomly picked hash function
hi, and has k elements with subindexes from 0 to k− 1.
Recall that without loss of generality, we assumed each
element takes positive values. Thus, each array si can
be initialized to (0, 0, ..., 0). For every hi(x) (1 ≤ i ≤ l),
ρ(hi(x)) denotes the position (subindex) of the bit, with
value 1, in hi(x). Note that si[ρ] is the ρ-th element in

si. Moreover, to ensure relative rank errors for a give
rank r < 1

ǫ precise answers are the only possibility;
consequently, we always keep the L smallest distinct
elements (i.e., L distinct elements with the smallest
element values) in L in addition to {si : 1 ≤ i ≤ l},2

so that RQ with ranks smaller than L can be answered
exactly. We use vmax to denote the maximal data element
value in L and xmax is the element with maximal value.
Note that in L we keep each element x in its augmented
form - (x, v). In each si, we link every non-zero value to
the corresponding data element so that we can return a data
element by an RQ.

Algorithm 1 Space-Efficient Sketches (SE)

Input:
l, k, L, a stream S of (x, v).

Output:
L: the set of L smallest distinct elements;
{si : 1 ≤ i ≤ l}: each si is an array with k elements.

Description:
1: Initialize {si : 1 ≤ i ≤ l}; L ← ∅; j ← 0;
2: Generate l hash functions {hi() : 1 ≤ i ≤ l};
3: for each new x with value v do
4: if (x, v) 6∈ L then
5: if j < L then
6: L ← L ∪ {(x, v)}; j ← j + 1
7: else if v < vmax then
8: replace (xmax, vmax) in L by (x, v);
9: for i=1 to l do
10: ρ← ρ(hi(x));
11: if si[ρ] > v or si[ρ] = 0 then
12: si[ρ]← v;
13: Return L & {si : 1 ≤ i ≤ l}.

The following theorem is immediate.

Theorem 1. Algorithm 1 requires a space of L+l×k elements.

To estimate nS,v for a given v, our query algorithm
proceeds as follows. If v < vmax then we only query
L. Otherwise, in the light of earlier discussions we first
select the elements in si with positive values (corre-
sponding to data elements in DS) but not greater than
v; the result is denoted by si|v− . Then, we return the
location of the left-most element in si that is not included
in si|v− . If such a left-most element does not exist,
we return k (corresponding to the situation ∞ when
we presented FM Algorithm). Let Π denote a subset
of elements in an array and I(Π) denote the set of
subindexes of the elements in Π. Our query algorithm
is presented in Algorithm 2.
Similar to Lemma 1, the following Lemma holds for
every pair of AS,v and nS,v regardless the value of L.

Lemma 5. For a given v, ǫ, and δ, AS,v returned by Algo-
rithm 2 against the output of Algorithm 1 has the property
that P (|AS,v − nS,v| > ǫnS,v) < δ if l = O( 1

ǫ2 log 1
δ ) and

k = O(log m + log δ−1 + log ǫ−1).

Proof: If AS,v is returned from only counting L, it is
the exact answer. The lemma is immediate.
Consider that AS,v is returned from {si : 1 ≤ i ≤ l}.

2. All duplicates for the elements in L are removed according to the
algorithm.
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Algorithm 2 Approximating nS,v

Input:
v, L, {si : 1 ≤ i ≤ l} generated by Algorithm 1;

Output:
AS,v;

Description:
1: get vmax from L;
2: if vmax > v then
3: AS,v ← |L|v−|;
4: else
5: for i = 1 to l do
6: if [0, k − 1]− I(si|v−) 6= ∅ then
7: fi,v ← min{j : j ∈ [0, k − 1]− I(si|v−)};
8: else
9: fi,v = k;

10: AS,v ←
1
ϕ2

Pl
i=1

fi,v/l;
11: Return AS,v.

It can be immediately verified that Algorithm 2, in
this case, is equivalent to: 1) doing a select on S to
output S|v− , and then 2) applying FM algorithm on S|v− .
According to Lemma 1, this lemma is also immediate.
As discussed above, nevertheless, to achieve relative

ǫ-approximation (∀0 < ǫ < 1), any given RQ query with
r ≤ 1

ǫ will have to be answered exactly; that is, L ≥
1
ǫ . In

the next subsection, we will show that L = 1
ǫ is enough

to guarantee relative ǫ-approximation.

4.2 Space VS Accuracy

We first present our rank query algorithm against the
sketches generated by Algorithm 1. To retain relative ǫ-
approximation, the basic idea is that for a given rank r,
find the maximal AS,v which is not greater than r by
invoking Algorithm 2 multiple times. If |AS,v − r| < ǫ1r
(ǫ1 = ǫ/3 for 0 < ǫ < 1), then return x with value v
otherwise return x′ with value v′ where v′ is the value
in the sketch immediately greater than v.

Remark 1: Clearly, if r ≤ L, then we only need to get a
data element in L with the rth smallest value. It is the
exact solution. Therefore, below we only discuss r > L;
that is, we only query {si : 1 ≤ i ≤ l}.
Our query algorithm is presented in Algorithm 3. It is
based on the following monotonic property that can be
immediately verified according to Algorithm 2.

Lemma 6. Applying algorithm 2 to {si : 1 ≤ i ≤ l}
(generated by Algorithm 1), AS,v1

≤ AS,v2
for any v1 < v2.

Now, we show the precision guarantee of Algorithm
3.

Theorem 2. For any 0 < δ < 1, 0 < ǫ < 1 and r > L,
suppose that the element x′ is returned by Algorithm 3 with
value v′. Then,

P ([rmin,v′ , rmax,v′ ] ∩ [(1− ǫ)r, (1 + ǫ)r] = ∅) < δ

if l = O( 1
ǫ2
1

log 1
δ ), k = O(log m+log δ−1 +log ǫ−1

1 ), L = 1
ǫ ,

and ǫ1 = ǫ
3 .

Proof: With another constant factor added inside O
notation, Lemma 5 also holds for any δ/2.
It is immediate that for an existing element value v,
|AS,v−nS,v| > ǫ1nS,v with probability less than δ/2. Since

Algorithm 3 Processing a Rank Query

Input:
r > L, 0 < ǫ1 < 1, {si} generated by Algorithm 1;

Output:
x′;

Description:
1: a← max{v : AS,v ≤ r & v ∈ ∪l

i=1si};
2: get x′ such that its value v′ is a;
3: if |a− r| ≤ ǫ1r then
4: Return x′;
5: else
6: if a is the maximum value in ∪l

i=1si then
7: Return r > nS ; (outside solution range)
8: else
9: a← min{v : AS,v > r & v ∈ ∪l

i=1si};
10: Return x such that its value v′ is a;

nS,v = rmax,v, |AS,v−rmax,v| > ǫ1rmax,v with probability
less than δ/2. There are two cases, either

Case 1:Algorithm 3 returns x′ with its value v′ such
that |AS,v′ − r| ≤ ǫ1r, or

Case 2:Algorithm 3 returns x′ with its value v′ other-
wise.

Case 1 proof. Since |AS,v′ − rmax,v′ | ≤ ǫ1rmax,v′ (with
probability at least 1 − δ/2) and |AS,v′ − r| ≤ ǫ1r, it can
be immediately verified that:

|rmax,v′ − r| ≤
2ǫ1

1− ǫ1
r ≤ ǫr

Thus, the theorem holds.
Case 2 proof. There are two sub-cases - Case 2a) r <
AS,v′ ≤ (1 + ǫ1)r, and Case 2b) AS,v′ > (1 + ǫ1)r.
It is immediate that the proof of Case 1 is applicable
to Case 2a. Therefore, the theorem holds for Case 2a.
Regarding Case 2b, we have |AS,v′ − rmax,v′ | ≤

ǫ1rmax,v′ with probability at least 1− δ/2. This, together
with AS,v′ > (1 + ǫ1)r, immediately implies that with
probability at least 1− δ/2,

rmax,v′ > r. (4)

Moreover, suppose that v′′ is the maximum element
value that is smaller than v′ and v′′′ is the value in sketch
that is maximum but smaller than v′.3 According to
Algorithm 2, AS,v′′ = AS,v′′′ . According to the monotonic
property in Lemma 6 and Algorithm 3, in order to be in
Case 2

AS,v′′ = AS,v′′′ < (1− ǫ1)r. (5)

We also have

rmin,v′ = rmax,v′′ + 1. (6)

Again, |AS,v′′ − rmax,v′′ | ≤ ǫ1rmax,v′′ with probability at
least 1 − δ/2. This, together with (5) and (6), implies
rmin,v′ < r + 1 with probability at least 1 − δ/2. Since
r > L = 1/ǫ, thus with probability at least 1− δ/2,

rmin,v′ < (1 + ǫ)r (7)

These imply that one of the inequalities (4) and (7)
does not hold with probability less than δ. Thus, the
theorem holds.

3. Note: not every element value appears in the sketch generated by
Algorithm 1.
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Theorem 2 states that with the set of parameters, the
data element returned by Algorithm 3 is ǫ-approximate
with probability at least 1−δ. It can be immediately ver-
ified that another output, “r > nS”, has the probability
at least 1 − δ to be correct with this set of parameters.
Theorems 2 and 1 immediately imply that to ensure the
relative ǫ-approximate property for rank queries against
distinct elements in a data stream, the space requirement
is O( 1

ǫ2 log δ−1 log m) if m ≥ ǫ−1 and m ≥ δ−1.

Remark 2: In Algorithm 3, the output r > nS (i.e.
the answer is outside the solution range) implies the
condition r > AS

1−ǫ where AS is an estimation of nS by
Algorithm 2. According to the discussions above, such
an answer (output) is correct with probability at least
1 − δ. Similarly, in our other techniques presented in
the paper this property also holds. Therefore, without
loss of generality we assume, thereafter, that in a rank
query r, 1 ≤ r ≤ AS

1−ǫ where AS is an estimation of nS

by the corresponding query algorithm to estimate AS .
Consequently, we no longer need to handle the situation
that no element is returned.

Remark 3: To accommodate t quantile queries, it is
immediate that O( 1

ǫ2 log t
δ log m) space is required to

ensure relative ǫ-approximate with the confidence 1− δ.

4.3 Time Complexity

In Algorithm 1, it runs in time O(log 1
ǫ ) per element to

dynamically maintain L if we maintain a search tree
on L. As discussed earlier, each hj() (1 ≤ j ≤ l) takes
constant time on average to hash a data element. Thus,
Algorithm 1 runs in time O( 1

ǫ2 log δ−1) on average per
data element, given there are O( 1

ǫ2 log δ−1) such arrays.
Algorithm 3 can be implemented as follows. We sort
∪l

i=1si on element values, and then scan the sorted list,
by calling Algorithm 2 iteratively, till find such v′. Note
that in each iteration, we do not run Algorithm 2 from
scratch; instead we incrementally update the result from
last iteration. Clearly, the dominant costs appear in the
sorting process; consequently Algorithm 3 runs in time
O(K log K) where K = O( 1

ǫ2 log δ−1 log m) (assuming
m ≥ ǫ−1 and m ≥ δ−1) if subsketches have not been
pre-sorted.

4.4 Unknown m

When the element ID domain is unknown (i.e., no priori
knowledge about an upper-bound of nS), we logically
divide a data stream into several sub-streams such that
each sub-stream corresponds to a different element ID
domain and the domain lengths exponentially increase.
We start with an initialm0 (say,m0 = 64). If there is an el-
ement ID outside [1, m0], then we create a new substream
for the domain [m0 + 1, 2m0]. We can continue this pro-
cess to create [2m0 +1, 4m0] on demands, [4m0 +1, 8m0],
... , [2im0+1, 2i+1m0], and so on. Then, we run Algorithm
1 for each element ID domain, respectively. Once a new
element comes, we determine the element ID domain to
which the new element belongs and apply Algorithm
1 accordingly to maintaining sketches regarding that
element ID domain. It is not necessary to maintain L for

each element ID domain. Instead, we maintain a global
L only.
In each run (i.e. regarding a [2im0 + 1, 2i+1m0]) of
Algorithm 1 we maintain li arrays each of which has
ki elements. As with what we discussed in section 4.3,
to run Algorithm 3 efficiently we sort elements in all
sketches according to their values and then scan the
sorted list. To guarantee confidence 1 − δ, we retain
failure probability δ/2i+2 with respect to each element
ID domain [2im0 + 1, 2i+1m0] (for i ≥ 0) and δ/2 with
respect to [1, m0]. Similar to the proofs of the lemmas
and theorems in section 4.1, the following theorem can
be immediately verified.

Theorem 3. Suppose that the element ID domain seen so far
is [1, m], γ = ⌈log2

m
m0
⌉, δ, and ǫ. Then, the union of the

sketches generated can ensure a relative ǫ-approximate result
to a rank query r with confidence at least 1− δ if Algorithm
1 is applied to each domain [2im0 + 1, 2i+1m0] (for 0 ≤ i ≤
γ−1) with li arrays and each array has ki = O(i+log m0 +
log ǫ−1+log δ−1) elements, and li = O( 1

ǫ2 (i+log δ−1)), and
if Algorithm 1 is also applied to [1, m0] with l = O( 1

ǫ2 log 1
δ )

and k = O(log m0 + log ǫ−1 + log δ−1).

With those parameters in Theorem 3, the space is, thus,
O( 1

ǫ2 log3 m) if m ≥ δ−1 and m ≥ ǫ−1.

5 TIME AND SPACE EFFICIENT ALGORITHMS

While the framework (Algorithm 1) is space-efficient and
guarantees a probabilistic relative ǫ-approximate, each
element is hashed into Ω( 1

ǫ2 log δ−1) arrays (subsketches).
This potentially makes the algorithm less efficient. Our
performance study in Section 6 demonstrates it can only
handle a medium speed data stream in real time.
Consider that in many recent applications, to support
on-line computation of high speed data streams is a
crucial requirement. In this section, we propose two
time-efficient algorithms following the framework in
the last section. One retains the space requirement but
there is no theoretical guarantee of accuracy with a high
probability. Another retains the accuracy and leads to the
average space requirement O( 1

ǫ2 log 1
δ log n) though there

is no worst case guarantee of the space requirement.
Our performance study, nevertheless, indicates the both
algorithms are also practically very space-efficient and
highly accurate. Moreover, both of them are able to
support on-line computation of high-speed data streams.
Without loss of generality, we describe them with respect
to the situation that m is pre-known.

5.1 PCSA-like Algorithm
The first algorithm is an immediate application of the
PCSA technique [18] to our algorithm, Algorithm 1. The
basic idea is to hash each data element randomly to ζ
arrays (subsketches) instead of the l arrays (subsketches).
Algorithm 1 may be modified as follows.

• First, we pick at random another ζ hash functions:
{Hi : 1 ≤ i ≤ ζ} besides these l hash functions in
Algorithm 1, where each Hi hashes [1, m] to [1, l].

• Then, in Algorithm 1 instead of the iteration (in line
9) from i = 1 to l, we do the iteration for each
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i ∈ {H1(x), H2(x), ..., Hζ(x)}. The other parts in
Algorithm 1 remain the same.

We call such a modified Algorithm 1 “Algorithm SE-
PCSA”. Suppose that all the parameters are selected as
those in Theorem 2. It is immediate Algorithm SE-PCSA
runs in time O(log 1

ǫ + ζ) for each data element.

Example 4. Regarding example in Figure 3, suppose ζ = 1,
H1(x1) = H1(x3) = 1 and H1(x2) = H1(x4) = 2. Figure 4
illustrates the merge result.

In the light of PCSA technique, Algorithm 2 is modi-
fied accordingly as follows to estimate a nS,v. We change

line 10 in Algorithm 2 to AS,v ←
l

ζϕ2
Pl

j=1
fj,v/l. Then,

Algorithm 3 remains the same to answer a rank query
but calls the modified version of Algorithm 2. It can be
implemented in the same way as what we described in
section 4.3 with the same time complexity. Note that in
our implementation, we use pairwise independent hash
function for Hi and our performance study indicates that
when ζ ≥ 10, its accuracy remains relatively stable.

(a) Result from 1st hash function

0

85 00

064

(b) Result from 2nd hash function

Fig. 4. PCSA-like Algorithm
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Fig. 5. K-Skyband

5.2 K-Skyband Algorithm

Our second algorithm follows the framework in the
last section but is based on the BJKST Algorithm. We
maintain l subsketches. To estimate a nS,v for each v, the
k smallest distinct hashed values are required from each
subsketch (si), respectively, with the corresponding ele-
ment values not greater than v.4 To address the situation
that nS,v ≤ k (e.g. a query rank not greater than k), we
globally maintain a L to store the k distinct data elements
with smallest element values. As with Algorithm 1, once
a new element comes we first examine if an element in
L needs to be replaced by the new element. Meanwhile,
we hash the new element (x, v) into {si : 1 ≤ i ≤ l} as
follows.
Suppose that l pairwise independent hash functions
{hi : 1 ≤ i ≤ l} are randomly generated, each of
which hashes [1, m] to [1, M ] (M = m3). The hashed data
element (x, v, hi(x)) is added to an si (for 1 ≤ i ≤ l) if
current si does not “k-dominate” (x, v, hi(x)). An si k-
dominates (x, v, hi(x)) iff there are k data elements in si

with distinct hash values not greater than hi(x) and their
element values not greater than v. Note that similar to
the observations in Section 4 and in the light of BJKST
Algorithm, in each si an element, k-dominated by si,

4. To minimize the number of elements in each subsketch, we
introduce the “k-dominance” relationship later so that only necessary
information is kept.

does not contribute to the estimation of nS,v0
for any v0.

we use SK(si) to denote elements in si which are not
k-dominated by si.

Example 5. Regarding five elements as shown in Figure 1,
suppose l = 1, k = 2, h1(x1) = 3, h1(x2) = 9, h1(x3) = 5
and h1(x4) = 7, Figure 5 illustrates that the element x4 is
k-dominated.

Theorem 4. Each current SK(si) for 1 ≤ i ≤ l has the
following properties.

P1: If si currently k-dominates an element e (∈ si), e
will never be used by our query algorithm for any v.

P2: For each element e = (x, v, hi(x) ∈ SK(si)), either

P2a: there is a v0 such that hi(x) is the kth small-
est among the elements in Dsi,v

−

0

where

Dsi,v
−

0

denotes the set of elements in si with

element values not greater than v0, or
P2b: hi(x) is one of the k − 1 smallest distinct

hash values in si.

Proof: We prove P1 and P2 as follows.

Proof of P1. According to the definition, if e = (x, v, hi(x))
is k-dominated by si then there are at least k elements
in si with distinct hashed values smaller than e and
element values not greater than v. Consequently, our
query algorithm will never choose hi(x). This is because
that updates to SK(si) retain the property that there are
at least k elements in si with distinct hash values smaller
than e regardless how many new elements come. Thus,
P1 holds.

Proof of P2. If (x, v, hi(x)) does not belong to category
P2b, then there are λ (λ > k − 1) elements in si with
distinct hash values smaller than hi(x).
Let v0 be the value of the element with the (k − 1)th
smallest element value among these λ elements. Since e
is in SK(si), among these λ elements there are only λ1

(λ1 ≤ k − 1) elements with element values smaller than
v. Therefore, v0 ≤ v; that is, e belongs to category P2a.

Note that P1 in Theorem 4 implies that we only need
to maintain SK(si) instead of si. Clearly, an element
in the category P2a will be used in an approximate
query with value v0. Moreover, any element with one of
the k − 1 smallest distinct hashed values (category P2b)
may be used in query processing for the whole stream
once future elements have hashed values smaller than
the current k − 1 smallest values; thus, it needs to be
kept. Therefore, Theorem 4 implies that SK(si) is the
minimum number of elements we should keep.
To speed-up the computation, the k-dominance is not
examined for hashing in each (x, v). Instead, we initially
give a space upper-limit Γ (in terms of the number of
elements). We add a (x, v, hi(x)) to each si (for 1 ≤ i ≤ l),
respectively, till

∑l
i=1 |si| reaches the limit Γ. Then, we

do space compression in each si, respectively, by probing
the k-dominance relationship once the upper-limit is
reached. After the space compression, if the total number

of tuples left in
∑l

i=1 si is greater than Γ/2, then we
increase Γ to 2Γ. These describe our sketch construction
algorithm, Algorithm K-Skyband.
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In the compression phase, in each si we remove all
elements that are k-dominated by si; that is, we only
keep the elements in si, which are not k-dominated by
si. To do this efficiently, we first build two sorted lists eV ,
and eF on element values and hash values, respectively.
Then, we scan the two lists once to remove the elements
k-dominated by others. Here, eV is a sorted linked
list (pointing to each element, respectively) decreasingly
based on the lexicographical order of (v, hi(x)), while
eF is a sorted linked list increasingly based on hash
values hi(x). Moreover, to enforce the distinct hash value
condition, in the element set si if there are several
elements with the same feature value, we keep only
one element - the element with the minimum value. We
present our compression technique in Algorithm 4.

Algorithm 4 Compression

Input:
k, two sorted linked lists eF and eV pointing to the
elements in si = {(x, v, hi(x))}, respectively.

Output:
all elements in si, which are not k-dominated by si.

Description:
1: ef ← kth element ∈ eF ; ev ← 1st element ∈ eV ;
2: while ef 6= null do
3: a← the element in si pointed by ef ;
4: b← the element in si pointed by ev;
5: if a.h < b.h then
6: si ← si − {b};
7: ev ← ev.next;
8: else
9: ev ← ev.next;
10: ef ← ef.next;
11: return si;

Here, a.h and b.h are hash values of element a and b
respectively. And ev.next and ef.next represent the next
elements in eV and eF , respectively. In Algorithm 4, if
an element e is removed from si then the corresponding
elements in eV and eF pointing to e are also removed. It
can be immediately verified that Algorithm 4 is correct;
that is, it always outputs all elements in si, which are
not k-dominated by si.

Remark 1. In [34], it proposes to use k-skyband to answer
top-k queries over sliding windows. The technique is to
simply increase the dominance count of the elments which are
dominated by the new incoming elements. It is efficient when
k is small (a typical situation in top-k queries); nevertheless,
it is inefficient when k is large - a typical situation in our
problem to guarantee ǫ-approximation for a small ǫ. Thus, the
technique in [34] are not applicable to our problem setting
where we need to process data streams in real time.

To estimate a nS,v, Algorithm 2 may be modified by
changing lines 5-10 as follows.

• Firstly, for each sketch si (1 ≤ i ≤ l) select all
elements whose hash values are distinct and not
greater than v.

• Secondly, use the query technique in Section 3.2 to
query these l selected results - si|v− (1 ≤ i ≤ l).

This, combining with Algorithm 3, returns an answer
to a rank query. Based on Lemma 4, using similar proof
techniques to those in section 4.1 it can be immediately

verified that if m > δ−1, k = O( 1
ǫ2 ), L = k, and

l = O(log δ−1), then an element returned by Algorithm 3
against the subsketches by Algorithm K-Skyband (as de-
scribed above) is relative ǫ-approximate with confidence
1− δ.
Note that in Algorithm k-Skyband, we may have to
keep all distinct elements in the worst case; nevertheless,
using similar arguments to that in [6] the following
theorem is immediate.

Theorem 5. In a 2-d set s = {(xi, yi) : 1 ≤ i ≤ n} with
n elements, assume all x and y values are unique, x and
y are independent, each x follows the same distribution, and
each y also follows the same distribution. Then, the k-skyband
SK(s) has the expected number of elements O(k ln(n

k )) where
xi corresponds to a hashed value and yi corresponds to an
element value.

Proof: Without loss of generality, we assume that
yi < yj if i < j. For 1 ≤ i ≤ n, let the random variable
Xi = 1 if (xi, yi) is a k-skyband element, otherwise,
Xi = 0. The expected number of k-skyband elements
is E(

∑n
i=1 Xi) =

∑n
i=1 E(Xi) =

∑n
i=1 P (Xi = 1) where

P denotes the probability.
Clearly, the value (0 or 1) of each Xi (for 1 ≤ i ≤ n)
depends on {(xj , yj) : 1 ≤ j ≤ i−1} as yj is increasingly
ordered and any element (xj , yj) for j > i does not dom-
inate (xi, yi). Note that every element (xi, yi) belongs to
SK(s) when i ≤ k ; thus, the probability of Xi = 1 for
i ≤ k is 1.
For i > k, (xi, yi) is a k-skyband element iff xi is one of
the k smallest values in {yj : 1 ≤ j ≤ i}. Note that each
yj has the same probability to fall into the k smallest
values as each yj follows the same distribution, and we
assume the independence among all yj and between x
and y. Thus, P (Xi = 1) = k

i .
It can be immediately verified

E(

n∑

i=1

Xi) = k +

n∑

i=k+1

P (Xi = 1)

= k × (1 + H1,n −H1,k).

Here, H1,n = ln(n), the Theorem immediately follows.

To ensure relative ǫ-approximate with 1 − δ con-
fidence, k is chosen to O( 1

ǫ2 ) and log 1
δ subsketches

are maintained. Consequently, the number of elements
maintained in log 1

δ subsketches is O( 1
ǫ2 log 1

δ log ǫ2n) on
average if all element values are unique, object ID and
element value are independent, object ID of each element
follows the same distribution, and the value of each
element follows the same distribution.
Our experiment demonstrates that in practice, this
algorithm requires less space than the FM-based tech-
niques in Section 3. In fact, we can immediately show
that Γ is at most 4 times of the actual space requirement
in terms of the number of tuples. Due to the batch
compression technique, Algorithm K-Skyband now runs
in time O(log Γ) per data element on average.5 More-

5. To amortize the computation of the space compression, in our
implementation we maintain an upper-limit Γi for each subsketch si

to determine when an si needs to be compressed and Γi needs to be
doubled.
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over, our query algorithm runs in time O(Γ log Γ) if
subsketches are not compressed (thus, not pre-sorted);
however if the rank falls into L then it takes O(log L)
time to answer a query.

6 PERFORMANCE EVALUATION

In this section, we only present the evaluation results of
our techniques. This is because our techniques signifi-
cantly improve the existing duplicate-insensitive quan-
tile techniques [14], [25], [31] in both precision guarantee
and space requirement. These existing techniques only
guarantee uniform rank error ǫn; such a rank guarantee
does not provide much useful approximation informa-
tion for small ranks (i.e., no constant bound for relative
rank errors). In fact, our implementation demonstrates
that these existing techniques return the same data ele-
ment for RQ queries with r < cǫn (c is different regarding
different algorithms, datasets, and executions); this is
consistent with the above observation. Moreover, they
require an order of 1

ǫ more space than our technique
even though ours guarantee the relative rank error ǫr
instead of the uniform rank error ǫr. Below is a list of
our techniques to be evaluated.

SE. Algorithm 1: the space-efficient sketch con-
struction algorithm in Section 4.
SE-PCSA. The technique in Section 5.1.
KSKY. Algorithm k-Skyband in Section 5.2:
sketch construction technique.

We evaluate their space and time efficiency, as well as
accuracy in terms of the relative errors. The correspond-
ing query algorithms are also implemented.
In our experiments, two synthetic datasets are gen-
erated, Random and Semisort. In a Random dataset,
each data element (object) value is randomly generated
following a uniform distribution. Data elements in a
Semisort dataset are partitioned into groups with the
average group size 5K such that values in later groups
are greater than those in earlier groups, while the values
within each group are randomly generated. We use the
duplication ratio, N−n

N , to control the total number of
duplicated data elements. For each synthetic dataset, we
first generated n distinct elements so that element IDs
are picked at random in the element domain and values
follow, accordingly, the Random model or the Semisort
model. The remaining N − n data elements randomly
duplicate the exiting data elements.
A real dataset WCH (World Cup 98’s HTTP request
data) is downloaded from the Internet Traffic Archive
[27] and is used in our experiments. It consists of 17
million records of requests made to the 1998 World
Cup Web site between April 30, 1998 and July 26, 1998.
Each record contains time stamp, clientID, URLID, and
package size (PSIZE). In the dataset, we use 〈clientID,
URLID, PSIZE〉 as the element ID to identify a record
and rank data elements according to their package size
(PSIZE). There are total more than 1.53M duplicated data
elements and the maximum duplication number of an
element is 235.
All experiments have been carried out on a PC with
Intel P4 2.8GHz CPU and 1G memory. Table 2 below lists
the parameters that potentially have an impact on our

performance study. In our experiments, all parameters
use default values unless otherwise specified.
Notation Definition (Default Values)

N (synth. data) Dataset Size (10M )
α (synth. data) Duplication Ratio (0.2)
ζ (SE-PCSA) Number of times to hash an item (10)
ǫ Guaranteed Precision (0.02)
1 − δ Confidence (0.95)

TABLE 2
System Parameters

To “discount” O notation in space requirements of SE, SE-
PCSA, and KSKY, respectively, we adopt the same constant
factor 2. That is, l = 2

ǫ2 log δ−1 in SE and SE-PCSA, and
k = 2

ǫ2 in KSKY. In SE and SE-PCSA, we choose k = 32
because we use the public code from Massive Data Analysis
Lab to generate hash functions [33] and 232 is large enough
to accommodate massive number of distinct data elements; we
also choose L = 1

ǫ . In KSKY, we choose L = k, l = log 1
δ .

We also modify the code in [33] to generate hash functions in
KSKY.

6.1 Space Efficiency
We record the maximal space size (i.e. the maximal num-
ber of elements) of sketch, by each algorithm, during
the continuous processing of a dataset. The ratio of such
sketch size to the total number of elements processed
is called space ratio. Note that the space requirements in
SE and SE-PCSA are the same and fixed for given m, ǫ,
and δ, while the space ratio changes when stream sizes
change. The space required in KSKY is “opportunistic”
as it is not fixed during the computation.
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Fig. 6. Space Efficiency against Different Dataset
The first experiment results are presented in Figure 6.
They demonstrate that KSKY requires the smallest space
especially when ǫ is small. The second experiment eval-
uate the possible impacts from data sizes, ǫ, and δ. The
evaluation results against the real dataset (WCH) are
presented in Figure 7 where the experiments regarding
Figures 7(b) and 7(c) are against the whole dataset.
Again, they demonstrate that KSKY requires the smallest
space.

6.2 Evaluating Accuracy
To evaluate accuracy, we randomly generated 1K rank
queries each, respectively, for synthetic dataset Random
and the real dataset WCH, to span the corresponding
whole domain of feasible ranks. We record the average
relative error.
The results of the first experiment, against the real
dataset WCH, are reported in Figure 8. We study an
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Fig. 8. Accuracy of SE-PCSA Variants
impact of different values of ζ (i.e., the number of
subsketches an element will be hashed in SE-PCSA).6 As
demonstrated by Figure 8(a), when ζ = 10 the number
of query results exceeding the relative error guarantee is
0, and an improvements of relative errors becomes less
significant after ζ ≥ 10.
The second experiment is conducted against the 3
different datasets and is reported in Figure 9. It shows
that SE provides the highest accuracy, while KSKY is the
second. The numbers (0 or 1) above those “bar figures”
are the number of answers exceeding the designated
relative error guarantee ǫ = 0.02 even though they all
meet the confidence guarantee 0.95.
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Fig. 9. Accuracy against Different Dataset
The third experiment evaluates possible impacts from
data sizes, ǫ, and (1 − δ). The experiment is conducted
against real dataset WCH and is reported in Figure 10. It
also shows that SE always provides the highest accuracy
and KSKY is the second accurate. We report that all
answers obtained against the sketches by SE or KSKY
or SE-PCSA satisfy the corresponding probabilistic error
guarantees though SE-PCSA leads to 4 answers exceed-
ing a designated relative error guarantee ǫ for the setting
- ǫ = 0.02 and (1 − δ) = 0.8.

6.3 Time Efficiency
The cost of processing one data element may be too
small to be recorded accurately (especially for SE-PCSA

6. In SE-PCSA, different values of ζ will not make any difference in
space requirement if the other parameters are the same.
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Fig. 10. Effect of Sizes, ǫ, & (1 − δ)
and KSKY), we record the average time for processing
every batch of 1K elements as the delay of one element.
In addition, we also record the maximum value of such
delay per data element time as the maximal delay of each
element.
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Fig. 11. Time Evaluation over Different Datasets

The first experiment is conducted against the 3
datasets Random, Semisort, WCH. The experiment re-
sults are reported in Figure 11. They indicate that SE
can only process a medium speed data stream online -
300-400 elements per second when ǫ = 0.02 and about
2500 elements per second when ǫ = 0.05. However,
both KSKY and SE-PCSA can process high speed data
streams. They can process at least 75, 000 data elements
per second even with ǫ = 0.02.
Next, we also examine possible impacts of ǫ and (1−

δ). We conduct experiments on the real dataset WCH.
We vary ǫ with fixed (1 − δ) = 0.95, as well as vary
(1− δ) with fixed ǫ = 0.02. We record the average delay
per data element. The experiment results are reported in
Figure 12. They demonstrate that the processing costs of
SE increase dramatically as ǫ decreases due to the factor
of 1/ǫ2 in the time complexity, while varying δ does not
change the processing costs so dramatically.
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Fig. 12. Time Evaluation over Different ǫ and δ

The third experiment set evaluates possible impact
of duplication ratios. As we cannot change duplication
ratios in real dataset, the dataset Random is used for
this purpose. Figure 13 shows the experiment results
where average delay per data element is used. They
demonstrate that our techniques are insensitive to dif-
ferent duplication ratios.
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Fig. 14. Query Time
In the last experiment, we evaluate the 3 (rank) query
processing algorithms against the real dataset WCH.
We vary ǫ from 0.02 to 0.1. The average response time
of the 1K queries for each algorithm, after pre-sorting
the subsketches, is reported in Figure 14. It shows that
querying sketches by SE-PCSA or KSKY is significantly
more efficient than those of SE. This is because that the
sketch size by KSKY is significantly lower that by SE.
Although SE and SE-PCSA have the same space, the
number of non-zero values in the sketch by SE-PCSA
is significantly lower than that in SE.

6.4 Summary
As a short summary, our performance evaluation
demonstrates that the proposed techniques are not only
space and time efficient but also of highly accurate.
Among these three algorithms, SE is the most accurate;
SE-PCSA has the fastest processing speed; and KSKY
takes the smallest space. With the requirement of pro-
cessing high speed data streams, SE-PCSA or KSKY is a
better choice than SE.

7 APPLICATIONS

The techniques we developed in this paper may be
applied into the following problems. We state them
based on our techniques in section 4 with pre-knowledge
about an upper bound m of nS ; the other techniques can
also be applied in a similar way.

7.1 Sliding Window Computation
In some applications, users might be more interested
in statistics of recent data rather than that of the entire
history. Regarding the stock market example presented
in section 1, the purchase trends of the most recent
week or last one million deals might be preferred by
some buyers. This is referred as “sliding window” model
and has been extensively studied in many recent works.
In this subsection, we will investigate the problem of
duplicate-insensitive order statistics computation over
the count-based sliding window. That is, given rank r
and t ≤W , find the element with rank r in DS,t+ where
DS,t+ represents distinct elements in the last t elements
of the data set S and W is the maximal window size.
A simple solution is to keep the most recent W ele-
ments. However it is infeasible when W is very large
which is common in many applications. We can extend
our FM sketch based technique to support the sliding
window queries. Besides the value and id information,
we also need to keep the timestamp for each incoming
elements e, denoted by e.ts. Without loss of generality,
we assume the recent elements have larger ts values. In

the SE algorithm, for each position of the subsketches,
instead of keeping the minimal element value hashed to
it so far we maintain a set of elements. Then for given
t ≤ W , we can find out the minimal value of the last
t elements. Let E denote a set of elements which are
hashed to a particular position in a subsketch. For two
elements e1, e2 ∈ E, e1 dominates e2 if e1.v ≤ e2.v and
e1.ts ≥ e2.ts. It is immediate that e2 is redundant as it
does not contribute to above query for any t because
of the existence of e1. Consequently, we only need to
keep the elements which are not dominated by any other
elements in E. They are 2-dimensional skyline points[7]
of E with expected size O(ln |E|) if element values
are independent with the arriving orders. For each FM
subsketch, the probability of an element being mapped
to i-th position (0 ≤ i < k) is 1

2i+1 , so the expected
number of elements kept in each subsketch is O(ln w

2 +
ln w

22 + . . . + ln w
2k ) = O(ln k lnw) where w is the total

number of distinct elements within latest W elements.
Together with space k used in SE algorithm, the expected
space complexity of each subsketch is O(ln k lnw + k).
As to the L in the SE algorithm, we also need to keep
more elements such that for any t ≤ W the L can
return the smallest 1

ǫ distinct elements within t latest
elements. In the spirit of Theorem 4, it is easy to verify
that keeping 1

ǫ -skyband of the most recent W elements
will suffice. According to Theorem 5, the expected size
of L is O(1

ǫ ln ǫw). Then we have the following theorem.

Theorem 6. Ifm ≥ ǫ−1,m ≥ δ−1, 0 < δ < 1 and 0 < ǫ < 1,
with expected space of O( 1

ǫ2 log δ−1(lnw ln lnm+logm)), we
can find the relative ǫ− approximate answer for given rank r
with probability at least 1− δ regarding to arbitrary window
size t ≤W where w is the number of distinct elements in the
most recent W elements.

7.2 Value-based Rank Queries.
It is immediate that the sketches generated by Algorithm
1, with O( 1

ǫ2 log δ−1 log m) space, can guarantee the rela-
tive ǫ-approximation (with confidence 1−δ) for counting
the number of distinct elements with values smaller (or
not greater) than a given v.

7.3 Distinct Heavy Hitters
Suppose each data element is represented by (id, i)
where id is the element ID and i means the ith item
hit by the element. In Algorithm 1, we keep i instead
of v. Let c(i) denote the number of hitters of item i. Let
AS,i, obtained by Algorithm 2, be the estimation of the
number of distinct elements hitting the items from 1 to i.
It is immediate that if the parameters used in Theorem 2
are modified accordingly to ǫ/2 and δ/2 instead of ǫ and
δ, then c(i)−ǫn ≤ AS,i−AS,i−1 ≤ c(i)+ǫnwith confidence
1−δ. Moreover, the items, which (whose subindexes) do
not appear in the sketch, have the number of hitters not
greater than ǫn with the confidence 1−δ. This means our
techniques can be used to get an ǫ-approximate solution,
with confidence 1− δ and space O( 1

ǫ2 log δ log m), for the
heavy hitter problem over data streams by discounting
duplicated hitters. It improves the space requirement
O( 1

ǫ3 log 1
δ log2 m) in [31].
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Viewing i as a graph nodeID, the above technique can
be immediately used to get an ǫ-approximate solution for
heavy hitters in multi-graphs. The space requirement, as
given above, is similar to [14].

7.4 Counting Inversions

Counting the number of inversions in massive datasets
has many applications including ranking aggregation
[16]. Following is an example of counting the number
of inversions.

Example 6. Suppose four elements (x1, 4), (x2, 6), (x3, 5),
(x4, 8) arrive in sequence order, then the number of inversions
is 1.

In [24], a randomized algorithm is proposed to achieve
the relative ǫ-approximation with space O( 1

ǫ3 log2 N) and
confidence at least 1 − 1/N , where N is a pre-known
upper-bound of the number of elements and no dupli-
cated elements are allowed. With the same assumption
that no duplicates are allowed and N is pre-known,
using the above ranking value technique immediately
implies that we can apply Algorithm 2 per new data
element e to rank the value of e against the sketches
maintained by Algorithm 1. Then, adding such counts
together can guarantee the relative ǫ-approximation for
the inversion counting problem with confidence at least
1 − 1/N if space used is O( 1

ǫ2 log2 N) and N ≥ 1/ǫ.
To ensure the global failure probability less than 1/N ,
we enforce the failure probability for ranking each new
value less than 1

N2 . Since no duplicated objects, m = N .
Clearly, our technique improves the technique in [24] by
a factor of 1

ǫ .

7.5 Quantile Queries against Distinct Values

In some applications, one may want to know a distri-
bution over distinct values. Our techniques can imme-
diately support such a requirement with a relative error
guarantee. In Algorithm 1, instead of hashing each object
ID it hashes each object value.
With such a modification, Algorithms 1 & 2 &
3 can immediately guarantee relative ǫ-approximate
for rank queries (thus, quantile queries) with space
O( 1

ǫ2 log δ−1 log m) if m ≥ ǫ−1 and m ≥ δ−1, and
confidence at least 1− δ.

7.6 Fault-tolerant Distributed Quantiles

To address a high fault rate over a P2P and/or sensor
network, a multi-path based routing approach is widely
employed in many distributed statistic computation ap-
plications. Since more than one copy of a particular sub-
sketch at a node are sent to the target node via different
paths, the problem of over-counting arises. Recently,
several novel techniques are proposed in [35], [9], [31]
to resolve the over-counting issue for aggregates such as
count, sum, heavy hitter, and quantiles (with precision
guarantee ǫN ) over a network.
Algorithm 1 has the property that two local sketches
can be merged if they are created with the same k and set
of l hash functions, while the precision guarantee may

be retained. Then, all of the local sketches can be merged
into a global sketch at the target node via multi-paths.
Then we present the following claim:

Theorem 7. There is a distributed algorithm, with transmis-
sion load O( Υ

ǫ2 log δ−1 log m) at each node and probability at
least 1− δ, that guarantees a relative ǫ-approximate quantile
query result. Here, Υ is the maximal number of sketch copies
sent from each node.

Proof: According to Lemma 2, at each node we can
simply merge the FM sketches from its children and the
local FM sketch. Based on Theorem 2, with probability at
least 1−δ, we can get the relative ǫ-approximate quantile
query result against the elements from the subtree if the
size of each FM sketch is O( 1

ǫ2 log δ−1 log m), Since there
are at most Υ copies of FM sketches being sent from
a particular node, the maximal transmission load is at
most O( Υ

ǫ2 log δ−1 log m) for each node.

8 CONCLUSIONS

In this paper, we investigate the problem of approx-
imately processing rank queries against distinct data
elements in a data stream with the presence of du-
plicated data elements. Novel space and time efficient
techniques are developed for continuously maintaining
order statistics so that rank queries can be answered
with a relative error guarantee. This is the first work
providing the space and time efficient data stream tech-
niques to process approximate rank queries with relative
error guarantees against distinct data elements. Besides
proven accuracy and space guarantees, our algorithms
are also efficient enough to support on-line computation
of very high speed data streams with an element arrival
rate up to 75K/second. Moreover, we show that our
techniques may be extend to sliding window model and
other problems, such as finding distinct heavy hitters,
counting inversions, fault-tolerant distributed quantiles
computation, etc.

REFERENCES

[1] M. Ajtai, I. S. Jayram, R. Kumar, and D. Sivakumar. Approximate
counting of inversions in a data stream. In STOC 2002.

[2] A. Arasu and G. S. Manku. Approximate counts and quantiles
over sliding windows. In PODS, 2004.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In PODS’02.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Tre-
visan. Counting distinct elements in a data stream. In RANDOM,
2002.

[5] M. Bawa, H. G. Molina, A. Gionis, and R. Motwani. Estimating
aggregates on a peer-to-peer network. Technical report, Stanford
University, 2003.

[6] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson.
On the average number of maxima in a set of vectors and
applications. J.ACM, 25(4):536–543, 1978.
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