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ABSTRACT

Substructure similarity search is to retrieve graphs that ap-
proximately contain a given query graph. It has many ap-
plications, e.g., detecting similar functions among chemi-
cal compounds. The problem is challenging as even testing
subgraph containment between two graphs is NP-complete.
Hence, existing techniques adopt the filtering-and-verification
framework with the focus on developing effective and effi-
cient techniques to remove non-promising graphs.

Nevertheless, existing filtering techniques may be still un-
able to effectively remove many “low” quality candidates.
To resolve this, in this paper we propose a novel indexing
technique, GrafD-Index, to index graphs according to their
“distances” to features. We characterize a tight condition
under which the distance-based triangular inequality holds.
We then develop lower and upper bounding techniques that
exploit the GrafD-Index to (1) prune non-promising graphs
and (2) include graphs whose similarities are guaranteed to
exceed the given similarity threshold. Considering that the
verification phase is not well studied and plays the dominant
role in the whole process, we devise efficient algorithms to
verify candidates. A comprehensive experiment using real
datasets demonstrates that our proposed methods signifi-
cantly outperform existing methods.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems

General Terms

Algorithms, Experimentation, Performance
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1. INTRODUCTION
Graphs have a wide range of applications including bioin-

formatics, chemistry, social networks, pattern recognition,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

software engineering. In these applications, graphs are used
to model complex structured data and relationships. For
example, graphs have been used to model and store chemi-
cal compounds. UML and ER diagrams are other examples.
There has been a considerable effort, from both database
and data mining communities, in developing techniques for
managing, processing, and analyzing graph databases, in-
cluding graph pattern discovery [12, 15, 18, 22], structure-
based graph queries [5, 6, 10, 11, 19, 23, 27, 26], etc.
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Figure 1: Query Graphs
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Figure 2: A Sample Graph Database

The substructure search problem, also called subgraph con-
tainment query, is that for a graph database and a given
query graph, we want to find all data graphs which contain
the query graph. Figure 2 shows a sample graph database.
Suppose that q1 in Figure 1 is used as a query graph; then
{g3} is the result of the subgraph search. Such queries are
very useful for an exploration purpose in many applications
(e.g., drug design, computer vision and pattern recognition,
and medical images) to extract and identify a small set of
molecules and graph models for further analysis. A common
problem is that in many occasions, there could be no match
for such an exploratory query; for instance, q2 in Figure 1
is not contained by any graph in Figure 2. In stead of refin-
ing a query graph manually by users, [24] proposes to ask
systems to find out graphs that “nearly” contain the query
graph; it is formulated as the substructure similarity search,
also called subgraph similarity search. To capture global
structure information, the subgraph similarity search prob-
lem is defined [24] as the problem of detecting the Maximum
Common Subgraph (MCS) between the query graph and the
database graphs, and the measure of similarity is then based
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on the difference of the query graph and the MCS. It is
well known that detecting MCS is NP-complete [9]. Hence,
existing techniques [24, 25], to support the subgraph simi-
larity search, follow the filtering-and-verification paradigm
with the focus on removing non-promising graphs as many
as possible in filtering to avoid expensive verification.

Connected Subgraph Similarity Search. MCS may in-
clude many low-quality results in subgraph similarity search.
Intuitively, it is possible that different parts of a query are
mapped to very different locations in a data graph g which
are far away from each other. For example, if q1 in Figure 1
is used and we are allowed to miss at most 2 edges, then the
MCS-based similarity search will return g4 in Figure 3 as a
result. Clearly, such a result is usually not desirable from
users. This phenomenon is not uncommon in subgraph sim-
ilarity search, as data graphs are usually much larger than
a query graph in typical settings. Motivated by this, in this
paper we investigate the problem of substructure similar-
ity search based on maximum connected common subgraphs
(MCCS).
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Figure 3: Cloud Contains a Large Number of Nodes

The filtering techniques [24, 25] inherently do not provide
a very effective support to connected subgraph similarity
search; for instance, it is impossible to exclude the data
graph g4 in Figure 3 from candidate graphs by these two ex-
isting filtering techniques. Moreover, the verification phase
is not studied in the existing work [24, 25] though it plays the
dominant role in the whole computation. In fact, to the best
of our knowledge there is no existing algorithm to conduct
verification for the MCCS-based subgraph similarity search.

Contributions. Motivated by these, we develop a novel
index technique, GrafD-index, which indexes data graphs
according to their distances (to be defined in Section 2) to a
feature (for each feature). We then characterize a tight con-
dition under which triangular inequality holds for defined
distance functions. Consequently, a novel lower-bounding
technique is developed to prune data graphs that are guar-
anteed not in the query result. We also develop an upper-
bounding technique to perform early validation to include
data graphs into the query result without any costly verifica-
tion. Both pruning and validation are supported efficiently
by the GrafD-index. Finally, we develop an efficient verifica-
tion algorithm that is “optimized” to share the computation.
Our contributions can be summarized as follows:

1. We develop a novel index technique, GrafD-index, to
effectively index data graphs according to their MCCS-
based distances to features.

2. We formally prove triangular inequality holds on the
MCCS-based distance function under a tight sufficient
condition based on graph connectivity.

3. Based on the GrafD-index and the triangular inequal-
ity, new pruning and validation techniques are devel-
oped to quickly identify non-answers and sure-answers.

4. We develop novel, efficient algorithms to verify whether
a candidate graph satisfies the similarity threshold against
the query graph.

Comprehensive experiments using real datasets demon-
strate that our techniques are efficient and scalable, and sig-
nificantly outperform the (only) two existing filtering tech-
niques [24, 25]. They also indicate that our total computa-
tion (filtering, validation, and verification) is more efficient
than the filtering technique in [25] for high-similarity search.
Our filtering and validation techniques significantly reduce
(up to 80% size reduction) the size of the candidate set by
Grafil [24]. To further evaluate the effectiveness of our filter-
ing techniques, our experiment results show that the total
costs of our techniques are always significantly lower than
those of Grafil combining with our verification techniques.

The rest of the paper is organized as follows. Section 2
presents problem definitions and the preliminaries. Section 3
introduces pruning and validation rules, as well as the frame-
work of our approach. Section 4 provides novel MCCS detec-
tion algorithms to verify the candidates. Section 5 presents
GrafD-index, and pruning and validation algorithms based
on GrafD-index. Section 6 reports the experimental results.
The related work and conclusion are given in Section 7 and
Section 8, respectively.

2. BACKGROUND INFORMATION
The research in this paper is focused on undirected vertex-

labeled connected graphs.1 Given a set of labels, ΣV , a graph
is denoted by G = (V, E, l) where V is the set of vertices,
E ⊆ V × V is the set of edges, and l is a labeling function:
V → ΣV . We denote the vertex set and the edge set of a
graph g by V (g) and E(g), respectively. l(u) denotes the
label of u. |V (g)| and |E(g)| represent the number of ver-
tices and edges, respectively. For presentation simplicity, an
undirected vertex-labeled graph is hereafter abbreviated to
a graph.

2.1 Problem Statement

Substructure Similarity Search. Subgraph isomorphism
and maximum connected common subgraphs (MCCS) are
defined as follows.

Definition 1. (Subgraph Isomorphism) Given two graphs
g′ = (V ′, E′, l′) and g = (V, E, l), g′ is subgraph-isomorphic
to g, denoted as g′ ⊆F g, if there is an injective function
F : g′ → g such that

1. ∀v ∈ V ′, F(v) ∈ V (g) such that l′(v) = l(F(v)).

2. ∀(u, v) ∈ E′, (F(u),F(v)) ∈ E.

g′ ⊆F g is used to denote that a graph g′ is subgraph-
isomorphic to g under the function F where g′ is called a
subgraph of g and g is also called a supergraph of g′; we may
also simply say that g contains g′. g′ ⊆F g is abbreviated
to g′ ⊆ g if there is no ambiguity. Note that more than one
subgraph isomorphic mapping may exist between g′ and g.

Definition 2. (Maximum Common Connected Subgraph -
MCCS) Given two graphs g1 and g2, the maximum common

1The developed techniques can be immediately extended to
edge-labeled and/or directed graphs.
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connected subgraph of g1 and g2 is the largest connected
subgraph of g1 that is subgraph-isomorphic to g2, denoted
as mccs(g1, g2).

Note that in Definition 2, the size of a graph is measured
by the number of edges.

Definition 3. (Query Relaxation Distance) Given a query
graph q and a data graph g, the query relaxation distance
based on MCCS is defined as,

dist(q, g) = |E(q)| − |E(mccs(q, g))|.

Definition 4. (Subgraph Similarity Search) Given a graph
database D = {g1, g2, . . . , gn}, a query graph q, and a thresh-
old σ, the subgraph similarity search problem is to retrieve
all the graphs gi ∈ D with dist(q, gi) ≤ σ. σ is also called a
distance threshold.

Note that the distance is asymmetric as dist(q, g) 6= dist(g, q)
unless |q| = |g|. [24] defines the query relaxation distance

based on MCS and the relaxation ratio dist(q,p)
|q|

is used for

subgraph similarity search. Clearly, techniques for comput-
ing relaxation distances can be immediately applied to com-
puting relaxation ratios.

Problem Statement. In this paper, we will develop effi-
cient algorithms to conduct subgraph similarity search based
on the MCCS-based query relaxation distance.

2.2 Preliminaries

Grafil. Grafil [24] is developed to support efficient subgraph
similarity searches and follows the filtering-verification query
processing paradigm. It provides a feature-based index [10,
23] to effectively filter non-promising data graphs. Features
could be paths [10], trees [27], or subgraphs [23].

As shown in Figure 4(a), a feature-graph matrix M is con-
structed by Grafil, which stores the number of the subgraph
isomorphic mappings from a feature to a data graph: Mij =
|{F| fi ⊆F gj}|, where fi is the i-th feature, gj is the j-th
data graph and F is a subgraph-isomorphic mapping. When
a query graph q is issued, a binary edge-feature-mapping ma-
trix is built on-the-fly by computing all the subgraph isomor-
phic mappings from each feature to the query graph.

As shown in Figure 4(b), the number of columns is the
total number of feature mappings found in q, and each cell
in the edge-feature-mapping matrix indicates whether the
edge is involved in a particular mapping. For instance, the
first column shows that feature f1 can be mapped to edges
{ e1, e2 } of q; feature f2 has two mappings f2(1) and f2(2) to
q.

Grafil calculates the maximum number (an upper-bound),
denoted by dmax, of feature mappings that can be missed
by removing σ edges in q. Then, for each data graph g,
Grafil calculates the number of feature mappings to q but
not to g, denoted by d(q, g) and called outstanding number.
If d(q, g) ≤ dmax, then g is included as a candidate graph.

Example 1. Consider the two matrices in Figures 4(a)
and 4(b), respectively. Let σ = 1. It can be verified that
at most 3 feature mappings may be missed by removing one
edge; thus dmax = 3. Note that the query graph contains
f1 once, f2 twice, and f4 once. Regarding g1, g1 contains
f1 twice and f3 twice. Thus, the outstanding number is 0

g1 g2 g3

f1 2 0 2
f2 0 3 0
f3 2 0 1
f4 0 0 1
(a) Feature Graph matrix

f1 f2(1) f2(2) f4

e1 1 1 1 0
e2 1 1 0 1
e3 0 0 1 0

(b) Edge Feature Matrix

Figure 4: Matrices Used in Grafil

regarding f1, 2 regarding f2, 0 regarding f3, and 1 regard-
ing f4, respectively. Summing them together gives 3. Since
3 ≤ dmax, g1 is a candidate graph. Similarly, g2 and g3 are
also kept as the candidate graphs.

QuickSI. An efficient verification algorithm, QuickSI [19], is
developed to determine whether there is a subgraph isomor-
phic mapping from q to g.

Clearly, a mapping F of q to g is fixed if the mapping
F from all vertices of q to g is determined. Nevertheless, a
vertex in q may be mapped to many vertices in g with the
same label. Consequently, there may be too many feasible
combinations to consider; for instance, if each vertex from q

has the same label with that of m vertices in g, then we need
to consider nm combinations in the worst case. Instead of
trivially enumerating mappings from V (q) to V (g), QuickSI

enumerates mappings from a spanning tree of V (q) to g to
reduce the combinations by the connectivity restriction.

QuickSI first finds a spanning tree T of the query q, and
then convert q into a sequence seq = [E[1], . . . , E[|V (q)|]],
called QI-Sequence. Each entry E[i] has one and only one
spanning edge (E[i], E[j]), denoted by E[i].sEdge, such that
j < i and (E[i], E[j]) is in T where E[1].sEdge is the label of
vertex E[1]. All other edges in q are called backward edges
in seq and the set of backward edges incident to an entry
E[i] is denoted by E[i].bEdges.

To identify a subgraph-isomorphic mapping from q to g,
QuickSI iteratively grows each possible mapping on T in a
depth-first manner according to the vertices order in seq.
QuickSI can terminate earlier if a prefix of seq cannot be
sub-isomorphically mapped to g. To effectively reduce the
search costs, QuickSI proposes to order the QI-Sequence seq

as follows. Pick up the vertex v from q, such that its la-
bel has the lowest occurrence among the candidate graphs,
as the 1st entry E[1] in seq. Then, iteratively pick up an
unchosen vertex as E[i] (for 2 ≤ i ≤ |V (q)|) such that the
spanning edge has the lowest occurrence in the candidate
graphs among all valid options.
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Figure 5: An Example Query and Its QI-Sequence
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Example 2. A query q and its QI-Sequence are shown in
Figure 5. The QI-Sequence has 6 entries. Spanning edges
are depicted by solid lines and backward edges are depicted
by dashed lines (only one in this example).

3. DISTANCE BASED FILTERING
In this section, we first characterize a tight condition un-

der which the triangular inequality holds. Then, we present
the pruning and validation rules based on the triangular in-
equality. This is followed by the framework description.

3.1 Triangular Inequality
The triangular inequality regarding graph relaxation dis-

tances does not always hold. A counter example is given
in Figure 6, where dist(g1, g3) = 3, dist(g1, g2) = 0, and
dist(g2, g3) = 1. Below, we show that the triangular in-
equality holds under a connectivity dominance condition.

g1

B B
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C

g2

B B
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C

A

C

g3

B B

A

C

A

C

Figure 6: Counter Example

Definition 5. The connectivity of mccs(g1, g2) dominates
the connectivity of g2 if there is a subgraph isomorphic map-
ping F from mccs(g1, g2) to g2 (i.e. mccs(g1, g2) ⊆F g2)
such that if removing a set S of edges in mccs(g1, g2) causes
mccs(g1, g2) disconnected, then removing F(S) in g2 always
causes g2 disconnected.

In the above example, the connectivity of mccs(g1, g2)
does not dominates the connectivity of g2 and the connec-
tivity of mccs(g2, g3) does not dominate g2.

Theorem 1. Given three graphs g1, g2, and g3, if the
connectivity of mccs(g1, g2) dominates the connectivity of
g2 or the connectivity of mccs(g3, g2) dominates g2, then
dist(g1, g3) ≤ dist(g1, g2) + dist(g2, g3).

Proof. We first show that the theorem holds if the con-
nectivity of mccs(g1, g2) dominates the connectivity of g2.

Suppose that F is a subgraph isomorphic mapping from
mccs(g1, g2) to g2 such that if removing a set S of edges in
mccs(g1, g2) causes mccs(g1, g2) disconnected, then remov-
ing F(S) in g2 always causes g2 disconnected. Note that
F(mccs(g1, g2)) and mccs(g2, g3) are subgraphs of g2, re-
spectively. Below we first show that the common part of
F(mccs(g1, g2)) and mccs(g2, g3) is either ∅ or a connected
subgraph of g2, denoted as F(mccs(g1, g2)) ∩ mccs(g2, g3)).

Suppose that F(mccs(g1, g2)) ∩ mccs(g2, g3) (6= ∅) is dis-
connected. Then, there are at least two connected compo-
nents c1 and c2 in F(mccs(g1, g2))∩mccs(g2, g3). Note that
c1 and c2 are maximum in F(mccs(g1, g2)) ∩ mccs(g2, g3)
and disconnected to each other. Let S′ be the set of edges
in F(mccs(g1, g2)) each of which is either incident to a ver-
tex in c1 or to a vertex in c2 but is not contained in c1 or
c2. It is immediate that S′ ∩ E(mccs(g2, g3)) = ∅ since c1

and c2 are maximum in F(mccs(g1, g2)) ∩ mccs(g2, g3).
According to the definition of S′, the removal of S′ makes

F(mccs(g1, g2)) disconnected. Hence, the removal of F−1(S′)
makes mccs(g1, g2) disconnected. Therefore, the removal of

S′ makes g2 disconnected according to the assumption; that
is, g2 − S′ is disconnected. Since S′ ∩ E(mccs(g2, g3)) = ∅,
c1 ⊂ mccs(g2, g3), c2 ⊂ mccs(g2, g3), and g2 − S′ is discon-
nected, it is immediate that mccs(g2, g3) is disconnected.
Contradicting! Therefore, F(mccs(g1, g2)) ∩ mccs(g2, g3) is
either ∅ or connected. Thus,

|E(mccs(g1, g3))| ≥ |E(F(mccs(g1, g2)))∩E(mccs(g2, g3)))|
(1)

We can represent |E(g2)| as follows where α (≥ 0) is the
number of edges in g2 not included in F(mccs(g1, g2)) nor
in mccs(g2, g3).

|g2| =α + |E(F(mccs(g1, g2)))| + |E(mccs(g2, g3))|

− |E(F(mccs(g1, g2)) ∩ mccs(g2, g3))|
(2)

From (1) and (2), together with the definition of graph
relaxation distance, the theorem follows.

Similarly, we can prove the theorem if the connectivity
mccs(g3, g2) dominates g2.

In Section 5.1, we will show that given an embedding (sub-
graph isomorphic mapping) F from mccs(g1, g2) to g2, it
takes linear time to determine whether or not the conditions
in Definition 5 are satisfied.

3.2 Pruning and Validation
Based on the triangular inequality, features can be used to

filter non-promising graphs and to include (validate) graphs,
with similarity guaranteed to exceed the given similarity
threshold, into the answer set. Features discussed here could
be any graph structures (paths, trees, subgraphs).

By Theorem 1, there could be totally 6 triangular inequal-
ities among q, f , and g. It can be immediately shown that
dist(q, g) ≤ dist(q, f)+dist(f, g) is equivalent to dist(g, q) ≤
dist(g, f) + dist(f, q), dist(f, q) ≤ dist(f, g) + dist(g, q) is
equivalent to dist(q, f) ≤ dist(q, g)+dist(g, f), and dist(f, g)
≤ dist(f, q) +dist(q, g) is equivalent to dist(g, f) ≤ dist(g, q)
+dist(q, f), respectively. Note that the equivalence of two
inequalities also means that the connectivity dominance con-
ditions to make the two inequalities hold are the same. Thus,
there are essentially 3 different triangular inequalities among
q, f , and g. We use two of them for pruning and one of val-
idation.

As the verification of whether the connectivity of mccs(q, g)
dominates the connectivity of g involves computing mccs(q, g),
it does not make sense to use this condition in a pruning rule.

Pruning Rule 1. For a feature f , if the connectivity of
mccs(g, f) dominates the connectivity of g, then g can be
pruned when dist(q, f) − dist(g, f) > σ.

Proof. Since the connectivity of mccs(g, f) dominates
the connectivity of g, dist(q, f) ≤ dist(q, g) + dist(g, f) ac-
cording to Theorem 1. Thus, if dist(q, f) − dist(g, f) > σ,
then dist(q, g) > σ.

Similarly, dist(f, g) ≤ dist(f, q) + dist(q, g) gives the fol-
lowing pruning rule.

Pruning Rule 2. For a feature f , if the connectivity of
mccs(f, q) dominates the connectivity of q, then g can be
pruned when dist(f, g) − dist(f, q) > σ.
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Validation Rule 1. For a feature f , if the connectivity
of mccs(f, q) dominates the connectivity of f or the connec-
tivity of mccs(f, g) dominates the connectivity of f , then g

is a result graph when dist(q, f) + dist(f, g) ≤ σ.

Proof. Note that dist(q, g) ≤ dist(q, f)+dist(f, g) holds
according to Theorem 1. Thus, dist(q, g) ≤ σ.

In Section 5.3, we will present efficient techniques to im-
plement these pruning and validation rules. Below we first
present the framework of our approach.

3.3 Framework
Existing techniques [24, 11] follow the filtering-verification

paradigm. In this paper, we propose an efficient algorithm
DistVP that employs distances-based triangular inequalities
for validation and pruning. It has three phases, pruning-
validation-verification, based on our distance-based index,
as shown in Figure 7. We outline the three phases of Algo-
rithm DistVP as follows. Initially, put all data graphs g in
Cq with |E(q)| − |E(g)| ≤ σ.

{gi|gi ∈ D}

Pruning

Validation

{gi|dist(q, gi) < σ is true} {gi|dist(q, gi) < σ is still unknown} {gi|dist(q, gi) < σ is false}

Verification: MCCS Detection

{gi|dist(q, gi) < σ is true} {gi|dist(q, gi) < σ is false}

∪

Output

Figure 7: Pruning-Validation-Verification

1. Pruning. Regarding each indexed feature, a data
graph will be removed from the candidate set Cq if
the pruning conditions hold in Pruning Rules 1 or 2.

2. Validation. Graphs are immediately added to the
result set V without an expensive verification if the
conditions holds in Validation Rule 1.

3. Threshold-based Verification. The candidate graphs
in Cq − V are processed by our new threshold-based
detection algorithms in Section 4

Next two sections will give the algorithmic details of Al-
gorithm DistVP. Since our pruning, validation, and index
construction techniques will use our verification technique.
Next we first present our verification algorithm.

4. THRESHOLD-BASED VERIFICATION
In the verification phase, query answers are extracted from

the candidate graphs, Cq − V . Given a q, a threshold σ

on query relaxation distance, and a g ∈ Cq − V , we ver-
ify whether dist(q, g) ≤ σ, instead of computing the exact
value of dist(q, g). Given a subgraph q′ of q, a spanning sub-
tree T of q′, and a subgraph-isomorphic mapping F from T

to g, let LT,F denote the number of mismatched edges in
q′; that is, edges (u, v) ∈ q′ but (F(u),F(v)) 6∈ g. Let

Lq′

= |E(q) − E(q′)|. The theorem below is a key, which
can be directly verified from the definitions.

Theorem 2. dist(q, g) ≤ σ if and only if there is a span-
ning tree T of a connected subgraph q′ of q and a subgraph
isomorphic mapping F from T to g such that

L
T,F + L

q′

≤ σ (3)

A trivial way for verification is to enumerate all feasible
sub-spanning trees of q and then use QuickSI to explore them
one by one to determine if we can find a mapping such that
the inequality in (3) holds. Nevertheless, this misses the op-
portunity of sharing the computation among different sub-
spanning trees with a common part and may unnecessarily
enumerate too many different spanning tress.

To resolve the above issues, the central idea of our algo-
rithm is to enumerate an alternative sub-spanning tree of
q based on demands and only when it is feasible to extend
the current partial mapping. In our algorithm, enumerating
sub-spanning trees of q is conducted in a depth-first search
manner from a QI-Sequence seq combining with QuickSI to
explore possible mapping on current spanning tree T . A key
issue is that the following may happen. The current partial
mapping on T cannot be extended further with the require-
ment to exactly map the current spanning edge in T to g; for
instance, regarding Example 2 the spanning edge (B, C) in
the QI-Sequence in Figure 5 simply cannot be mapped to an
edge in g restricted to the current partial mapping. Hence,
to ensure the connectivity we need to find a backward
edge in seq to replace (B, C) to form a new QI-Sequence to
continue the subsequent search using QuickSI.

For the simplicity of presentation, below we first present
our algorithm with a special requirement that the first entry
of a QI-Sequence of q has to be exactly mapped to g in com-
puting dist(q, g). Algorithm 1 below outlines our threshold-
based algorithm that iteratively extends the current partial
mapping on seq[1, ..., l − 1] in a depth-first search manner,
where seq[1, ..., l] denotes the subgraph of q consisting of the
first l entries and the (spanning and backward ) edges among
these l entries in seq. It terminates whenever true returns
and returns false if any mapping with the 1st entry to be
exactly mapped to g has more than σ edges miss-matched.

Algorithm 1: FixHeadVerify(σ, g, seq, l)

Input : σ is a given query relaxation threshold;

g is a data graph;

seq is q’s QI-Sequence;

l is the current depth, initially 1;

if UnmatchedEdges(seq, l) ≤ σ then return true ;1

while NextMatch(E[l].sEdge, g) do2

ǫ← MissingBackwardEdges(E[l].bEdges, g);3

if ǫ ≤ σ then4

if FixHeadVerify(σ − ǫ, g, seq, l + 1) then5

return true6

if σ ≥ 1 & l ≥ 2 then7

seq′ ← GetNewSeq(seq − E[l].sEdge);8

if |seq′| ≥ l then9

ǫ← MissingEdges(seq − E[l].sEdge);10

if ǫ ≤ σ then11

if FixHeadVerify(σ − ǫ, g, seq′, l) then12

return true13

return false14

Details of Algorithm 1. Lines 1 exams whether or not
Algorithm 1 can terminate in the current round with a posi-

907



tive answer, true, where UnmatchedEdges(E[l].sEdge, l) cal-

culates LT,F +Lq′

in (3) based on the current subgraph iso-
morphic mapping F on the spanning tree T of seq[1, ..., l−1].

Lines 2-6: Determine if the current partial subgraph iso-
morphic mapping from the spanning tree T of seq[1, ..., l−1],
allowing at most σ edges in seq[1, ..., l− 1] mismatched, can
be extended to E[l].sEdge and beyond while still allowing at
most σ edges mismatched. Recall, as defined in Section 2.2
E[l].sEdge (l ≥ 2) is the spanning edge between an entry in
seq[1, ..., l − 1] to E[l] and E[1].sEdge is the label of E[1].

NextMatch(seq[l].sEdge, g) maps E[l].sEdge to an edge in
g while preserving the current mapping on the spanning tree
of seq[1, ..., l − 1]. Note that there could be more than one
edge in g to be mapped from E[l].sEdge. Due to the con-
nectivity requirement, we only need to check those edges
incident to the new vertex brought by E[l].sEdge. The
number of backward edges from the entry E[l] to entries
in seq[1, ..., l − 1], not matched by the current mapping, is
calculated by MissingBackwardEdges(E[l].bEdges, g). Note
that we need to consider all possible mappings of the current
spanning edge to g and this is achieved by the while loop
in Line 2. Here, ǫ > σ (checked by line 4) means that in the
current F on the spanning tree T of seq[1, ..., l], LT,F > σ;
consequently, the current F cannot be extended further.

line 7: checks whether or not the current mapping on a
spanning tree T of seq[1, ..., l − 1] can be extended, given
E[l].sEdge cannot be used in the mapping. Note that l = 1
means that at this point any mapping with an exact map-
ping on E[1] already has been shown to violate the inequality
(3); thus, Algorithm 1 returns false and terminates.

Lines 8-13: tries to find possible extensions to the cur-
rent mapping on seq[1, ..., l − 1], given that at this point,
the algorithm already concludes any mapping restricted to
the current mapping on seq[1, ..., l − 1] with an exact map-
ping on E[l].sEdge always violates the inequality (3). Thus,
E[l].sEdges needs to be removed from the spanning tree T

of seq.
Once E[l].sEdge is removed from T , T is cut into two

sub-trees: T1 contains the entries in seq[1, ..., l − 1] and T2

contains E[l]. GetNewSeq(seq − E[l].sEdge) first finds out
if T1 and T2 can be connected by a backward edge in seq.
If yes, then a backward edge is used as a new spanning
edge to connect T1 and T2 to form a new spanning tree for
(seq − E[l].sEdge) that gives a new QI-Sequence seq′; oth-
erwise T1 is used to give a new QI-Sequence seq′. Noth that
in both cases, the first (l− 1) entries in seq′ are the same as
those in seq.

If |seq′| = l − 1 (i.e., impossible to extend seq[1, ..., l −
1] due to the cut of E[l].sEdge) then the current round
should terminate because the test in line 1 fails. Other-
wise, MissingEdges(seq − E[l].sEdge) gives ǫ = 1 if T1 and
T2 can be connected by a backward edge or ǫ = m if seq′

is obtained on T1 where m is the number of edges in seq

incident to a vertex (entry) in T2.

Conducting GetNewSeq(). There two possible strategies
to conduct GetNewSeq(seq − seq[l].sEdge).

1. Ad-HocStrategy : Each time, conduct GetNewSeq(seq −
E[l].sEdge) on the fly such that if T1 and T2 can be con-
nected by a backward edge, then a backward edge with the
minimum frequency among all valid edges is chosen; other-
wise discard T2.

2. MemorizingStrategy: GetNewSeq(seq − E[l].sEdge) in-
cludes to determine T1 and T2, to find out if such a back-
ward edge exists (then get such a backward edge if yes), and
to order entries other than the first (l − 1) entries in seq′.
Hence, a potential problem with Ad-HocStrategy is that the
computation costs incur every time. Observe that if seq and
E[l].sEdge are the same, then the result of GetNewSeq(seq−
E[l].sEdge) is always the same. MemorizingStrategy memo-
rizes all the previous results of GetNewSeq(seq−E[l].sEdge)
so that GetNewSeq(seq−E[l].sEdge) conducts Ad-HocStrategy

only when the result is unavailable. Consequently, the costs
of re-processing GetNewSeq(seq−E[l].sEdge) can be saved.
Below are the implementation details.

A binary tree T is kept in the buffer, called buffer tree, to
memorize all the results of GetNewSeq() encountered so far,
as well as to guide the search. Each node in T represents
a spanning edge in a QI-Sequence, while the root of T rep-
resents E[1].sEdge in the QI-Sequence of q. Iteratively, if
the spanning edge at a node t of T has a match (line 2) and
the threshold constraint holds (line 4), then Algorithm 1 vis-
its the left child of t; otherwise, Algorithm 1 visits the right
child of t as follows if the conditions in line 7 holds. We itera-
tively grow T as follows. The spanning edges of the obtained
QI-Sequence of q are loaded in T as the left-most branch
according to the order of entries. Iteratively, Algorithm 1
starts from the root E[1].sEdge. When the current entry’s
spanning edge (except E[1].sEdge) has to be discarded, line
8 in Algorithm 1 will create the right-child seq′[l].sEdge of
the current entry E[l].sEdge and load in spanning edges of
the subsequent QI-Sequence (i.e seq′[l, ..., ]) as the left-most
branch of the sub-binary tree with seq′[l].sEdge as the root
if the right child does not exist. Here, seq′[l] is the lth entry
of seq′. Algorithm 1 may continue to drill down to the left
child of seq′[l].sEdge if it has a match and the threshold
constraints hold (line 4). Recursively tracing back in Algo-
rithm 1 follows exactly the same strategy of tracing back
in a depth-first search on T . Note that if it traces back
to the root E[1].sEdge of T and the root does not have a
new matching in g, then Algorithm 1 terminates and returns
false.

Illustrating Algorithm 1. A data graph g and the QI-
Sequence seq of q are shown in Figure 8 (a) and (b), re-
spectively, where dashed-lines depict the backward edges.
Assume that σ = 3.

Suppose that Algorithm 1 iteratively drills down and maps
the spanning edges (A, B) and (B, C) in seq to the left (A, B)
and (B, C) of g, respectively, where edges connecting shaded
nodes in Figure 8 (a) illustrate the current mapping. Due to
the connectivity restriction, the spanning edge (B, D) in seq

cannot be mapped into g; consequently, (B, E) or (B, F ) has
to be chosen by line 8 to continue the drilling-down. Assum-
ing (B, E) is chosen as a new spanning edge after removing
(B, D) in this round, then the new QI-Sequence (generated
by line 8) is depicted in Figure 8 (c) where double lines
show the current mapping to be retained. Similarly, since
no match in g can be found for (B, E) due to the connec-
tivity requirement, line 8 generates another QI-Sequence in
Figure 8 (d). Now, due to missing-matching for (B, F ) in
the QI-Sequence, line 8 generates QI-Sequence in Figure 8
(e). Line 9 then excludes a further extension of the mapping
on (B, C) and (A, B).

Therefore, Algorithm 1 recursively traces back to the state
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Figure 8: Verification Example (σ = 3)

in Figure 8 (f) and try to find another mapping from (B, C)
in q to g. Since there is no other matching in g for (B, C)
in q, (B, C) is removed from the current drilling-down. Line
8 generates the resultant QI-Sequence as depicted in Figure
8 (h). Similar to the above, it is found impossible to have
dist(q, g) ≤ 3 while retaining the current mapping on (A, B).

Algorithm 1 then traces back and tries to find another
mapping from (A, B) in seq in 8(b) to g. Since such a map-
ping exists (i.e., the 2nd (A, B) in g), Algorithm 1 iteratively
drills down starting from seq in Figure 8 (f). This time, due
to connectivity, no match exists in g for (B, C) in seq. Con-
sequently, line 8 again generates the QI-Sequence in Figure
8 (h). We eventually found a sub-isomorphic mapping from
QI-Sequence in Figure 8 (h) to g and only one edge (B, C) in
q does not have a match. Thus, Algorithm 1 returns true. 2

The above example also shows that even the same selec-
tion of a QI-Sequence, Figure 8(h), may occur multiple times
in processing one data graph. Therefore, MemorizingStrategy

does save the costs of re-computation.

General Algorithm. Algorithm 1 can only deal with the
situation where the first vertex in seq of q has an exact
matching in computing dist(q, g). Nevertheless, it can be
immediately extended to a general case. Algorithm 2 below
is a brief description where K = |E(q)|.

In Algorithm 2, E[1] is the first entry of seq - a vertex in
q. Decompose (seq − E[1]) is to decompose the connected
components of (q − E[1]) and then get a QI-Sequence for
each connected component; SEQsub consists of all such QI-
Sequences. Note that if (K − |E(seqs)|) > σ, then |E(q)| −
|E(mccs(qs, g))| > σ where qs is the graph which is rep-
resented by seqs; thus, we do not need to consider qs. In
our implementation, we only generate QI-Sequence satisfy-
ing the condition in line 6 and load them in SEQsub to save
the costs to generate useless QI-Sequence; that is, line 6 is
used in Decompse ().

Correctness and Complexity. Based on Theorem 2, it is
immediate that Algorithm 1 and Algorithm 2 are correct.

Algorithm 2: Verify(K, σ, g, seq)

Input : seq: QI-Sequence of q;
g: data graph;

σ: the query relaxation threshold;

if FixHeadVerify(σ, g, seq, 1) then1

return true2

else3

SEQsub := Decompose (seq − E[1]);4

for each seqs ∈ SEQsub do5

if (K − |E(seqs)|) ≤ σ then6

if Verify(K, σ − (K − |E(seqs)|), g, seqs) then7

return true8

return false9

Using MemorizingStrategy, the space complexity required
for the buffer tree is as follows.

Theorem 3. The total number of nodes in the tree T is
O(|E(q)|σ+1).

Proof sketch. Clearly, each node in the tree corresponds
to a state that the mapping on the its ancestors with at most
σ spanning edges are missed. Therefore, the total number
of nodes is at most

∑σ

i=0

(

|E(q)|
i

)

= O(|E(q)|σ+1).

The total buffer tree size is bounded by O(|E(q)|σ+2) since
each subsequent QI-Sequence takes O(|E(q)|) space.

GetNewSeq involves two kinds of computation: 1) deter-
mine a backward edge to connect two sub-spanning trees,
and 2) re-organize the subsequent QI-Sequence. This can be
done O(|E(q)| log |E(q)|). Note that Algorithm 1 is similar
to QuickSI if only one QI-Sequence is involved and equivalent
to QuickSI if σ = 0. Therefore, using MemorizingStrategy the
time complexity of Algorithm 1 runs in time O(|E(q)|σ+1

(|E(q)| log |E(q)| + CQuickSI)) for each data graph g in the
worst case where CQuickSI is the time of QuickSI. Although
still exponential in the worst case due to the NP-completeness,
our experiments demonstrate it is very efficient in practice.

5. FILTERING TECHNIQUES
In this section we present an inverted indexing technique,

GrafD-index, to index graphs g based on dist(f, g) for each
feature f . Then, we present efficient techniques to conduct
pruning and validation. Finally, we discuss feature selec-
tions. Below, we first present our techniques to compute
MCCS and to determine connectivity dominance.

5.1 MCCS, dist, and Connectivity Dominance

MCCS and dist. Given two graphs g1 and g2, Algorithm 2
can return a common graph g1,2 of g1 and g2 with |E(g1)|−
|E(g1,2)| ≤ k if dist(g1, g2) ≤ k, g1 is used as q, g2 is used as
g, and k is used as the distance threshold in the algorithm.
Although there is no guarantee that g1,2 is mccs(g1, g2), Al-
gorithm 2 can be immediately modified as follows to gener-
ate mccs(g1, g2) if dist(g1, g2) ≤ k.

When Algorithm 2 returns true, we output gc, consisting
of the vertices in the current sub-spanning tree T of g1 and
the edges (in g1) each of which is incident to two vertices
in T , as a candidate of mccs(g1, g2). Instead of termination
when true returns, we continue Algorithm 2 by iteratively
replacing the candidate of mccs(g1, g2) with the current gc

and changing the distance threshold to (|E(gc)|−1) till false

909



returns or true returns with the distance threshold 0. The
last kept gc is mccs(g1, g2).

Clearly, mccs(g1, g2) can also be calculated if dist(g2, g1) ≤
k. Theorem 4 below implies that we only need to explore
the smaller graph between g1 and g2, as q in Algorithm 2, to
compute mccs(g1, g2) when min{dist(g1, g2), dist(g2, g1)} ≤
k. Consequently, dist(g1, g2), and dist(g2, g1) can also be
exactly computed under this situation.

Theorem 4. If |E(g1)| ≤ |E(g2)|, then dist(g1, g2) ≤
dist(g2, g1).

Proof. Based on the fact that dist(g1, g2) = dist(g2, g1)−
|g2| + |g1|, the theorem holds.

Connectivity Dominance Testing. The theorem below
is a key to the connectivity domination test.

Theorem 5. The connectivity mccs(g1, g2) dominates the
connectivity of g2 if and only if there is an sub-isomorphic
mapping F from mccs(g1, g2) to g2, such that none of two
vertices of F (mccs(g1, g2)) belong to the same connected com-
ponent of g1 − E(F(mccs(g1, g2))).

Proof. The following can be immediately verified. Given
a subgraph isomorphic mapping F from mccs(g1, g2) to g2,
∃ S′ ⊆ E(mccs(g1, g2)) such that the removal of S′ causes
mccs(g1, g2) disconnected but the removal of F(S′) still leaves
g2 connected if and only if ∃ two vertices (∈ F(mccs(g1, g2)))
in the same connected component of g2−E(F(mccs(g1, g2))).
Thus, the theorem holds according to the definition of con-
nectivity dominance.

Our algorithm for connectivity dominance test is outlined
below in Algorithm 3; it terminates once true returns.

Algorithm 3: C-Domination (mccs(g1, g2), g1)

Output : B: True or Fase

B := false;1

for each embedding F(mccs(g1, g2)) do2

if no 2 vertices in F(mccs(g1, g2)) fall in one3

connected component of g1 − E(F(mccs(g1, g2))) then

B := True;4

Theorem 5 guarantees that Algorithm 3 is correct. In
our implementation, we extend QuickSI [19] to enumerate
all sub-isomorphic mappings F from mccs(g1, g2) to g1 by
continuing QuickSI to get all mappings instead of the ter-
mination when true returns; that is, the modified QuickSI

terminates only when false returns. Once an embedding
F(mccs(g1, g2)) is obtained, line 3 in Algorithm 3 can be
conducted in a linear time by applying the computation of
connected component.

5.2 GrafD-Index
In GrafD-index, for efficiency reason, we use a distance

threshold k. That is, for min{dist(g, f), dist(f, g)} ≤ k we
compute mccs and dist between g and f by the techniques
described in Section 5.1. For each feature f , graphs g with
exact values of dist(f, g) are indexed according to an in-
creasing order of dist(f, g). Let listf,j denote the set of
graphs with dist(f, g) = j, while listf,∞ is used to load in
the set of graphs without exact values. In GrafD-index, for
each feature f in listf,j (∀ finite j) we only keep graphIDs

and indicate if the connectivity of mccs(f, g) dominates the
connectivity of f (Pruning Rule 1) or dominates the connec-
tivity of g (Validation Rule 1) or neither.

Remark 1. It is possible that the connectivity of mccs(f, g)
dominates both the connectivity g and the connectivity of f ;
for instance f = g.

According to the discussions in Section 5.1, dist(f, g) is
calculated from (dist(g, f)+ |E(f)|−|E(g)|) if E(f) > E(g).
Thus, the exact value of dist(f, g) may be larger than k

though min{dist(f, g), dist(g, f)} ≤ k.

Example 3. Consider the data graphs and features in
Figures 2 and 9(a), respectively. Assume that k = 2. Fig-
ure 9(b) shows the graphs indexed with the exact values of
dist(fi, g) (i = 1, 2). Note that the exact value of dist(f2, g3)
(> k) is obtained because dist(g3, f2) (= 1) can be exactly
computed. dist(f1, g1) and dist(f2, g1) cannot be exactly
computed, and thus put in listf1,∞ and listf2,∞, respectively.

f1

B

A

C

A

C

f2

B

A

C C

A

B DD

D

D

(a) A Set of Features

Distance 0 Distance 1 Distance 2 Distance 3

f1: {g3} {g2} ∅

f2: ∅ ∅ {g2} {g3}

(b) Its GrafD-Index (k = 2)

Figure 9: A GrafD-Index Example

5.3 Pruning and Validation
The filtering is based on Pruning Rules 1 and 2, as well

as Validation Rule 1. In the filtering phase, we also use k

as the distance threshold to compute dist(f, q), dist(q, f),
and mccs(f, q). We initially put all graphs g with |E(q)| −
|E(g)| ≤ σ to the candidate set Cq and set V = ∅. The
filtering phase proceeds as follows. Iterate over each fea-
ture f , we calculate mccs(q, f), dist(q, f) and dist(f, q), as
discussed above in Section 5.1 regarding k, and:

• Pruning Rule 1 is firstly used to remove graphs g

from Cq such that the connectivity of mccs(g, f) dom-
inates the connectivity of g and dist(q, f)−dist(g, f) >

σ.

• Pruning Rule 2 is then used to remove graphs from
Cq such that dist(f, g) − dist(f, q) > σ and the con-
nectivity of mccs(f, q) dominates the connectivity of
q

• Validation Rule 1 is finally used as follows. If the
connectivity of mccs(f, q) dominates the connectivity
of f or the connectivity of mccs(g, f) dominates the
connectivity of f , then move the graphs g from Cq to
V when dist(q, f) + dist(f, g) ≤ σ.

910



Notes. With dist(f, q), we also get mccs(f, q), mccs(q, f)
by the obtained subgraph isomorphic mapping from mccs(f, q)
to q, and dist(q, f) if min{dist(q, f), dist(f, q)} ≤ k. If
min{dist(q, f), dist(f, q)} > k, then none of them can be
computed. Consequently, Pruning Rule 2 cannot be used
since we are unable to check connectivity dominance, and
Validation Rule 1 cannot be used since σ used is always
not greater than k (σ ≤ k); in Pruning Rule 1, we set
dist(q, f) = (k + 1) to remove data graphs g with exact
values of dist(g, f) such that the pruning rule holds.

For data graphs g in listf,∞, mccs(g, f) and exact val-
ues of dist(f, g) (> k) and dist(g, f) (> k) are unable to
be determined. Similarly, Pruning Rule 1 and Validation
Rule 1 cannot be used; in Pruning Rule 2, (k +1) is used to
represent dist(f, g).

Finally, we conduct Pruning Rule 1 first because the con-
nectivity dominance is pre-computed, and thus it is cheaper
than conducting Pruning Rule 2.

5.4 Feature Selection
Theorem 5 implies that the connectivity dominance con-

ditions specified in our pruning rules require that mccs(f, g)
and mccs(f, q) are at least induced subgraphs 2 of g and
q, respectively. As there is no knowledge towards query
graphs, we can only impose the requirement on mccs(f, g)
and g. There are two ways to make mccs(f, g) be an in-
duced subgraph of g: 1) f is an induced subgraph of g, or
2) g is a subgraph of f . We use the first way since using
super-graphs of data graphs as features is not cost effective
and may make filtering costs more expensive than the costs
of directly conducting verification. Consequently, we require
features to be induced subgraphs of (some) data graphs; this
will also make selected features have high-connectivity and
thus increase the chances for the connectivity of mccs(f, q)
to dominate the connectivity of q.

Similarly, the connectivity dominance conditions in Vali-
dation Rule 1 require that mccs(f, g) is at least an induced
subgraph of f , or mccs(f, q) is at least an induced sub-
graph of q. Again, since we only have knowledge about
data graphs, we can only impose the requirement on g and
f . In this case, two ways to make mccs(f, g) be an induced
subgraph of f are: 1) g is an induced subgraph of f , or 2)
f is a subgraph of g. Similarly, this time we choose to use
the second way; that is, require features to be subgraphs of
(some) data graphs. Note that here, there is no requirement
in the validation rule for features to be induced subgraphs.

Discriminative Frequent Sub-Induced Graphs. From
the above two observations, good features should be induced
subgraphs of (some) data graphs. As observed in [23], se-
lecting a large number of features may reduce the number
of candidate graphs but will also increase the filtering costs.
Therefore, it is desirable to select representative induced
subgraphs from data graphs as features. We extend gSpan
algorithm [22] to mine discriminative [23] frequent induced
subgraphs from data graphs as features.

Frequent Large Sparse Subgraphs. A potential prob-
lem with the above feature selection is that sizes of obtained
features may not be large enough to use Validation Rule 1
against large query graphs. For instance, if the size of q is
significantly larger than the maximum size of f , then Valida-

2A subgraph g′ of g is induced if any edge in g connecting
2 vertices in g′ is also in g′.

tion Rule 1 does not work because dist(q, f) may be already
greater than σ.

To resolve this, we mine discriminative frequent subgraphs
with size greater than mf from the set Dmf

such that the
size of each graph in Dmf

is larger than mf where mf is the
maximum size of already selected features (i.e., discrimina-
tive frequent sub-induced graphs).

For efficiency reason, in our implementation we first ran-
domly choose some subtrees from graphs in Dmf

as seeds;

the number of randomly selected seeds is 1
3

of the number of
already selected features (i.e., discriminative frequent sub-
induced graphs) and each seed has size (mf +1). The factor
1
3

is used because there are 2 pruning rules and 1 validation
rule; and we want to balance the costs used for validation
in the filtering processing. Then we use gSpan algorithm
to mine discriminative frequent subgraphs from those ran-
domly selected seeds. Again, for efficiency reasons, gSpan
algorithm is modified as follows. Let Fi denote the gener-
ated features with size i from Dmf

and Dmf ,i denote the
set of data graphs in Dmf

that contain at least one fea-
ture in Fi. In the modified gSpan algorithm, we first choose
the minimum subset F ′

i of Fi such that each data graph in
Dmf ,i contains at least one feature in F ′

i . Then, the next

iteration of the modified gSpan starts from F ′
i instead of Fi.

Note that the problem of finding F ′
i is NP-hard since it is

equivalent to the minimum set cover problem [9]; we use the
greedy algorithm to obtain F ′

i from Fi.
The union of features obtained by the above two tech-

niques gives the features to our GrafD-index. Note that in
applications where query patterns are collected and useful,
learning techniques may be developed to choose the most ef-
fective features. Due to space limits, this will not be studied
in the paper.

6. EXPERIMENTS
Below is a summary of the techniques developed and im-

plemented for a comprehensive performance study.

• Verification: There are no techniques available in
the literature to compute MCCS-based similarity. We
evaluate our verification algorithm based on two pro-
posed strategies: Ad-HocStrategy and MemorizingStrat-

egy; they are denoted by AdHOC and MEMO, re-
spectively

• Filtering: We evaluate the pruning, validation, and
GrafD-index techniques proposed in Section 3 and Sec-
tion 5.

We use the (only) two filtering algorithms in [24, 25] as the
benchmark techniques to evaluate our techniques. We use
Grafil+ to denote the combination of Grafil filtering tech-
niques [24] and our verification technique MEMO, use editD
to denote the filtering technique in [25], and use DistVP to
denote the combination of our filtering, pruning, and MEMO
verification techniques. Since there is no code available for
Grafil filtering techniques, we code them by ourself.

All algorithms are implemented in standard C++ with
STL and complied with GNU GCC. Experiments were run
on a PC with Intel Xeon 2.40GHz CPU and 4G memory
running Debian Linux.

Real Datasets. A popular benchmark dataset, the AIDS an-
tiviral database, is used in our performance evaluation. The
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Figure 10: Verification

dataset contains totally 62 distinct vertex labels. Following
the recent performance study settings [6, 19, 23], edge la-
bels are ignored for a tough evaluation. The default dataset
consists of randomly chosen 10K graphs from AIDS. On av-
erage, each graph has 25.4 vertices and 27.3 edges.

Query Set. To thoroughly evaluate our techniques, we down-
load the five benchmark query sets, Q8, Q12, Q16, Q20 and
Q24 from the web-site as pointed and used by [6, 19, 23].
Each query graph in Qi has exactly i edges.

Threshold in GrafD-index. The default value of the thresh-
old k used in GrafD-index is 3.

Below we report the results of our performance study. Un-
less otherwise specified, we will use the above default settings
in our experiment.

Evaluating Verification Techniques. Figure 10 reports
the experiment results on the response time of our two verifi-
cation algorithms, AdHOC and MEMO. The time recorded
is the average response time per query. It shows that MEMO
is significantly more efficient than AdHOC and can achive
more than two orders of magnitude speed-up. Thus, in the
rest of our experiment we use MEMO as the verification
technique in DistVP and Grafil+.

DistVP editD-Filtering
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Figure 11: Comparing with editD

Comparing with editD. As depicted in Figure 11, the to-
tal computation time (pruning, validation, and verification)
of DistVP is more efficient than the editD-based filtering
technique in [25] when the similarity degree is high. Note
that the released binary code by the authors of [25] outputs
the filtering time only and does not provide the candidate
graphs so that we cannot conduct the verification evalua-
tion. On the other hand, the edit distance based filtering
technique proposed in [25] is a general framework that serves
for a wide range of graph structure search; it is unfair to con-
tinue to evaluate it only against the problem studied in the
paper. These make us exclude the editD technique from a
further evaluation.
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Figure 12: Using Grafil’s features
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Figure 13: Using Our Features in DistVP

Comparing with Grafil+. In our first such experiment,
we use the feature set selected by Grafil to compare our fil-
tering (pruning and validation) techniques with Grafil. Fig-
ures 12(a) shows that the number of candidate graphs per
query (on average) produced by our techniques (DistVP) is
significantly less than that by Grafil, about 20%–50% less.
We further verify the effectiveness of our filtering techniques
by recording the total response time per query on aver-
age. Since there is no existing verification technique, we use
Grafil+ (Grafil +MEMO) for the purpose. Figures 12(b)
shows that the total response time follows similar trends to
those in Figures 12(a); this is mainly because the verification
phase plays the dominant role. It is noteworthy that Grafil

can hardly prune away data graphs when q is small and edge
labels are removed. It is also noteworthy that the total re-
sponse time increases significantly with query graph sizes;
this is because the verification cost for large query graphs is
much more expensive than the cost for small query graphs.

We further evaluate the effectiveness of our techniques
by a set of features generated by the feature selection tech-
niques in Section 5.4, with the frequency threshold 2% and
discriminative ratio 2%. Then we compare with Grafil fil-
tering techniques using its own features. As depicted in
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Figure 13, the number of candidate graphs generated by our
techniques is significantly smaller comparing with the result
in Figures 12(a). Now, the candidate set size by Grafil can
be reduced up to 80%. In the rest of performance evaluation
we will exclude Grafil and only focus on our techniques; the
feature set in this experiment will be used thereafter.
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Figure 14: Filtering Power

Evaluating Filtering Power. We use P1 and P2 to rep-
resent the Pruning Rules 1 and 2, respectively; V is used to
represent Validation Rule 1. As depicted by Figure 14, P1
and P2 both favor large query graphs while V favor small
query graphs.

Q8 Q12 Q16 Q20 Q24
Filtering (ms) 1.9 2.9 5.3 10.1 19.1

Verification (ms) 45.2 194.8 308.0 278.1 241.9

Figure 15: Filtering vs. Verification (σ = 2)

Filtering vs. Verification We evaluate the filtering time
against the verification time where the time recorded is the
average time per query and σ = 2 is used. As depicted by
Figure 15, verification time plays the dominant role in our
query processing.
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Figure 16: Scalability

Scalability. We evaluate the scalability of our techniques
regarding pruning powers and total response time using dif-
ferent database sizes with σ = 2. Here, data graphs in each
database are randomly selected from the real dataset. We
plot the candidate size and the total response times in Fig-
ure 16. The result shows our algorithm is scalable to the
sizes of graph databases.

Impacts of Threshold (k). We evaluate the impact of
distance threshold k (used in GrafD-index) on our technique
with σ = 1. k varies from 1 to 3. The experiment results in
Figure 17 show, as expected, that the GrafD-index is more
effective when k increases.
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Figure 17: Various k

Index Construction Cost. We also evaluate the GrafD-
index construction costs. The running costs are 932s for
building our GrafD-index with k = 1, 1486s for k = 2, and
2018s for k = 3 by excluding the time of mining features.

Summary. Our experiment demonstrates that the tech-
niques developed are efficient, effective, and scalable against
sparse graphs. They outperform the existing filtering tech-
niques in [24, 25]. Our new verification algorithm MEMO is
both very efficient and scalable against real datasets.

7. RELATED WORK
Research in substructure search has attracted a great deal

of attention from database research community. Due to
NP-completeness, techniques for processing a large num-
ber of data graphs follow the filtering-verification paradigm.
Most work in subgraph containment search focuses on devel-
oping effective and efficient indexing techniques, including,
GraphGrep [10], gIndex [23], Closure-Tree [11], TreePi [26],
gString [13], a graph decomposition based index [21], FG-
Index [6], Tree+δ [27], GCoding [28], etc. In [5], cIndex is
developed for the reverse version of subgraph containment
search, namely super-graph containment search .

Recently, graph structure-based similarity search has also
attracted considerable attention. In [11], Closure-Tree tech-
niques have been extended to identify the K data graphs
which are the most nearly isomorphic to the query graph;
that is, full-graph similarity search. In [21], a variation of
substructure similarity search, with a stronger constraint,
is proposed. It aims to find data graphs with the mini-
mum number of miss-matchings of vertex and edge labels
bounded by a given threshold and disallows the size of a
query graph greater than that of data graph. Due to inher-
ent difference, techniques in [11, 21] are not applicable to
the problem studied in the paper. Moreover, they do not
exclude disconnected structure matchings.

As mentioned earlier, grafil [24] (the benchmark technique
in our experimental evaluations) directly targets the sub-
graph search. Very recently, [25] proposes a general frame-
work for conducting edit-distance based filtering in graph
structure search; nevertheless, they also showed the pruning
power is weaker than Grafil when applying to subgraph sim-
ilarity search with the distance threshold σ is not greater
than 3. Both Grafil and the work of [25] do not support
effectively for mccs-based similarity search (i.e. connected
subgraph search) and do not exclude disconnected substruc-
ture matchings.

[13, 20] are the only existing techniques that enforce con-
nected substructure similarity search. gString techniques
are used in [13] to provide approximate solutions to the
problem studied in the paper. Nevertheless, gString based
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techniques may miss the correct answers; thus they are not
applicable to our problem that targets exact solutions for
connected substructure similarity search. Most recently,
[20] investigates the reverse version of the problem in the
paper. Observe that for a query graph to nearly contain
a data graph, it must contain a larger portion of a data
graph. [20] proposes to enumerate all neighborhood graphs
of each data graphs and then index them together by con-
ducting prefix sharing. Then, conduct super-graph contain-
ment search from a query graph to those shared prefixes.
The techniques in [20] are not applicable to our problem in
the paper since the computation logic is inherently different.
Moreover, techniques in [20] do not support filtering.

The connected common subgraph detection problem is
mainly conducted for maximum induced subgraph only. Re-
lated work may be found in [1, 2, 3, 4, 7, 8, 16, 14, 17].
These techniques are not applicable to MCCS detection.

8. CONCLUSION
In this paper, we investigate the problem of connected

subgraph similarity search. We propose a filtering-validation-
verification-based query processing framework with the aim
to minimize the number of candidate graphs. A novel in-
dexing technique, GrafD-index, is proposed which indexes
data graphs based on defined distance functions. Effective
and efficient pruning and validation techniques have been
proposed based on GrafD-index. We also propose novel,
efficient techniques to perform verification aiming to opti-
mize the matching order and computational sharing. A com-
prehensive performance study against real datasets demon-
strates that our filtering (pruning and validation) techniques
are significantly outperform to the (only) two existing filter-
ing techniques. Our techniques are also efficient and scal-
able.

As a possible future study, we will investigate the“optimal
feature”selection problem if a query log exists, as well as this
problem regarding the applications where graphs involved
are larger, say, each graph has tens of thousands vertices.
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