
MapDupReducer: Detecting Near Duplicates over Massive
Datasets ∗

Chaokun Wang† Jianmin Wang† Xuemin Lin‡ Wei Wang‡ Haixun Wang♯

Hongsong Li♯ Wanpeng Tian† Jun Xu$† Rui Li†
†School of Software, Tsinghua University

Key Laboratory for Information System Security, Ministry of Education
Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China

‡School of Computer Science and Engineering, University of New South Wales & NICTA, Sydney, Australia
♯Microsoft Research Asia, Beijing, China

$Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
†{chaokun, jimwang}@tsinghua.edu.cn, ‡{lxue, weiw}@cse.unsw.edu.au

♯{haixunw, songhli}@microsoft.com, †{twp07, $xujun05, r-li09}@mails.tsinghua.edu.cn

ABSTRACT
Near duplicate detection benefits many applications, e.g.,
on-line news selection over the Web by keyword search. The
purpose of this demo is to show the design and implemen-
tation of MapDupReducer, a MapReduce based system ca-
pable of detecting near duplicates over massive datasets ef-
ficiently.

Categories and Subject Descriptors
H.3.4 [Information Storage And Retrieval]: Systems
and Software—Distributed systems

General Terms
Design, Experimentation

Keywords
MapReduce, near duplicate detection

1. INTRODUCTION
Let " = {!1, !2, . . . , !"} be a document set where each

!# is a document. The task of Near Duplicate Detection
(NDD) is to find all of the pairs (!#, !$) such that the simi-

∗Chaokun Wang is supported by the National Natural Sci-
ence Foundation of China (No. 60803016), the National Ba-
sic Research Program of China (No. 2007CB310802) and the
National High Technology Research and Development Pro-
gram of China (No. 2008AA042301). Xuemin Lin is sup-
ported by ARC Grants (DP0987557 and DP0881035) and
Google Research Award. Wei Wang is supported by ARC
Discovery Grants DP0987273 and DP0881779.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

larity between !# and !$ is no smaller than a given threshold,
which is typically close to 1.

There are many causes for the existence of near duplicate
data: typographical errors, versioned, mirrored, or plagia-
rized documents, emails generated from the same template,
etc. Identifying near duplicate objects benefits many ap-
plications. One example is on-line news browsing through
keyword search. It is a waste of time, patience, and energy
to read similar news. Another example is on-line citation
tracking, where citations to the same paper may be treated
as citations to different papers due to formatting and/or ty-
pographical errors.

With the development of multimedia, storage, and net-
work technology, more and more massive data sets are emerg-
ing. It is of great importance to be able to detect near du-
plicates in massive datasets effectively and efficiently. For
instance, Microsoft’s BING search engine indexes over 20
billion Web documents; the web documents and their re-
lated indices are dispersed over more than 10,000 machines
around the globe; and the size of the whole dataset is well
over 300 TB. Managing and processing such large amount
of data is extremely challenging. But web data typically
contains many near duplicates due to a myriad of reasons.
The cost of a search engine is closely related to the size of
the document set to be indexed. If the size of the Web doc-
ument set to be indexed can be reduced by detecting near
duplicate copies, the indexing costs — the main part of the
cost of the search engine — goes down as well.

Clearly, for the above application, the ability to efficiently
detecting near duplicates is critical. For example, in modern
Web search engines, periodic NDD may greatly reduce the
indexing cost if NDD can be conducted efficiently enough.
Furthermore, in a hotspot dataset, where a set of documents
are updated frequently (e.g., a set of news Web pages), the
freshest document set Δ# to be inserted is replaced rapidly.
If near duplicates Δ# could be detected efficiently each time,
the cost of indexing on the whole hotspot dataset can be
substantially reduced.

Although many efficient techniques for NDD have been
proposed (See [2] for a recent survey), it is clear that a
single processor does not have enough computation power
to support NDD over a massive dataset efficiently due to
physical limits on the processing speed and memory capac-

Service Layer

Dispatcher
Guard
Launcher

Logic Layer

PPJoin in MapReduce
Ordering in MapReduce
. . .
NDD MapReduce Library

Storage Layer

Metadata Nodes
Repository Nodes

User
Application

NDD requests

Near duplicates

Figure 1: The architecture of MapDupReducer

ity. Therefore, NDD algorithms that can leverage multi-
processor systems are highly desirable. In this paper, we
present a MapReduce-based system, MapDupReducer, de-
veloped for supporting NDD efficiently over massive datasets.
We chose the MapReduce framework as it is a mature plat-
form with distinctive features such as ease of use and high
fault-tolerance [1], and it has been widely adopted in the
industry. The technical contribution in this demo is the
non-trivial generalization of our PPJoin algorithm [5] into
the MapReduce framework.

2. SYSTEM OVERVIEW
In this section, we describe the proposed systemMapDupRe-

ducer. First, we give the architecture of MapDupReducer.
Then, we present the technical support, especially the PPJoin
paradigm in MapReduce.

2.1 System Architecture
MapReduce is a programming model that enables easy

development of scalable parallel applications to process vast
amounts of data on large clusters of commodity machines
[1]. The system MapDupReducer is implemented on top of
the open-source implementation of the MapReduce frame-
work in Hadoop1. MapDupReducer consists of two parts:
the user application on the client side and the server en-
gine on the server side. The interface of the user application
will be presented in the next section with demonstration
descriptions. As shown in Figure 1, the server engine of
MapDupReducer consists of three layers, i.e., the storage,
logic, and service layers. They are described in detail below.
In the service layer, the functionality of a dispatcher in-

cludes network monitoring and load distribution. The dis-
patcher listens on a certain port as a usual Web server does.
When a request arrives, the dispatcher establishes proper
connections between the server engine and the user applica-
tion. Also, the dispatcher can perform intelligent load bal-
ancing when the number of incoming requests is high. When
receiving the account and password of a user, the guard is in
charge of enforcing access control policies. Charging policies,
e.g., pay as you go, can be implemented in this component.
After the verification phase, the user’s request is transferred
to the launcher, and then is transformed into a program in

1http://hadoop.apache.org/mapreduce/

MapReduce. The program will be triggered by the launcher
and executed by the logic layer. Finally, the service layer
obtains NDD results stored in XML format from the logic
layer and forwards them to the user application.

The second layer is the kernel of MapDupReducer, which
implements the core business logic of the system. Much
functionality of MapDupReducer, e.g., the total ordering
of words within the current document collection, is imple-
mented in the logic layer. The heart of the system, the near
duplicate detection by the PPJoin paradigm in MapReduce,
is also developed and will be described in the next subsec-
tion. To facilitate writing codes in MapDupReducer, a li-
brary called “NDD MapReduce library” is provided, which
includes many useful routines, such as test data generation,
and global ordering map construction.

The third layer, called the storage layer, is responsible
for the secure and effective storage of massive datasets. The
storage layer has two kinds of nodes. Repository nodes store
all the documents; each document has several redundancy
copies to account for node failures. Metadata nodes store
all necessary meta-information, such as locations where a
document and its copies are stored.

2.2 Near Duplicate Detection in MapReduce
In this subsection, near duplicate detection by the PPJoin

paradigm adapted to the MapReduce framework is presented.
Compared to our previous serial PPJoin algorithm [5], we
have significantly extended the PPJoin paradigm by (1) re-
designing the position and prefix filtering specially for the
MapReduce framework, and (2) introducing document sig-
nature filtering to further reduce the candidate size. These
optimizations substantially reduce both the computational
and network workload. As shown in Figure 2, the processing
framework mainly consists of four MapReduce jobs, and is
presented as follows.

Firstly, the pre-processor parses, cleans, and transforms
each document into a multiset of tokens, i.e., stemmed words,
which are stored in a file called a pre-processed document.
The lexer mapper simply records each occurrence of a to-
ken; the accumulator reducer summarizes the frequency of
the occurrence of each token and generates a total ordering
of tokens based on the decreasing order of token’s inverse
result. As well as, the signature of each pre-processed doc-
ument is computed offline by the signature generator [3].

The prefix position mapper processes pre-processed docu-
ments to generate (key, value) pairs where key is the token,
and value consists of (1) the identifier of the document in
which key occurs and (2) the position of key in the total
ordering (rather than the location of key in the document).
The inverted indexer reducer isn’t trivial. It generates (key,
value-list), where key is composed of the identifiers of two
candidate duplicate documents and the position of key in
the first document, and value is the concatenation of the
positions of key in the two documents. The information of
the first position is so useful in the following steps that it
is stored in key to avoiding need to be repeated extracted
from value.

The group partitioner mapper is an improvement of the
identity mapper. In this mapper, all input pairs are par-
titioned and grouped by a prefix of key, which is just the
concatenation of the identifiers of the two candidate du-
plicates. By this way of partitioning, pairs with the same
document identifier combinations will always be sent to the

A Massive
Document
Collection

Pre-Processor Pre-Processed
Documents

Mapper
Prefix Position

Reducer
Inverted Indexer

Job2

Total Ordering
Result

Mapper
Lexer

Reducer
Accumulator

Job1

Mapper
Group

Patitioner
Reducer

Position Filter

Job3

Signatures of
Pre-Processed
Documents

Signature
Generator

Mapper
Identity
Reducer

Signature Filter

Job4

Verifier

Near
Duplicate
Documents

Figure 2: Near duplicate detection by the PPJoin paradigm in MapReduce

same computing node. The position filter reducer is a main
component of MapDupReducer. It gets all the position in-
formation and implements the position logic adapted from
the PPJoin algorithm in [5] to generate candidate pairs.

In the fourth MapReduce job, the mapper is just an iden-
tity mapper. The input of the signature filter reducer in-
cludes the location information of the signatures of the doc-
ument set and the (key, value-list) pairs, where key is an
identifier of a document and value is a list of identifiers of
all candidate documents that are potentially similar to the
document identified by key. For every candidate document
pair, the signature filter reducer fetches and compares their
signatures. When the distance of the two signatures is less
than a given threshold, the pair is sent to the verifier.

For candidate document pairs that pass the signature filter
reducer, the verifier fetches their corresponding pre-processed
documents from the storage layer and compares them to gen-
erate the final NDD results. Thanks to the pruning of var-
ious filters we implemented above, the computational cost
and network traffic are markedly decreased, compared with
a straight-forward implementation that compares pair-wise
document similarities.

3. DEMONSTRATION DESCRIPTION
In the demonstration, we will (1) motivate the near du-

plicate detection problem in the data management context,
and demonstrate several novel uses of the system to satisfy
a variety of information demands; (2) introduce several fea-
tures of the MapReduce model and showcase their usage in
helping user detecting near duplicate documents; and (3)
demonstrate a set of experiments that evaluate performance
of the system, and compare results of different implementa-
tions, including in single processor environment and MapRe-
duce environment.

We use remote desktop connection in the demonstration.
The server engine of MapDupReducer consists of 12 comput-
ing nodes and is physically away from the demonstration
venue. A small dataset, whose size is 200 GB, randomly
sampled from the BING dataset is prepared. In case of low
connectivity at the demonstration venue, the system will be
demonstrated as usual except that the MapReduce program
runs on a single-node in a pseudo-distributed mode with the
small dataset. We give further details below.

3.1 Introduction and Datasets
The first part of the demo will be an overview of the near

duplicate detection topic in the data management context.
We will systematically review recent research results of near
duplicate detection and their extensive applications, such as
effective document archiving, search engine results evalua-
tion, and spam filtering. We will then give basic concepts
on the MapReduce programming model and explain some
classic examples (e.g., WordCount). We will also showcase
some real massive datasets, including the BING dataset, and
argue the necessity of detecting near duplicates within them.

We will then introduce the datasets used in the demo.

MEDLINE We extract and concatenate abstract, title, and
author fields from MEDLINE documents. It contains
18.5 million records.

BING We sample a set of Web pages with an aggregated
size of 2TB from the indexedWeb page set of the BING
search engine in July 2009.

Hotspot We use a subset of news Web pages from the
BING dataset. Due to its nature, this set of docu-
ments has a high update frequency.

3.2 Demonstrating Near Duplicate Detection
Near duplicate detection in MapReduce is the core func-

tionality of MapDupReducer. The design principle is to be
intuitive and simplistic.

We will first motivate and introduce the system in the
context of finding plagiarized documents in the MEDLINE
dataset. Then, we will illustrate the PPJoin paradigm in
MapReduce by the same dataset step by step, and run Map-
DupReducer to showcase the principle of the backend by
analyzing the log information. Afterwards, we will let the
audience interact with MapDupReducer by altering its argu-
ments, e.g., the number of mappers/reducers used, to obtain
understanding of the underlying technology. Also, we will let
the audience select different options of the user application
and run the demo system as follows.

In MapDupReducer’s setup dialog, a user has the op-
tion to select a data source, set a parameter, and upload
a custom stop word list. After pressing the “Run” button,
MapDupReducer executes near duplicate detection process
using the MapReduce-based PPJoin algorithm presented in
the previous section. The output is visualized as a graph in

Figure 3: The near duplication detection interface
of MapDupReducer

which two nodes connected with an edge if they are iden-
tified as near duplicates. For example, Figure 3 shows the
result of near duplicate detection by the PPJoin paradigm
in MapReduce for the MEDLINE dataset. Each document
in the graph is represented by its unique document identi-
fier (an integer). The user can zoom in/out the diagram as
(s)he wishes. The beginning of a document is shown as the
tooltip in the graphical interface when the user selects it; the
differences between two duplicates are shown in color after
the user selects them and clicks the button “Compare”.

3.3 Demonstrating Searching for Similar Doc-
uments

Apart from running NDD in a batch mode as shown in the
above demo, we will then motivate and introduce the sys-
tem in the context of finding similar news articles against a
large collection of indexed news documents. Users can up-
load a document or simply give a url to a Web page or text
document. The system will perform certain preprocessing
to extract the main textual content and use it as a query
document $%. The NDD process is then performed with
the restriction that we only consider candidates formed by
$% and other documents in the database. The end result
is returning a list of similar news articles for users to re-
view. Users also have the options such as adding the query
document to the database, deleting existing documents, or
selecting one document as the representative among similar
documents.

3.4 Demonstrating System Performance
We will demonstrate the performance of MapDupReducer

interactively with audience on the Hotspot dataset. (1) We
will let users select to open or close, respectively, the pre-
fix, position, signature filtering to showcase their influences
on the time cost of NDD in MapReduce. (2) We will also
compare the performance between our PPJoin paradigm in
MapReduce and other existing methods on computing pair-
wise similarity on document collections in MapReduce [4].

4. REFERENCES
[1] J. Dean and S. Ghemawat. MapReduce: Simplified

Data Processing on Large Clusters. In Proceedings of
the 6th Symposium on Operating System Design and
Implementation, pages 137–150, San Francisco,
California, USA, December 2004. USENIX Association.

[2] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate Record Detection: A Survey. IEEE
Transactions on Knowledge and Data Engineering,
19(1):1–16, 2007.

[3] A. Kol̷cz, A. Chowdhury, and J. Alspector. Improved
Robustness of Signature-based Near-replica Detection
via Lexicon Randomization. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 605–610, Seattle,
Washington, USA, August 2004. ACM Press.

[4] J. Lin. Brute Force and Indexed Approaches to
Pairwise Document Similarity Comparisons with
MapReduce. In Proceedings of the 32nd Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 155–162,
Boston, MA, USA, July 2009. ACM Press.

[5] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient
Similarity Joins for Near Duplicate Detection. In
Proceedings of the 17th International Conference on
World Wide Web, pages 131–140, Beijing, China, April
2008. ACM Press.

