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Abstract. Graphs are prevailingly used in many applications to model
complex data structures. In this paper, we study the problem of super-
graph containment search. To avoid the NP-complete subgraph isomor-
phism test, most existing works follow the filtering-verification framework
and select graph-features to build effective indexes, which filter false re-
sults (graphs) before conducting the costly verification. However, search-
ing features multiple times in the query graphs yields huge redundant
computation, which leads to the emergence of the computation-sharing
framework. This paper follows the roadmap of computation-sharing frame-
work to efficiently process supergraph containment queries. Firstly,
database graphs are clustered into disjoint groups for sharing the compu-
tation cost within each group. While it is shown NP-hard to maximize the
computation-sharing benefits of a clustering, efficient algorithm is devel-
oped to approximate the optimal solution with an approximation factor of
1
2
. A novel prefix-sharing indexing technique, PrefIndex, is then proposed

based on which efficient query processing algorithm integrating both fil-
tering and verification is developed. Finally, PrefIndex is enhanced with
multi-level sharing and suffix-sharing to further avoid redundant compu-
tation. An extensive empirical study demonstrates the efficiency and scal-
ability of our techniques which achieve orders of magnitudes of speed-up
against the state-of-the-art techniques.

1 Introduction

Recently, graph structured data have been increasingly adopted in applications
such as Bio-informatics, Chemistry, Social Networks, WWW, etc. For instance,
graphs are used to model protein interaction networks and chemical compounds
in Bio-informatics and Chemistry, respectively. Efficient query processing is thus
strongly demanded by graph database.

Graph containment search is defined as supergraph containment search [2] and
subgraph containment search [12]. Given a query graph q and a graph database
D = {g1, ..., gn}, supergraph containment search finds all the graphs in D con-
tained by q, while subgraph containment search finds all the graphs in D con-
taining q. In Chemistry, given a newly found molecule (query graph) and a
large number of descriptors (data graphs indicating chemical properties), we
can predict its chemical function based on the descriptors it contains. In pat-
tern recognition, given a graph structured background (query graph) and various
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Fig. 1. Supergraph Containment Search

objects (data graphs), we may detect the foreground objects contained in the
background. More applications can be found in [2, 12]. Regarding Figure 1, the
result of supergraph containment search of query graph q is ga.

Since the subgraph isomorphism test is NP-complete [4], most works adopt
the filtering and verification framework. While a feature-based index filters most
false results in the filtering phase, survived candidate graphs are checked in the
verification phase. Unlike its extensively studied dual version [3, 5–7, 9, 10, 12,
13, 16, 17], supergraph containment search is comprehensively investigated in
only two studies [2, 14]. cIndex, proposed in [2], adopts historical query-log to
select features for maximizing pruning power. Regarding Figure 1, assume that
fa and fb are two features. cIndex first tests if q contains fa and fb. As fb is not
contained by q, gc is filtered; while ga and gb survived to be candidates as fa is
contained by q. As fa is a subgraph of ga and gb, it will be searched for two more
times in q for the verifications of ga and gb. Generally speaking, if a feature f is
contained by n candidates, the subgraph isomorphism test on f against q will
be repeated (n + 1) times (including one test in the filtering phase).

To avoid redundant subgraph isomorphism test cost, [14] proposes GPTree, a
computation-sharing framework. It encodes each graph or feature in a sequence
called GVCode. The GVCodes of a group of graphs or features are organized in
a tree called GPTree such that a common subgraph of these graphs or features
is stored only once as a prefix of the tree. This finally yields a forest structured
database or index. GPTreeTest, the proposed subgraph isomorphism algorithm,
verifies a group of graphs or features altogether by sharing the computation
(subgraph isomorphism test) cost of the common subgraph within the group.
For instance, in Figure 1, one feature group Gf (for fa, fb), two database groups
Ga (for ga, gb) and Gb (for gc) are built. The computation cost of the common
subgraphs g′ and g′′ are shared within Gf and Ga, respectively. However, with
further observations, GPTree has the following defects: (1)Computation cost can
not be shared between filtering and verification, as the common edge b − c of
Gf and Ga can not be shared between them; (2)Computation cost can not be
shared between database groups, as the common edge b − c of Ga and Gb can
not be shared between them; (3)GPTree prefers to select large-sized common
subgraphs for sharing, which goes against the fact that large-sized subgraphs
are usually infrequent and not likely to be shared by many graphs.
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Motivated by the above observations, this paper proposes a novel computation-
sharing framework with the aim to maximize the computation-sharing benefits.
The main contributions of this paper are summarized as follows.

– We propose to cluster database graphs into disjoint groups such that graphs
in each group contain a common feature f . While it is shown NP-hard to
optimize the computation-sharing benefits, an efficient greedy algorithm is
used to approximate the optimal solution with an approximation factor of 1

2 .
– Based on QuickSI traversal technique [9], a novel prefix-sharing indexing tech-

nique PrefIndex and a query processing algorithm PrefSearch are developed
to share computation cost between filtering and verification.

– A group encoding technique is proposed to efficiently construct PrefIndex for
a group of graphs based on the effective ordering of their GVCodes.

– Multi-level sharing and suffix-sharing techniques are proposed to enhance Pre-
fIndex for sharing computation cost among database groups and further shar-
ing computation within each database group, respectively.

Organization. The rest of the paper is organized as follows. Section 2 gives
preliminaries and formalizes the problem. Section 3 presents the database clus-
tering, feature selection and index construction techniques. Section 4 proposes
our sharing-aware query processing algorithm integrating filtering and verifica-
tion. Section 5 presents our multi-level sharing and suffix-sharing techniques.
Experimental results and related work are reported in Section 6 and 7, while
Section 8 concludes our study.

2 Preliminaries

2.1 Problem Statement

For presentation simplicity, our study only focuses on simple, vertex-labeled
graphs. A simple graph is an undirected graph with no self-loops nor multi-
ple edges between any two different vertices. From now on, a database graph
is called a data graph, while a query graph is called a query. All data graphs
are assumed to be connected. Nevertheless, our approach can be immediately
extended to directed or edge-labeled graphs.

Given two sets of labels, ΣV and ΣE , a graph g is defined as a triplet (V (g),
E(g), l) where V (g) and E(g) denote the vertex set and edge set of g, respectively.
l is a mapping: V (g) → ΣV which assigns a label l(u) to each vertex u ∈ V (g).

Definition 1 (Subgraph Isomorphic). Given two graphs g = (V, E, l) and
g′ = (V ′, E′, l′), g is subgraph isomorphic to g′, denoted by g ⊆ g′, if there
is an injective function f : V → V ′ such that (1) ∀v ∈ V , f(v) ∈ V ′ and
l(v) = l′(f(v)); (2) ∀(u, v) ∈ E, (f(u), f(v)) ∈ E′ and l(u, v) = l′(f(u), f(v)).
Under the above conditions, g (g′) is a subgraph (supergraph) of g′ (g).

Definition 2 (Induced Subgraph). Given a graph g, a graph g′ is an induced
subgraph of g, if and only if (1) g′ is subgraph isomorphic to g under an injective
function f ; (2) ∀u, v ∈ V (g′), if (f(u), f(v)) ∈ E(g), (u, v) ∈ E(g′).
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Definition 3 (Supergraph Containment Search). Given a graph database
D = {g1, g2, ..., gn} and a query graph q, find the answer set Dq which consists
of each gi ∈ D such that gi ⊆ q.

2.2 Computation-Sharing Framework

cIndex [2] is the first filtering-verification framework for supergraph containment
search. It applies the exclusive logic to filter data graphs; namely, if a feature
f �⊆ q, any data graph g such that f ⊆ g can be filtered. However, sequentially
testing each feature (candidate graph) against the query involves huge redundant
computation cost in the filtering (verification) phase.

GPTree [14], the first computation-sharing framework, directly extends the
filtering-verification framework to avoid the redundant computation cost in cIn-
dex. Inspired by DFS code [11] and QISequence [9], GPTree proposes a new
graph encoding technique called GVCode. Based on a spanning tree t of a graph
g, it encodes g into a sequence represented by a regular expression Codeg =
[[SiE

∗
ij ]

V (g)]. Each entry Si is the mapped image of a vertex v in g. While Si.l
keeps the label of v, Si.p stores the entry corresponding to the parent vertex of
v in t. Once S1 is fixed, t is viewed as a tree rooted at the vertex corresponding
to S1 and thus S1.p = 0. Each edge in g but not in t is recorded as a back edge.
If Si has back edges, they are kept in {Eij}.

Table 1 gives two GVCodes of ga and gb in Figure 1. The corresponding vertex
of Si is in the bracket. The bold lines in Figure 1 show the spanning trees of ga

and gb. As g′′ in Figure 1 is represented as a three-entry prefix from S1 to S3

in both Codea and Codeb, a tree structured organization of Codea and Codeb,
called GPTree, can be built to share the three-entry prefix as a common prefix.
Note that a common prefix must be an induced subgraph of all graphs in the
group and the GVCode of a graph is not unique.

Based on QuickSI [9], GPTreeTest, a new subgraph isomorphism test algo-
rithm is proposed to verify a group of graphs sharing a common prefix. Regarding
Table 1, GPTreeTest first searches in q a subgraph isomorphism mapping of the
common prefix from S1 to S3. A found mapping is then extended in a depth
first fashion to search a whole mapping for the rest Codea and Codeb under the
common prefix, respectively.

Table 1. The GVCodes of ga and gb

Type (Si.l, Si.p)

S1(v2) (c, 0)

S2(v1) (b, S1)

S3(v3) (a, S2)

E31 [edge : S3]

S4(v4) (a, S3)

S5(v5) (a, S4)

Type (Si.l, Si.p)

S1(v7) (c, 0)

S2(v6) (b, S1)

S3(v8) (a,S2)

E31 [edge : S3]

S4(v10) (b, S1)

S5(v9) (a,S1)

Codea Codeb
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The framework of GPTree can be outlined by four phases: (1) Mine frequent
subgraphs from the database and build a feature-based index F = {f1, ..., fn}.
Each fi is attached a graph-ID list listfi = {g.id|fi ⊆ g ∧ g ⊆ D}. (2) Mine
common induced subgraphs from features and data graphs respectively. Greedily
select the largest common induced subgraphs and divide features and data graphs
into disjoint groups such that each group G shares a common induced subgraph
g′. Graphs in each group G are encoded to share Codeg′ as a common prefix,
based on which a GPTree is built for G. (3) For filtering, each feature group
is tested by GPTreeTest to obtain the candidate set Cq = D − ⋃

f listf(f �⊆
q ∧ f ∈ F). (4) For verification, each database group is projected on Cq and all
non-empty projected database groups are verified by GPTreeTest to obtain the
answer set Dq.

3 PrefIndex

Our Framework. We propose a novel computation-sharing framework called
PrefIndex, which directly selects a feature as the common subgraph shared by
a group of data graphs. Since a feature is encoded as a common prefix of all
the data graphs in the group, its test cost can be shared between filtering and
verification. The whole framework is outlined as follows.
1. Mine frequent induced subgraphs from the database and cluster all data

graphs into disjoint groups {(fi, Gi)|1 ≤ i ≤ k} such that for each graph g in
a group Gi, fi is an induced subgraph of g and a selected feature.

2. Encode each graph g in a group Gi into Codeg of which Codefi is a prefix.
Organize all GVCodes of graphs Gi into a PrefIndex tree.

3. Apply our query processing algorithm integrating filtering and verification
to process each group Gi by sharing the computation cost of Codefi .

3.1 Cost Model and Feature Selection

Given a data graph g and a query q, if f ⊆ g, the subgraph isomorphism test cost
of g may be approximately represented by costf + cost(g−f). Given a group Gi

of graphs sharing a common induced subgraph fi, if we test all graphs in Gi by
sharing the test cost of fi (to process fi only once), the cost gain (computation-
sharing benefits) approximately equals (1). Assume that no pre-knowledge is
given on q, (1) may be interpreted as the expected gain for any q.

Given a database D and a set D = {(fi, Di)|1 ≤ i ≤ m} where each Di

contains all graphs in D which share fi as a common induced subgraphs, we call
fi and Di master feature and master group of fi, respectively.

Definition 4 (Disjoint Database Cover). Given a set D = {(fi, Di)|1 ≤
i ≤ m} of master features and master groups and assume that

⋃
i Di = D,

G = {(f ′
j, Gj)|1 ≤ j ≤ k} is a disjoint cover of D conforming D if and only

if (1) ∀(f ′
i , Gi), ∃(fj , Dj) ∈ D such that f ′

i = fj and Gi ⊆ Dj; (2) ∀Gj �=
G′

j , Gj

⋂
G′

j = ∅; (3) ∀g ∈ D, ∃Gj ∈ G such that g ∈ Gj.
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Given a disjoint cover G of D, the total cost gain by sharing the test cost of the
master feature within each master group is in (2).

gainGi = costGi − cost′Gi
= (|Gi| − 1) × costfi (1)

gainG =
∑k

i=1(|Gi| − 1)costfi (2)

Definition 5 (Maximized Gain (MG)). Given a database D and a set D =
{(fi, Di)|1 ≤ i ≤ m} of master features and master groups such that ∀g ∈ D,
∃Di ∈ D, g ∈ Di, find a disjoint cover G of D such that gainG is maximized.

Theorem 1. The problem of Maximized Gain is NP-hard.

Proof. In a special case of MG where each costfi equals a constant c, gainG =
c× (n−k). Consequently, solutions of MG in this case aim to minimize k, which
makes MG exactly a minimum set cover problem (NP-hard) [4].

Assume that each data graph contains at least one feature. Algorithm 1 is
adopted to approximate the optimal disjoint cover with the maximum gainG .
Let G be a set of already selected disjoint groups (G is empty at the beginning).
Let g(G) be all the data graphs currently covered by G. For each Di with a
master feature fi, let costfi

×(|Di−g(G)|−1)

|Di−g(G)| be the average gain from each remain-
ing data graph in Di − g(G). The greedy algorithm iteratively selects a group
(fi, Di − g(G)) with the highest average gain, until G covers all the data graphs.

Algorithm 1. Clustering

Input . D: a graph database {g1, ..., gn};
D: a set of features and master groups {(f1, D1)..., (fm, Dm)};

Output . G: a disjoint cover of D;
G := ∅; S := D;;1

while D − g(G) �= ∅ do2

Select (fi, Di) ∈ S with the maximum
costfi

×(|Di−g(G)|−1)

|Di−g(G)| ;3

Insert (fi, Di − g(G)) to G;4

S := S − {(fi, Di)};5

return G;6

Example 1. Given D = {g1, ..., g5} in Figure 2, for each fi, its master group Di

and cost costfi are in the left two tables, respectively. Consider clustering (a)
of PrefIndex by Algorithm 1. For the first iteration, the average gains from D1

to D4 are 2, 2, 5
2 and 8

3 , respectively. Consequently, (f4, {g1, g4, g5}) is selected.
Then g1, g4 are removed from D1, while g5 is removed from D3. The average
gains of D1 and D3 become 0, while the average gain of D2 remains unchanged.
For the second iteration, (f2, {g2, g3}) is selected. Finally, we obtain a disjoint
cover G = {(f4, {g1, g4, g5}), (f2, {g2, g3})} with a total gain of 12.

Time Complexity. Due to the greedy nature of Algorithm 1, the worst case
time complexity is O(n2 × m) where n and m are the numbers of data graphs
and features, respectively.
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Fig. 2. Example of Database Clustering

Accuracy Guarantee. Let OPT and A denote the total gains of the optimal
solution and Algorithm 1, respectively. The following theorem can be proved.

Theorem 2. A ≥ 1
2OPT .

Proof. Let G = {(fi, Gi)|1 ≤ i ≤ l} be the optimal solution of MG and OPTGi

be the gain of group Gi; the total gain OPT of G is (3). Let the number of
graphs in Gi be nGi; the average gain aGi of Gi is (4).

OPT =
∑l

i=1 costfi × (|Gi| − 1) =
∑l

i=1 OPTGi (3)

aGi = costfi
×(nGi

−1)

nGi
(4)

Since the gain of any group with only one graph is 0, we only consider those
groups with at least two graphs. Let G′ = {(f ′

j, G
′
j)|1 ≤ j ≤ l′} be the greedy

solution generated by Algorithm 1 and A be the total gain of G′. Assume G′
j is

selected at the jth iteration. By removing any graph g /∈ G′
j from Gi, we obtain

Gj
i = Gi

⋂
G′

j(1 ≤ j ≤ l′). By removing any group Gj
i = ∅, Gi can be parti-

tioned into a set of disjoint subgroups {Gj1
i , ..., Gjk

i } such that (1)
⋃k

t=1 Gjt

i = Gi;
(2)∀t, t′(1 ≤ t < t′ ≤ k), jt < jt′ .

Let the average gain of Gjt

i in the greedy algorithm be a′
t and the number

of graphs in Gjt

i be n′
t (

∑k
t=1 n′

t = nGi). Two observations can be made based
on the partition of Gi. (1) Only the last subgroup Gjk

i may have a gain of 0 in
the greedy solution, since G′

jk
may have only one graph and Gjk

i is not empty.
If another group G′

jt
(jt < jk) has only one graph and Gjt

i is not empty, a new
subgroup Gjk

i

⋃
Gjt

i can be obtained to yield a gain greater than 0. (2) Due to
the greedy nature of Algorithm 1, a′

1, the average gain of the first subgroup
Gj1

i in the greedy solution, must be no less than aGi , Otherwise, Gi instead
of G′

j1
will be selected for the j1th iteration in the greedy solution. It can be

concluded that the gain of Gj1
i

⋃
Gjk

i in the greedy solution is at least 1
2 of that

in the optimal solution. For each rest subgroups Gjt

i (t �= 1, k), due to the greedy
nature of Algorithm 1, (5) can be immediately verified. By replacing costfi in
(5) with (4), we have (6). Let the gain of Gi in the greedy solution be AGi . By
(6), we have (7), which leads us to our conclusion that A ≥ 1

2OPT .

a′
t′ ≥ costfi

×(nGi
−∑ t′−1

t=1 nt−1)

nGi
−∑ t′−1

t=1 nt

(5)
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a′
t′ ≥ nGi

×(nGi
−∑ t′−1

t=1 nt′−1)

(nGi
−1)×∑ t′−1

t=1 nt

× aGi ≥ 1
2 × aGi (6)

AGi =
∑k

t=1 a′
t × nt ≥

∑k
t=1

aGi
×nt

2 = 1
2OPTGi (7)

Remark. Generally speaking, the subgraph isomorphism test runs in an expo-
nential time in the worst case and is algorithm, graph topology and graph size
dependent. While our algorithm and its analysis apply to any given cost formula,
|V (f)| is used to approximate costf in our implementation.

3.2 Computation-Sharing Comparison

On computation-sharing strategy, PrefIndex differs from GPTree in two ways.
Firstly, GPTree selects common induced subgraphs for features and data graphs
respectively, while PrefIndex directly selects common induced subgraphs of data
graphs as features and shares the computation between filtering and verification.
Secondly, GPTree greedily selects common induced subgraphs with the highest
cost (largest size). Since larger subgraphs are usually unlikely to be contained by
many graphs, PrefIndex uses a more natural heuristic to greedily select features
with the highest average gain.

Consider clustering (b) of GPTree in Figure 2, though f3 has the highest cost,
it contributes less than f4 as its master group has less data graphs, which only
leads to a total gain of 8. In our experiments, PrefIndex outperforms GPTree in
all cases on computation-sharing benefits.

3.3 Index Structure

In PrefIndex, each feature f is encoded into a common prefix of the GVCode of
each graph g in its master group Gf . This requires that f must be an induced
subgraph of each g in Gf . We extend gSpan [11] to mine frequent, discriminative,
induced subgraphs. D is initialized with the mined induced subgraphs and their
master groups and then fed into Algorithm 1 for feature selection. Although
a feature f may be contained by a data graph g not in Gf as a non-induced
subgraph, such information is not recorded in PrefIndex due to mining efficiency.

The index structure of PrefIndex is outlined as follows: (1) Given a disjoint
cover G = {(fi, Gi)|1 ≤ i ≤ k} generated by Algorithm 1, encode each g in
a group Gi into Codeg by having Codefi as its prefix. In practice, QuickSI
algorithm [9] is used to efficiently identify subgraph isomorphism mappings from
fi to g. (2) Each entry Si of Codeg only stores the label of its corresponding
vertex in g, its parent vertex in Codeg and its back edge information. Figure 3(a)
shows a PrefIndex of graphs ga and gb in Figure 1. The effective ordering of
common prefixes and suffixes is discussed in the next section.

4 PrefIndex Search

This section firstly presents our querying algorithm for a group of graphs based
on PrefIndex and then proposes two techniques to further enhance PrefIndex: (1)
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Fig. 3. PrefIndex

Ordering GVCodes efficiently for PrefIndex; (2) Sharing pruning power among
master groups. Given a disjoint cover G = {(fi, Gi)|1 ≤ i ≤ k}, the PrefIndex of
Gi is denoted by PIi = {Codeg|g ∈ Gi}. We aim to share the test cost of Codefi

between filtering and verification. Codefi is first processed to check whether a
subgraph isomorphism mapping exists from fi to q. The test of Codefi is enforced
to be conducted only once for Gi, which leads to the following fundamental
theorem. The trivial proof is omitted here.

Theorem 3. If a query q contains a data graph g, for each prefix Code′ of
Codeg, there must be a subgraph isomorphism mapping from Code′ to g.

4.1 Algorithm

Algorithm Sketch. Based on Theorem 3, for each group Gi, our algorithm
probes PIi in a depth first fashion. For each Codeg in PIi, once a mapping
P ′ is found from a prefix Code′ of Codeg to q, the algorithm checks if P ′ can
be extended to cover the next vertex in Codeg. If impossible, it backtracks in
PIi to search the next mapping from Code′ to q. Since Gi may contain many
graphs, the last vertex of Codefi may link to many suffix branches. The algorithm
backtracks from the last vertex of Codefi , if all suffix branches under this vertex
have been explored in a depth first fashion. The algorithm terminates when no
new mapping can be found for the first vertex of Codefi or all GVCodes in PIi

are detected to be subgraph isomorphic to q. The algorithm consists of two parts:
PrefixQ and SuffixQ in Algorithm 2 and 3.

Example 2. Regarding the example in Figure 1, assume the database is clustered
based on disjoint cover G = {(fa, G1 = {ga, gb}), (fb, G2 = {gc})}. In Figure 3,
the two tables show the GVCodes of ga and gb, while Figure 3 (a) and (b) show
the PrefIndex of G1 and the query.

In our algorithm, S1 is first mapped to u1 in q as their labels match. S2 is
then mapped to u2 as their labels and parents match; similarly, S3 is mapped
to u3 as their labels, parents and back edges match (S3.l = b, S3.p = S2 and the
back edge (S3, S1)). An intermediate mapping P1 from Codefa to q is found.
This corresponds to the filtering phase.

In verification phase, P1 is respectively extended for the suffixes of Codea and
Codeb. For both Codea and Codeb, P1 fails to extend to S4 as all adjacent vertices
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of u3 are either already mapped or unable to meet S4.p = S1. Consequently, P1

is abandoned and it backtracks from S3 to search a new mapping. It then finds
that no new mapping can be found for S3 while keeping the existing mappings
of S1 and S2. After it backtracks for one more depth, no new mapping can be
found for S2 while keeping the existing mapping of S1. Finally, it starts from
S1 again and finds another intermediate mapping P2 from {S1, S2, S3} to {u4,
u2 u3}. For Codea, u5 and u6 are mapped to S4 and S5 respectively , which
verifies ga as an answer. For Codeb, the extension fails at S5. Since P2 is the last
mapping from Codea to q, the query processing of G1 terminates.

Algorithm 2. PrefixQ(G, Codef , P, F , q, d)
Input . G: a group of data graphs represented as GVCodes (PrefIndex);

Codef : the common prefix;
P : a vector, initialized with ∅;
F : a vector, initialized with 0;
q: a query graph;
d: the mapping depth;

Output . Gq: the answer set of q for G;
if d > |Codef | then1

for each g ∈ G do2

if SuffixQ(Codeg, P , F , q, d) then3

Gq := Gq

⋃{g};4

5

G := G − Gq ;6

if G = ∅ then7

return Gq;8

9

S := Sd(∈ Codef ); E := Ed(∈ Codef );10

if d = 1 then11

V := {v|v ∈ V (q) ∧ l(v) = S.l ∧ Fv = 0};12

else13

V := {v|v ∈ V (q) ∧ l(v) = S.l ∧ (v,PS.p) ∈ E(q) ∧ Fv = 0};14

for each v ∈ V do15

for each back edge e ∈ E do16

goto line 13 if e �∈ E(q);17

Pd := v; Fv := 1;18

Gq := Gq

⋃
PrefixQ(G, Codef , P , F , q, d + 1);19

G := G − Gq ;20

if G = ∅ then21

return Gq;22

Fv := 0;23

return Gq ;24

PrefixQ processes the common prefix Codef of a group G and calls SuffixQ to
complete the searching. It is in a recursive, depth first search fashion presented
in Algorithm 2. The output Gq is the answer set for G. P = {P1,P2, ...} stores
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the vertex mappings from Codef to q. Pd = vi means Sd ∈ Codef is mapped to
vi in q. F = {F1, ...,F|V (q)|} stores the vertex state for each vi in q. Fi = 1 means
vi is already mapped to a vertex in Codef . The mapping depth d indicates the
current vertex Sd ∈ Codef to be mapped. PrefixQ firstly checks if the current
mapping P covers all the vertices of Codef . Condition d > |Codef | (line 1)
implies that a mapping P from Codef to q is found. SuffixQ (to process each
suffix respectively) is then called (line 3) to extend P . Once a mapping from
Codeg to q is successfully extended, g is moved from G to Gq. PrefixQ terminates
when all GVCodes in G are detected subgraph isomorphic to q (line 7) or all
mappings have been exhausted (line 13 and then line 22) for S1 of Codef .

SuffixQ processes a suffix under Codef ; namely, Codeg−Codef . It has the same
input and also follows a recursive, depth first search fashion. The correctness of
Algorithm 2 and 3 is immediate from Theorem 3. Although costing exponential
time in the worst case, they are very efficient in practice.

Algorithm 3. SuffixQ(Codeg, P, F , q, d)
Input . Same as PrefixQ;
Output . Boolean: Codeg is a subgraph of q;
if d > |V (q)| then1

return True;2

S := Sd ∈ Codeg; E := Ed ∈ Codeg;3

V := {v|v ∈ V (g) ∧ l(v) = S.l ∧ (v,PS.p) ∈ E(q) ∧ Fv = 0};4

for each v ∈ V do5

for each back edge e ∈ E do6

goto line 5 if e �∈ E(q);7

Pd := v; Fv := 1;8

if SuffixQ (Codeg, P , F , q, d + 1) then9

return True;10

Fv := 0;11

return False;12

4.2 Effectively Ordering GVCode

Given a graph g with m vertices, there are m! different possible GVCodes. As
shown in [9], a good ordering of a query q can determine earlier if a subgraph
isomorphism mapping from q to a graph g exists. Thus the edges (labels) in q
with lower occurrence rates should have a higher priority to be allocated earlier
in Codeq to reduce the number of intermediate mappings to be considered. As
our problem is the dual problem of that in [9], edges (labels) in a data graph g
with lower occurrence rates in the database are ”signatures” of g and should be
allocated earlier in Codeg for early pruning. When constructing PrefIndex PIi

for a group Gi with a feature fi, QISequence ordering technique is firstly applied
on Codefi and then on each suffix under Codefi in the same way.
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Fig. 4. Enhancing Pruning Power

4.3 Enhancing Pruning Power

In Figure 4, three graphs are clustered into two groups G1 = {ga, gb} with fa and
G2 = {gc} with fb. Since gb contains fb, gb can also be pruned if fb fails to pass
the filtering phase. To share pruning power among different groups, two lists of
graph IDs, M(Master)-List and R(Reference)-list are added at the last vertex of
Codefi in PIi. M-list consists of IDs of the graphs in Gi, while R-List consists of
IDs of the graphs not in Gi but containing fi. Regarding G2, M -ListG2 = {gc}
and R-ListG2 = {gb}. When PrefixQ detects that fb �⊆ q, gb can be pruned from
G1 by not invoking SuffixQ on gb. To realize this, the first SuffixQ call in each
Gi is enforced to happen only after PrefixQ calls on all groups are finished and a
filtering list R is obtained. In each survived Gi, SuffixQ is only invoked on those
graphs not in R.

PrefixQ can be immediately modified to accommodate the above require-
ments. If PrefixQ reaches the depth |Codef | + 1 of G for the first time, SuffixQ
is not invoked until the depth |Codef ′ |+1 of all other G′ is either reached for the
first time (survived groups) or detected impossible to reach (R-lists of pruned
groups are added to R). The modified algorithm is presented in Algorithm 4.

Algorithm 4. PrefSearch (PS)

Step 1. For each (fi, Gi) (1 ≤ i ≤ k), probe Codefi with PrefixQ to check if a
subgraph isomorphism mapping Pi exists from Codefi to q.
If Pi is found for the first time, we add (Pi, P Ii) to the verification job list J ;
otherwise, we add the R-List of fi to the filtering list R.

Step 2. For each (Pi, P Ii) ∈ J , conduct verification on PIi by invoking SuffixQ
starting from the end of Codefi in a depth first search against q, while ignoring
those Codeg whose IDs are in R.

5 Hierarchical PrefIndex Search

This section explores two further computation-sharing opportunities missed by
GPTree: (1) sharing computation among common prefixes of multiple groups;
(2) sharing computation among multiple suffixes in each group. We propose to
organize the PrefIndexes of multiple groups in a hierarchical structure.
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Fig. 5. Hierarchical PrefIndex

Multi-level Sharing. Regarding Figure 4, assume that (d) and (e) are the
PrefIndexes of G1 = {ga, gb} and G2 = {gc}. Although fa and fb contain the
same induced subgraph, an edge (b, c), the chance to share it between G1 and G2

is missed since it is not the prefix of PI1, To address this, a level 2 PrefIndex can
be obtained by applying PrefIndex on all selected master features. Generally, a
level n PrefIndex can be obtained by applying PrefIndex on all sub-features of
level n − 1. The procedure can be iteratively performed until no new common
subgraphs are identified at the current level.

Regarding Figures 4, we first mine frequent induced subgraphs from fa and fb

as sub-features and then apply feature selection to construct a 2-level PrefIndex.
Figure 5 (a) shows a 2-level PrefIndex where edge (b, c) (sub-feature) is shared.

Suffix-Sharing. In PrefixQ, SuffixQ is recursively invoked for each survived
suffix. Note that multiple suffixes in a group are still likely to share common
entries. As in Figure 5 (a), two entries Codea.S4 and Codeb.S4 have identical
information as well as the common prefix. By sharing them as a common prefix
of these two suffixes, the resulted PrefIndex is organized in Figure 5 (b).

Greedy algorithm and PrefIndex technique are adopted to explore the common
prefixes of suffixes within each group. All possible next vertices in all suffixes
which connects to the common prefix are identified and classified into different
types based on label, parent and back edge information. We greedily selecting
the vertex contained by the most suffixes and encode the vertex as the next entry
of GVCodes of these suffixes. The greedy selection terminates when all types are
contained by only one suffix. Frequent induced subgraph mining is not used here
since the subgraph graph corresponding to each suffix is not always connected.

Building HiPrefIndex. PrefIndex technique is firstly applied on data graphs
to build the first level index. Then we iteratively build index on common sub-
features identified on each next level. Finally, suffix-sharing is applied within
each group to complete the hierarchical PrefIndex which is called HiPrefIndex.
If the generated HiPrefIndex is forest structured, a dummy root, which links to
the top of each PrefIndex, is inserted into HiPrefIndex.

Searching HiPrefIndex. The querying processing on HiPrefIndex starts from
the (dummy) root of HiPrefIndex and probes HiPrefIndex in a depth first fashion.
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PrefixQ and SuffixQ can be immediately modified to support query processing on
HiPrefIndex. For space limits, the details are not presented here.

Space-Time Efficiency vs Pruning Power. A branch in HiPrefIndex may
correspond to more than one data graph. Regarding Figure 5 (b), the left branch
of (S3, S4) leads to ga and gb. Given the query in Figure 1, the prefix correspond-
ing to fb is not contained by q. Since we know gb also contains fb, in order to
remove gb in the filtering phase, we need to record graph IDs along each edge in
HiPrefIndex to share pruning power. This increases not only the storage space
but also the computation cost to check graph IDs on each edge. Thus we ignore
such information and do not share pruning power in HiPrefIndex.

6 Performance Evaluation

We evaluate the performance of our techniques by comparing with GPTree.
The following techniques are examined: (1) Indexing techniques PrefIndex and
HiPrefIndex in Section 3 and 5. (2) Querying algorithms PrefSearch and HiPref-
Search in Section 4 and 5. (3) Querying algorithms GPTree(A) and GPTree(E)
in [14]. GPTree(A) differs from GPTree(E) as it approximately mines frequent
closed subgraphs to save index construction cost, which yields an (incomplete)
feature set contained by the (complete) feature set of GPTree(E). We obtain the
code of GPTree from its authors [14]. All algorithms are implemented in C++
and compiled by GNU GCC. Experiments are conducted on PCs with Intel Xeon
2.4GHz dual CPU and 4G memory under Debian Linux.

Datasets: AIDS and AIDS10K. Two real datsets are used. AIDS Antivi-
ral dataset, denoted by AIDS, contains 43,905 graph structured chemical com-
pounds. It is a popular benchmark for studying graph queries downloaded from
Development Therapeutics Program. To compare with GPTree based on its ex-
periment settings, a subset of AIDS with 10K graphs, denoted by AIDS10K, is
downloaded from http://www.xifengyan.net/software.htm.

Database and Query Set. For fair comparison, we adopt the experiment set-
tings in [14]. We mine frequent subgraphs from AIDS10K with frequency ranging
from 0.5% to 10% and randomly select 10K graphs as the default database, while
the default query set is exactly AIDS10K.

6.1 Efficiency on Real Dataset

The default database and query set is used to evaluate the efficiency of our
techniques. The default query set is divided into 5 groups from Q1 to Q5. The
answer set size of queries in Q1 falls in [0, 20), while those of the rest groups
from Q2 to Q5 fall in [20, 40), [40, 60), [60, 80) and [80,∞). Both techniques
mine candidate features from the default database with a minimum frequency
of 1%.
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Table 2. Index Construction

PrefIndex HiPrefIndex GPTree(A) GPTree(E)

Index Construction (sec) 311.5 313.6 129.7 697.9

Index Size (# of Features) 268 268 1301 1278
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Query Processing. Figure 6 shows average query response time within each
query group1. PrefSearch and HiPrefSearch outperform GPTree(A) and GP-
Tree(E) for up to 2 orders of magnitudes in query processing, while GPTree(E)
slightly outperforms GPTree(A). Although HiPrefSearch disables some of its
pruning power, it outperforms other techniques due to its multi-level and suffix-
sharing techniques.

Pruning Power. Figure 7 shows average pruning power measured by candidate
size within each query group. The pruning power of PrefIndex is very similar to
that of GPTree(E) and GPTree(A), while GPTree(E) outperforms GPTree(A)
due to its complete frequent closed subgraph mining. Since HiPrefIndex disables
a part of its pruning power to share more computation as discussed in Section 5,
its pruning power is not evaluated here.

Index Construction. Table 2 shows index construction cost and index size
measured by number of features. While most of the cost for both techniques is
spent on the frequent subgraph mining, the effective ordering of GVCode of Pre-
fIndex and HiPrefIndex only consumes less than 0.8% of the total cost. PrefIndex
slightly outperforms HiPrefIndex due to the extra cost spent on mining multi-
level subgraphs and common suffixes. GPTree(A) costs much less construction
time as it approximately mine a small feature set. GPTree(E) costs the most
index construction time since it mines not only a complete feature set but also
common induced subgraphs from features and data graphs respectively. For fair
comparison, we only focus on GPTree(E) for the rest experiments.

6.2 Scalability on Real Dataset

Varying Database Size. We first evaluate the scalability of our techniques by
varying database size. For this reason, AIDS instead of AIDS10K is adopted to
generate databases of various size. We first randomly select 10K graphs from
1 The X-axis represents the average number of answer graphs in each group.
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AIDS as the query set from which we mine frequent subgraphs via the same
way as in the overall performance and randomly select 5K, 10K, 15K and 20K
frequent subgraphs to form 4 databases from D1 to D4.

Figure 8 shows average query response time for each database. The increment
of query response time is almost linear for PrefSearch and HiPrefSearch with
increasing database size. HiPrefSearch is still up to an order of magnitude faster
than GPTree(E). Figure 9 shows average pruning power for each database. The
pruning power of PrefIndex is similar to that of GPTree(E), which confirms the
advantage of PrefSearch and HiPrefSearch over GPTree(E) mainly comes from
the maximized computation-sharing benefits. Figure 10 shows index construction
cost for each database. PrefIndex and HiPrefIndex always needs similar index
construction time. It is because HiPrefIndex mines frequent subgraphs from a
sequentially decreasing set of sub-features on each level, while common prefixes
of suffixes are searched only within each group. GPTree(E) costs the most time
due to the extra cost on mining common induced subgraphs.

Varying Data Graph Size. We then evaluate the scalability of our techniques
by varying data graph size (in # of vertices). We randomly select 10K graphs
from AIDS as the query set from which we mine frequent subgraphs via the
same way as above and randomly select 5K frequent subgraphs of 10 vertices as
database D1. We construct other four database from D2 to D5 by selecting 5K
frequent subgraphs of 12, 14, 16, and 18 vertices respectively.

 0

 5

 10

 15

 20

 25

 30

10 12 14 16 18

A
ve

ra
ge

 Q
ue

ry
 T

im
e 

(m
s)

Averge Data Graph Size (# of vertices)

PrefSearch
HiPrefSearch

GPTree(E)

Fig. 11. Query Response

 0

 200

 400

 600

 800

 1000

 1200

10 12 14 16 18

A
ve

ra
ge

 C
an

di
da

te
 S

et
 S

iz
e

Average Data Graph Size (# of vertices)

PrefIndex
GPTree(E)

Fig. 12. Pruning Power

100

101

102

103

10 12 14 16 18

C
on

st
ru

ct
io

n 
T

im
e 

(s
)

Average Data Graph Size (# of vertices)

PrefIndex
HiPrefIndex
GPTree(E)

Fig. 13. Construction

The query response time, pruning power and index construction time for
each database are respectively reported in Figures 11, 12 and 13. Note that the
gap on query response time between PrefIndex and GPTree(E) are dramatically
furthered with increasing data graph size, since the benefits of multi-level and
suffix-sharing are more likely to be obtained on large graphs. While the pruning
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power for both techniques remains similar, index construction cost of PrefIndex
and HiPrefIndex are very close and increase less significantly than GPTree(E).

6.3 Scalability on Synthetic Dataset

We evaluate the scalability on synthetic dataset by varying database size. A
graph generator from [3] is used. A default query set of 10K graphs is generated
by setting the average graph size to 30 vertices, while the average density ( |V |

|E|)
is set to 1.3. The distinct number of labels is set to 10 and distributed uniformly.
The default database and 4 databases of 5K, 10K, 15K and 20K graphs are
constructed in the same way as above.
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The query response time, pruning power and index construction time are
respectively recorded in Figure 14, 15 and 16. Although PrefSearch and HiPref-
Search outperform GPTree(E) on query response time and index construction
cost, the gap between the techniques shortens a lot. Due the uniform distribution
of vertex label, the number and size of frequent subgraphs greatly decrease and
thus yields limited computation-sharing opportunity. However, PrefIndex still
has its advantage over GPTree(E) as expected.

7 Related Work

Many studies have been done on graph containment search. While the subgraph
containment search has been extensively studied, the supergraph containment
search does not draw attentions from database community until most recently.

The filtering-verification framework is popular among most related work on
subgraph containment search, which uses effective indexing techniques to filter
most false results before the costly verification. Shasha et al. propose a path-
based index, GraphGrep [5], which is known as the first feature-based index for
subgraph containment search. To enhance the pruning power, frequent subgraph
mining techniques such as gSpan [11] and F3TM [15] are developed. Yan et al.
develop an effective indexing approach gIndex [12] based on frequent, discrimi-
native subgraphs. Due to the expensive cost of frequent subgraph mining, Zhang
et al. and Zhao et al. propose TreePI [13] and (Tree+Δ) [16] independently to
index frequent subtrees. Cheng et al. propose a verification-free framework FG-
Index [3] to further avoid subgraph isomorphism test. Besides the feature-based
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index approaches, He et al. propose a clustering-based approach, called C-tree [6],
to index graph closures (integration of graphs) in a B-tree like structure. It is the
first work to support both exact and similarity subgraph containment search.
Other clustering-based approaches include [8] and [1]. Moreover, Williams et al.
[10] focus on the efficiency of processing small data graphs, while Jiang et al.
[7] convert subgraph containment search to a string search problem. Recently,
Shang et al. [9] present an efficient verification algorithm QuickSI.

On supergraph containment search, the first work cIndex proposed by Chen
et al. [2] adopts historical query-log information to select features with maxi-
mized pruning power. Zhang et al. propose GPTree [14], a computation-sharing
framework to share computation cost respectively in the filtering phase and veri-
fication phase. To address the defects of GPTree, our techniques propose efficient
clustering and query processing algorithm to further share computation cost be-
tween filtering and verification, while multi-level and suffix-sharing techniques
provide other opportunities to avoid redundant computation.

8 Conclusions

In this paper, a novel computation-sharing framework is proposed for super-
graph containment search. All data graphs are clustered into disjoint groups for
computation-sharing within each group. While the optimization problem MG is
shown NP-hard, efficient greedy heuristic is used to approximate the optimal so-
lution with an approximation factor of 1

2 . Based on the compact index structure,
PrefIndex, an efficient algorithm PrefSearch integrating filtering and verification
is proposed. PrefIndex is enhanced with multi-level sharing and suffix-sharing
techniques to explore further sharing opportunities. An extensive empirical study
demonstrates the efficiency and scalability of our proposed techniques which
achieve orders of magnitudes of speed-up against the state-of-the-art techniques.
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