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Abstract—With the rapid development of various optical, infrared, and radar sensors and GPS techniques, there are a huge amount of

multidimensional uncertain data collected and accumulated everyday. Recently, considerable research efforts have been made in the

field of indexing, analyzing, and mining uncertain data. As shown in a recent book [2] on uncertain data, in order to efficiently manage

and mine uncertain data, effective indexing techniques are highly desirable. Based on the observation that the existing index structures

for multidimensional data are sensitive to the size or shape of uncertain regions of uncertain objects and the queries, in this paper, we

introduce a novel R-Tree-based inverted index structure, named UI-Tree, to efficiently support various queries including range

queries, similarity joins, and their size estimation, as well as top-k range query, over multidimensional uncertain objects against

continuous or discrete cases. Comprehensive experiments are conducted on both real data and synthetic data to demonstrate the

efficiency of our techniques.

Index Terms—Uncertain, index, range query, partition.

Ç

1 INTRODUCTION

MANAGING and mining uncertain data have various
applications covering data cleaning, sensor data

analysis, moving objects tracking, information retrieval,
crime fighting, economic decision making, and market
surveillance. Common causes of uncertainty in these
applications include data randomness and incompleteness,
limitation of measuring equipment, delay or loss of data
updates, and privacy preservation. With the wide applica-
tion of GPS equipment and various optical, infrared, and
radar sensors, a large amount of uncertain data are collected
and accumulated. Efficiently managing and analyzing large
volumes of uncertain data becomes a main challenge in the
database research community. A number of issues have been
addressed including modeling [33], managing, and mining
uncertainty. Various types of probabilistic queries and
uncertain data mining approaches have been studied, such
as query evaluation [10], [15], indexing [36], top-k queries
[25], skyline queries [31], similarity joins [27], nearest
neighbor query [28], and data clustering [3].

Range search over uncertain data is important in query
processing and data mining, which have many applications.
As an example, a server monitors a set of taxis equipped with
GPS and location information of each taxi is sent back to the
server every 5 minutes. Based on this periodically updated
location information and other factors like velocity constraint,
at each time stamp, the location of a taxi is within a circle until
next update arrives. The server may issue queries like “find
taxis which are currently within 10 kilometers from the city
tower.” Since the location is not exact, a taxi may satisfy this

query partially, as shown in Fig. 1. The gray circles represent
uncertain region of taxis while the transparent circle is the
query region. While A definitely satisfies the query, B and C
probably satisfy it, which means that they are within the query
region with a probability. This probability can be intuitively
computed based on the intersection between one uncertain
region and the query region, also the specific probability
density function (PDF) information inside each taxi’s un-
certain region. Results with low probability values are often
of no interest to users and a probability threshold is
sometimes given beforehand to return results with prob-
ability no less than this threshold only.

Continuing with the example of monitoring taxis in Fig. 1,
in some cases, specific identification of taxis is not necessary
and only aggregate information is required, such as “how
many taxis are currently inside city?” Taxis with uncertain
region partially inside city will also be considered probabil-
istically; Ranking based on probability is another way to
handle possible results besides the threshold-based fashion.
To schedule the taxis, the server may retrieve 10 available
taxis satisfying “within distance at most 5 km from Four
Seasons Hotel” with the highest probability. Such a query is
called a probabilistic top-k range query.

Range search is also a key component in the filtering phase
of many queries in mining uncertain data such as spatial
similarity join and k nearest neighbor query. Particularly, the
spatial similarity join is essential to identify pairwise similar
objects represented by uncertain multidimensional data.
And k nearest neighbor query plays an important role in the
study of spatial clustering and machine learning.

There are two types of techniques for indexing uncertain
data with arbitrary PDF. The first type isR-Tree-based index
[11], [26], [27], [29], [34]. More specifically, the uncertain
region of multidimensional uncertain objects is grouped by
R-Tree, where each data unit is the minimum bounding
rectangle (MBR) of a PDF. The drawback of this approach is
that the uncertain region of an object is considered as an
atomic unit, which leads to a poor performance for the
probabilistic threshold-based queries when individual MBRs
are large. The second type of index is based on probabilistically
constrained regions (PCRs) [9], [36]. The uncertain region of an
object is partitioned with respect to a set of probability values.
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Partitioning results are then organized into an R-Tree style
structure named U-Tree. U-Tree significantly outperforms
uncertain region-based index by utilizing probability thresh-
olds in range query processing. While U-Tree supports the
range queries with rectangular regions aligning the dimen-
sional axes of data space well, it may not always provide a
good support to range queries with nonrectangular regions or
rectangular regions not aligning to axes. Details and analysis
of existing indexes will be introduced in Section 2.

Motivated by these facts, in this paper, we study the
problem of indexing uncertain data to support queries that
require efficient range query processing. Contributions can
be summarized as follows:

. A space-efficient index structure for organizing
multidimensional uncertain objects, UI-Tree, is
proposed. UI-Tree can support arbitrary PDF of
uncertain objects.

. We develop efficient solutions for various types of
queries based on UI-Tree, including range query,
size estimation of range query, probabilistic top-k
range query, and similarity join.

. We provide rigorous analysis to estimate the
filtering capacity of UI-Tree.

. Extensive experiments over real and synthetic data
sets are conducted to demonstrate the efficiency and
scalability of UI-Tree compared with other state-of-
the-art techniques.

The rest of the paper is organized as follows: We formally
define the problem and provide background information in
Section 2. Section 3 presents the UI-Tree index structure.
Section 4 applies UI-Tree to support different types of
queries. Results of comprehensive performance studies are
discussed in Section 5. Finally, Section 6 concludes the paper.

2 PRELIMINARY

In Section 2.1, we first formally define the model of
multidimensional uncertain objects and queries studied in
the paper. These are followed by the problem statement of
this paper. Existing indexing approaches are reviewed in
Section 2.2. Table 1 summaries the mathematical notations
used throughout the paper.

2.1 Problem Definition

Points referred in this paper, by default, are in d-dimen-
sional numerical space D ¼ fD1; . . . ; Ddg, where Di denotes
the ith dimension. A multidimensional uncertain object U in
our paper can be regarded as a point whose location might

appear at some locations with certain probabilities. Each
possible appearance of the object is regarded as an instance
of the uncertain object. Whenever there is no ambiguity, for
instance, u, we use u and u:p to represent the location(point)
of the instance and its appearance probability, respectively.
For presentation simplicity, we use “uncertain object” to
represent “multidimensional uncertain object.”

An uncertain object can be described either continuously
or discretely. In the continuous case, an uncertain object U is
described by its PDF U:pdf and uncertain region Ur. The
appearance probability of an instance x 2 Ur is U:pdfðxÞ
and

R
x2Ur U:pdfðxÞdx ¼ 1. In the discrete case, an uncertain

object U consists of a set of instances u1; . . . ; um, where ui
appears with probability ui:p and

P
u2U u:p ¼ 1. For the

presentation simplicity, we only discuss the continuous cases
in the following part of the paper as discrete cases can be
easily mapped to continuous cases.

Before defining range queries over uncertain data, we first
define appearance probability of an uncertain object with
respect to the query region. Because of the uncertainty of the
location of an object, it may be no longer meaningful to
simply declare that it appears or does not appear in the query
region. For a given query Q with query region Qr and
uncertain object U , we use PappðU;QÞ to represent the
probability thatU falls inQr. PappðU;QÞ is defined as follows:

PappðU;QÞ ¼
Z
x2Ur\Qr

U:pdfðxÞdx:

Usually, query results with low probabilities are of no
interest to users. Many queries studied in the literature are
accompanied with a user-defined probabilistic threshold �,
which reflects the requirements or confidence level of the
user. Following is the definition of probabilistic threshold
range query [12], [35]. For presentation simplicity, we use
“range query” to denote “probabilistic threshold range
query” whenever there is no ambiguity:

Definition 1 (Probabilistic Threshold Range Query). For a
given set of uncertain objects U and a range query Q, the
probabilistic threshold range query retrieves all uncertain
objectsU 2 U withPappðU;QÞ � �, where � is the user-specified
probabilistic threshold and 0 < � � 1.
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Fig. 1. Taxis within 10 km from the City Tower.

TABLE 1
The Summary of Notations



In some applications, it suffices to get an approximate
number of uncertain objects instead of retrieving the
uncertain objects qualifying the range query. We call this
size estimation of range query.

Definition 2 (Size Estimation of Range Query). For a given
set of uncertain objects U and a range query Q, estimate the
number of uncertain objects U 2 U with PappðU;QÞ � �, where
� is the user-specified probabilistic threshold and 0 < � � 1.

To handle results with low appearance probability
PappðU;QÞ, ranking the objects based on PappðU;QÞ and
returning top-k results only is another method besides
probabilistic threshold-based approach. Following is the
problem definition:

Definition 3 (Top-k Range Query). For a given set of
uncertain objects U and a range query Q, a top-k range query
retrieves k uncertain objects U 2 U with highest PappðU;QÞ.

Efficient processing of joins often relies on fast execution
of range query in the filtering phase. The problem of
distance-based spatial similarity join over uncertain data
is introduced in [27]. Following is a formal definition of this
problem in a probabilistic threshold fashion. It is referred as
“similarity join” when there is no ambiguity:

Definition 4 (Probabilistic Threshold Similarity Join). For
two given sets of uncertain objects U and V, retrieve all pairs of
ðU; V Þ, where U 2 U and V 2 V, such that

Z
x2Ur

Z
y2Vr^jx�yj��

U:pdfðxÞ � V :pdfðyÞdydx � �:

� and � are predefined distance and probabilistic threshold,
respectively.

Problem statement. In this paper, we aim to build an
efficient index to support various queries that rely on
efficient processing of range query. The index supports
uncertain objects with arbitrary PDFs and is not sensitive to
the size and shape of the query regions.

2.2 Related Work

In this section, we first briefly describe and analyze two
types of indexing structures supporting uncertain objects
with arbitrary PDFs, R-Tree-based index and PCR-based index.
Then we introduce the inverted index technique and its
application in indexing uncertain objects. In the end is a
brief introduction of other existing techniques.
R-Tree-based index. R-Tree family [21] is tree data

structures which are similar to B-Tree, but are used for

spatial access methods in which a set of points or rectangles
is recursively grouped. Each intermediate entry of R-Tree is
represented as an MBR, which is the minimal bounding
rectangle of the entry that tightly bounds all the data in the
subtree. R-Tree can efficiently support the range query
because it can prune or validate a group of objects at
intermediate entries. Moreover, the construction of R-Tree
aims to maximize the chance of pruning/validating R-Tree
entries for the range query as well.

A simple way to index the uncertain objects is to
organize their uncertain regions with existing indexing
approaches like R-Tree [27], [26], [34], [11], [29]. Fig. 2a
illustrates the basic idea of the uncertain region-based
indexing, where the uncertain regions of the uncertain
objects are indexed by R-Tree. It is simple and performs
well if the uncertain regions of objects are very small
regarding the query region size. As the uncertain region is
considered as an atomic unit in the index, without further
exploring the detailed information, it cannot tell whether or
not an uncertain object satisfies the query when uncertain
region overlaps range query. Such an index inherently
limits the filtering capacity of the index and is not suitable
to the probabilistic threshold-related queries. As shown in
Fig. 2b, for a given query Q and probabilistic threshold
� ¼ 0:5, we cannot prune U1 although intuitively PappðU1; QÞ
should be small. Similarly, U2 cannot be validated either.
Consequently, the performance of the index is poor when
the size of the uncertain region is not small.

PCR-based index. PCRs-based indexes make use of the
detailed information about PDF of uncertain objects to
enhance the filtering capacity. It is introduced by Tao et al.
[35], [36] to support the range query on uncertain objects in
a multidimensional space, where the PDF of the uncertain
object might be arbitrary functions. PCR is a general
version of x-bounds, which aims to index one-dimensional
uncertain data [12].

In [35], [36], an uncertain object U is modeled by its PDF
U:pdfðxÞ and uncertain region Ur. For a given probabilistic
threshold �, corresponding U:pcrð�Þ can be employed for
pruning and validating purpose. U:pcrð�Þ is constructed as
follows: As shown in Fig. 3, in each dimension, two lines are
calculated. In the horizontal dimension, U has the prob-
ability � to occur on the left side of line l1�, also probability �
to occur on the right side of line l1þ. Similarly, l2� and l2þ
are calculated in the vertical dimension.

The shadowed region in Fig. 3 forms U:pcrð�Þ. A series of
theorems is proposed to take advantage of U:pcrð�Þ to prune
or validate U regarding �. As shown in Fig. 3, suppose both
range queries q1 and q2 have the same probability threshold
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Fig. 2. Uncertain region-based index.
Fig. 3. A 2D PCR (�).



� � 0:5 and with query regions qr1
and qr2

, respectively. U
can be pruned regarding q1 because qr1

does not intersect
with U:pcrð�Þ. On the other hand, U can be validated with
respect to q2 since qr2

completely contains Ur below l2�. As it
is infeasible to keep all U:pcrð�Þ for any � 2 ð0; 1�, a finite
number of PCRs are precomputed to facilitate the range
query process in [35], [36]. Based on the PCRs of the
uncertain objects, U-Tree is built up in a similar way with
R-Tree, where each entry in a leaf node corresponds to an
uncertain object. The main difference is the splitting process
in which U-Tree focuses on optimizing the filtering capacity
of the PCRs in the intermediate node.

In order to prune or validate an uncertain object, U-Tree
needs to project the query region to each dimension as
shown in Fig. 4. This loses the spatial “clustering”
information, which, in turn, might severely impair the
filtering capacity of the PCR technique. As shown in Fig. 4,
if the query region Qr is a rectangle which does not align the
x and y axes, then there is no difference between Qr and M

(shadowed rectangle) regarding the pruning ability to
uncertain object U1. It implies that we cannot prune U1 for
query Q regardless of the probabilistic threshold value,
even though they do not intersect each other at all. Query Q
in Fig. 4 is not uncommon in real applications. For instance,
it could be a buffer query [32] based on a segment of roads
or rivers, which is a popular query in many Geographic
Information System (GIS) applications [32]. Another case is
illustrated in Fig. 5, where the range query is a circle. As
suggested in [36], two rectangles R1 and R2 are utilized for
pruning and validation, respectively. This inherently weak-
ens the filtering capacity of U-Tree. As in Fig. 5, U-Tree
loses its pruning capacity in the striped areas. As we know,
the range query with a circle region is very popular in
distance-based queries. Moreover, it is essential for the
spatial similarity joins.

Inverted index. In information technology, an inverted
index maps from content, such as a word, to its locations in
a database file or a document to support full text search.
Each word is allocated with a set of posting entries (docID,

offset/frequency), which is sorted by the offset or frequency.
Inverted index techniques are employed in [1], [30], [34] for
indexing uncertain objects in specific applications with
assumption or constraints on objects’ PDFs or types. The
R-Tree and inverted index techniques are employed in the
problem of keyword searching on spatial database [23], [19]
as well in which the keyword occurrence and the document

location are considered. The problem they studied is
inherently different from ours.

There are also some studies on indexing uncertain objects,
which focus on special cases of objects’ PDF or particular
data types. For instance, in [6], [7], Böhm et al. study range
queries with the constraint that PDF of uncertain objects is
Gaussian distribution. Managing uncertain trajectories [16],
existentially uncertain data [14], uncertain categorical data
[34], and vague spatial objects [38] have been separately
studied. Aggarwal and Yu [1] study the problem of indexing
high-dimensional uncertain data with the assumption that
the PDF of the uncertain object on each dimension is
independent of others. An index structure called UniGrid is
proposed to efficiently support the similarity and range
query on a selected subset of dimensions. In [30], Ma et al.
propose solutions for efficient retrieval of uncertain spatial
point data, where the location information is derived from
the free text by spatial expressions. With an assumption that
the space is partitioned by a virtual grid with limited number
of cells and a region (region of an uncertain object and region
of the query) either occupies a whole cell or does not
intersect with it at all, a grid index named U-grid is built for
efficient spatial query processing.

Motivated by the above analysis of existing indexing
techniques, we aim to develop a partition-based index
structure such that the spatial “clustering” information can
be kept and the filtering capacity is less sensitive to the
shape of query region. Moreover, the structure should be
space efficient and support arbitrary PDF.

3 UI-TREE INDEX

Based on the analysis of existing index structures for
multidimensional uncertain objects, we develop an R-Tree-
based inverted index technique, which is based on the
partitions of uncertain objects. Section 3.1 introduces the
motivation of our index structure and some important
index building criteria. Then we describe the details of the
index structure and its maintenance algorithms in Sec-
tions 3.2 and 3.3, respectively.

3.1 Index Building Criteria

As discussed in Section 2, since R-Tree-based techniques do
not capture any details of the PDF of uncertain objects, the
performance is poor when the size of the uncertain region is
not very small. Although the PCR-based technique makes
use of the PDF information by precomputing the probabil-
istically constrained regions, the spatial “clustering” informa-
tion of the instances is lost because the computation is based
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on projection on each dimension. So, it is sensitive to the
shape of the queries. Based on these observations, instead of
building index structure against the uncertain region or
PCR, we construct the index based on the partitions of the
uncertain objects such that the spatial “clustering” informa-
tion of instances of an uncertain object is well preserved.
Following is the motivation of our UI-Tree technique. Note
that our analysis focuses on the range query as it is
fundamental to other queries studied in the paper.

Suppose that we partition each uncertain object into
l disjointed groups fgig such that for any instance x 2 Ur, x
is contained by one and only one group. And each group gi
consists of the object identity, probability, and MBR of the
group, which are denoted by g:oid, g:p, and g:mbr,
respectively. Note that the probability of the group is the
accumulation of the probability of all instances within that
group. The advantage of the partition is immediate. As
shown in Fig. 6, suppose that the uncertain object U is
partitioned into 16 groups fg1; g2; . . . ; g16g and each group
has probability 1

16 . Let LPappðU;QÞ and UPappðU;QÞ denote

the lower and upper bounds of the appearance probability
of uncertain object U regarding query Q, then we have
LPappðU;QÞ ¼ 2

16 and UPappðU;QÞ ¼ 6
16 .

Clearly, the larger the number of partitions, the better

filtering capacity since the gap between LPappðU;QÞ and

UPappðU;QÞ comes from the accumulated probabilities of the

groups overlapping with query regionQr. However, in order

to construct an index with decent filtering capacity, we need

to partition each uncertain objects into a certain number of

groups. This number might be large, and hence, prevent the

use of this approach in the applications with a large number

of uncertain objects. So we consider to merge some groups of

uncertain objects such that the index size can be reduced.

Following is the first criterion for our index structure:
Index building criterion 1. In order to control the size of

the index, we need to develop algorithm to merge the

groups of partitions from uncertain objects.
As shown in Fig. 7a, suppose that six uncertain objects U1,

U2, . . . , U6 are partitioned into groups by the dashed lines.

Fig. 7b illustrates the merge result of these groups, denoted

by w1, w2; . . . ; w10. We call wi a “word” in the spatial space.

Suppose that w is the word constructed from a set of groups

fgig, then wmbr is the minimal bounding rectangle of all

gi:mbrs. Clearly, we prefer a wmbr with small size. Fig. 7b

illustrates the wmbr created by merging MBRs of m groups.

Assume that dimensionality of the space is d and the domain

of each dimension is normalized to ½0; 1� and let gj and wj
denote the average length of g:mbr andwmbr at jth dimension,

where 1 � j � d. According to the analysis in [37], if there are

totally l� n groups whose locations are independent of each

other and every m of them whose MBRs are close to each
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other is merged to form k words where k ¼ l�n
m , we have

wj ¼ gj þ4, where

4 ¼ m
1
d � 1

ðn� lÞ
1
d

: ð1Þ

For the given m and l, (1) implies that the average length of
wmbr on each dimension decreases with the number of
uncertain objects, which is confirmed in our experiment.

In order to distinguish groups from different uncertain
objects and their probability values during the query
processing, we have the second index building criterion
as follows:

Index building criterion 2. The object identity and
probability values for each group should be kept after it is
merged.

The inverted index technique is employed to meet this
criterion. For each word w, a posting list denoted by wlist is
maintained to keep the object identity and probability of
groups merged to w. wlist consists of a set of tuples tðoid; pÞ,
where oid and p are the object identity of the group and its
probability, respectively. The tuples in wlist are sorted in a
decreasing order by the probability values. And wp is the
total probability of the tuples in wlist.

We use tw;U to denote a tuple that belongs to the posting
list of word w with object identity U . P ðtw;UÞ denotes the
probability of tw;U . Note that the probability values of
groups from the same uncertain object will be accumulated
in the list. Suppose that we construct an index structure
based on a set of words fwig such that each group of the
uncertain objects belongs to one and only one word. For
uncertain object U , WðUÞ represents the set of words such
that for any w 2 WðUÞ, there is a posting tuple tw;U in wlist.
For presentation simplicity, we say WðUÞ is the words
contained by U . And if U does not contain w, we have
P ðtw;UÞ ¼ 0. Let W and jWj denote all words in the space
and its size. A small jWj implies that more groups
are merged, and therefore, a small index size. On the other
hand, the size of the posting list for each word increases with
the number of partitions for each uncertain object. There-
fore, we can control the size of the index by jWj and number
of partitions for each uncertain object.

Theorem 1 indicates that we can compute the appearance
probability bounds based on the inverted index of W.

Theorem 1. For a given query Q and an uncertain object U , let
Wcon (Wover) denote the words in WðUÞ whose MBRs are
contained (overlapped) by Qr (Wcon \Wover ¼ ;). We have

LPappðU;QÞ ¼
X

P ðtw;UÞ; where w 2 Wcon;

UPappðU;QÞ ¼
X

P ðtw;UÞ; where w 2 Wover [Wcon:

Proof. For any instance x 2 Ur but x 62 Qr \ Ur, suppose that
x is allocated to group g in the partition of uncertain
object U . Let w denote the word g belonging to, it is
immediate that w 62 Wcon which implies that there is no
instance x 62 Qr \ Ur contributes to the lower bound
computation. Similarly, for any instance x 2 Qr \ Ur, it
will contribute to the upper bound computation. So, the
correctness of the lemma follows. tu

Theorem 1 implies that the tightness of the bounds is
affected by the words that overlap with query region Qr. The
probability of a word overlaps query region depends on the
area of the MBR of w, denoted by AðwÞ, and the contribution
to uncertainty is related to wp, which is accumulated
probabilities of all tuples in its posting list. So, we need to
consider not only the area of MBRs of each word but also its
probability value. For each word w, we use WAðwÞ to
represent AðwÞ � wp, called “weighted area” of the word.
The third index building criterion is as follows:

Index building criterion 3. For the effectiveness of the
index, given the number of words k, we want to create k
words for the partitioned groups of uncertain objects such
that

P
1�i�k WAðwiÞ is minimized.

Take the probabilistic threshold range query as an
example, we further explain the intuition of this criterion
based on the following lemma:

Lemma 1. Suppose thatW is constructed for uncertain object set
U . Then for a range query Q, we assume the probabilistic
threshold � is randomly chosen from ð0; 1� and the probability of
each word overlapping with Qr is independent of each other,
which is denoted by PoverðwÞ. Then the expected size of
candidate set C is as follows if Theorem 1 is applied for
appearance probability computation:

jCj ¼
X
w2W

PoverðwÞ � wp:

Proof. Let WoverðU;QÞ denote the set fwg such that wmbr
overlaps Qr and tw;U 2 wlist. Given Q and WoverðU;QÞ,
according to Theorem 1, UPappðUÞ ¼ LPappðUÞ þP
P ðtw;UÞ, wherew 2 WoverðU;QÞ. ThenU will be validated

or pruned if LPappðUÞ � � or UPappðUÞ < �. As � is
randomly chosen from ð0; 1�, LPappðUÞ � 0 and
UPappðUÞ � 1, this implies that U will be kept in C with
probability

P
P ðtw;UÞ. So we have

jCj ¼
X

w2WðUÞ

X
U2U

P ðtw;UÞ � PoverðwÞ

¼
X
w2W

PoverðwÞ � wp:

Recall that P ðtw;UÞ ¼ 0 if U does not contain word w. tu
As PoverðwÞ depends on AðwÞ and smaller AðwÞ implies

smaller chance to overlap with Qr, we assume that
PoverðwÞ ¼ AðwÞ � c, where c is a constant derived from Qr.
Then, it is immediate that we need to minimizeP

1�i�k WAðwiÞ for a small jCj which is the measurement
of filtering capacity of the index. Although the assumption of
the independence of PoverðwÞ among words and the existence
of constant c is not practical in real world, this example does
provide some insights for the index building criterion 3.

As a special case of the optimization problem in criterion 3
where all wi:p ¼ 1 and k ¼ 2 is equivalent to the bipartition
problem with measurement of area [24] which is NP-hard,
we have to find some heuristics to solve this problem. Started
with n� lwords, each of which corresponds to a group of the
uncertain objects where n is the number of uncertain objects
and l is the number of partitions for each uncertain object,
we can create the index with a greedy heuristic such that the
total “weighted area” is minimized at each step in which one
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word is merged. Nevertheless, this approach is infeasible to
our problem as the computational complexity of the
algorithms is cubic to n� l and multiscan of the groups is
required, which leads to large number of IO operations.

In order to incrementally maintain the index structure in
an efficient way, we employ R-Tree technique for the index
construction because of its good support for spatial clustering
[22]. Another important reason to apply R-Tree technique is
because it can efficiently support a wide range of spatial
queries. And this meets the fourth index building criterion.

Index building criterion 4. To efficiently support spatial
queries which essentially depend on range query, the words
should be well organized such that for the given query region
Qr, the words fromWconðQÞ andWoverðQÞ can be retrieved in
an efficient way, where WconðQÞ (WoverðQÞ) denotes w 2 W
which is contained(overlapped) by query region Qr.

To address the four index building criteria proposed, in
the following part, we introduce the R-Tree-based inverted
index technique for uncertain objects, named UI-Tree.

3.2 UI-Tree Structure

UI-Tree index is a depth-balanced tree structure similar to
R-Tree [21] as illustrated in Fig. 7c and each node
corresponds to a disk page. In this paper, we use I, L, and
w to represent the nonleaf node, leaf node, and word,
respectively. Each entry of the leaf node is a word with its
posting list, represented by (wmbr,wlist). Note that for space
efficiency, wp will be computed on the fly based on posting
entries in wlist. A set of entries is organized by a leaf node
and the minimal bounding rectangle of the leaf node tightly
contains the MBRs of the words. Note that for the index
maintenance efficiency, if a word w occupies more than one
page due to the large size of wlist, we simply create a new
wordw0 to take half of the posting entries. As we have to keep
a certain number of words for a decent filtering capacity,
usually the size ofw is not large. Because we aim to minimize
the sum of WAðwÞ, the total probability of words in child
entries is kept for each node to facilitate the tree structure
maintenance. The nonleaf node of the UI-Tree is exactly the
same as that of R-Tree except that the probability value is
kept in its entry at parent node. Note that we do not keep any
object identity information on the nonleaf node.

Suppose that the average size of each word is sw and then
the average node capacity (fan-out) of the leaf node is
bPageSizesw

c, denoted by fl. The node capacity of nonleaf node
is denoted by fi. And the height h of a UI-Tree with k words
is as follows:

h ¼ 2þ logfi
k

fi � fl

� �
: ð2Þ

If we regard the leaf node as a data entry, the UI-Tree
corresponds to an R-Tree with k

fl
data entries and an extra

level for leaf nodes. Then, the (2) is immediate [18].

3.3 Index Maintenance

In this section, we first introduce the UI-Tree structure
maintenance algorithms including uncertain object parti-
tion, insertion, and deletion.

3.3.1 Uncertain Object Partition

Before inserting an uncertain object into UI-Tree, we need to
partition the uncertain object into l groups such that any

instance x 2 Ur belongs to one and only one group. Ideally,
we want to find l groups such that the sum ofAðg:mbrÞ � g:p
is minimized. As the partition is conducted on every
uncertain object, the partition algorithm must be very
efficient in terms of CPU time and number of IOs. If each
uncertain object is already organized by some hierarchical
tree structures such as R-Tree [21] and Quad-Tree [20], we
can directly choose the intermediate node as the group since
the instances of the uncertain object are naturally clustered.
Otherwise, we employ a partition approach similar to
kd-Tree [4]. Starting with one group which is the uncertain
region of the uncertain object, we recursively partition the
groups into two parts with the same probability value along
a particular dimension chosen in a round-robin order.
Suppose that the depth of the partition is dp, then it comes up
with l ¼ 2dp groups. For the discrete case, the partition
procedure has time complexity of Oðdp � niÞ, where ni is the
number of instances in the uncertain object. Recall that an
instance of the uncertain object in discrete case corresponds
to a possible occurrence of the uncertain object. This is
because in each iteration, we can first find the median value
of a set of n elements on the selected dimension with time
complexity OðnÞ [13] and then separate the groups into two
parts with one scan. As to the continuous case, we can find
the median value based on the cumulative density functions
(CDFs) of the uncertain object and the partition cost is
depended on CDF.

3.3.2 Insertion

The insert operation of UI-Tree is similar to R-Tree except
that the probability value of the node is considered and we
need to merge words to reduce the space. We can regard the
node in the UI-Tree as a virtual word with empty posting
list. Then, we redefine the area of the node as its “weighted
area,” and all of the operations in R-Tree which are related
with area computation are updated such as choose Leaf and
node splitting in UI-Tree.

In order to incrementally maintain the UI-Tree with
limited space, we need to merge words. Let w ¼ mergeðw1;

w2Þ be the merged word from w1 and w2. Note that wmbr is the
minimal bounding rectangle of w1mbr and w2mbr , while wlist
consists of posting tuples of w1 and w2 in which tuples with
the same object identity are merged. To measure the loss of
information caused by merging two words, we define the
similarity of two words w1 and w2 based on w:

simðw1; w2Þ ¼
1

WAðwÞ �WAðw1Þ �WAðw2Þ
: ð3Þ

Note that we have simðw1; w2Þ ¼ 1 when w1 ¼ w2.
Clearly, we prefer to merge words with high similarity

according to our index construction criteria. For a given k

which is the maximal number of words the UI-Tree will
maintain, we first randomly choose k

l uncertain objects and
partition them into k groups to build up the UI-Tree.
The merge operation is not considered at this stage, so the
procedure is the same as that of R-Tree except that the
“weighted area” is considered. After this, we start to control
the number of words by merging similar words. Note that a
group g from the partition of U can be regarded as a word

with one posting entry. Algorithm 1 illustrates the details of
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the insertion algorithm. The flag startmerge is set to false
before the UI-Tree construction.

After choosing the leaf node, the insertion procedure is
simple if the merge stage does not start. Otherwise, we need
to merge the most similar pair of words among words in L
and g. Suppose that the most similar pair of current words
and their similarity are kept in each leaf node denoted byLw1

,
Lw2

, and simL, respectively. We will merge g with the most
similar word in the leaf node if their similarity value is greater
than simL. Otherwise, Lw1

and Lw2
are merged, and g is

inserted as a new word. Note that the split might be invoked
as well after merging two words since a new posting entry is
created although the number of words remains the same.
After insertion, we need to update the related information
(e.g., MBR, probability) on leaf nodes and its parents nodes.
Following the index example in Fig. 7c, Fig. 8a demonstrates
how the leaf node L4 is updated after inserting a new
uncertain object U7.

For presentation simplicity, we use m ¼ l�n
k to measure

the words compression ratio of UI-Tree, named merge factor.
Since the splitting procedure is quite complicated, we omit
this part. Then the cost for an uncertain object insertion is
Oðl� ðh� fi � dþ f2

l � dÞÞ in the worse case, as the leaf
node choosing takes time Oðfi � dÞ to find most similar
subnodes at each level and the worst time complexity
between Lines 5 and 14 is Oðf2

l � dÞ. And it takes time
Oðfi � dÞ to adjust the nodes at each level.

3.3.3 Deletion

For uncertain object U to be deleted, we first descendantly
find all words fwg, which include posting tuples tw;U . Then,
all tuples are removed from their corresponding posting
list. The words with empty posting list are removed from the
UI-Tree, which is the same as R-Tree. Based on the index
example in Fig. 7c, Fig. 8b shows how the leaf node L4 of the
index is updated after deleting the uncertain object U6. The
delete operation is simple and efficient. However, it suffers
from its inability to perform adjustment of MBR of the word
if some posting tuples are removed. Because the cost of
“shrinking,” the MBR of a word w is expensive as we have to
reload the uncertain objects which contribute to the wlist.
Consequently, the filtering capacity of the UI-Tree might
degrade if there are frequent deletions. Nevertheless, the
UI-Tree is efficient in many of the real applications in which
there are no frequent updates.

4 QUERY PROCESSING

In this section, we introduce how to efficiently process
various queries based on the UI-Tree proposed in Section 3.
Section 4.1 presents our range query algorithm and related
analysis. Then, we study the size estimation of the range
query in Section 4.2, followed by the top-k range query and
similarity join in Sections 4.3 and 4.4.

4.1 Range Query

In this section, we present a detailed searching algorithm for
the probabilistic threshold range query based on theUI-Tree.
For the given queryQ, we descend the tree from the root in a
manner similar to the R-Tree. All data entries(words) which
are contained or overlapped by Qr are retrieved, denoted by
Wcon and Wover, respectively. For each uncertain object U
appeared in the posting lists of the words, we use Ulow and
Uupper to represent the lower and upper bounds forPappðU;QÞ
that can be computed based onWcon andWover according to
Theorem 1. Then, all uncertain objects that cannot be filtered
are kept in a candidate list C for verification. Algorithm 2
describes the range searching procedure.

The posting tuples of the list are visited in sequential order
as shown in Fig. 10. A pointer, denoted by rw, is employed to
record currently visited tuple in the posting listwlist. We refer
a tuple as current tuple in the posting list if it is recorded by the
pointer. LetPmax denote the total sum of probability values of
all current tuples fromWcon andWover. As the posting tuples
are sorted in a decreasing order by their probability values,
we can safely prune unseen uncertain objects once Pmax < �.
A maximal heapH is employed to maintain the pointers of the
posting lists sorted by their probability values such that Pmax
can be reduced in a greedy way.

The total cost of the range query is CR þ Ccand þ Cver.
Specifically,CR is the cost for retrieving leaf nodes containing
words in Wcon and Wover, which is the same as the R-Tree
range search. Let tn denote the total number of posting tuples
in Wcon and Wover. The candidate set computation cost,
denoted by Ccand, is Oðtn � logwnÞ in the worst case as the
heap maintenance cost is logðwnÞ for each iteration, wherewn
is the number of words inWcon andWover. Cver is the cost for
verification including exact appearance probability computa-
tion and some extra IO cost for loading uncertain objects.
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Note that we do not discuss details of verification as the focus
of the paper is to develop efficient index technique to reduce
the number of candidates of the queries.

Estimate the filtering capacity. In the following part,
with some uniformity assumptions, we analyze the perfor-
mance of the range query by estimating the number of
candidates since it reflects the filtering capacity of the index.
For presentation simplicity, we assume that the domain sizes
of all dimensions are between ½0; 1� and the dimensionality is
2. Suppose the uncertain regions of the uncertain objects are

regular rectangles whose instances follow the uniform
distribution and the probabilistic thresholds are randomly
chosen from ð0; 1�. As shown in Fig. 9, we assume that the
query region is larger than the uncertain region of uncertain
object on each dimension. Let sx and sy denote the average
lengths of the rectangle on x and y dimensions, respectively.
A query Q has a regular rectangle region with length qx and
qy, which is issued with a randomly selected center.

First, we assume that there is no merge operation during
the index construction (m ¼ 0). Let the probability pcx þ
pcy þ pn represent the probability that Qr overlaps Ur.
Specifically, pcx ¼ 2� ðqx � sxÞ � sy is the probability of Qr

covering Ur at x dimension and pcy ¼ 2� ðqy � syÞ � sx
represents the probability of Qr covering Ur at y dimension.
While pn ¼ 4� sx � sy denotes the probability that Qr over-
laps Ur but does not cover Ur in any dimension. As shown in
Fig. 9, when the left bottom corner of the query Q falls in the
light gray rectangles with total area size 4� sx � sy ¼ pn, Qr

overlaps Ur but does not cover x or y dimension of Ur.
Similarly, pcx and pcy correspond to the total area of dark gray
rectangles and rectangles with strike lines.

Theorem 2 evaluates the expected candidate size for Q
for m ¼ 0.

Theorem 2. Let C denote the set of uncertain objects in the
candidate set in Algorithm 2. For proof simplicity, we assume
that Pmax is not considered in Algorithm 2. Suppose the
uncertain region of each uncertain object is partitioned intonx �
ny cells with same size, then the average size ofC can be estimated
by n� ðpcxny þ

pcy
nx
þ pn � ðnxþnyÞ

2�nx�nyÞ, where n is the number of
uncertain objects.

Proof. According to the description of Algorithm 2, an
uncertain object U contributes to C if and only if Ur
overlapsQr andUlow < � � Uupper. LetOr denote the region
such thatQr overlaps Ur when the center ofQ, denoted by
qc, falls in Or. Since the probabilistic threshold � is
randomly chosen from ð0; 1�, the probability of U 2 C is

PU2C ¼
Z
x2Or

pdfðxÞ
Z 1

0

fð�; xÞd�dx

¼
Z
x2Or

pdfðxÞDðxÞdx;

where pdfðxÞ is the probabilistic density function of x.
We have fð�; xÞ ¼ 0 if � > Uupper (being pruned) or � �
Ulow (being validated), otherwise, fð�; xÞ ¼ 1. We use
DðxÞ to represent the difference between Uupper and Ulow
when qc locates at position x. According to Theorem 1,
we have DðxÞ ¼

P
w2WoverðUÞ P ðtw;UÞ. For instance, DðxÞ
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corresponds to the accumulated probability values of
the shaded cells in Figs. 11a and 11b.

As we assume that the rectangle region of the query is
larger than that of the uncertain object in every
dimension, there are three possible cases in which Qr

overlaps Ur:

. E1: Qr covers Ur in y dimension but not in x
dimension.

. E2: Qr covers Ur in x dimension but not in y
dimension.

. E3: Qr does not cover Ur in any dimension.

Case E1 is illustrated in Fig. 11a. According to the
uniformity assumptions and (4), we have

PE1 ¼ pcy �
1

nx
;

where PE1 is probability of occurring of E1 and U 2 C,
pcy is the occurrence probability of E1 and pcy ¼ 2 �
ðqy � syÞ � sx. Similarly, we have PE2 ¼ pcx � 1

ny
and

pcx ¼ 2� ðqx � sxÞ � sy. For case E3, Fig. 11b illustrates
one of its four subcases in which the upper right corner
of Qr falls in Ur. Based on (4) and uniformity assump-
tions, we have

PE3 ¼ 4�
Xnx
i¼1

Xny
j¼1

pn
4� nx � ny

� ðiþ j� 1Þ � 1

nx � ny

¼ pn �
ðnx þ nyÞ

2� nx � ny
;

where pn denotes the occurring probability of E3, which
is 4� sx � sy. Since PU2C ¼ PE1 þ PE2 þ PE3, according
to the uniformity assumptions, the expected size of C is

EðCÞ ¼ n� PU2C þ 0� PU 62C ¼ n� PU2C;

where n is the number of uncertain objects. tu
Once the merge procedure is involved, let �x and �y

denote the average increment of the MBRs of the partitions
on x and y dimensions, respectively. The following theorem
evaluates the estimated candidate size for Q. Clearly, the
more partitions of the uncertain objects are merged, the
larger � values, and hence, less filtering power:

Theorem 3. Suppose that a UI-Tree is constructed based on the

partitions of the uncertain objects and the uncertain region of

each uncertain object is partitioned into nx � ny cells with

same size, then the expected size of C can be estimated by

n� ðpcxny þ
pcy
nx
þ pn � ðnxþnyÞ

2�nx�nyÞ, where n is the number of

uncertain objects, pcx ¼ 2� ðqx � sx þ�xÞ � ðsyny þ�yÞ �
ny, pcy ¼ 2 � ðqy � sy þ �yÞ � ðsxnx þ �xÞ � nx, and

pn ¼ 4� ðsxnx þ�xÞ � ðsyny þ�yÞ � nx � ny. �x and �y de-

note the average increment of MBRs of the partitions after

merge procedure on x and y dimensions, respectively.

Proof. As the MBRs of the partitions for the uncertain objects
are merged during the index construction, the probability
thatQr overlaps those partitions increases. For instance, as
shown in Fig. 11c, the probability that the left boundary of
Qr overlaps the ith column in case E1 of Theorem 2
becomes ðqy � sy þ�yÞ � ðsx þ�xÞ. Similarly, Fig. 11d
illustrates that the upper right corner of the query region
falls in each partition with probability ðsxnx þ�xÞ �
ðsyny þ�yÞ. Following the same rational of Theorem 2, the
correctness of the theorem is immediate. tu

4.2 Size Estimation of Range Query

Instead of retrieving the uncertain objects qualifying the
range query, it suffices to get the approximated number of
uncertain objects in some applications. One of the important
observations in the field of multidimensional selectivity
estimation is that although the whole data set is unlikely to
follow the uniform distribution in real applications, it might
be true within a local area. This motivates us to estimate the
selectivity of the range query based on the uniformity
assumption of the instances in the MBRs of their correspond-
ing words. Then instead of keeping lower and upper bounds,
the appearance probability of the uncertain object U regard-
ing query Q can be estimated with the following formula:

PappðU;QÞ ¼
X

w2Wover

P ðtw;UÞ �
AðQr \ wmbrÞ
AðwmbrÞ

þ
X

w2Wcon

P ðtw;UÞ:

This implies that we can estimate the size of the range query
based on the UI-Tree only. Our experiments demonstrate
the effectiveness of the estimation.

4.3 Top-k Range Query

For a given query Q, once we retrieve Wcon and Wover, the
remaining part of the query processing is similar to the
traditional top-k computation on distributive inverted
indexes [17]. The main difference is that the posting tuples
from Wover only contribute to the appearance probability
upper bound of uncertain object. In our implementation, we
modify Algorithm 2 such that we can safely claim that all of
the unseen uncertain objects cannot be top-k answers
once Pmax � plk, where plk is the kth largest Ulow. After the
refinement, all uncertain objects with Uupper < plk can be
pruned and the ones with Ulow � puk are validated where puk
is the kth largest Uupper. Then we need to compute the exact
PappðU;QÞ for the uncertain objects in the candidate set to
decide the top-k result.

4.4 Similarity Join

As the algorithm for probabilistic threshold similarity join is
lengthy, we only introduce the outline of the algorithm. Let
U and V denote two sets of uncertain objects. The distance
and probabilistic threshold are represented by � and �,
respectively. First, we retrieve all pairs of words ws; wr based
on the traditional spatial join algorithm [8] such that
jwsmbr � wrmbr jmin � �, where jwsmbr � wrmbr jmin denotes the
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minimal euclidean distance between wsmbr and wrmbr . These
pairs are classified into two sets: W�in and W�part. For any
ðws; wrÞ 2 W�in, jwsmbr � wrmbr jmax � �, which implies that the
distance between any pair of instances of uncertain objects in
ws and wr is smaller than or equal to �. Other pairs belong to
W�part. Let LP ðU ffl� V Þ and UP ðU ffl� V Þ denote the lower
and upper bounds for the similarity between uncertain
objects U and V . Clearly, pairs from W�in contribute to the
computation of LP ðU ffl� V Þ and UP ðU ffl� V Þ, while the
ones fromW�part only contribute to UP ðU ffl� V Þ. Similar to
Theorem 1, we have the following formulas for verification
and pruning, respectively:

LP ðU ffl� V Þ ¼
X

ðws;wrÞ2W� in
P ðtws;UÞ � P ðtwr;V Þ;

UP ðU ffl� V Þ ¼
X

ðws;wrÞ2W� in[W �part

P ðtws;UÞ � P ðtwr;V Þ:

The correctness of the formulas is immediate based on the
same rationale of Theorem 1. To compute the candidate
efficiently, a pointer is employed for each posting list in a
similar manner with Algorithm 2. All of the pairs are
organized by a maximal heap sorted by the probability
values of their corresponding posting entries. Let PS and
PR denote the pointers in U and V, respectively. Let PSmax
and PRmax keep the maximal possible probability for
unseen uncertain objects from U and V, respectively.
Clearly, once PSmax � PRmax < �, the pair ðU; V Þ does not
belong to the candidate set if U and V are unvisited.

5 PERFORMANCE EVALUATION

We present results of a comprehensive performance study
to evaluate the efficiency and scalability of proposed
techniques in this paper. The following algorithms are
evaluated:

. UI-Tree: The R-Tree-based inverted index technique
proposed in Section 3 and four query algorithms
presented in Section 4.

. U-Tree: The U-Tree technique presented in [36]. The
implementation is publicly available.

. R-Tree: The uncertain region-based R-Tree techni-
que. The implementation of similarity join is based
on the join strategy proposed in [27]. As there is no
existing work on the size estimation of range query
and top-k range query on uncertain objects with
arbitrary PDF, the R-Tree technique is also em-
ployed as baseline algorithm because it can be
regarded as a special case of UI-Tree in which every
uncertain objects is a word.

In our experiment, the uncertain region of the uncertain
object is a circle or sphere with radius ru varying from 50 to
500 with default value 100. Suppose that the PDF of an
uncertain object is described by 400 instances (discrete case),
which follow two popular distributions Normal and Uniform.
The Normal serves as default distribution with standard
deviation ru

2 . Specifically, we use the constrained normal
distribution such that the possible location of the instances is
restricted in the uncertain region. Instances might be loaded
into memory once an uncertain object is required for
verification. For verification efficiency, same as [5], the

instances of an uncertain object are organized by an

aggregate R-Tree, where aggregate value of a R-Tree node

is the accumulation of the probabilities of its child instances.

Note that each instance corresponds to one bin in [5] since

we consider the discrete case in the experiment.
Two real spatial data sets, CA and US, are employed to

represent the center of the uncertain regions. They contain
62 K and 200 K two-dimensional points representing
locations in Los Angeles and the United States, respectively.
We also generate synthetic data set 3D with dimensionality 3
and size 200 K in which the centers and instances of
uncertain objects are uniformly distributed. All dimensions
are normalized to domain ½0; 10000� and CA with constrained
normal distribution is employed as the default data set. To
study the similarity join between two sets of uncertain
objects, two synthetic data sets, named 2d 10K and 2d 1K, are
created in which the centers of uncertain objects follow
Uniform distribution and the instances follow constrained
normal distribution.

A workload for range query and its size estimation query

consists of 200 queries in our experiment. Same as [36], the

region of a range query Q is a circle or sphere with radius

rq. rq varies from 500 to 1,500 with default value 1,000. The

centers of the queries are randomly chosen from the centers

of the target uncertain objects. Note that the query regions

in a workload share the same rq. In order to avoid favoring

particular � value, we randomly choose the probabilistic

threshold � 2 ð0; 1� for each query. Instead of specifying the

probabilistic threshold �, the value k varying from 50 to 250

is used for the top-k query.
As all of the algorithms investigated in the paper follow

the filtering and verification frameworks, the cost of the query
is largely dependent on the candidate size as the verification
is expensive in terms of IO and CPU time. So the average
candidate size of the queries is employed as the most
important performance measurement in our experiments.
In addition, the average number of IOs and false positives
are recorded as well as the average query response time.

All algorithms proposed in this paper are implemented in

standard C++ with STL library support and compiled with

GNU GCC. Experiments are run on a PC with Intel Xeon

2.40 GHz dual CPU and 4 GB memory running Debian

Linux. The disk page size is fixed to 4,096 bytes. In order to

achieve a good filtering capacity, the catalog size of U-Tree is

set to 9 for CA and US, and 10 for 3D as suggested in [35].
Table 2 lists the parameters which may potentially have

an impact on our performance study. In our experiments, all

parameters use default values unless otherwise specified.
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5.1 Index Construction Evaluation

In this section, we evaluate the performance of UI-Tree
construction algorithm. The size of the UI-Tree depends
on the number of uncertain objects n, merge factor m, and
the number of partitions per uncertain object l. Clearly,
smaller m and larger l will lead to better filtering capacity
but more index space. For comparison convenience, we fix
l to 32 and vary m to tune the index size such that it is
similar to that of U-Tree. Under the default setting, Fig. 12a
shows that the filtering capacity of the UI-Tree slowly
decreases with m. Note that m ¼ 0 implies there is no
merge operation. Meanwhile, the index size also drops
from 62 to 15 M. Fig. 12b reports the average IO cost for
range query with default setting, where m varies from 0 to
16. Although the number of candidates is small for small
m, it might invoke more IO cost because of the large index
size. By default, we set m to 12 for CA and US, and 6 for
3D, respectively. So the UI-Tree has similar index size
with U-Tree.

Table 3 shows the index sizes of UI-Tree and U-Tree for
CA, US, and 3D, respectively, which correspond to around
5, 5, and 6 percent of the data sets.

Note that since the U-Tree code from [36] does not
employ the memory buffer during the U-Tree construction,
the index construction is very slow. So we do not evaluate
its construction time in this paper for fairness of compar-
ison. Our index construction algorithm is very efficient, and
the average insertion time per object for CA, US, and 3D is
around 1, 4, and 4 ms, respectively. More specifically, for
CA, it totally takes 118 s for partition, and 17 s (164 s) for
insertion without(with) merge operation.

5.2 Query Performance Evaluation

In this section, we first evaluate the performance of range
query. It is followed by size estimation, top-k range query,
and similarity join. AsU-Tree is the state-of-the-art technique
for range query on multidimensional uncertain objects with
arbitrary PDF, it is employed as baseline algorithm to
evaluate our UI-Tree-based range query algorithm.

In order to confirm the observation of Fig. 2a in Section 2.2,
we construct a set of queries whose query regions are
rectangles with length 2� rq and width 300. The center of the

query is randomly chosen from CA data and we rotate the
rectangle around its center to a random angle between 0 and
2�. Fig. 13 demonstrates that the filtering capacity of U-Tree
degrades significantly with the growth of rq from 500 to
1,500, while the performance of UI-Tree technique is much
more efficient and less sensitive to rq.

To confirm the effectiveness of filtering capacity estima-
tion, we also conduct filtering capacity evaluation on two-
dimensional synthetic data. There are 100 K uncertain
objects evenly distributed and the uncertain regions of the
uncertain objects are squares with width 200. The instances
follow the Uniform distribution and query regions are
regular rectangle queries with qx ¼ qy ¼ 1;600. We build UI-
Tree indices with m varying from 0 to 16. Note that the
candidate size estimation for m ¼ 0 is based on Theorem 2
while others are based on Theorem 3 since the merge
procedure is involved for m > 0. Fig. 14 shows that
estimated values are close to the real candidate size.

In the third set of experiments, we evaluate the
performance of UI-Tree and U-Tree against different data
sets (CA, US, and 3D) while other system parameters are set
to default values. The candidate size, number of false
positives, number of IOs, and response time of two
techniques are reported in Fig. 15. Due to poor filtering
capacity, the candidate size of U-Tree is much larger than
that of the UI-Tree especially on US as shown in Fig. 15a. A
similar observation is found in Fig. 15b, which reports the
number of false positives. According to Figs. 15c and 15d,
U-Tree and UI-Tree have similar filtering cost in terms of
index IO and filtering time. However, due to the large
number of candidates as shown in Fig. 15a, the total cost of
the U-Tree for range query is much more expensive than
that of the UI-Tree in terms of IO and query response time.

To evaluate the impact of the instance distribution of
uncertain objects, we report the number of IOs against
different instance distributions. For the “arbitrary” distribu-
tion, the instances of the uncertain object are created by
mapping 400 closest points for given random point in real
data set US into the uncertain region of the uncertain object.
Fig. 16 shows that the performance of the algorithm is not
sensitive to these distributions.

The R-Tree-based index technique in [5] can be used to
support range query, where the uncertain regions of the
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Fig. 13. Diff. rq.

Fig. 14. Diff. m.



uncertain objects are indexed by a globalR-Tree and the PDF

of each uncertain object is represented by a set of bins

(histograms) organized by an aggregate R-Tree. In our

experiment, each instance corresponds to a bin as we

consider the discrete case. Fig. 17 demonstrates that UI-Tree

significantly outperforms theR-Tree-based index technique.
We evaluate the impact of rq against the candidate size

and the number of IOs. Fig. 18 shows that as rq increases

from 500 to 1,500, the performance of U-Tree drops

significantly while UI-Tree is more efficient and stable

against rq. In Fig. 18a, the candidate size of U-tree reaches

6 K when rq ¼ 1;500, which is six times larger than that of

UI-Tree. And the same trend goes to the number of IOs as

depicted in Fig. 18b.
We study the scalability of U-Tree and UI-Tree by

varying ru and n. The results are reported in Figs. 19 and 20,
respectively. As expected, the number of candidates of both
techniques increases with ru as the larger uncertain region
implies more uncertain objects overlapping with query
region. In Fig. 20, a uniform sample of 50, 100, and 150 K
uncertain objects from US and US (200 K) are employed to
evaluate the impact of n. It is not surprising that the number

of candidates goes up when the number of uncertain objects
increases. Nevertheless, the growth of UI-Tree is much
slower than that of the U-Tree. This is because the filtering
capacity of the PCRs of an uncertain object is independent
of n. So, the number of candidates goes linearly with n.
According to the analysis in Section 3.1, for the fixed merge
factor m, a larger n implies a smaller wmbr. Consequently,
the number of candidates grows very slowly with n because
the filtering capacity of individual word improves due to a
smaller wmbr.

Fig. 21 demonstrates that the probabilistic threshold does

not have much impact on the candidate size of U-Tree and

UI-Tree. And the performance of U-Tree slightly improves

when � is large but is still less competitive compared with

that of the UI-Tree.
In the last set of experiments, we evaluate the performance

of UI-Tree-based query algorithms for size estimation of
range query, top-k range query, and similarity join. The
R-Tree-based techniques are employed as baseline Algo-
rithms. LetS and �S denote the exact and estimated number of
uncertain objects returned by range query, respectively.
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Fig. 15. Performance versus diff. data sets. (a) Candidate size. (b) False

positive. (c) IO. (d) Response time.

Fig. 16. Diff. distribution.

Fig. 17. Diff. rq.

Fig. 18. Performance versus diff. rq size. (a) Candidate size versus rq.

(b) IO versus rq.

Fig. 19. Diff. ru.

Fig. 20. Diff. n.

Fig. 21. Diff. �.



Then, we measure the effectiveness of the size estimation
query by relative error j S� �S

S j. The average relative error of the
queries under default setting is reported in Fig. 22. As
expected, the accuracy of UI-Tree technique is much
better than that of the R-Tree technique. It is 0.02 when rq
equals 1,500.

We evaluate the number of candidates in top-k queries

with kvarying from 50 to 250. rq is set to 300 and Fig. 23 shows

that only a small number of candidates are required for

further verification based on UI-Tree technique. There is no

surprise to see that the number of candidates is large and

remains unchanged with k forR-Tree technique as it does not

capture any details of the PDF of uncertain objects. Similar

observation is reported in Fig. 24 in which data sets 2d 10K

and 2d1K are joined with different probabilistic threshold

values varying from 0.1 to 0.9. The distance is set to 600.

6 CONCLUSION

In this paper, we investigate the problem of indexing

multidimensional uncertain objects with arbitrary PDFs and

propose a novel index structure UI-Tree. Combining R-Tree

and inverted index techniques, UI-Tree is space effective

and well supports different shapes of query regions. UI-

Tree serves as a general index, where efficient processing of

range queries is desirable. We propose solutions for various

types of queries based on UI-Tree, including range query,

size estimation of range query, top-k range query, and

similarity join. Our extensive experiments demonstrate that

UI-Tree outperforms the previous studies. In the future, we

will further investigate how to apply the UI-Tree technique

to efficiently manage and mining spatial uncertain data,

including nearest neighbor query, reverse nearest neighbor

query, probabilistic skyline computation, and clustering.
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