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Abstract— A supergraph containment search is to retrieve
the data graphs contained by a query graph. In this paper,
we study the problem of efficiently retrieving all data graphs
approximately contained by a query graph, namely similarity
search on supergraph containment. We propose a novel and
efficient index to boost the efficiency of query processing. We
have studied the query processing cost and propose two index
construction strategies aimed at optimizing the performance of
different types of data graphs: top-down strategy and bottom-
up strategy. Moreover, a novel indexing technique is proposed by
effectively merging the indexes of individual data graphs; this not
only reduces the index size but also further reduces the query
processing time. We conduct extensive experiments on real data
sets to demonstrate the efficiency and the effectiveness of our
techniques.

I. INTRODUCTION

Graphs can be used to model complicatedly structured data

from a wide range of applications such as Bioinformatics, Pat-

tern Recognition, XML, Communication Network, Chemistry,

Social Network, World Wide Web, etc. Many techniques have

been developed to accommodate the demand for effectively

managing and analyzing graph data. Graph containment search

is important and fundamental to to identify the relationships

among graphs. It consists of the following two problems:

1) Subgraph containment search: Given a graph database D =
{g1, g2, ..., gn} and a query graph q, retrieve all graph gi ∈
D such that q is a subgraph of gi.

2) Supergraph containment search: Given a graph database

D = {g1, g2, ..., gn} and a query graph q, retrieve all graph

gi ∈ D such that q is a supergraph of gi.

Driven by many applications, considerable efforts have been

witnessed from database research community to tame the

intrinsic complexity of these two problems - both are NP-

complete [1]. Many indexing and query processing techniques

have been proposed to solve these two problems [2], [3], [4],

[5], [6], [7], [8], [9].

In real applications, it may often be desirable to approxi-

mately conduct a graph contain search (i.e. similarity search)

due to the following reasons. Firstly, graph data may not

be error-free. Consequently, it is desirable to provide a set

of result candidates for graph containment search. Secondly,

the nature of some applications require similarity search. For

example, in computer vision[10], [8], it is very common to

model real objects into spatial parts and then connect them

as edges based on the relationships between the parts. Given

a databases of these objects represented by graphs, we can

model a photo or other real world scene into a query graph

and pass this query into the database to search what objects

are contained by the query. In such applications, most time the

objects stored in the database and query hardly have an exact

containment relationship; an approximate search (or similarity

search) is more desirable.

Approximate subgraph containment search has been in-

vestigated recently. Two techniques, Grafil and C-Tree, are

proposed [11], [3]. In [3], an efficient C-Tree technique is

proposed to conduct the approximate subgraph containment

search based on edit distances; nevertheless, there is no

guarantee to provide a precise answer to approximate sub-

graph containment search. Grafil [11] effectively develops a

feature based pruning technique to conduct the approximate

subgraph containment search based on the number of missing

edges. The key in Grafil is to mine discriminative features

in database graphs. Due to the exclusive pruning logic [8]

used in supergraph containment search, it is infeasible to

identify which features are discriminative in the approximate

supergraph containment search regarding missing edges; thus,

it is not applicable to the approximate supergraph containment

search regarding missing edges.

Motivated by the facts that the approximate supergraph

containment search regarding missing edges is as important,

if not more, as the approximate subgraph containment search

while the existing techniques can not be effectively applied,

we study the problem of approximate supergraph containment

search in this paper. To the best of our knowledge, we are the

first to study this problem. We propose a novel index, global

SG-Enum index, which clusters the subgraphs of the data

graph into a tree of subgraphs. We also analyze the complexity

of our query processing technique when using the technique,

and propose efficient algorithms to improve the efficiency of

the index in terms of storage space and query response time.

Our work is based on the following observation.

If a database graph g is approximately contained by a query

graph q, q must contain a subgraph of g, say, g′ such that

the difference between g and g′ must be less than the user

specified error tolerance threshold, σ. We can conclude g is



approximately contained by q if we are able to find at least

one such g′. However, this problem is NP-complete. Looking

for such subgraphs while processing queries can cause very

slow query response. By using some indexing techniques,

we can compute these subgraphs of database graphs in the

preprocessing stage to speed up the query response time. In

addition, subgraphs of the same graph may share a large

portion of data. By using an index structure which can utilizes

this sharing, we can reduce the index size and we can even

share query computation. Furthermore, we observe that using

different strategies to optimize the index will significantly

affect the performance on different types of datasets. Our main

contributions are summarized as follows:

1) We propose to convert the underlying problem, maximum

common subgraph detection problem, into a σ-missing sub-

graph detection problem. We build a novel index structure,

named SG-Enum index, to speed up the query response

time.

2) We propose a novel algorithm SigmaCSDetection to

detect σ-missing subgraphs, based on SG-Enum index.

3) We analyze the computational cost of the SigmaCSDetec-

tion. Two optimization strategies are proposed based on the

cost model, namely, top-down and bottom-up strategies.

4) Since the graph database contains a large number of graphs,

we propose efficient algorithms to merge the local SG-

Enum index into a global SG-Enum index. The global

index not only saves the space but also reduces the query

processing cost.

We conducted comprehensive experiments on the real datasets

as well as synthetic datasets to show the efficiency, effec-

tiveness and scalability of our technique. We demonstrate

that our technique can be up to two orders of magnitude

faster than directly detecting σ-missing subgraphs in online

computation. In addition, we show that the top-down algorithm

is suitable for applications where the labels are uniformly

distributed, whereas the bottom-up algorithm is designed for

the applications where the label distribution is biased.

The rest of the paper is organized as follows. Section II

presents the problem statements. Section III introduces the

framework of our technique. Section IV proposes SigmaCS-

Detection algorithm and SG-Enum index. Section V discusses

how to merge local indices into a global index. Section VI

reports the experimental results. The related work and conclu-

sion are given in Section VII and Section VIII.

II. PRELIMINARIES

It is worth mentioning that all graphs in the paper are simple

graphs, because most of the graphs in real applications have

this property. A graph is simple if it has no self loops nor

multiple edges.

A. Supergraph Containment Query

Given two sets of labels, ΣV and ΣE , a labeled graph g

is defined as a triple (V,E, l) where V is the set of vertices,

E ⊆ V × V is the set of undirected edges, and l is a labeling

function: V → ΣV and E → ΣE . We denote the vertex set

and the edge set of a graph g as V (g) and E(g), respectively.

Given an edge (u, v) ∈ E(g) and the mapping function l

of g, l(u), l(v) are the labels of u and v in g and l(u, v) is

the label of the edge (u, v) in g. We use |V (g)| and |E(g)|
to represent the number of vertices and the number of edges,

respectively. In this paper, subgraph always means connected

subgraph.

Definition 1: (SUBGRAPH ISOMORPHISM) Given two

graphs g′ = (V ′, E′, l′) and g = (V, E, l), g′ is subgraph-

isomorphic to g, denoted as g′ ⊆ g, if there is an injective

function f : g′ → g such that

1) ∀v ∈ V ′, f(v) ∈ V (g) such that l′(v) = l(f(v)).
2) ∀(u, v) ∈ E′, (f(u), f(v)) ∈ E such that l′(u, v) =

l(f(u), f(v)).
A graph g′ is a subgraph of g if g′ is subgraph-isomorphic

to g where g is also called a supergraph of g′, denoted by

g′ ⊆ g. We may also simply say that g contains g′.

Definition 2: (SUPERGRAPH CONTAINMENT QUERY)

Given a graph database D = {g1, g2, ..., gn} and a query graph

q, the problem of supergraph containment query is to find a

set of graphs which are subgraph-isomorphic to q from D,

such as Dq = {g|g ∈ D ∧ g ⊆ q}.

B. Graph Similarity

Definition 3: (Maximum Common Subgraph - MCS) Given

two graphs g1 and g2, the maximum common subgraph of g1

and g2 is the largest connected subgraph of g1 that is subgraph-

isomorphic to g2, denoted as g′ = mcs(g1, g2).
Note that in Definition 3, the size of a graph is measured

by the number of edges.1 Subgraph similarity is measured by

the difference between a data graph g and MCS (q, g) where

g is a data graph, called subgraph distance.

Definition 4: (Subgraph Distance) Given a query graph q

and a data graph g, the Subgraph Distance is defined as,

dis(q, g) = |g| − |mcs(q, g)|.

Here, |g| and |mcs(q, g)| denote the number of edges in g and

mcs(q, g), respectively.

Note that mcs(q, g) has the reflectivity, that is mcs(q, g) =
mcs(g, q). Nevertheless, this reflectivity does not hold for

dis(q, g), that is, dis(q, g) 6= dis(g, q) unless |q| = |g|.
Definition 5: (Graph Similarity) Given a query graph q and

a data graph g, the similarity is defined by,

sim(q, g) = 1 −
dis(q, g)

|g|

.

Note that sim(q, g) ∈ [0, 1] because |g| ≥ |mcs(q, g)|.
The larger sim(q, g), the similar the two graphs. As graph

similarity can be simply converted to subgraph distance by

dis(q, g) = (1 − sim(q, g)) × |g|, the techniques on

computing subgraph distance also can be immediately applied

to computing graph similarities.

1In MCS classification[12], our definition is classified to the connected
MCES category.



C. Problem Statement

Definition 6: (Supergraph Similarity Search) Given a graph

database D = {g1, g2, ..., gn}, a query graph q, and a

subgraph distance threshold σ, the subgraph similarity search

is to retrieve all the graphs gi ∈ D with dis(q, gi) ≤ σ.

For representation simplicity, graph refer to undirect vertex-

labeled graph in the rest of the paper; nevertheless, all the

techniques can be immediately extended to cover directed

and/or edge-labeled graphs.

III. FRAMEWORK

To solve supergraph similarity search, our algorithm consists

of the following phases.

1) We convert the underlying problem of supergraph similarity

search, maximum common graph problem into a σ-missing

subgraph detection problem, where σ is the error tolerance

threshold. It means at most σ edges can be missed from

the query. For each database graph g, we enumerate its σ-

missing subgraphs. We use a tree structure to represent the

σ-missing subgraphs for each g. We call it local SG-Enum

index. The construction strategies of SG-Enum index are

optimized based on the cost analysis of our local detection

algorithm, SigmaCSDetection.

2) Having constructed local SG-Enum indices for all database

graphs, we merge them into a global SG-Enum index. The

global SG-Enum index is a tree based structure. Each node

in the global index could be shared by many local indices.

Each node is also attached with an ID list to record which

local indices share this node.

3) We use the global version of SigmaCSDetection to ef-

fectively answer supergraph similarity search. The global

SigmaCSDetection utilizes the global SG-Enum index to

share computational cost between all data graphs.

IV. SIGMA-MISSING COMMON SUBGRAPH DETECTION

In this section, we will firstly convert the underlying prob-

lem, maximum common subgraph detection, into a σ-missing

subgraph detection problem. Secondly we will introduce a

straightforward algorithm to test the existence of σ-missing

subgraphs. Thirdly, we will introduce the local SG-Enum

index to index σ-missing subgraphs and SigmaCSDetection

algorithm to process queries based on local SG-Enum index.

At last, we analyze the cost of SigmaCSDetection and

present two index construction strategies based on the cost

model.

To answer supergraph similarity queries, efficiently finding

the maximum common subgraph is the fundamental problem.

The naive method is to find the MCS between q and every gi ∈
D one by one. The issue is that finding MCS is well-known to

be a NP-complete problem. MCS is also not indexable since

q is unknown.

In supergraph similarity search, we only need to know

whether |g| − |mcs(q, g)| ≤ σ is satisfied. Therefore, instead

of computing |mcs(q, g)| and then verifying the inequity

|g| − |mcs(q, g)| ≤ σ, we will convert the problem into

detecting whether there exists a common subgraph cs(q, g)

such that |g| − |cs(q, g)| ≤ σ. According to the definition

of MCS, |mcs(q, g)| ≥ |cs(q, g)| always holds, because

mcs(q, g) is the maximum common subgraph on q and g.

Thus, |g|−|mcs(q, g)| ≤ σ is satisfied if there exists a cs(q, g)
such that |g| − |cs(q, g)| ≤ σ.

Definition 7: (σ-Missing Common Subgraph Detection)

For a given graph g, a query graph q, and a threshold σ, the

σ-Missing Common Subgraph Detection is to detect if there

exists a common subgraph cs(q, g) such that |g|−|cs(q, g)| ≤
σ.

First of all, we briefly introduce the straightforward algo-

rithm sketch. The algorithm for σ-Missing Common Subgraph

Detection is in a DFS-Style algorithnm2 as shown in Algo-

rithm 1. For every edge e in graph g, the algorithm starts with

mapping it to all possible candidates in q. Then for each of

these mappings, the algorithm will try to extend the mapping

by adding more edges into it. This is a DFS enumeration

process. At any stage of the search, if the algorithm finds

a cs such that |g|− |cs(q, g)| ≤ σ, the algorithm is terminated

and returns true. Edge e will be removed from search space

at the end of each iteration since no answer will include this

edge.

Algorithm 1: DirectSigmaCSDetection (q, g, σ)

Input : q is a query graph;
g is a data graph;
σ is the threshold;

for each edge e in g do1

for each mapping of e in q do2

cs := e;3

Extend cs and its mapping in both g and q;4

if |g| − |cs| ≤ σ then5

return true6

Remove e from g;7

return false8

The algorithm 1 has the following disadvantages when it is

used for supergraph similarity search.

1) All the common subgraphs of q and g have to be enu-

merated. However, our study shows that we only need to

enumerate a subset of these subgraphs.

2) The the common subgraph cs is extended randomly. Ac-

tually, the order to extend cs will drastically affect the

detection cost. This has been shown in [5].

3) The data graphs D = {g1, g2, ..., gn} are tested one by one.

According to our study, most the testing operations can be

shared and the cost can be further reduced.

A. SG-Enum Index

We propose a novel tree structured index, named SG-Enum,

which enumerates all the σ-missing subgraphs. In similarity

search, σ is only meaningful when it is small. Therefore, we

could construct one SG-Enum index for each σ value.

2The clique based algorithms are not designed for the MCES similarity
measurements[13], [14], [15]



C

v5B

v4

Cv6 C v7

C

v9C

v8B

v2Av1

Av3

g

C

B

C C

C

C

B

A

C

B

C C

C

C

B

A

A

C

B

C C

C

C

B

A

A

C

B

C C

C

C

B

A

A

SG1

SG2

SG3

SG4

g’s σ-missing subgraphs

Fig. 1. A data graph g and its σ-missing subgraphs

An example of SG-Enum index is shown in figure 1. The

graph g in the left side is a data graph. The right side of

figure shows the framework of SG-Enum index. Assuming

the threshold σ = 1, the data graph g has four subgraphs

which miss exactly one edge. These subgraphs are called g’s

σ-missing subgraphs(Isomorphic subgraphs are removed). The

four subgraphs are shown as SG1, SG2, SG3 and SG4. In

σ-missing common subgraph detection, |g| − |cs(q, g)| ≤ σ is

satisfied if and only if at least one of these four subgraphs is

contained by q. When a query graph q arrives, the SG-Enum

index serves to efficiently answer whether q contains g’s σ-

missing subgraphs.
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Fig. 2. An example of SG-Enum index

A sample of SG-Enum index of the data graph g is shown

in figure 2. The SG-Enum index is in a tree structure. The

leaf nodes are the σ-missing subgraphs of g. The σ-missing

subgraphs are clustered to a tree of subgraphs. The non-leaf

nodes are the maximum common subgraphs of its children,

denoted as SSGx. For example, the node SSG1234 is the

maximum common subgraph of SG1, SG2, SG3, SG4. If

such root node does not exist, we create a virtual node as the

root. In the SG-Enum, each subgraph represented by a node

has a set of edges and vertices which do not appear in its

parent node. They are displayed as double lines and green

vertices in the figure. We call them extension edges .

B. Query Processing and Index Efficiency

It is clear that, if a query graph does not contain the graph

represented by a node, the query graph will not contain any of

the graphs represented by its descendants. Another observation

is that |g| − |mcs(q, g)| ≤ σ is satisfied if and only if q

contains at least one graph represented by a leaf node in

g’s SG-Enum index. Based on these two observations, we

propose our σ-missing common subgraph detection algorithm

in algorithm 2 and algorithm 3. Firstly, we enumerate all the

subgraph isomorphic mapping of the graph represented by the

root node in line 1-2 of algorithm 2. If the root node is a

σ-missing subgraph of g and it is an isomorphic subgraph

of q, then we terminate the algorithm. Otherwise, we do a

DFS search by calling SigmaCSDetectionNode for each

child of the root node. In SigmaCSDetectionNode, we try

to match the extension edges by extending its parent node’s

mapping in q(Line 1-2). For each successful matching, we

recursively call SigmaCSDetectionNode to traverse the SG-

Enum index(Line 5-7). The algorithm is terminated if one of

the graph represented by a leaf node is contained by the query

graph q(Line 3-4) or we know the graph g will not be part

of the answer if the whole index has been traversed and no

isomorphic σ-missing subgraph has been found for g.

Algorithm 2: SigmaCSDetection (q, Ig , σ)

Input : q is a query graph;
Ig is the SG-Enum index of g’s σ-missing subgraphs;
σ is the threshold;

SSG = Ig.root;1

for each subgraph isomorphic mapping iso of SSG in q do2

if SSG is a leaf node then3

return true4

for each child SSG′ of SSG do5

if SigmaCSDetectionNode (q,iso,SSG′) then6

return true7

return false8

(Correctness)It can be immediately verified that |g| −
|mcs(q, g)| ≤ σ is satisfied iff there exist a common subgraph

cs(q, g) such that |g| − |cs(q, g)| ≤ σ. It is equivalent to that

there exist a σ-missing subgraph SGi of g which are contained

by q.

(Cost Analysis) The algorithm 2 follows depth-first search

strategy. We define the search breadth of a node SSG in

respect to a query graph q below, denoted by BSSG.

Definition 8: (SEARCH BREADTH) Given a node SSG in

the SG-Enum index Ig of a data graph g and a query graph q,

the search breadth BSSG from SSG to q is defined as BSSG =
|{f |f : SSG → q}| where f is the subgraph isomorphic

mappings from SSG to q.



Algorithm 3: SigmaCSDetectionNode (q, iso, SSG)

Input : q is a query graph;
iso is the mapping of the parent node to q;
SSG is the current node;

Match the extension edges of ssg on the mapping iso in q;1

for each matched mapping iso′ do2

if SSG is a leaf node then3

return true4

for each child SSG′ of SSG do5

if SigmaCSDetectionNode (q,iso′,SSG′) then6

return true7

return false8

Given a node SSG, one of its children SSG′ and a query

graph q, if we have already known the subgraph isomorphic

mappings from SSG to q, we define the cost of matching

SSG′ to q as the isomorphic mapping testing cost of node

SSG′, denoted as Tiso(SSG, SSG′, q). Let E is the extension

edges of SSG′, E = E(SSG′) − E(SSG). Let E to an

ordered set
−→
E = {e1, e2, ..., en} where n = |E|, then

the isomorphic mapping testing cost of node SSG′ can be

calculated as follows.

Tiso(SSG, SSG′, q) =degavg · (BSSG + BSSG∪{e1}+

BSSG∪{e1,e2} + ... + BSSG∪(E−{en}))

where degavg is the average degree of the query graph.

It is important to note that BSSG∪{e} is depending on

BSSG, since every subgraph isomorphic function fSSG∪{e} :
SSG ∪ {e} → q is extended from fSSG : SSG → q.

Therefore, the order of
−→
E will significantly affect the cost.

The overall cost of σ-missing common subgraph detection

between q and g using SG-Enum index is as follows.

TSigmaCS =
∑

SSG∈Ig

∑

SSG′∈SSG.child

Tiso(SSG, SSG′, q)

(1)

Intuitively, it is not difficult to see that the cost of Sig-

maCSDetection is greatly dependent on two factors: i) the

total number of SSG ∈ Ig. ii) the cost of individual

Tiso(SSG, SSG′, q). However, finding the optimal SG-Enum

index is NP-complete. Based on above intuition, we will

introduce two heuristic construction strategies.

C. Index Construction

Although it is unrealistic to find the optimal SG-Enum

index, we can still improve the query processing efficiency

by optimizing the structure and edge enumeration order of

the SG-Enum index. If we use Bavg to represent the average

search breadth, equation 1 can be approximated as follows.

TSigmaCS = M · Bavg

where M is the number of extension edges in each node in

the SG-Enum index.

There are two strategies to improve the index efficiency:

reducing the number of extension edges or reducing the search

breadth. Based on these two different strategies, we develop

two index construction algorithms, the top-down algorithm and

bottom-up algorithm.

1) Top-Down Algorithm: The top-down algorithm optimize

the index by reducing the number of extension edges in the

SG-Enum index. It aims to share the computational cost as

much as possible.

Given a data graph g, Ig is the SG-Enum index of g. For

each node SSG ∈ Ig , ExtE(SSG) represents the number of

extension edges in SSG.(Remember the double line shown in

figure 2) We use M to represent the total number of extension

edges in the index.

M =
∑

SSG∈Ig

ExtE(SSG)

For the purpose of reducing the number of extension edges, the

optimal SG-Enum index is the index of g with the minimal

value of M . Note that the σ-missing subgraphs(i.e. the leaf

nodes) are also considered as a tree node in the SG-Enum

index. In the example shown in figure 2, the total number of

extension edges is,

M =ExtE(SSG1234) + ExtE(SG1)+

ExtE(SG2) + ExtE(SG3) + ExtE(SG4)

=5 + 3 + 3 + 3 + 3

=17

Theorem 1: Finding the optimal SG-Enum index with min-

imal M is NP-hard.

Proof: In this proof, we will show that a special case

of this problem is actually the weighted set cover problem.

Suppose we want to find an optimal 3-level SG-Enum index

for a group of σ-missing subgraphs and there does not exist

a maximum common subgraph for the whole group. The root

node will be an empty virtual node. The leaf level contains

all σ-missing subgraphs SG = {SGi} where 1 ≤ i ≤ n

and n is the total number of σ-missing subgraphs. The level

two nodes contain a set of maximum common subgraphs,

SSG = {SSGx} where x is the set of the IDs of its children.

Formally, the set of level two nodes are SSG ⊆ 2SG and
⋃

SSGx∈SSG x = {1, 2, ..., n}. The total cost M is,

M =
∑

SSGx∈SSG

ExtE(SSGx) +
∑

SGx∈SG

ExtE(SGi)

=
∑

SSGx∈SSG

(ExtE(SSGx) +
∑

i∈x

ExtE(SGi))

If we let w(SSG) = ExtE(SSGx) +
∑

i∈x ExtE(SGi), it

is a nonnegative function w : SSG → R. Then,

MSSG =
∑

SSG∈SSG

w(SSG)

Given a set of σ-missing subgraphs SG = {SG1,

SG2, ..., SGn}, finding a cover set SSG, such that MSSG is

minimal, is the weighted set cover problem.



We propose a heuristic algorithm in algorithm 4 and al-

gorithm 5. Algorithm 4 is the main function. In line 1, it

generates all g’s σ-missing subgraphs and their maximum

common graph. The MCS will be the root node of the global

index tree. We will introduce a virtual node if no such MCS

could be found. All of these subgraphs and the root node will

be passed to algorithm 5 as an input. Algorithm 5 will divide

these subgraphs into two groups to maximize the sharing of

extension edges. In line 1, it tries to find an edge which will be

shared by the maximum number of subgraphs. If this edge is

only shared by one subgraph, that means there are no common

edges shared between any pair of the subgraphs. Therefore, we

just need to add all of them to the parent node and terminate

the algorithm. Otherwise, we will extend the graph represented

by the parent node with the selected edge. This extended graph

will become the new children node. The subgroups are then

divided into two groups. One group are those with the shared

edge and another are those without. These two groups are then

subsequently further divided by recursively calling algorithm 5

if they contain more than one subgraph.

Algorithm 4: TopDownAlgorithm (g,σ)

Input : q is a query graph;
σ is the threshold;

Output : Ig is the SG-Enum index of g’s σ-missing
subgraphs;

SG = g’s σ-missing subgraphs;1

Ig.SSGroot =the maximum common subgraph of all SGs in2

SG;
TopDownMCS (SG, SSGroot);3

return Ig4

Algorithm 5: TopDownMCS (SG, SSG)

Input : SG is a set of graphs;
SSG is a node in the SG-Enum index;

Output : Ig is the SG-Enum index of g’s σ-missing
subgraphs;

e is the edge maximize the value1

m = |{SG|SG ∈ SG ∧ SSG ∪ {e} ⊆ SG}|;
if m == 1 then2

Add all SGs in SG as SSG’s children;3

return4

else5

Add SSG′ = SSG ∪ {e} as SSG’s child;6

SG′ = {SG|SG ∈ SG ∧ SSG ∪ {e} ⊆ SG};7

SG′ = SG − SG′;8

TopDownMCS (SG′, SSG′);9

TopDownMCS (SG′, SSG);10

return11

For example, we will construct a SG-Enum index for the

graph g in figure 1 by using the top-down strategy. In the

first step, we set the maximum common subgraph of all g’s

σ-missing subgraphs, SG1234, as the root node. Among the

remained edges, (v2, v3), (v4, v6), (v6, v7), (v7, v9) are all

shared by 3 subgraphs, however (v6, v7) is not connected

to SG1234. Therefore we will randomly choose one from

the three remaining candidates. In this example, we choose

(v2, v3). The σ-missing subgraphs are now divided into two

subgroups SG′ = {SG2, SG3, SG4} and SG′ = {SG1}. As

SG′ has more than one member, the algorithm will try to

divide it again until there are no subgroups with more than

one subgraph. The resulted local SG-Enum index is shown in

figure 3 (Due to space limit, we omit the vertex IDs in this

figure. Please refer to figure 1 for vertex IDs).

In this example, the total number of extension edges is,

M =ExtE(SSG1234) + ExtE(SSG234)+

ExtE(SSG34) + ExtE(SG1) + ExtE(SG2)+

ExtE(SG3) + ExtE(SG4)

=5 + 1 + 1 + 3 + 2 + 1 + 1

=14

(Cost Analysis) The top-down algorithm consists of two

steps, finding the maximum common subgraph and finding

the most commonly shared edge for every level in the index.

In the first step, the complexity of finding the set of common

edges is O(mn) and finding the maximum connected subgraph

from the set is O(n2) where n is the number of edges and m

is the number of σ-missing subgraphs. In the second step, we

can find the most commonly shared edge e in O(nm) time for

each level. There are at most n levels. Therefore, the overall

complexity is O(mn + n2 + mn2) = O(mn2).
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Fig. 3. SG-Enum index constructed by top-down algorithm

2) Bottom-Up Algorithm: The bottom-up algorithm opti-

mize the index by reducing the search breadth. The edges in

each σ-missing subgraph are sorted to minimize the search

breadth. Due to each σ-missing subgraph is optimized for

itself. The SG-Enum index constructed by this algorithm may

contain more extension edges than the one constructed by

the top-down algorithm. However, if the label distribution

is biased, the benefit from reducing search breadth is more

than the cost resulted from the increased number of extension

edges.

Determining the best edge order for subgraph isomorphic

mapping test has been demonstrated to be an NP-complete

problem[5] and the heuristical algorithm for generating an

effective edge order for a given graph g has been proposed in

the same paper. We employ their algorithm to determine edge

order for each σ-missing subgraphs of g. We briefly introduce

the criterions for edge order determination. The frequency of



an edge, Freq(e), is the number of its appearance in the whole

graph database.

1) The ordered edge set and visited vertex set are initially

empty. The first edge e is the edge with the lowest Freq(e).
We add e to the ordered edge set. We add the two ends of

e to the visited vertex set.

2) If there are edges whose two ends are both in the visited

vertex set, we immediately add them to the ordered edge

set in non-descending order of their frequencies.

3) Among the edges which has one and only one end in

the visited vertex set, we select the one with the lower

frequency into the ordered edge set and add its ends to

the visited vertex set. If there are ties, we choose the one

with the highest vertex degree. If there are still ties, we

randomly choose one.

After the ordered edge sets are constructed for each σ-missing

subgraph, we merge them into a prefix tree. The resulted

prefix tree is the SG-Enum index. The algorithm is shown

in algorithm 6.

Algorithm 6: BottomUpAlgorithm (g,σ)

Input : q is a query graph;
σ is the threshold;

Output : Ig is the SG-Enum index of g’s σ-missing
subgraphs;

SG = g’s σ-missing subgraphs;1

for each σ-missing subgraph SGi in SG do2

EXi = SGi’s ordered edge set;3

Ig =the prefix tree of all EXi;4

return Ig5

For demonstration purpose, we assume the frequencies of

the edges for g in figure 1 are as follows.

Freq(A−B) < Freq(B−B) < Freq(B−C) < Freq(C−C)

The ordered edge set of the σ-missing subgraph SG2 in

figure 1 can be computed by the following steps. We select

(v1, v2) as first edge because its label, A−B, has the lowest

frequency. The visited vertex set is {v1, v2} now. The edges

with one end in the visited vertex set are (v2, v3) and (v2, v4).
As the Freq(A − B) < Freq(B − B), the next edge will

be (v2, v3). Now the visited vertex set is {v1, v2, v3}. After

that, we select (v2, v4) since it is the only edge connected

to the visited vertex set. Subsequently, the (v4, v5), (v5, v8),
(v8, v9), (v9, v7), and (v6, v7) are chosen in order. The resulted

ordered edge sets for SG2 and other the σ-missing subgraphs

are shown in figure 4. The numbers attached to edges are the

their orders in the ordered edges sets. Having obtained all the

ordered edge sets, we will merge them into a prefix tree. The

SG-Enum index is shown in figure 5.

(Cost Analysis) In the bottom-up algorithm we compute

the ordered edge sets and merge the sets into a prefix tree.

Computing the ordered edge sets requires O(mnd) time and

inserting them into the index costs (mnc) time where n is the

number of edges, m is the number of σ-missing subgraphs, d

is the average number of edges which has one and only one

end in the visited vertex set and c is the average number of

children of the nodes in the index. Thus, the overall complexity

is O(mnd + mnc).
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Fig. 5. SG-Enum index constructed by bottom-up algorithm

D. Top-Down versus Bottom-Up

The indices constructed by top-down and bottom-up strate-

gies are expected to perform differently depending on whether

the label distribution of the database is biased or not.

We say the label distribution is biased if the most database

graphs contains a few edges whose frequencies are signif-

icantly lower than others in the same graph. The bottom-

up strategy is more effective when label distribution of the

database graphs is biased. For this type of datasets, the bottom-

up strategy can significant reduce the search breadth, because

for most database graphs, there exist a few edges which are

significantly more selective than other edges in the same

graph. If the label distribution is uniform, which means the

frequencies of most edges are similar,(e.g. most edges are

frequent or most edges are infrequent) the search breadth

will not differ greatly no matter how the edges are ordered,

because edges of many database graphs are similarly selective.

Therefore, in this case, the bottom-up strategy will not as

effective as the top-down strategy. For example, in the AIDS

antiviral dataset, 5 edge labels represent 94% of all edge labels.

This means many graphs in the dataset may only contain edges

of those 5 labels, which are all very frequent. The top-down

strategy will be more effective in this case.

V. GLOBAL SG-ENUM INDEX

We have discussed the σ-missing common subgraph de-

tection algorithm between a query graph and a data graph.



In the graph database, we have a set of data graphs D =
{g1, g2, ...gn}. Instead of pairwisely detecting the σ-missing

common subgraph between query graph q and each gi ∈ D,

We can combine the indices of these data graphs and process

the query on the combined index for all data graphs.

A. Index Combination

Assuming we have a set of data graphs D = {g1, g2, ...gn},

each data graph gi has an independent SG-Enum index Igi
.

Now, we discuss how to merge all Igi
for 1 ≤ i ≤ n into a

global index ID.

Before discussing the merging algorithm, we first describe

the physical structure of SG-Enum index. In the previous

examples, each node in the SG-Enum index may contain

several extension edges. In physical structure, each node

in the SG-Enum index only contain one extension edge.

If a node contains n extension edges, we expand it to an

n node path. For example, in figure 6, the node SSG12

can be expanded to SSG12A and SSG12B . Actually, in-

stead of storing the whole subgraph in each node, we only

store the extension edge. Therefore the space requirement is

O(
∑

SSG∈Ig
ExtE(SSG)).
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Fig. 6. The physical structure of SG-Enum index

Since each node is an edge in the physical structure of

SG-Enum index, it is straightforward to merge the indices.

We present our algorithm in algorithm 7 and algorithm 8. In

algorithm 7 line 1, we create a V irtualNode for the global

SG-Enum index ID. For each node in the global SG-Enum

index, we use a sorted ID list to record the graphs whose

local SG-Enum indices are stored as descendants of this node.

In line 2, we set the ID list of the virtual node to be the whole

graph database. In line 3-5, we call algorithm 8 to merge each

local SG-Enum index Igi
into ID. In algorithm 8 line 1-6, we

compare the extension edge of the current node SSGg to the

extension edges of SSGD’s children. If they are the same, it

means there is an identical node already existing in ID. In this

case, we can insert the graph ID into SSGD.Child’s ID list.

Then we continue to merge all of SSGg’s children. If none

of SSGD’s children has a same extension edge as SSGg’s,

we add SSGg as SSGD’s child and continue the merging

process for all SSGg’s children. The newly added child’s ID

list is initialized to i, the graph ID.

Since each node only contains one extension edge in the

physical structure of SG-Enum index, the comparing cost

between two nodes is O(1). We traverse each node in SG-

Enum index Igi
once, and comparing it to the children of the

corresponding node in ID. Therefore, the time complexity of

the index combination algorithm is

O(c ·
∑

Igi
∈I

|Igi
|)

where c is the average number of children per node in ID and

|Igi
| is the number of nodes in each SG-Enum index Igi

.

Algorithm 7: Combine (I)

Input : I = {Ig1
, Ig2

, ..., Ign} is a set of SG-Enum index;
Output : ID is the global SG-Enum index;
ID.root = V irtualNode;1

ID.root.IDs = {i|gi ∈ D};2

for 1 ≤ i ≤ n do3

CombineNode (ID.root,Igi
.root, i);4

return ID5

Algorithm 8: CombineNode (SSGD,SSGg , i)

Input : SSGD is a node in the global SG-Enum index;
SSGg is a node in the SG-Enum index;

for each child SSGD.child of SSGD do1

if SSGD.child = SSGg then2

SSGD.child.IDs.insert(i);3

for each child SSGg.child of SSGg do4

CombineNode (SSGD.child,SSGg.child, i);5

return6

add SSGg as a child SSGD.child of SSGD;7

SSGD.child.IDs = {i};8

for each child SSGg.child of SSGg do9

CombineNode (SSGD.child,SSGg.child, i);10

return11

An example is shown in figure 7 and figure 8. In figure 7,

the three SG-Enum index Ig1
, Ig2

and Ig3
are corresponding

to the local SG-Enum indices for g1, g2, g3, respectively. We

can merge them to the global SG-Enum index ID shown in

figure 8. The resulted ID lists are also shown next to each

node in ID.
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Fig. 7. A set of SG-Enum index

B. Query Processing

The query processing algorithm is shown in algorithm 9.

Initially, SSG is the root node of ID, and match is a list to

store the results and is initialized to be empty.. In line 1-2, we

can skip all the descendants of the current node if all subgraphs
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contained in the current node are already included in the result.

Otherwise, we need to check whether the graph represented

by the current node is contained by the query graph. If so,

in line 4-6, we will identify all the database graphs indexed

by SSG’s direct children. If SSG is a leaf node in any local

SG-Enum index Igi
, gi must be indexed by SSG’s ID list but

not by any of SSG’s children’s ID lists. Line 7 recognizes all

the leaf nodes and insert the corresponding graph IDs into the

result. Finally, we recursively call the algorithm itself for all

the children of the current node in line 8-9.

Algorithm 9: QueryProcessing (SSG,q,match)

Input : SSG is a node in the global SG-Enum index,
initialized by ID.root;
q is a query graph;
match is the result list ;

if SSG.IDs − match = ∅ then1

return2

if SSG is sub-iso to q then3

R = ∅;4

for each child SSG.child of SSG do5

R.insert(SSG.child.IDs);6

match.insert(SSG.IDs − R);7

for each child SSG.child of SSG do8

QueryProcessing (SSG.child,q,match);9

return10

VI. EXPERIMENTS

In this section, we performed extensive experimental study

to demonstrate the effectiveness and efficiency of our proposed

techniques. We tested the performance of global SG-Enum

indices constructed by two optimization strategies, namely,

Top-down and Bottom-up. Both types are using the query

processing techniques described in Section V. We compared

our techniques against DirectSigmaCSDetection algorithm.

Our experiments are conducted on the real datasets as well

as synthetic datasets. Following previous works [5], [2], [3],

[6], [4], we omit edge labels of graphs in our experiments.

Real dataset. We use the AIDS Antiviral Screen dataset,

which consists of 43, 905 classified chemical molecules. The

dataset is publicly available on the website of Development

Therapeutics Program.

Synthetic dataset In order to evaluate how label distribution

affects the two optimization strategies, we relabeled a subset

of the vertices with infrequent labels.

A. Performance on Real Dataset

We examine the performance of SG-Enum index and Sig-

maCSDetection over the AIDS antiviral database — a pop-

ular benchmark in graph [7], [5]. There are totally 62 distinct

vertex labels in the data set and top 5 labeled edges are shown

in Figure 9. We extract three datasets of substructures from the

AIDS antiviral database with 12, 16 and 20 edges in average,

denoted as D12, D16 and D20, respectively. Each dataset

contain 10K substructures. In scalability test, we randomly

sample 1k, 2k, 5K, 10K, and 20K data graphs with 16 edges in

average. The query set contains 1000 randomly chosen graphs

from the AIDS antiviral database with 25 vertices and 27 edges

in average.

Rank Edge Freq. Rank Edge Freq.

1 C – C 57.2% 4 N – N 6.0%
2 C – N 15.2% 5 C – S 2.1%
3 C – O 13.4%

Fig. 9. Edge Frequency of AIDS

In the first experiment, we examine the efficiency of our

techniques. Experiment results are shown in Figure 10. It

demonstrates that both Top-down and Bottom-up algorithms

outperform the DirectSigmaCSDetection algorithm by 1-2

orders of magnitude. the Top-down strategy performs better

than the bottom-up strategy in nearly all settings. This is

because, as shown in fig 9, the top 5 labels represent 94%
frequencies. At first glance, this distribution seems to be very

biased. In fact, this distribution is very similar to a uniform

distribution containing only 5 labels with an insignificant

portion of outliers. In other words, a major portion of the σ-

missing subgraphs only contains these 5 labels. The bottom-up

optimization is ineffective in this scenario because that all the

edges are frequent in these σ-missing subgraphs. Therefore,

the search breadth cannot be reduced drastically no matter how

the edges are ordered. In the contrast, if there are lots of edges

with frequent labels, there are more sharings among the σ-

missing subgraphs. Therefore, the Top-down strategy are more

effective in this case. In the synthetic experiment conducted

below, we will show how the percentage of infrequent labels

affects the performance.

We evaluate the index construction cost and index size

for both Top-down and Bottom-up strategies. The results are

shown in figure 11 and figure 12. We found both index con-

struction strategies are very efficient in index construction. The

Top-down strategy has faster construction time and smaller

index size in most settings. As expected, the construction cost

of both strategies increase significantly with σ or graph size
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Fig. 13. Scalability with σ = 1

increase. It is because the number of σ-missing subgraphs is

approximately equal to
(

n
σ

)

where n is the number of edges

in the graph. An interesting observation is that the top-down

strategy outperforms the bottom-up strategy in both construc-

tion time and index size. This is because the top-5 labels are

representing 94% of all labels in this dataset. As a result, the

top-down strategy could find significant sharing at top few

levels. After these shared parts have been removed from the

σ-missing subgraphs, the remaining parts are mostly outliers

and they share very little. Consequently, the top-down SG-

Enum index is relatively effective in this case. However, the

bottom-up strategy aims at optimizing the edge enumeration

order for individual σ-missing subgraphs, therefore, it cannot

enjoy the significant sharing as the top-down strategy can.

We evaluate the scalability against varying database sizes

with fixed σ = 1 and σ = 2. We present the query

response time, the index construction time and the index size

in figure 13 and figure 14. All three algorithms are scalable in

query response time. Both Top-down and Bottom-up strategies

outperform the DirectSigmaCSDetection algorithm by one

order of magnitude for σ = 1 and 1.5 orders of magnitude
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Fig. 15. Number of Infrequent Labels with σ = 1

for σ = 2. The Top-down and Bottom-up algorithms achieve

nearly same performance for σ = 1 whereas the Top-down

strategy is a slightly faster than the Bottom-up strategy for

σ = 2. Both Top-down and Bottom-up strategies are scalable

in terms of index construction cost and index size. There are

no major difference found in the scalability test.

B. Performance on Synthetic Dataset

We evaluate how the label distribution affects the two

strategies in figure 15. We generate six synthetic datasets by

relabeling the vertices in D16 with, 1%, 2%, 5%, 10%, 20%

and 30%, percentage of infrequent labels respectively. The

result shows that the top-down strategy is a slightly faster

than the bottom-up strategy when the percentage of infrequent

label is less 10%. As we increase the percentage of infrequent

label from 10% to 30%, the bottom-up strategy outperforms

the top-down strategy and the difference increases as the

percentage increases. The bottom-up strategy is two times

faster than the top-down strategy when 30% of the vertices

have infrequent labels. The result supports our hypothesis that

the bottom-up strategy performs better when label distribution

is biased. The bottom-up strategy chooses to enumerate the

most selective edges to reduce the search space drastically,

thus, the processing cost is reduced drastically as well. Since

the data graphs have 16 edges on average and σ = 1, there

is a high probability that each σ-missing subgraph has at

least one edge with infrequent label when then percentage of

infrequent labels is high enough(> 10%) . When the number

of infrequent labels is less than 10%., a major portion of σ-

missing subgraph contain oly frequent labels and the bottom-

up is ineffective as shown in the experiment on the real

dataset. As expected, the top-down strategy also performs

better performance in terms of index construction time and

index size.

Summary. Our experiment demonstrates that

1) Our techniques are efficient and can perform up 2 orders

of magnitude better than the straightforward algorithm.

2) Both top-down and bottom-up strategies are scalable to the

database size.

3) Overall, top-down strategy outperforms bottom-up strategy

when the label distribution is relatively uniform. Moreover,

the top-down strategy is more scalable as the graph size

increases.

4) The bottom-up strategy outperforms the top-down strategy

when the label distribution is biased.

VII. RELATED WORK

Graph containment query has two subproblems. The first

problem is subgraph containment query which has already

been comprehensively studied. There are a lot of indexing

and algorithms proposed for this problems. A major category

is feature-based pruning, for example, GraphGrep [16], gIn-

dex [2], TreePi [6], Tree-δ [4], FG-Index [7], and etc. An-

other category are non-feature-based techniques, namely, they

are Closure-Tree [3], gString [17], GCoding [18], and [19]

also proposed a tree-based graph decomposition technique.

Recently, [5] proposes an efficient algorithm, QuickSI, to test

the subgraph isomorphism between two graphs.

The above mentioned techniques are for exact subgraph

containment query. A few similarity techniques have also been

proposed, for example, Grafil [11], Closure-Tree [3], and etc.

In contrast to the subgraph containment problem, the su-

pergraph containment problem receives much less attention.

To the best of our knowledge, there only exist two previous

works to solve the exact problem. However, they could not be

applied to solve similarity supergraph containment problem.



In [8], Chen proposed a contrast subgraph-based indexing

technique. The main idea is to capture the difference between

database graphs and queries.

Zhang, in [9], uses a compact data structure to represent

database graphs so that isomorphism test computation cost

could be shared. They also proposed algorithms to mine

important features from the database graphs.

The underlying problem, maximum common subgraph de-

tection problem, is mostly investigated for induced subgraph

only. Existing techniques fall into two categories, the maximal

clique based paradigm [13], [14], [15] and the back-tracking

paradigm [20], [21]. The maximal clique paradigm first con-

structs the association graph of the two given graphs and then

detects the maximum clique of the association graph. Different

from the maximum clique paradigm, the backtracking tech-

nique searches the maximum common subgraph by enumerate

all common subgraphs of the two given graphs and choosing

the largest one. Since it is well known that the detection of

the maximum common subgraph is a NP-complete [1], many

approximate algorithms have also been developed [22]. [23],

[24] compared two such maximal clique based algorithms,

Durand algorithm [14] and Balas-Yu algorithm [25], with

a modification of McGregor’s backtracking algorithm [21].

McGregor’s algorithm is found to be up to 100 times more

efficient for graphs with low connectivity, however it may

be 104 times slower than the maximal clique algorithm on

highly connected graphs. Note that these algorithms aim to

find maximal common induced subgraph instead of common

subgraph with the maximum number of edges.

VIII. CONCLUSION

In this paper, we studied the problem of similarity search

on supergraph containment. We convert the underlying prob-

lem, maximum common subgraph detection, into σ-missing

subgraph detection problem and propose a novel index-based

algorithm, SigmaCSDetection. Two optimization methods

have been proposed for databases with different label dis-

tributions. Since graph databases contain a large number of

graphs, we propose global SG-Enum index to merge the local

SG-Enum indexes into a global index. The global index not

only saves the space but also reduces the query processing

cost. Our techniques is up to two orders of magnitude faster

than the straightforward solution in real datasets. As a possible

future study, we will investigate how to extend our techniques

to other types of graph queries, e.g., similarity search on

subgraph containment.
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