
Efficient Approximate Entity Extraction
with Edit Distance Constraints

Wei Wang∗ Chuan Xiao Xuemin Lin
University of New South Wales and NICTA

Australia

{weiw, chuanx, lxue}@cse.unsw.edu.au

Chengqi Zhang
University of Technology, Sydney

Australia

chengqi@it.uts.edu.au

ABSTRACT
Named entity recognition aims at extracting named enti-
ties from unstructured text. A recent trend of named entity
recognition is finding approximate matches in the text with
respect to a large dictionary of known entities, as the do-
main knowledge encoded in the dictionary helps to improve
the extraction performance.

In this paper, we study the problem of approximate dic-
tionary matching with edit distance constraints. Compared
to existing studies using token-based similarity constraints,
our problem definition enables us to capture typographi-
cal or orthographical errors, both of which are common in
entity extraction tasks yet may be missed by token-based
similarity constraints. Our problem is technically challeng-
ing as existing approaches based on q-gram filtering have
poor performance due to the existence of many short en-
tities in the dictionary. Our proposed solution is based
on an improved neighborhood generation method employ-
ing novel partitioning and prefix pruning techniques. We
also propose an efficient document processing algorithm that
minimizes unnecessary comparisons and enumerations and
hence achieves good scalability. We have conducted exten-
sive experiments on several publicly available named entity
recognition datasets. The proposed algorithm outperforms
alternative approaches by up to an order of magnitude.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Textual Databases;
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Pattern Match-
ing

General Terms
Algorithms, Performance

∗This work was partly done while Wei Wang was visiting
the University of Technology, Sydney.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

Keywords
approximate dictionary matching, named entity recognition,
edit distance

1. INTRODUCTION
Named entity recognition (NER) aims at finding named

entities in unstructured text. It is an important task in infor-
mation extraction and integration, and serves many appli-
cations, including identifying geographical locations for geo-
tagging [2], identifying gene and protein names from MED-
LINE abstracts for text mining [35, 14], identifying names
and their categories to improve Web search [31]. A promis-
ing approach is to leverage large dictionaries of known enti-
ties. This approach has been shown to substantially improve
the extraction performance over traditional NER systems
due to the extra domain knowledge encoded in the dictio-
nary [15].

Since entities in the dictionary are represented as strings,
the dictionary-based named entity extraction problem can
be modeled as an approximate dictionary matching prob-
lem, that is, given a dictionary of strings and a query docu-
ment, we want to find all the approximate occurrences of any
dictionary string in the query document. While the exact
version of this matching problem is well understood, approx-
imate matching is much harder as every entity in the dictio-
nary could be a candidate. Therefore, indexing the entity
dictionary is a popular approach; it will identify only a sub-
set of entities as candidates for each query, thus improving
the overall performance. [10] proposed to build inverted in-
dex on tokens and focuses on computational sharing among
subsequent queries. [8] employs an extended prefix filter-
ing [12] and a superimposed code based filtering method.
[1] studies a similar problem with the different setting that
both the dictionary and documents are indexed.

A limitation in the above work is that it only considers
token-based similarity measures. That is, both entities and
documents are tokenized with respect to word boundaries
and popular set-based similarity measures, such as the Jac-
card similarity, are then used to retrieve similar entities for
a given query string. There are several disadvantages asso-
ciated with this approach.

• It may miss some match. While entities in the dictio-
nary are usually cleaned and standardized, they are usu-
ally not in the document: there could be typographi-
cal, orthographical or extraction errors, or there may be
no standard name for some entities (e.g., biological enti-
ties [35]). To make things worse, many entities contain
very few tokens. For example, “al qaeda” will not match

“al qaida” unless we use a low Jaccard similarity thresh-
old of 0.33. Still, “al-qaeda” or “al-qa’ida” won’t be
matched with “al qaeda” as the Jaccard similarity value
is 0. In contrast, edit distance with a threshold 2 can
capture all these alternative spellings of the same entity1.

• It may result in too many matches. Set-based similar-
ity measures disregard the order among tokens and dis-
similarity between mismatched tokens. For example, “al
qaeda” will match “al gore” as well as “al pacino” if
we use a Jaccard similarity threshold of 0.33. Edit dis-
tance with a threshold of 2 won’t report such false positive
matches.

To remedy the above problems, we propose to study the
entity extraction problem with the well-known string-based
dissimilarity measure — edit distance. Edit distance mea-
sures the minimum number of edit operations (insertion,
deletion, and substitution) to transform one string to an-
other. Edit distance can effectively capture typographic er-
rors, words with alternative spellings, and does not rely on
the separation of word boundaries. Hence, edit distance
and its variants have been used in named matching [42] and
record linkage [7].

A widely adopted method to find approximate matches
with an edit distance constraint is based on q-grams [16].
However, a unique feature in named entity matching is the
existence of many short entities in the dictionary. Matching
short strings approximately results in the following dilemma:
we have to use short q-grams to ensure matching strings have
at least one common q-gram; however, it is known that short
q-grams suffer from poor performance problems [42, 39].

In this paper, we propose to solve the approximate dic-
tionary matching problem with edit distance constraint by
an improved neighborhood generation-based method. The
neighborhood generation method was traditionally consid-
ered only applicable to small alphabet size and small edit
errors, as the size of the neighborhood is O(mτ |Σ|τ), where
m is the string length, Σ is the alphabet, and τ is the
edit distance threshold [37]. Recently, [33] proposed the
FastSS algorithm, which reduces the neighborhood size to
O(mτ) and was demonstrated to outperform the q-gram-
based method on the English vocabulary. However, FastSS
still cannot scale up to the diverse entity lengths and error
levels for typical entity extraction tasks. In this work, we
improve the FastSS method by novel partitioning and pre-
fix pruning techniques and result in a neighborhood size of
O(lpτ2), where lp ≤ m is a tunable parameter. Another
novelty lies in the document processing algorithm, where
we apply a semi-join [6] style reduction technique to avoid
considering many unnecessary query and entity pairs, in ad-
dition to other optimizations. Experiment results show that
the proposed algorithm has superior performance to other
alternatives on publicly available named entity recognition
datasets with up to 25x speedup.

Note that allowing approximate matching in NER will in-
crease false positive matches. In addition, orthographical
matching does not solve the issue of homonyms2. In this
work, we aim to utilize this approach to increase the recall
of the NER systems, following [35, 38].3 Additional post-

1
http://en.wikipedia.org/wiki/Al-Qaeda

2E.g., race (noun) as a contest vs. race (noun) as a taxonomic
group [29].
3An anecdotal example is that we are able to Ronald Regan to
Ronald Reagan in the CONLL dataset used in the experiment.

processing methods can be applied to achieve high preci-
sions. We also focus on solving the problem exactly, thus ex-
cluding approximate (e.g., LSH) or heuristic methods (e.g.,
BLAST).

Our contributions can be summarized as follows:

• We study the problem of efficiently performing dictionary-
based entity extraction with edit distance constraints. It
captures an important class of approximately matching
entities that is hard to be detected by existing methods
based on token-level similarity measures.

• We address the major technical problem in existing neigh-
borhood generation-based algorithms, thus making it a
highly competitive method for entity extraction. We de-
vise new partitioning and prefix pruning techniques to re-
duce the size of the neighborhood from O(mτ) to O(lpτ2).

• We propose an efficient query processing algorithm. The
efficiency mainly comes from two facts: we avoid consid-
ering unnecessary entity and query segment combinations
and we exploit the sharing of computation.

• We have conducted extensive experiments using several
named entity recognition datasets in various domains. The
proposed method has been shown to outperform other al-
ternatives by up to an order of magnitude.

2. PROBLEM DEFINITION AND PRELIM-
INARIES

2.1 Problem Definition

Definition 1. Given a document D and a dictionary E

of entities, the task of approximate dictionary matching
with edit distance threshold τ is to find all substrings in
D such that they are within τ edit distance from one of the
entities in E, or more formally, return { (D[i .. j], Ek) |
∃k, ed(Ek, D[i .. j]) ≤ τ }

A straight-forward algorithm would be to iterate through
all the valid substrings of the document D[i .. j], and issue
a similarity selection query to the dictionary to retrieve the
set of entities that satisfy the constraint. We refer to each
substring as a query segment. As is typical in entity extrac-
tion tasks, we do not assume the documents to be matched
are given before hand.

Notations. We denote the length of the shortest (longest)
entity in the dictionary as Lmin (Lmax). We use D[i..j] to
denote a substring of D that starts at the i-th position and
ends at the j-th position. All arrays indexes start from 1.
We denotes the length of a string s as |s|. The l-prefix of a
string s is its first l characters, i.e., s[1 .. l]. We use [abc . . .]
to indicate an ordered sequence of characters.

2.2 Analysis of Previous Approaches
A widely used method for answering similarity selection

or join queries with edit distance threshold is to convert the
edit distance constraint into a weaker count constraint on
matching q-grams. Given a string s, we obtain its q-gram
multiset by sliding a window of width q over the string. If
two strings s and t are within edit distance τ , they must
share at least LBs;t q-grams, where LBs;t = max(|s|, |t|) −
q+1−qτ . Other filtering criteria, such as length filtering and
position filtering, can be incorporated into the above count
filtering [16]. An efficient way to find the candidate strings

that share sufficient number of matching q-grams with a
given query string is to use the prefix filtering technique [12].

However, the q-gram-based approach does not work well
on our approximate dictionary matching problem mainly
due to the fact that the q-grams used must be smaller than
Lmin+1

τ+1
, as otherwise the lower bound of matching q-grams

won’t be positive. The use of short q-grams results in poor
performance for the following reasons.

1. Long postings lists. When q is small, the vocabulary size
is small and hence the postings lists for any q-gram tend
to be long. All operations (e.g., reading or intersecting)
regarding long postings list become expensive. It has
been reported that the cost of similarity search or join
using small q-grams (e.g., q = 2) is quite high [42, 39].

2. Not selective for short entities. For short entities, the
lower bound of matching q-grams is usually low. This
implies a long prefix for prefix-filtering-based methods.
Not only more postings lists need to be retrieved, but
also there is a greater possibility that some q-gram in
the prefix has a extraordinarily long postings list. As a
result, the set of candidate entities will be large.

3. Hard to share computation. Prefix filtering extracts an
appropriate length of prefixes based on the decreasing
order of token’s idf values and the corresponding post-
ings lists will be retrieved. So even if two query segments
are overlapping or containing, their prefixes could be dif-
ferent and computation cannot be easily shared.

PartEnum [4] is another approach to tackle edit distance
constraints. It generates signatures based on a two-level par-
titioning scheme and exhibits good performance when τ is
small. However, its performance is critically dependent on
the choice of partitioning parameters. As entities in the dic-
tionary may have substantially different lengths, it is hard
to set the parameters that works well for both short and
long entities.

2.3 Neighborhood Generation
Another category of approaches to deal with edit distance

query is the neighborhood generation method. Define the τ

neighborhood of a string s (Uτ (s)) as all strings that are
at most τ edit distance away from s, i.e., Uτ (s) = { s′ |
ed(s, s′) ≤ τ }. To apply it to our problem, we need to gen-
erate and index Uτ (e) for every entity e ∈ D; at the query
time, we only need to perform a single exact match using
the query string s. While neighborhood generation-based
approach is simple, it was mainly deemed as of theoretical
interest only since the size of the neighborhood is O(mτ |Σ|τ)
for a string of length m [37].

Nevertheless, [33] recently proposes to generate the dele-
tion neighborhood for both query and text, thus success-
fully reducing the neighborhood size to O(mτ). This results
in the FastSS algorithm, which achieves fast query perfor-
mance, but is still limited to small τ and m.

In this work, we devise both the partitioning and pre-
fix pruning technique which further reduce the size of the
deletion neighborhood to O(lpτ2), where lp is a tunable pa-
rameter. As a result, our method works well for a much
larger range of string length than FastSS.

2.3.1 FastSS

We briefly summarize the deletion neighborhood-based
method, FastSS, in order to best understand our proposed
method.

We use δ(s, p) to denote the transformation of string s by
deletion of the letter at position p. E.g., δ(“notebook”, 1) =
“otebook” and δ(“notebook”, 2) = “ntebook”. The dele-
tions can be applied recursively. For a number of deletions
k, we use δ(δ(. . . δ(s, p1), p2), . . . , pk) to denote the result-
ing string after k deletions, and [p1, p2, . . . , pk] the dele-
tion list of the resulting string. For example, δ(δ(“note-
book”, 1), 1) = “tebook”, and the deletion list is [1, 1].

For a given string s and a number of deletions k, we call
the result strings after deleting s by k characters at all possi-
ble positions the k-variants of s. The union of s’s i-variants
(0 ≤ i ≤ k) forms the k-variant family of s, denoted as
V (s, k). We can define it recursively as

V (s, 0) = { s }; V (s, k) = { s } ∪

|s|
⋃

i=1

V (δ(s, i), k − 1).

The following lemma enables us to devise a filtering con-
dition based on the generated variant families.

Lemma 1 (Variant Filtering Principle [33]). If two
strings s and t are within edit distance τ , then they share at
least one common variant in their τ -variant families.

Note that two strings that pass the above filter do not nec-
essarily satisfy the edit distance constraint. Edit distance
computation is therefore needed to remove the false posi-
tives that survive the filter.

FastSS can be applied to our approximate dictionary match-
ing problem as follows:

• In the indexing phase, we generate the τ -variant family for
all the entities and index the variants using an inverted
index.

• In the document processing phase, we enumerate all the
appropriate query segments of the document (denoted as
s); for each s, we generate its τ -variant family and probe
the inverted index to find a set of candidate entities for s.

• In the verification phase, we compute the edit distance for
all the candidate pairs and report those that are within τ

as the final answer.

Example 1. Consider an entity qaeda in the dictionary
and the current query segment is qaida. Let τ = 1 and q = 2
(note that the two strings will have no q-gram in common if
q > 2). Using the q-gram-based method, we need to extract
the (qτ + 1)-prefix of a string. We estimate bigrams’ fre-
quencies using some background corpus to derive the prefix
of the query segment as

prefix(qaida) = [qa, id, ai]

The q-gram-based method will retrieve and union the post-
ings lists of qa, id and ai. Most likely, the postings lists for
id and ai will be quite long, and their union alone already
results in a large candidate set to be verified.

On the other hand, using the FastSS approach, the 1-
variant family of qaeda will be generated and indexed of-
fline. At query time, the 1-variant family of the query qaida,
which consists of { qaida, aida, qida, qaia, qaid }, will be
generated and their corresponding postings lists will be re-
trieved. Most likely, all of them will be very selective4 and
will result in a small candidate set.

4See Table 1.

3. IMPROVED NEIGHBORHOOD GENER-
ATION-BASED FILTERING

In this section, we introduce a new deletion neighborhood-
based filtering method which employs new partitioning and
prefix pruning techniques. Recall that the size of the dele-
tion neighborhood size generated by the FastSS algorithm is
O(mτ). Our partitioning scheme reduces the neighborhood
size to O(mτ +τ2), and the prefix pruning technique reduces
it further to O(lpτ2), where lp is a tunable parameter.

3.1 Partitioning
Our main idea is to partition the entities and queries into

multiple partitions, such that we only need to generate and
match 1-variants for each partitions.

Our method builds upon the following two important ob-
servations.

Error Reduction Consider a string s partitioned into k

disjoint partitions, i.e., s = s1s2 . . . sk and another string
s′ resulting from applying τ edit operations on s. By a
simple argument of the pigeon-hole principle, we know
that there exists at least one partition, si, such that there
is at most

⌊

τ
k

⌋

edit operations applied to it.

Alignment Consider any partition sj in s and its corre-
sponding “image” s′j in s′. The offsets of sj and s′j might
be different, but must be within the [−τ, τ] range, as there
are at most τ insertions or deletions in the preceding par-
titions that affect the alignment of the current partition.

A high-level description of the partitioning scheme is: we
partition the entities and query segments into an appropriate
number of partitions, yet still with the following guarantee:
if a query segment and an entity are within edit distance
τ , there exists a query partition and its corresponding en-
tity partition subject to appropriate amount of shifting and
scaling such that the two partitions are within edit distance
1. This will immediately give us a filtering condition. Be-
low we derive appropriate parameter values for the above
scheme and present more details.

Number of Partitions. Since our goal is to have at least
one partition with at most one edit error, we require the min-
imum number of partitions kτ to satisfy 2(kτ − 1) + 1 ≥ τ .
Therefore, we select kτ =

⌈

τ+1
2

⌉

.

Partitioning Scheme. For a string s, we partition it into
kτ partitions in the following manner: the first kτ − 1 parti-

tions have length
⌊

|s|
kτ

⌋

, and the last partition takes the rest

of the string.
We define the following two operations that can be applied

to a partition s[i .. j] to generate its partition variation as:

Shifting by u gives us a substring of s[(i + u) .. (j + u)].

Scaling by v gives us a substring of s[i .. (j + v)] (i.e., fix
the starting position and change the ending position).

Example 2. Consider two strings s = [abcdefghijkl]
and s′ = [axxbcdefghxijkl] obtained by inserting three x

characters into s. When τ = 3, kτ = 2. Therefore, the
partitions of s and s′ are:

s = [abcdef], [ghijkl]

s
′ = [axxbcde], [fghxijkl]

Shifting the first partition of s by 3 gives us [defghi]. Scal-
ing the first partition of s by 1 gives us [abcdefg]. The two
operations can be composed. E.g., shifting the first partition
of s by 2 and scaling it by -1 gives us [cdefg].

We define the following transformation rules to apply
shifting and scaling to every partition of an entity.

• For the first partition, we only need to consider scaling
within the range of [−2, 2].

• For the last partition, we only need to consider the combi-
nation of the same amount of shifting and scaling within
the range of [−τ, τ] (so that the last character is always
included in the resulting substring).

• For the rest of the partitions, we need to consider shift-
ing within the range [−τ, τ] and scaling within the range
[−2, 2].5

The following theorem gives us a filtering condition.

Theorem 1 (Partitioned Variant Filtering).
Consider a query string s and an entity e, both partitioned
in our scheme into kτ partitions. Denote P as the set of e’s
partition variations generated by the above transformation
rules. If ed(s, e) ≤ τ , then there exist i, such that there is
a partition variation of the i-th partition of e that is within
edit distance 1 from the i-th partition of s.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

1
s
t

p
a
r
t
i
t
i
o
n
:

5

v
a
r
i
a
t
i
o
n
s

i
n
t
e
r
m
e
d
i
a
t
e

p
a
r
t
i
t
i
o
n
s
:

5
*
(
2
τ

+
1
)

v
a
r
i
a
t
i
o
n
s

l
a
s
t

p
a
r
t
i
t
i
o
n
:

(
2
τ

+
1
)

v
a
r
i
a
t
i
o
n
s

S
t
r
i
n
g

Figure 1: Illustration of Partition Variations
Generated

Figure 1 gives an illustration of the partition variants
generated by applying the transformation rules. The to-
tal amount of the 1-variants generated can be computed as
O(τm + τ2).

Special Case for τ = 2 or τ = 3. When τ ∈ { 2, 3 },
kτ = 2. By analyzing all the possible combinations of inser-
tion, deletion, and substitution errors, we find that we can
have the following more strict transformation rules:

• For the first partition, we only need to consider scaling
within the range of [−1, 1].

• For the last partition, we only need to consider the combi-
nation of the same amount of shifting and scaling within
the range of [−1, 1].

Example 3. Continuing Example 2, we consider s as an
entity and s′ as a query segment. s will generate the follow-
ing partition variations, together with their partition iden-
tifiers. Each of the following variants will generate their
1-variant family (not shown here), which will be indexed.

5It can be shown that if two strings’ length different by at
most τ , after our partitioning, the length difference of their
corresponding partitions (except the last one) is within [−2, 2].
This is the intuitive reason why scaling by [−2, 2] is sufficient.

〈 [abcd], 1 〉 〈 [abcdefgh], 1 〉 〈 [ghijkl], 2 〉

〈 [abcde], 1 〉 〈 [jkl], 2 〉 〈 [fghijkl], 2 〉

〈 [abcdef], 1 〉 〈 [ijkl], 2 〉 〈 [efghijkl], 2 〉

〈 [abcdefg], 1 〉 〈 [hijkl], 2 〉 〈 [defghijkl], 2 〉

When the query segment s′ comes in, its second parti-
tion, [fghxijkl], will have 1-variant match with s’s par-
tition variation [fghijkl] generated from s’s second parti-
tion. Therefore, 〈 s′, s 〉 will be identified as a candidate pair
for further verification.

If we use the strict transformation rules for τ = 3, we
only need to consider the underlined partition variations.

3.2 Prefix-based Pruning
The above scheme will generate partition variations whose

size is at least
⌊

m
kτ

⌋

− 2. When m is large, there are still

many variants generated. This has two disadvantages:

• It increases the space complexity, as the 1-variants from
the entities need to be stored in the inverted index.

• It introduces overhead to query processing, because more
1-variants need to be enumerated from the query segments
and probed against the index.

Meanwhile, note that the selectivity of long 1-variants will
reach a diminishing return point quickly — when the ex-
pected number of matches for a length l variant is below
one, it is not worthwhile to use variants longer than l.

Therefore, we have another pruning that is based on a
fixed length prefix of each partition or partition variation.
When the partition (variation) is longer than a prefix length
lp, we only use its lp-prefix to generate its 1-variants. It can
be shown that this pruning does not miss any result and we
name it prefix-based pruning.

Example 4. Continuing the underlined partition varia-
tions in Example 3. Assume lp is set to 3. Then 1-variants
are generated from only the following prefixes.

〈 [abc], 1 〉 〈 [ghi], 2 〉

〈 [hij], 2 〉 〈 [fgh], 2 〉

By setting lp ≤
⌊

m
kτ

⌋

− 2, it can be shown that the to-

tal number of 1-variants generated is further reduced to
O(lpτ2).

4. PROCESSING THE QUERY DOCUMENT
Entities in the dictionary usually vary substantially in

length. For example, the length of gene names in the GENE
dataset varies from 3 to 169. While FastSS is effective in
dealing with approximate matching for short strings, its
cost increases quickly when the length of the entities to
be matched increases. Nevertheless, the improved neigh-
borhood generation method we developed in the preceding
section can handle long entities well.

This motivates us to use the value kτ lp + τ to divide the
entities in the dictionary into two parts: short and long enti-
ties. We choose the value so that each partition of potential
matches for long entities is at least lp long. This enables us
to apply the prefix pruning on each partition of long entities.

In the following, we will introduce the indexing and doc-
ument processing method in detail.

4.1 Indexing the Entities
We use different procedures to index short and long enti-

ties in the dictionary, and store them in two inverted indexes,
Ishort and I long, respectively (See Algorithm 1).

• For each entity whose length is smaller than kτ lp + τ , we
take a prefix of length min(|e|, lp), generate and index its
τ -variant family.

• For each entity whose length is no smaller than kτ lp, we
first partition it into kτ partitions. Variations of each
partition are generated by applying transformation rules
(See Theorem 1). The lp-prefix of each partition varia-
tion is used to generate its 1-variant family, which will
be indexed. Note that the index for long entities maps a
1-variant to a list of 〈 entity, partition id 〉 pairs.

Algorithm 1: BuildIndex (E, τ, lp)

for each e ∈ E do1

if |e| < kτ lp + τ then2

V ← GenVariants(e[1 .. min(lp, |e|)], τ);3

/* The GenVariants (s, k) function generates
the k-variant family of string s */

for each v ∈ V do4

Ishort
v ← Ishort

v ∪ { e };5

if |e| ≥ kτ lp then6

P ← the set of kτ partitions of e;7

for each i-th partition p ∈ P do8

P T ← TransformPartition(p);9

/* according to the three
transformation rules in Section 3.1 */

for each partition variations pT ∈ P T do10

V ← GenVariants(p[1 .. lp], 1);11

for each v ∈ V do12

I
long
v ← I

long
v ∪ 〈 e, i 〉;13

return (Ishort, I long)14

Note that entities with length between kτ lp and kτ lp + τ

will be indexed in both indexes. This is necessary to ensure
no match between long entities and short query segments
(or vice versa) is missed.

4.2 Processing the Query Document
With entities in the dictionary indexed, we can process

the query document to find out all approximate matches.
A straight-forward matching algorithm is based on the ex-
haustive search, i.e., to iterate through all the valid starting
positions in the query document (i.e., [1, |D| − Lmin + τ +
1]) and enumerate all possible query segment lengths (i.e.,
[Lmin − τ, Lmax + τ]); for each query segment, we probe the
indexes to retrieve a set of candidate entities that may match
the query segment within τ edit distance. Final results can
be found by verifying each candidate pair by computing its
edit distance. This algorithm has much room for improve-
ment as not every query segment in the above enumeration
has a match.

We propose a more efficient query processing algorithm.
The idea is somewhat similar to semi-join [6]. We iterate
over the query document and use a substring with limited
length to find a set of candidate entities; based on these
candidate entities, we then find a candidate set of query
segments that might join with the candidate set of entities.
The advantage of this method is that we do not need to

enumerate non-promising pairs of entity and query segment
as the exhaustive search does.

Given a query document, we need to extract all the ap-
proximate matches with respect to the given dictionary of
entities. We iterate over all the possible starting positions p;
we match a set of substrings starting from p in two phrases:
we first match them against the long entities, and then with
short entities. This is shown in Algorithm 2.

Algorithm 2: MatchDocument (D, E, τ)

for each starting position p ∈ [1, |D| − Lmin + τ + 1] do1

SearchLong (D[p .. p + lp − 1], E, τ);2

/* matching entities no shorter than kτ lp */
SearchShort (D[p .. p + lp − 1], E, τ);3

/* matching entities of length in [lmin, kτ lp) */

We shall introduce matching algorithm for long entities
first, and then algorithm for short entities in Section 4.2.2.

4.2.1 Matching Long Entities
The matching process for long variants is complicated by

the partitioning scheme. Since 1-variants were generated for
the prefix (of length lp) of each partition of an entity, we take
the substring D[p .. p+ lp−1] and generate all its 1-variants.
These 1-variants are matched against I long, the inverted in-
dex for long entities. The result of the match gives us a
set of candidate entities, and the matching partition iden-
tifiers (pid). However, a subtle technical issue is that for
each entity e in the candidate set, they might match dif-
ferent substrings (or query segments) in the document. We
call the procedure of determining the starting position and
length of the set of query segments that matches an entity
query segment instantiation. The inputs we have are (a) the
length of the entity, and (b) the fact that the pid-th partition
of the entity has 1-variant match with the substring D[p ..

p+lp−1]. Given the length of the entity, we know the length
of the candidate query segment, m, must be within the range
[|e| − τ, |e|+ τ]. For each possible length m, we can find out

its partition size as
⌊

m
kτ

⌋

. Then its starting position can be

found by going back pid−1 partitions, i.e., p−(pid−1)·
⌊

m
kτ

⌋

.

The above procedure is represented as the QuerySegmentIn-
stantiation method (Line 8 in Algorithm 3).

Algorithm 3: SearchLong (s)

R← ∅ ; /* holds results */1

C ← ∅ ; /* holds candidates */2

V ← GenVariants(s, 1) ; /* gen 1-variant family */3

for each v ∈ V do4

for each 〈 e, pid 〉 ∈ I
long
v do5

C ← C ∪ 〈 e, pid 〉 ; /* duplicates removed */6

for each 〈 e, pid 〉 ∈ C do7

S ← QuerySegmentInstantiation(e, pid);8

/* returns
the set of query segment candidates for e */

for each seg ∈ S do9

if Verify(seg, e) = true then10

R← R ∪ 〈 seg, e 〉;11

return R12

Example 5. Continue the previous example. Assume s

is the only entity in the dictionary and s′ is the query docu-
ment, and the current starting position p = 8. Recall τ = 3
and lp = 3. Consider the invocation of SearchLong with the
prefix D[8 .. (8 + 3− 1)] = [fgh]. Its 1-variants family con-
sists of { [fgh], [fg], [fh], [gh] }. After probing the index
of 1-variants, we have three exact matching 1-variants and
they are merged to a single candidate: 〈 s, 2 〉. The length
of entity s is 12, hence we need to consider candidate query
segments whose size is between 9 and 15. If the query seg-
ment is of length 9, its partition size will be 4. This suggests
the segment starts at position 4 (with length 9), which is
subsequently verified against the entity s.

In the following table, we mark the candidate set of query
segments (and their two partitions) with gray background.

pos 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m = 9 a x x b c d e f g h x i j k l

m = 10 a x x b c d e f g h x i j k l

m = 11 a x x b c d e f g h x i j k l

m = 12 a x x b c d e f g h x i j k l

m = 13 a x x b c d e f g h x i j k l

m = 14 a x x b c d e f g h x i j k l

m = 15 a x x b c d e f g h x i j k l

There are several advantages of our document processing
algorithm.

1. We can skip many unnecessary query segment and entity
combinations. Consider Example 5 again and assume
there are other entities (of different lengths) in the dic-
tionary but they don’t trigger any match with the query
document. The exhaustive search method will have to
enumerate query segments of all possible lengths while
our method will only generate query segments relevant
to a subset of entities.

2. Our algorithm leverages shared computation. Consider
all the query segments starting from the same position,
our algorithm fetches all the candidate entities only once
while the exhaustive algorithm will repeat the same oper-
ation unnecessarily for up to Lmax + τ − lp times. This is
important as the entities in the dictionary could vary sub-
stantially in length and much computation can be saved
in our approach.

It is possible that the above method will perform multi-
ple verifications between a query segment and an entity, if
they have 1-variant match on the prefix of more than one
partition. We record all the verified pairs of query segment
and entity to avoid this re-verification.

4.2.2 Matching Short Entities
Algorithm SearchShort can find all the approximately matches

between the current substring with short entities in the dic-
tionary.

The pseudo-code of the algorithm is given in Algorithm 4.
It is similar to SearchLong with the following differences:

• We need to generate the τ -variant families for each possi-
ble length l between Lmin − τ and lp (Lines 3 – 4).

• Since entities longer than lp generates their τ -variant fam-
ilies using only their lp prefix in the indexing phase, we
need to distinguish them in the matching phase too. If
the current query segment is shorter than lp, every candi-
date pair formed by probing the index needs to be verified
(Lines 13 – 15). Otherwise, we need to perform a simpli-
fied query segment instantiation procedure and verifica-
tion for 2τ + 1 possible query segments (Lines 17 – 19).

Algorithm 4: SearchShort (s)

R← ∅ ; /* holds results */1

C ← ∅ ; /* holds candidates */2

for l = Lmin − τ to lp do3

V ← GenVariants(s, τ);4

/* gen τ-variant family */
for each v ∈ V do5

for each e ∈ Ishort
v do6

if l < lp then7

if |e| − l ∈ [−τ, τ] then8

C ← C ∪ { e };9

else10

C ← C ∪ { e };11

for each e ∈ C do12

if l < lp then13

if Verify(D[s .. s + l− 1], e) = true then14

R← R ∪ 〈D[s .. s + l− 1], e 〉;15

else16

for m = |e| − τ to |e|+ τ do17

if Verify(D[s .. s + m− 1], e) = true then18

R← R ∪ 〈D[s .. s + m− 1], e 〉;19

return R20

4.2.3 Cost Analysis
Now we can analyze the run-time complexity of our algo-

rithm on a document D.
Let Cenum and Cprobe be the average cost of enumerat-

ing a variant and probing the inverted index, respectively;
let Cverify be the average cost of verifying a candidate pair;
The size of length l string’s τ -variant family is v(l, τ) =
∑τ

i=1

(

l

i

)

= O(lτ).
The total cost of the algorithm is

C =(|D| − Lmin + τ) · (C1 + C2) (1)

where

C1 = (Cenum + Cprobe) ·

lp−1
∑

i=Lmin

v(i, τ) + candtiny · Cverify

C2 = (Cenum + Cprobe) · v(lp, τ) + candother · (2τ + 1) · Cverify

In the above formula, we distinguish the cost made by match-
ing “tiny” entities (whose length is smaller than lp) with the
cost of matching “other” entities. The main difference is
that for the latter, query segment instantiation is required
and 2τ + 1 verification needs to be performed for each can-
didate entity. candtiny and candother represents the average
number of candidates in each case.

Cprobe is typically O(1) with an appropriate value of lp.
This is empirically verified (See Table 1).

Table 1: Postings List Length (τ = 1, lp = 10)

Dataset Average Length

DBLP 1.39
GENE 2.22
CONLL 1.18

We shall make the following simplifying assumptions in or-
der to derive an asymptotic bound of the overall cost: (a) We
assume C1 � C, and thus focus on the asymptotic bound on
C2. (b) The length lp prefixes of the query segment and the
partition variations are randomly generated strings. (c) We

assume lp ≤ c · |Σ| for some constant c. The important
observation is that all the candidates that have 1-variant
match with a string s must have edit distance no more than
2 from s. The probability of a prefix from an entity having
1-variant match with the prefix of a query segment is

Pr =
O(l2p|Σ|2)

∑1
i=−1 |Σ|lp+i

= O

(

l2p

|Σ|lp−1

)

= O
(

|Σ|−(lp−3)
)

Then candother can be estimated as Pr · O(1) · N , where N

is the number of entities in the dictionary.
Therefore, the overall cost of the algorithm can be esti-

mated as

C ≈ |D| · O

(

l
τ
p +

N

|Σ|−(lp−3)
· τ

)

(2)

Hence we can see the cost increases with τ . The trend with
respect to lp is more complicated, as a large lp value will in-
crease the enumeration cost yet reduce the verification cost.
Therefore, we might expect to see an optimal lp value that
minimizes the overall cost. These are indeed what we ob-
served in the experiment (See Section 6.2).

4.3 Reduce the Amount of Enumeration
A frequent operation during the matching process is to

enumerate the 1-variant family of a length lp string, and
probe each variant against the inverted index. A problem
with this approach is that some of the enumeration is unnec-
essary. For example, consider enumerating the 1-variants of
the string [abcdef] from left to right. Suppose we know that
no variant starts with abc in the index. The näıve enumer-
ation algorithm will still enumerate other three 1-variants
that contain abc.

We design the following data structure and algorithm to
reduce the amount of enumeration by leveraging the above
observation on both the prefixes and suffixes. We employ

a parameter lpp set to
⌈

lp

2

⌉

. We record in a data struc-

ture Mp (alternatively, Ms) all the lpp-prefixes (alterna-
tively, (lp − lpp)-suffixes) that appeared in the 1-variants in
the inverted index. We can probe Mp and Ms to determine
if the prefix and suffix of the current query segment appears
or not. There are four possible cases and they are handled
as shown in the following table.

Prefix
Match

Suffix
Match

Action

true true enumerate all 1-variants of q[1 .. lp]
false false discard q as there is no match
false true enumerate all 1-variants of q[1 .. lpp]
true false enumerate all 1-variants of q[(lpp + 1) .. lp]

We use a simplified version of Bloom Filter to implement
Mp and Ms. This is a trade-off between space and time.
Note that a Bloom Filter guarantees that there is no false
positives (meaning, in our problem context, if a prefix/suffix
appears in a 1-variant, it will always be reported as existent).
This only affects the efficiency but not the correctness of the
algorithm.

5. VERIFICATION
Verifying if a candidate pair satisfies τ edit distance con-

strain can easily be a bottleneck for the whole system. This
is mainly due to the large amount of candidates and the
costly O(nm) running cost of the edit distance calculation.

We briefly outline several improvements for our problem
below and defer the details to the full version of the paper.

• We extend the content-based filtering in [39] to the entire
strings. We also minimize its filtering cost by exploiting
the temporal locality of the query segments.

• We use an efficient thresholded edit distance computa-
tion procedure due to Ukkonen [36], which has a O(τ ·
min(n, m)) space and time complexity. A heuristic is to
verify the two strings in reverse order.

6. EXPERIMENTS
In this section, we report experimental results and our

analysis.

6.1 Experiment Setup
The following algorithms are used in the experiment.

FastSS is a neighborhood generation based algorithm [33].
We actually improve the algorithm by using our verifica-
tion procedure rather than invoking the normal edit dis-
tance calculation.

QGRAM is a q-gram-based algorithm entity extraction al-
gorithm that incorporates the state-of-the-art filtering tech-
niques, including the count, position and length filter-
ing [16], prefix filtering [12], and location-based and content-
based filtering [39]. Therefore, it is likely that this imple-
mentation is more efficient than the one used for compar-
ison with the FastSS algorithm in [33].

We use different q values to index entities with different
lengths. We use the following values which achieve the
best performance on our datasets:











q = 2 , when |e| ∈ [1, 13]

q = 3 , when |e| ∈ [12, 20]

q = 4 , when |e| ∈ [18, +∞)

Note that adjacent ranges overlap each other so that we
won’t miss any result.

NGPP is our proposed algorithm, abbreviated from Neigh-
borhood Generation with partitioning and prefix-based
pruning.

All algorithms are implemented as in-memory algorithms,
with the inputs loaded into memory before they were run.

All experiments were carried out on a PC with Intel Xeon
X3220 @ 2.40GHz CPU and 4GB RAM. The operating sys-
tem is Debian 4.1.1-21. All algorithms were implemented in
C++ and compiled using GCC 4.2.3 with -O3 flag.

We used three publicly available datasets, two of which
were taken from existing named entity recognition tasks.

DBLP We extract author names from the first 10% of the
DBLP database6 as the dictionary. We then use the last
10% records as documents, where each record is a con-
catenation of a publication and its authors’ names.

GENE We used the Gene/Protein lexicon generated from
MEDLINE documents by [34].7 We sampled 33% of the
1M entities as our dictionary. We use the TREC-9 Filter-
ing Track Collections dataset8 as documents. It contains

6
http://www.informatik.uni-trier.de/~ley/db

7
ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/Gene.Lexicon.gz/

8
http://trec.nist.gov/data/t9_filtering.html

350K references from the MEDLINE database. We ex-
tract and concatenate author, title, and abstract fields
from the first 10K references.

CONLL We use the entities from the shared task of Con-
ference on Computational Natural Language Learning 2003.9

It contains more than 8,000 entities including personal
names, locations, and organization. We use the Reuters
dataset10 as documents. It contains a collection of 20K
pieces of news from Reuters Ltd.

Some statistics of the datasets are shown in Table 2 and
Figures 2(a)–2(b).

Table 2: Datasets Statistics
Dataset N avg len |Σ| Comment

DBLP-DICT 107,810 14.5 69 author name
DBLP-DOC 87,352 104.7 93 author, title

GENE-DICT 381,417 22.4 60 gene/protein
name

GENE-DOC 10,000 870.0 62 author, title,
abstract

CONLL-DICT 8,215 12.6 76 person,
location,
organization

CONLL-DOC 19,042 819.0 89 news article

We test all the algorithms on each dataset with τ between
1 and 3, which covers many important applications [20]. In
order to avoid excessive numbers of meaningless matches
(esp. when τ

|e|
is large), we enforce a local edit distance

threshold τ ′ when finding approximate matches for entities
with different lengths, as shown below:











τ ′ = min(1, τ) , when |e| ∈ [1, 5]

τ ′ = min(2, τ) , when |e| ∈ [6, 11]

τ ′ = τ , when |e| ∈ [12, Lmax]

We also further restrict that both ends of the query seg-
ment must be a separator. This ensures all the algorithms
can finish within reasonable amount of time.

We record the following measures: (a) the number of
variants enumerated by the FastSS and NGPP algorithms.
(b) the numbers of the candidate pairs before entering the
verification procedure and before invoking the thresholded
edit distance computation by all the algorithms. We name
them CAND-1 and CAND-2, respectively. For the FastSS
and NGPP algorithms, the reduction from CAND-1 to CAND-
2 is due to the content-based filtering (See Section 5). For
the QGRAM algorithm, the reduction comes from the use
of count filtering and content-based filtering. (c) the overall
running time for all the algorithms.

6.2 Effect of Prefix Length
The only parameter in the NGPP algorithm is the prefix

length, lp. We ran the algorithm on all the datasets with dif-
ferent lp values. Figures 2(c)–2(f) show various measures on
the DBLP dataset for τ ∈ [1, 3]. Results on other datasets
are similar.

We observe that

9
http://www.cnts.ua.ac.be/conll2003/ner/

10
http://www.daviddlewis.com/resources/testcollections/

reuters21578/

100

101

102

103

104

105

101 102

C
ou

nt

String Length

DBLP, GENE, CONLL - DICT

DBLP
GENE

CONLL

100

101

102

103

104

105

101 102

C
ou

nt

String Length

DBLP, GENE, CONLL - DICT

DBLP
GENE

CONLL

(a) Entity Length Distribution, DBLP (in red),
GENE (in blue) and CONLL (in black)

100

101

102

103

104

105

106

107

100 101 102 103 104

C
ou

nt

Inverted List Length

GENE

Variant (τ=1, lp=10)
4-gram

100

101

102

103

104

105

106

107

100 101 102 103 104

C
ou

nt

Inverted List Length

GENE

Variant (τ=1, lp=10)
4-gram

(b) Inverted List Length Distribution, GENE

107

108

109

 1 2 3

V
ar

ia
nt

s
E

nu
m

er
at

ed

Edit Distance

DBLP

lp=6
lp=7
lp=8
lp=9

lp=10
lp=11
lp=12

107

108

109

 1 2 3

V
ar

ia
nt

s
E

nu
m

er
at

ed

Edit Distance

DBLP

lp=6
lp=7
lp=8
lp=9

lp=10
lp=11
lp=12

(c) DBLP, Variants Enumerated

105

106

107

108

109

1010

 1 2 3

C
A

N
D

-1

Edit Distance

DBLP

lp=6
lp=7
lp=8
lp=9

lp=10
lp=11
lp=12

105

106

107

108

109

1010

 1 2 3

C
A

N
D

-1

Edit Distance

DBLP

lp=6
lp=7
lp=8
lp=9

lp=10
lp=11
lp=12

(d) DBLP, CAND-1

105

106

107

 1 2 3
C

A
N

D
-2

Edit Distance

DBLP

lp=6
lp=7
lp=8
lp=9

lp=10
lp=11
lp=12

105

106

107

 1 2 3
C

A
N

D
-2

Edit Distance

DBLP

lp=6
lp=7
lp=8
lp=9

lp=10
lp=11
lp=12

(e) DBLP, CAND-2

100

101

102

103

104

 1 2 3

T
im

e
(s

ec
on

ds
)

Edit Distance

DBLP

lp=6
lp=7
lp=8
lp=9

lp=10
lp=11
lp=12

100

101

102

103

104

 1 2 3

T
im

e
(s

ec
on

ds
)

Edit Distance

DBLP

lp=6
lp=7
lp=8
lp=9

lp=10
lp=11
lp=12

(f) DBLP, Running Time

Figure 2: Dataset Statistics and Experiment Results - I

 0

 20

 40

 60

 80

 100

 120

 1 2 3

T
im

e
(s

ec
on

ds
)

Edit Distance

DBLP

C2
C1

Figure 3: Validating the Cost Model (DBLP)

• Overall, the best lp for the DBLP dataset is 10. Longer
lp (11 or 12) is competitive for τ = 1, but not the best
choice for larger edit distance thresholds.

• When τ is fixed, a general trend is that the running time
will first decrease and then increase when we move to-
wards a long lp (Figure 2(f)). This is expected from our
cost model in Equation (2). In fact, the number of enu-
meration (Figure 2(c)) directly corresponds to the O(lτp)
term, and it increases quickly with lp (esp. when τ > 1).
In the meanwhile, a large lp value helps to reduce the

second term O(Nτ · |Σ|−(lp−3)), and this is reflected in
decrease of CAND-1 size (Figure 2(d)). The only excep-
tion is the number of enumeration when τ = 1 decreases
with lp (and this is also observed on other datasets). The
main reason is due to the optimization in Section 4.3. It
however cannot contain the super-linear growth of number
of enumerations when τ > 1.

• Figure 2(e) shows that the content-based filtering before
the final edit distance verification is very effective. It
can reduce the CAND-2 size up to an order of magni-
tude smaller than the corresponding CAND-1 size. The
reduction effect is especially substantial for large τ .

Recall that an assumption underlying the cost model when
deriving Equation (2) from Equation 1 is that C2 cost domi-
nates the total cost. We plot both C1 and C2 costs for DBLP
dataset with different τ in Figure 3. It can be observed that
C2 indeed accounts for 70%–80% of the total running time.

In the rest of the experiments, we use the best lp values
for the NGPP algorithm, i.e., lp = 10 for DBLP and GENE,
and lp = 7 for CONLL.

6.3 Comparison withFastSS

Table 3: Comparison with FastSS on DBLP

Algorithm Variants Enu-
merated (×107)

CAND-1
(×105)

CAND-2
(×105)

Time
(secs)

FastSS (τ = 1) 34 3 3 97.9
FastSS (τ = 2) 750 21 20 2642.8
NGPP (τ = 1) 4 25 3 11.1
NGPP (τ = 2) 15 110 22 40.0
NGPP (τ = 3) 31 361 36 106.9

We run the NGPP and FastSS algorithms on the DBLP
dataset and report the number of variants enumerated, CAND-
1 size, and total running time in Table 3.

We can see that the number of variants enumerated grows
rapidly for the FastSS algorithm. The growth ratio between
τ = 2 and τ = 1 is 22.1. On the contrary, NGPP has a
much smaller growth ratio of 3.8. The number of enumer-
ated variants for NGPP is only 2% of that of FastSS when
τ = 2; this contributes substantially to the huge difference in
running time between the two algorithms. Although FastSS
produces fewer CAND-1 candidates than NGPP does, the
content-based filtering effectively reduces the false positive
candidates such the CAND-2 sizes for both algorithms are
similar to each other.

We didn’t show the results for τ = 3 as FastSS didn’t stop
after 12 hours. The reason why FastSS performs significantly
worse when τ increases is because its query cost is propor-
tional to the variants it enumerates, which is O(mτ). Due
to the existence of long entities in the dictionary, the query
processing cost is dominated by attempts to match those
long entities, and hence the observed exponential growth in
running time.

To conclude, FastSS is only competitive when τ = 1 (FastSS
is actually faster than QGRAM for τ = 1 for all three datasets).
The partitioning and prefix-based pruning techniques em-

ployed in our NGPP algorithm drastically improve the per-
formance by eliminating most of the enumeration.

6.4 Comparison with theq-gram-based Method
We compare the performance of the NGPP algorithm and

the QGRAM algorithm on three datasets and plot the results
in Figures 4(a)–4(i).

Candidate Size. The sizes of CAND-1 for both algorithms
are shown in Figures 4(a)–4(c). NGPP produces fewer CAND-
1s than QGRAM by more than one order of magnitude.
The difference is most significant on GENE dataset, where
CAND-1 size produced by QGRAM is 42 times that pro-
duced by NGPP. This is because the variants used in NGPP
are longer than the q-grams used in QGRAM, and therefore
more selective than q-grams.

We plot the size of CAND-2 for both algorithm in Fig-
ures 4(d)–4(f). The size of real result is also shown to lower
bound the CAND-2 size. Several observations can be made.

• QGRAM produces larger CAND-2 than NGPP, with an
average of 4 times on the three datasets under different
settings. This is expected as the size of CAND-1 produced
by NGPP is much less than QGRAM.

• content-based filtering is quite effective in removing false
positives for both algorithms. About 98% candidates pairs
are pruned by content-based filtering for QGRAM, and the
percentage is 92% for NGPP. The reduction effect is gen-
erally more substantial with large τ .

Running Time. Running times for both algorithms on
three datasets are shown in Figures 4(g)–4(i). The general
trend is that the running time grows exponentially with the
increase of τ . NGPP outperforms QGRAM by a large margin
for all parameter settings. On GENE, the speed-up can be
up to 25x.

Two main factors influence the running time:

1. There is no shared computation between query segments
for QGRAM. It first enumerates all possible lengths of
query segments, and then searches for the candidate en-
tities. In contrast, NGPP searches for the candidate enti-
ties first, and then configures the query segments accord-
ing to the length of the candidate entities. Hence the
exhaustive iteration of query segments can be avoided.

2. The number of candidates generated by NGPP is far less
than that generated by QGRAM. The total verification
cost for NGPP is therefore less than QGRAM, and this
contributes substantially to the difference in the running
time.

6.5 Scalability against Dictionary Sizes
Since our algorithm processes a document at a time, it

scales linearly with the number of documents to be matched.
Below we consider its scalability with respect to the size
of the dictionary. We sample the dictionary of the DBLP
dataset from 20% to 100% and run the NGPP algorithm.

Figures 4(j)–4(l) show the results with respect to different
τ . We observe that both candidate size and running time
change approximately linearly with the varying dictionary
size for all τ values. Note also that the increase in running
time is slower than the increase in real result size.

6.6 Index Size
Figure 5 shows the total number of index entries in the

inverted index (for q-grams or variants) by the three algo-
rithms on the CONLL dataset.

104

105

106

107

 1 2 3

In
de

x
E

nt
rie

s

Edit Distance

CONLL

NGPP
QGRAM
FastSS

Figure 5: Index Size (CONLL)

The general trend is that the index sizes of all three algo-
rithms increase with the increase of τ . According to the the-
oretic analysis, FastSS shall have exponential growth with
the increase of τ , NGPP is quadratic, and QGRAM is lin-
ear.11 This is verified empirically in the figure.

The index size of FastSS is the largest, followed by NGPP,
and QGRAM is the most space-efficient algorithm. When
τ = 3, the indexed entries for FastSS is 15 times as large as
that of NGPP, the latter being 5 times as large as that of
QGRAM. Neighborhood generation-based algorithms need
more space than q-gram-based method since they enumer-
ate edit operations on the entities, while q-gram-based algo-
rithms only index the q-grams that are located in the pre-
fixes.

7. RELATED WORK
Approximate string matching is a well-studied area. We

refer readers to survey papers [26, 28] and we will focus on
recent work in related fields.

Entity Matching and Approximate Dictionary Match-
ing. [15] proposes to use dictionary to aid name entity
recognition tasks and [10] proposed efficient batch top-k
matching algorithms under this setting. Subsequent work
includes [8, 1]. These work only considers token-based sim-
ilarity functions.

[27] is a closely related work aiming at matching a docu-
ment against a dictionary of personal names. However, its
query processing method is mainly based on evaluating edit
distance function on all the entities simultaneously, and thus
the query processing time grows linearly with the number
of entities.

[10] proposed to build inverted index on tokens and fo-
cuses on computational sharing among subsequent queries.

All existing work on approximate string match all uses
fixed-length q-grams except the VGRAM in [22, 41]. The
variants we generated and indexed can also be deemed as
variable-length q-grams. However, the two methods are fun-
damentally different, with different similarity search meth-
ods. VGRAM-based approaches also need to access both
the dictionary and the documents to select an appropriate
set of variable length q-grams, thus they cannot deal with
applications where documents are streaming in.

Neighborhood Generation Methods. Neighborhood
generation method was used for approximate string match-
ing in [25]. The size of the neighborhood is O(mτ |Σ|τ) and
this makes it only applicable to small alphabet sizes and
small error threshold [37]. [33] proposes to generate the
deletion neighborhood for both query and text, thus improv-

11Because prefix filtering on q-grams requires at most qτ + 1
q-grams to be indexed.

106

107

108

109

1010

 1 2 3

C
A

N
D

-1

Edit Distance

DBLP

NGPP
 QGRAM

(a) DBLP, CAND-1

106

107

108

109

1010

 1 2 3

C
A

N
D

-1

Edit Distance

GENE

NGPP
 QGRAM

(b) GENE, CAND-1

105

106

107

108

109

 1 2 3

C
A

N
D

-1

Edit Distance

CONLL

NGPP
 QGRAM

(c) CONLL, CAND-1

106

107

 1 2 3

C
A

N
D

-2

Edit Distance

DBLP

NGPP
QGRAM

Real-Result

(d) DBLP, CAND-2

106

107

108

 1 2 3
C

A
N

D
-2

Edit Distance

GENE

NGPP
QGRAM

Real-Result

(e) GENE, CAND-2

105

106

107

 1 2 3

C
A

N
D

-2

Edit Distance

CONLL

NGPP
QGRAM

Real-Result

(f) CONLL, CAND-2

101

102

103

 1 2 3

T
im

e
(s

ec
on

ds
)

Edit Distance

DBLP

NGPP
 QGRAM

(g) DBLP, Running Time

101

102

103

104

 1 2 3

T
im

e
(s

ec
on

ds
)

Edit Distance

GENE

NGPP
 QGRAM

(h) GENE, Running Time

101

102

103

 1 2 3

T
im

e
(s

ec
on

ds
)

Edit Distance

CONLL

NGPP
 QGRAM

(i) CONLL, Running Time

0.0⋅100

5.0⋅106

1.0⋅107

1.5⋅107

2.0⋅107

2.5⋅107

3.0⋅107

3.5⋅107

4.0⋅107

 0.2 0.4 0.6 0.8 1

C
A

N
D

-1

Scale Factor

DBLP

τ=1
τ=2
τ=3

0.0⋅100

5.0⋅106

1.0⋅107

1.5⋅107

2.0⋅107

2.5⋅107

3.0⋅107

3.5⋅107

4.0⋅107

 0.2 0.4 0.6 0.8 1

C
A

N
D

-1

Scale Factor

DBLP

τ=1
τ=2
τ=3

(j) DBLP, CAND-1

0.0⋅100

5.0⋅105

1.0⋅106

1.5⋅106

2.0⋅106

2.5⋅106

3.0⋅106

3.5⋅106

4.0⋅106

 0.2 0.4 0.6 0.8 1

C
A

N
D

-2

Scale Factor

DBLP

CAND-2 τ=1
CAND-2 τ=2
CAND-2 τ=3

Real-Result τ=1
Real-Result τ=2
Real-Result τ=3

(k) DBLP, CAND-2

 0

 20

 40

 60

 80

 100

 120

 0.2 0.4 0.6 0.8 1

T
im

e
(s

ec
on

ds
)

Scale Factor

DBLP

τ=1
τ=2
τ=3

 0

 20

 40

 60

 80

 100

 120

 0.2 0.4 0.6 0.8 1

T
im

e
(s

ec
on

ds
)

Scale Factor

DBLP

τ=1
τ=2
τ=3

(l) DBLP, Running Time

Figure 4: Experiment Results - II

ing the neighborhood size to O(mτ). In this work, we re-
duce the bound further down to O(lpτ2), thus making this
neighborhood generation approach practical for typical en-
tity extraction tasks.

Another approach to circumvent the large neighborhood
size is to generate only a subset of all possible variants, hence
some true matches may be missed. A notable example is the
gene and protein named entity recognition problem, where
domain knowledge is used and variants are generated accord-
ing to a set of hand-crafted rules [35, 14]. Another example
is the permuted lexicon method in [42].

Similarity Selection, Joins, and Record Linkage. If
we extract all the possible query segments in a relation R,
then our problem can be formulated by a near duplicate de-
tection task and can be solved by a similarity join between R

and the dictionary E. There has been progress in similarity
joins [32, 12, 5, 40, 39, 22, 41, 23], similarity selection [21,
17], and selectivity estimation [19, 20, 24, 18].

Different similarity or distance measures were proposed
in the area of record linkage. A recent experimental study

of their relative effectiveness is presented in [9]. Some new
types of record recently studied include utilizing group in-
formation [30], combining multiple similarity functions [11],
leveraging aggregate constraints [13], and considering string
transformation rules [3].

8. CONCLUSIONS AND FUTURE WORK
We study the problem of dictionary-based entity extrac-

tion with edit distance constraints in this paper. It can
increase the recall of the system by capturing small errors
that are likely to be missed by existing methods. Our match-
ing problem is technically challenging as existing approaches
based on q-gram filtering have poor performance due to the
existence of many short entities in the dictionary. Our pro-
posed solution is based on an improvement neighborhood
generation filtering technique. We have successfully reduce
the size of the neighborhood that needs to be generated and
indexed from O(mτ) to O(lpτ2). In addition, we propose
an efficient query processing algorithm that avoids exam-
ining query segment and entity pairs that are not in the

final matching results. We have also optimized the algo-
rithm to share computation and avoid unnecessary variant
enumeration. Extensive experiments have been conducted
on several named entity recognition datasets. The proposed
algorithm outperforms alternative approaches by up to an
order of magnitude.

A future work is to study the trade-offs between the preci-
sion and recall of the approximate entity matching. We will
work on more “dirty” data (e.g., blogs or forum posts) and
consider leveraging existing machine learning-based NER
techniques.

Acknowledgement. The authors would like to thank the
anonymous reviewers for their insightful comments.
Wei Wang is supported by ARC Discovery Grants DP0987273
and DP0881779. Xuemin Lin is supported by Google Re-
search Award and ARC Discovery Grants DP0987557, DP088-
1035 and DP0666428. Chengqi Zhang is supported by ARC
Discovery Grant DP0667060.

REFERENCES
[1] S. Agrawal, K. Chakrabarti, S. Chaudhuri, and V. Ganti.

Scalable ad-hoc entity extraction from text collections.
PVLDB, 1(1):945–957, 2008.

[2] E. Amitay, N. Har’El, R. Sivan, and A. Soffer. Web-a-
where: geotagging web content. In SIGIR, pages 273–280,
2004.

[3] A. Arasu, S. Chaudhuri, K. Ganjam, and R. Kaushik.
Incorporating string transformations in record matching. In
SIGMOD Conference, pages 1231–1234, 2008.

[4] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, 2006.

[5] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs
similarity search. In WWW, 2007.

[6] P. A. Bernstein and D.-M. W. Chiu. Using semi-joins to
solve relational queries. J. ACM, 28(1):25–40, 1981.

[7] M. Bilenko, R. J. Mooney, W. W. Cohen, P. Ravikumar,
and S. E. Fienberg. Adaptive name matching in informa-
tion integration. IEEE Intelligent Sys., 18(5):16–23, 2003.

[8] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin. An
efficient filter for approximate membership checking. In
SIGMOD Conference, pages 805–818, 2008.

[9] A. Chandel, O. Hassanzadeh, N. Koudas, M. Sadoghi,
and D. Srivastava. Benchmarking declarative approximate
selection predicates. In SIGMOD Conference, pages
353–364, 2007.

[10] A. Chandel, P. C. Nagesh, and S. Sarawagi. Efficient batch
top-k search for dictionary-based entity recognition. In
ICDE, page 28, 2006.

[11] S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik.
Example-driven design of efficient record matching queries.
In VLDB, pages 327–338, 2007.

[12] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive oper-
ator for similarity joins in data cleaning. In ICDE, 2006.

[13] S. Chaudhuri, A. D. Sarma, V. Ganti, and R. Kaushik.
Leveraging aggregate constraints for deduplication. In
SIGMOD Conference, pages 437–448, 2007.

[14] A. M. Cohen. Unsupervised gene/protein entity normal-
ization using automatically extracted dictionaries. In
Proceedings of the BioLINK2005 Workshop, 2005.

[15] W. W. Cohen and S. Sarawagi. Exploiting dictionaries
in named entity extraction: combining semi-markov
extraction processes and data integration methods. In
KDD, pages 89–98, 2004.

[16] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. In VLDB, 2001.

[17] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Sri-
vastava. Fast indexes and algorithms for set similarity

selection queries. In ICDE, pages 267–276, 2008.
[18] M. Hadjieleftheriou, X. Yu, N. Koudas, and D. Srivastava.

Hashed samples: selectivity estimators for set similarity
selection queries. PVLDB, 1(1):201–212, 2008.

[19] L. Jin and C. Li. Selectivity estimation for fuzzy string
predicates in large data sets. In VLDB, pages 397–408,
2005.

[20] H. Lee, R. T. Ng, and K. Shim. Extending q-grams to
estimate selectivity of string matching with low edit
distance. In VLDB, pages 195–206, 2007.

[21] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE, pages
257–266, 2008.

[22] C. Li, B. Wang, and X. Yang. VGRAM: Improving
performance of approximate queries on string collections
using variable-length grams. In VLDB, 2007.

[23] M. D. Lieberman, J. Sankaranarayanan, and H. Samet.
A fast similarity join algorithm using graphics processing
units. In ICDE, pages 1111–1120, 2008.

[24] A. Mazeika, M. H. Böhlen, N. Koudas, and D. Srivastava.
Estimating the selectivity of approximate string queries.
ACM Trans. Database Syst., 32(2):12, 2007.

[25] E. W. Myers. A sublinear algorithm for approximate
keyword searching. Algorithmica, 12(4/5):345–374, 1994.

[26] G. Navarro. A guided tour to approximate string matching.
ACM Comput. Surv., 33(1):31–88, 2001.

[27] G. Navarro, R. A. Baeza-Yates, and J. M. A. Arcoverde.
Matchsimile: a flexible approximate matching tool for
searching proper name. JASIST, 54(1):3–15, 2003.

[28] G. Navarro, R. A. Baeza-Yates, E. Sutinen, and J. Tarhio.
Indexing methods for approximate string matching. IEEE
Data Eng. Bull., 24(4):19–27, 2001.

[29] R. Navigli. Word sense disambiguation: A survey. ACM
Comput. Surv., 41(2), 2009.

[30] B.-W. On, N. Koudas, D. Lee, and D. Srivastava. Group
linkage. In ICDE, pages 496–505, 2007.

[31] M. Pasca. Acquisition of categorized named entities for
web search. In CIKM, pages 137–145, 2004.

[32] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In SIGMOD, 2004.

[33] B. S. T. Bocek, E. Hunt. Fast Similarity Search in Large
Dictionaries. Technical Report ifi-2007.02, Department of
Informatics, University of Zurich, April 2007.

[34] L. Tanabe and W. J. Wilbur. Generation of a large
gene/protein lexicon by morphological pattern analysis.
Journal of Bioinformatics and Computational Biology,
1(4):1–16, 2004.

[35] Y. Tsuruoka and J. ichi Tsujii. Improving the performance
of dictionary-based approaches in protein name recogni-
tion. Journal of Biomedical Informatics, 37(6):461–470,
2004.

[36] E. Ukkonen. Algorithms for approximate string matching.
Information and Control, 64(1-3):100–118, 1985.

[37] E. Ukkonen. Finding approximate patterns in strings. J.
Algorithms, 6(1):132–137, 1985.

[38] J. Wang, Z. Li, C. Cai, and Y. Chen. Assessment of
approximate string matching in a biomedical text re-
trieval problem. Computers in Biology and Medicine,
35(8):717–724, 2005.

[39] C. Xiao, W. Wang, and X. Lin. Ed-join: an efficient
algorithm for similarity joins with edit distance constraints.
PVLDB, 1(1):933–944, 2008.

[40] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similar-
ity joins for near duplicate detection. In WWW, 2008.

[41] X. Yang, B. Wang, and C. Li. Cost-based variable-
length-gram selection for string collections to support
approximate queries efficiently. In SIGMOD Conference,
pages 353–364, 2008.

[42] J. Zobel and P. W. Dart. Finding approximate matches in
large lexicons. Softw., Pract. Exper., 25(3):331–345, 1995.

