
Efficiently Mining Tree Traversal Patterns in a Web Environment

Xuemin Lin & Xiaomei Zhou
Computer Science and Engineering
The University of New South Wales

Sydney, NSW 2052, Australia
{ lxue, xmei}@cse.unsw .edu.au

Abstract
In this paper, we firstly propose a novel data min -

ing problem in a WWW environment. Secondly, we
outline the algorithm f o r solving the problem. Our
initial implementation of the algorithm suggests the
algorithm is very e f i c i en t and scalable in practical.
Therefore it can be applied t o a very large database.

Keywords: Data Mining, Access Patterns Discovery,
Algorithms, WWW.

1 Introduction
In the last several years, the internet and the World

Wide Web (WWW) have grown exponentially so that
huge amount of information is now available in the in-
ternet for users to access. Managing arid organizing in-
ternet resources, therefore, becomes critical. Many in-
ternet search engines have been prototyped. To make
internet resources search more efficiently, mining user
access patterns in a web environment emerges as one
of the hot topics in the research area of database ap-
plications.

Currently, the research in computing user patterns
follows two directions, 1) a relational database oriented
approach [4, 51, and 2) a topological oriented [3] ap-
proach. In a relational database oriented approach,
we view the input records of user access patterns as a
table in a relational database, and output the discov-
ered assoczation rules by applying the algorithms in
[l, 81. In a topological oriented approach, we view a
web environment as the one with linked documents - a
directed graph, and view a user access to the web envi-
ronment as a walk [2] in the directed graph along arcs.
Then, we are interested in discovering walk patterns
with a specific topology which are frequently used by
users.

In this paper, we shall restrict ourself to a topolog-
ical oriented approach. To the best of our knowledge,
the paper [3] is the first topoligical oriented approach,
where an efficient algorithm has been proposed to

Yuh-Chi Lin
Computer Science

The University of Western Australia
Perth, W-4 6907, Australia

yuh@cs.uwa.edu. au

compute frequently used path traversal patterns. In
this paper, we shall investigate a more general prob-
lem - how to compute frequently used tree traversal
patterns. -4s an outcome, a novel and efficient algo-
rithm will be proposed for this purpose. Because of
the space limitation, we are only able to outline the
algorithm; the interested readers please refer our full
paper [6] for details.

The rest of the paper will be organized as follows.
In the second section, we specify the problem and its
applications. The third section outlines our algorithm.
This is followed by the conclusions and our preliminary
implementation results.

2 Preliminary
A user may access the inteInet as many times as

he (she) likes, and each time may access as many web
sites as he (she) wants. The detailed records of web ac-
cess from the users in a local system may be recorded
in a system log. These records will enable the local
system to learn the web access patterns from its local
users and then build up a good system for local users
to access the internet [7]. This is one of the applica-
tions of our research in this paper.

An access to the m-eb from a user may be
retrived from the system log in form of <
U I D , (sl, d l) , (s 2 , d2) , ...(s lL , d,) >, where domain
U I D gives the user ID, (s , ,d t) indicates that the
user travels from document s, to document d,, and
d, = sz+l. By recording the starting point of an ac-
cess as null, we should be able to identify different ac-
cesses from the same user, and different accesses from
different users.

To illustrate a partial ordering in each user access,
a user access can be converted into a traversol tree
as follows. Gradually, add a new vertex d, into the
tree together with the link (sa, d,). For example. with
respect to the access
< (null, ‘4)1 (A , B) , (B , C) , (C, B) . (B , 4,

(-41 D) , (D , E) > 7

0-7803-4886-9/98/ $1 0.00 0 1998 IEEE 115

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:06 from IEEE Xplore. Restrictions apply.

mailto:yuh@cs.uwa.edu

the corresponding.traversa1 tree is illustrated in Figure
1. A traversal tree is a rooted tree [2] , that is, tree
with notion of parents and children. In this paper,
we are interested only in rooted trees; for terminology
simplicity, a rooted tree is abbreviated into “tree”

root (null)

D

C E

Figure 1: A Tmversal Tree

Now, we can assume that a database (table) D
of user access patterns has been obtained such that
each row (tuple) is a traversal tree with a domain (at-
tribute) TID to identify it. The problem of mining
frequent traversal trees (MFTT) can be described as
follows. Given a minimum support s%, find the set T
of all trees such that:

for each tree t E T , there are at least s% of tuples
in D which contain t , and

no two trees In T which has the inclusion rela-
tionship.

3 The Algorithm for Solving MFTT
-4 naive way to solve MFTT is to firstly find out

all vertices of the trees in the database; secondly enu-
merate all subtrees generated from these vertices; and
thirdly for each subtree t , count how many tuples in
D contain t. Clearly, in practice this approach is too
expensive to be applicable, as the number of gener-
ated subtrees is larger than n! where n is the number
of vertices involved and usually is very large. Inspired
by the results in [17 3, 81, in this paper we will propose
an efficient algorithm for solving MFTT. Regarding
the space limitation, we are only able to outline our
algorithm; the detiiils may be found in the full paper

We need another terminology to describe our algo-
rithm. Given a database D of user access patterns
and a minimum support s%, we say that a tree t is
frequent with respect to s% and D if there are at least
s% tuples from D containing t .

The algorithm follows a data mining framework in
[1, 31. We shall iteratively expand the size of the set

PI.

of frequent trees. As MFTT is more complicated than
the problems in [l, 31, new techniques are developed to
make the iterations efficient. The algorithm consists
of the following three steps.

Step 1: Use the approach in [3] to calculate the fre-
quent paths, and store them in L1. Goto Step
2 .

Step 2: Iteratively generate the set of frequent trees
with k branches, starting the iteration from IC = 2
as follows. (Note: a path can be regarded as a
frequent tree with 1 branch). Let Lk store the
frequent trees with k branches, and Ck store the
candidates of frequent trees with k branches. For
k 2 2:

We first generate Ck from L k - 1 using a sim-
ilar operation to the join operation in rela-
tional databases based on the fact that if a
tree t in L k , then each subtree, with IC - 1
branches, of t should be in L k - 1 . This will
prevent us from generating too many can-
didates in Ck. The detailed description of
this new join operation may be found in the
full paper [6]. An illustrative example is de-
picted in Figure 2 .
After obtaining C k , we organize the candi-
dates in ck in a hash-like tree Hk in order
to speed up our test of whether a candidate
in c k is in Lk. Our new hash technique is
detailed in [6].
Scan the database D. For each tuple d E D,
enumerate all k-branched subtrees of d, hash
each subtree into the hash-like tree H k , and
then add 1 into the count of a candidate in
C k if the candidate is contained by a sub-
tree of d. Note that in order to reduce the
chances of generating unnecessary subtrees
of d, we suggested in [6] that 1) the enu-
meration should be carried out in the same
time while doing hash, and 2) only maxi-
mal k-branched subtrees will be generated.
For example, suppose the join result tree in
Figure 2 is also a tuple in D. When in the
iteration k = 4, instead of generating two
subtrees as depicted in Figure 3(a) and 3(b),
we generate only one subtree as depicted in
Figure 3(a) to do counting for the candidates
in Ck. An efficient counting technique is also
presented in [6].
Store the candidates, with count greater
than s% x ID[, of CI, into L k ; and continue
the next iterations.

.

116

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:06 from IEEE Xplore. Restrictions apply.

A A A

A

/T

D E F G

D E F G E F G M D E F G M

Figure 2: Generate Candidates Using a Join-Like Operation

A ceedings of the 20th International Conference on
Very Large Data Bases, 478-499, 1994.

(21 .I. A. Bondy and U. S. R. Murty, Graph Theory
with Applications, Macmillan, 1977.

[3] h/I.-S. Chen, J . S. Park, and P. S. Yu, Da,ta Mining
for Path Traversal Patterns in a Web Environment,
Proceedicngs of the 1 Gth International Conference
071 Distributed Computing Systems, 385-392, 1996.

B 4
E F G

(b)

Figure 3: Enumera,tioIi

The iteration will be terminated if either no can-
didates are generated or no more frequent trees
are generated.

Step 3: Remove the frequent trees which are con-
tained in another frequent tree.

The proof of the algorithm correctness may be foiind
in the full paper [6].

4 Conclusions
In this paper, we specified a new data mining prob-

lem for enhancing web organization. We also provided
an efficient algorithm tdo solve this problem. Our pre-
liminary implementation suggests that this algorithm
runs fast in practice. We initially implement the algo-
rithm on a pentum-pro workstaion with main memory
size 128 MB running the Windows NT server 4.0 Sys-
tem and using Javaview. For a database where there
are 200,000 tuples on average, each tuple is a tree with
20 vertices on average, and totally there are more than
1000 vertices, the algorithm takes just a few minutes
to complete.

References
[I] R. Agrawal and R. Srikant, Fast Algorithm for

Mining Association Rules in Large Database, Pro-

[4] D. W. Cheung, B. Kao, and J . Lee, Discovering
User Access Patterns on the World-Wide Iieb, 1st
Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD-97), 1997.

[5] B. Mobasher, N. Jain, E.-H. Han, and J . Srivas-
hva , Web Mining, Pattern Discovery from World
Wide Web Transactions, Proceedings of the 9th
I E E E International Conference on Tools with Ar -
tificial Intelligence (ICTAI ’W) , 1997.

[6] X. Lin and X. Zhou, Efficiently Mining Tree
Traversal Patterns in a Web Environment,
h$anuscript, 1998.

[7] D. Ngu and X. Wu, SiteHelper: A Localized Agent
that Helps Incremental Exploration of the World
Wide Web, 6th International WWW Conference,
1996.

[8] J . S. Park, M.-S. Chen, and P. S. Yu, An effec-
tive Hash Based Algorithm for Mining Association
Rules, A C M S I G M O D , 175-186, 1995.

117

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:06 from IEEE Xplore. Restrictions apply.

