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Abstract—Quantile computation has many applications including data mining and financial data analysis. It has been shown that an

�-approximate summary can be maintained so that, given a quantile query ð�; �Þ, the data item at rank d�Ne may be approximately

obtained within the rank error precision �N over all N data items in a data stream or in a sliding window. However, scalable online

processing of massive continuous quantile queries with different � and � poses a new challenge because the summary is continuously

updated with new arrivals of data items. In this paper, first we aim to dramatically reduce the number of distinct query results by

grouping a set of different queries into a cluster so that they can be processed virtually as a single query while the precision

requirements from users can be retained. Second, we aim to minimize the total query processing costs. Efficient algorithms are

developed to minimize the total number of times for reprocessing clusters and to produce the minimum number of clusters,

respectively. The techniques are extended to maintain near-optimal clustering when queries are registered and removed in an arbitrary

fashion against whole data streams or sliding windows. In addition to theoretical analysis, our performance study indicates that the

proposed techniques are indeed scalable with respect to the number of input queries as well as the number of items and the item

arrival rate in a data stream.

Index Terms—Query processing, online computation, data mining.

�

1 INTRODUCTION

C ontinuous queries are issued once and run continuously

to update query results along with updates of the

underlying data sets. Research in efficient query processing
over data streams has recently received a great deal of

attention and many techniques have been developed, such

as processing of relational queries [2], [10], [14], [16], [29],

[34], semistructured data and Web information [3], [11],

[15], [21], sensor monitoring [22], data mining and cluster-

ing [4], [7], [24], [35], etc. In the area of continuous queries

over data streams, the following conflicting goals are often

involved: 1) real-time processing, 2) system scalability, and
3) continuous updates of the query results. To resolve this,

the two general paradigms, load sharing and adaptivity [2],
[17] of execution plans, have been developed.

Among continuous queries, the quantile computation is
one of the most challenging because of the order complexity
and the holistic nature. A �-quantile (� 2 ð0; 1�) of an
ordered data sequence with N elements is the element with
rank d�Ne. It has been shown that an �-approximate

summary can be continuously maintained with the space
requirement Oð1� logð�NÞÞ [13] for a whole data stream. Our
earlier work [19] shows that it requires space Oðlogð�2NÞ

� þ 1
�2
Þ

for a sliding window; the space bound has been improved to
Oð1� log 1

� logNÞ in [1]. Randomized techniques for continu-
ously maintaining �-approximate summary may be found in
[8], [12], [26]. A quantile summary is �-approximate if it can
be used to answer any quantile query within a rank error
precision of �N (to be defined precisely in the next section).

Computing quantiles has many applications, including
data summarization via equal-depth histograms [30], data

cleaning [9], and data partitioning [31]. Quantile computation
is also a key in the decision making (e.g., portfolio risk
measurement in the stock market [20], [23]). In some
applications, there may be a massive number of continuous
quantile queries issued simultaneously. Below is such an
example.

Example 1. An information provider may provide various
real-time statistics of the stock market to its clients,
through the Internet or telecommunication, for trends’
analysis. The quantile-quantile (Q-Q) plot [33] is a popular
chart for comparing two data distributions. Fig. 1
illustrates such a Q-Q plot by using two real data sets,
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AOL and Technique Section. In AOL (TWX since 2003),
1.3M (millions) “tick-by-tick” transactions during the
period of Dec./2000 to July/2001 sorted increasingly
against the volume of each transaction (deal) are collected
from the New York Stock Exchange for the stock AOL. In
Technique_section (made by us), 27M tick-by-tick trans-
actions are collected in the same period for the stocks
CSCO, IBM, DELL, SUN, CA, etc., and also sorted on
volumes. Fig. 1 demonstrates that clients can view the
global chart (with very coarse information) for a general
comparison and can also click on such a chart graph to
zoom in a particular range of quantiles interactively for
more accurate information. Such Q-Q plots combining
with other statistic display tools greatly facilitate clients’
detection of trade trends, so that they may make good
trade decisions based on their knowledge.

In such applications, a large number of clients, such as
day-traders, may continuously use the service to monitor a
particular stock and may focus on different quantile ranges
against this particular stock, especially when it is used to
compare one-by-one with many other individual stocks.
Therefore, the information provider has to support con-
tinuous processing of quantile queries across all quantile
ranges. With real-time requirements, users may tolerate a
bounded amount of imprecision for online information, and
may register approximate quantile queries at a central
stream processor from their personal devices (e.g., mobiles).

Olston et al. [29] studied the problem of continuously
monitoring statistics, based on aggregates, over distributed
data streams with the focus on minimizing communication
overheads. Due to the nature of the applications, scalability
against the number of queries is not an issue. Moreover,
querying order statistics seems more complicated than
those aggregates. Chen et al. [3] addressed scalability
against the number of queries by grouping continuous
queries for efficient evaluation. However, they focused on
XML queries. Thus, the techniques are not relevant to
continuously querying order statistics.

Motivated by the above, in this paper, we investigated
the problem of online processing of massive continuous
quantile queries over data streams. Unlike simply con-
tinuously maintaining a summary over data streams, the
central focus of the investigation is to continuously provide
up-to-date query results in real time to a large number of
queries that may be registered and removed in an arbitrary
fashion.

In the context of data stream computation, a key
requirement is to take little processing time per data

element. The main research focus in the area has been so
far focused on effectively selecting sample data to be stored
for approximate processing. Little has been found in the
literature to handle a massive number of continuous
queries. Consider that there are � continuous queries. Due
to the nature of continuous queries, reevaluation of each
query result may be necessary upon the arrival of a new
data element. This leads to the system time complexity �ð�Þ
per data element even if processing one query takes
constant time. Clearly, such a time complexity is not
acceptable for online processing when � is large. On the
other hand, in some applications (e.g., the stock market
application mentioned above), the number � of sensible and
distinct quantile queries could equal the number of data
elements in a massive stream; thus, it could be huge. To
resolve this, we propose to first reduce � by grouping
“similar” queries together and treat them virtually as a
single query. Then, we develop a novel trigger-based lazy
update query processing technique to avoid reevaluating
every query per new data element while the query result
precisions can be retained.

To the best of our knowledge, no similar research results
have been reported in the literature. Our main contribution
can be summarized below:

. We propose a novel query clustering technique, such
that each cluster of queries can be viewed as a single
query while the required precisions can be retained.

. For a given set of queries, we develop efficient
algorithms to cluster queries, so that the total
number of times for reevaluating clusters may be
minimized or the total number of clusters to be
minimized. The techniques are extended to main-
taining query clustering effectively when queries are
dropped and inserted in an arbitrary fashion.

. We propose a novel trigger-based asynchronous
query result update technique to efficiently process
continuously quantile queries, including data struc-
tures and maintenance algorithms. Our techniques
guarantee that a cluster may be reevaluated only
logarithmic times, with respect to the number of data
elements, in the worst case.

. We apply the techniques to both whole data streams
and sliding windows.

The rest of this paper is organized as follows: In Section 2,
we present some background information in quantile
computation and continuous quantile queries. Section 3
presents our query clustering techniques and trigger-based
lazy update techniques for a whole stream. Section 4
discusses an application of the techniques to sliding
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windows. In Section 5, we report the results of our
performance study. Section 6 concludes the paper.

2 BACKGROUND INFORMATION

In this section, we present some background information
about quantile, quantile summary, summary maintenance
techniques, and continuous quantile queries for data
streams.

2.1 Quantile and Quantile Summary

A �-quantile (� 2 ð0; 1�) of a sequence D of N data elements
is the element with rank d�Ne in an ordered sequence of D
according to some search key. For notation simplification,
we always assume that a data element is a value and the
ordered sequence follows an increasing order of the data
values. We use N to denote the number of data elements.

It has been shown that any algorithm for computing
exact �-quantiles of a sequence of N data elements requires
a space of �ðN1=pÞ if only p scans of the data set are allowed
[27]. This makes it impractical to compute exact quantiles
for very large sequences for which multiple scans are very
costly (e.g., very large databases), even infeasible (e.g., data
streams). On the other hand, in most applications, an
estimation of quantile is indeed sufficient. In such case, we
can maintain certain computed quantile summary for a
sequence so that quantiles can be estimated with a minor
computational effort.

Generally, a quantile summary may be in any form. One
form of quantile summary (abbreviated to “summary”
hereafter) proposed for approximate query processing is
defined as follows [13], [19]:

Definition 1 (Summary). A quantile summaryS of an ordered
data sequence D

!
is defined as an ordered sequence of tuples

fðvi; r�i ; rþi Þ : 1 � i � mg with the following properties:

1. Each vi 2 D
!

.
2. vi � viþ1 for 1 � i � m� 1.
3. r�i � r�iþ1 and rþi � rþiþ1 for 1 � i � m� 1.
4. For 1 � i � m, r�i � ri � rþi , where ri is the rank of

vi in D
!

.1

Clearly, a summary with more details gives a more
precise estimation, but at the cost of space and time. To
measure and control the estimation error of a summary, an
�-approximate summary was defined.

Definition 2 (�-approximate). A summary for a data sequence
of N elements is �-approximate if, for any � (� 2 ð0; 1�), it
returns a value whose rank r0 is guaranteed to be within the
interval [�N � �N , �N þ �N].

To guide the process of maintaining an �-approximate
summary, the following theorem has been proven in [13]:

Theorem 1. For a summary S defined in Definition 1, if:

1. rþ1 � �N þ 1,
2. r�m � ð1� �ÞN , and
3. for 2 � i � m, rþi � r�i�1 þ 2�N ,

then, for each � 2 ð0; 1�, there is a ðvi; r�i ; rþi Þ in S such

that �N � �N � r�i � rþi � �N þ �N ; that is, S is

�-approximate.

In the original version [13] of the definition of

�-approximate and Theorem 1, the term d�Ne was used

instead of �N . To simplify the mathematic notation, in this

paper, we use �N . It can be immediately verified that

Theorem 1 holds for the term �N . In this paper, we assume

that an �-approximate summary is maintained to satisfy the

conditions specified in Theorem 1.

2.2 Quantile Queries

Given an �-approximate summary, we can issue “approx-

imate quantile” queries to obtain estimates within a

required precision. In this paper, we study only approx-

imate quantile queries, abbreviated to quantile queries

hereafter.

Definition 3 (Quantile Query). A quantile query q over an

ordered data sequence D
!

is represented as q ¼ ð�q; �qÞ. It

requires an element u from D
!

such that the rank r of u over D
!

has the property that j�qN � rj � �qN , where jD!j ¼ N .

From Theorem 1, it is immediate that, for a quantile

query q ¼ ð�q; �qÞ and an �-approximate summary S where

� � �q, we are always able to find a tuple ðvi; r�i ; rþi Þ from S

such that

�qN � �qN � r�i � rþi � �qN þ �qN: ð1Þ

Consequently, vi can be used as a result of q; such a tuple

is referred as a quantile query result tuple. In other words,

for a quantile query q ¼ ð�q; �qÞ, we can always query an

�-approximate (� � �q) summary instead of the data

sequence itself.
Given an �-approximate summary, a result tuple of a

quantile query q ¼ ð�q; �qÞ can be obtained using the first-hit

approach [13], [19]. That is, we sequentially scan the

summary until we find a tuple ðvi; r�i ; rþi Þ, such that the

condition in (1) holds.

2.3 Maintaining �-Approximate Summaries

For data streams, a virtually unbounded number of

elements arrive rapidly and multiple scans over arrived

elements are computationally infeasible. Therefore, main-

taining a small space summary is the only feasible way to

obtain estimates about quantile statistics for data streams.

Recently, algorithms for efficiently maintaining quantile

summaries for data streams under different computational

models have been proposed [13], [19]: 1) Under the data

stream model, a summary is maintained over all elements

seen so far. 2) Under the sliding window model, a summary is

maintained over the most recently seen N elements where

N is predefined. 3) Under the n-of-N model, a summary for

the most recent N elements is maintained in such a way that

quantile can be estimated over any most recent n elements

with n � N .
In this paper, we will consider only two models, the data

stream model and the sliding window model.
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2.3.1 Whole Streams

A number of algorithms have been proposed in the
literature to continuously maintain quantile summaries
for data streams with different complexities and space
requirements [8], [12], [13], [25], [26]. While [8], [12], [26]
investigate randomized techniques, in our study, we
focus on deterministic techniques for maintaining an
�-approximate quantile summary, fðvi; r�i ; rþi Þ : 1 � i � mg,
under the data stream model. Specifically, we focus on
GK-algorithm, proposed by Greenwald and Khanna [13],
which achieves the best space bound among determi-
nistic techniques and removes the requirement of
preknowledge about the stream length [25]. For each
tuple in the quantile summary, vi is one of the data
values in the data stream seen so far with v1 and vn
being the first and the last element in the ordered data
stream, respectively. The algorithm uses two parameters,
gi and �i, to control r�i and rþi , where gi ¼ r�i � r�i�1

(r�0 ¼ 0), �i ¼ rþi � r�i , and r�i ¼
P

j�i gj. It is proven that
if, for 2 � i � m, gi þ�i < 2�N , then the summary is
�-approximate.

To continuously maintain an �-approximate summary
with bounded space for a data stream, the GK-algorithm
carries two operations, insertion and merge, to update the
summary when a new data element with value vnew arrives.
The original version of the GK-algorithm was presented
based on gi and �i. In order to apply the technique to our
investigation of processing continuous quantile queries, we
transform the presentation in terms of r�i and rþi .

Insertion. Scan the tuples in the summary S from the tail
backwards and increase each r� and rþ, respectively, by 1
for the tuples scanned, until a tuple ðvi; r�i ; rþi Þ where vi <
vnew is found or the head is reached. A new tuple ðvnew; r�i þ
1; rþiþ1 � 1Þ is inserted into the summary just after ðvi; r�i ; rþi Þ
in S.

Merge. For every batch of 1
2� new data elements, the

algorithm scans the summary from the tail backwards.
If tuples ti�j; . . . ; ti�1, ti satisfy the conditions that
rþi � r�i�j�1 � 2�N , and ti�j; . . . ; ti�1 all arrive in “recent”
batches, then the algorithm removes the tuples from ti�j
to ti�1 as if they were merged into ti.

2.3.2 Sliding Windows

Quantile statistics under the sliding window model (i.e., for
the most recently seen N data elements) are different from
that for a whole data stream.

In our study, we maintain an �-approximate summary for
a data stream under the sliding window model using the

algorithms developed earlier by us [19]. Using this method,
stream data against a sliding window with the window size
N is continuously divided into the buckets, as depicted in
Fig. 2, according to the arrival ordering of data elements,
such that:

. Expire the first (left most in Fig. 2) bucket once the
last bucket (right most) is full.

. Run the GK-algorithm in the first bucket to maintain
an �

4 -approximate local summary.
. The local summaries over the other buckets, as

bounded by the big box, can be compressed into
�
2 -approximate summaries, respectively. Then, they
can be merged by a merging technique in [19] into an
�-approximate summary over the sliding window.

Note that the interested readers may refer to [1] for another
sliding window technique that theoretically improves the
space bound in [19]. Since the main issue in processing
continuous queries is the minimization of the summary
space bound, we still adopt our summary construction
algorithm in [19] in this paper.

2.4 Problem Statement and Challenges

Problem Statement. Suppose that an �-approximate quantile
sketch is continuously maintained over a data stream. We
want to efficiently process continuous quantile queries
ð�q; �qÞ issued (possibly in an ad hoc fashion) by users, so
that users can get up-to-date results of their queries. In such
a system, we assume that all queries are processed at the
central site, while query sites (e.g., mobiles) can only receive
results but are not able to process any query. We always
assume that the precision �q of a quantile query q ¼ ð�q; �qÞ
is lower than the precision � of a quantile summary (i.e.,
�q � �); if �q < �, the system increases �q to � for users while
processing the query. Note that the precision � (or �q) here
means its actual value rather than the number of decimals.

With an �-approximate underlying summary continu-
ously maintained over a data stream, continuous quantile
queries against the data stream can be processed using the
summary. A summary maintained for a data stream is
updated continuously; thus, the result tuples for those
queries may change accordingly. While the techniques (e.g.,
first-hit algorithm [13]) for processing an individual
quantile query seem rather straightforward, online proces-
sing of a massive number of continuous quantile queries
over a data stream is a computationally intensive task.

For verification, we conducted an experimental study
with a quantile summary maintained for 1 million data
elements. Assuming that quantile queries are pregiven,
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five sets of queries are generated with 1K, 5K, 10K, 50K, and
100K queries, respectively. We record the total costs of
reprocessing each query upon the arrival of a new data
element, but the costs for continuously maintaining quantile
summaries are subtracted. Our experiment results show
that, when the query number reaches 50K, the required
processing time has already exceeded 10,000 seconds, while
the process of 100K queries in this way cannot finish in
5 hours (thus, aborted by us). This makes it impossible to
support a massive number of continuous quantile queries in
real time against a rapid data stream by simply applying the
existing technique.

3 PROCESSING WHOLE DATA STREAMS

In this section, we present novel techniques to process
continuous quantile queries over a whole data stream. As
depicted in Fig. 3, we propose to process continuous queries
by the following two phases at a central processor:

Clustering. Cluster together the queries which share
some common results.

Processing Clusters. Process a cluster of queries as a single
query by trigger-based lazy update techniques and multicast
the results of a query cluster to the relevant query sites.

As mentioned earlier, in such a system, we assume
that all queries are processed at the central site, while
query sites (e.g., mobiles) cannot process any query but
receive results only. In the rest of the section, we assume
that an �-approximate summary S is continuously main-
tained by GK-algorithm over a whole data stream; that is,
the GK-algorithm is used as a black box in our
techniques.

This section is organized as follows: We first present
fundamentals in our query processing techniques. Then, we
present our clustering algorithms. Finally, we present our
efficient query processing techniques using a trigger-based
lazy update paradigm.

3.1 Queries, Intervals, and Clusters

In many applications, queries from different users may
share some common answers. Below is a key observation:

Observation 1. Suppose that q1 ¼ ð0:50; 0:05Þ and q2 ¼
ð0:49; 0:06Þ are two quantile queries, and the underlying
summary S has the precision 0:01 (i.e., � ¼ 0:01). Intuitively,

a result tuple for q1 should also be a result tuple for a quantile

�, with the precision 0:01, in the interval ½0:5� 0:05þ
0:01; 0:5þ 0:05� 0:01� ¼ ½0:46; 0:54� and vice versa. Simi-

larly, the second query q2 can be transferred into the interval

½0:44; 0:54�. Thus, the common interval is ½0:46; 0:54� and a

result to any ð�; 0:01Þ for � 2 ½0:46; 0:54� is a result for both

queries. Consequently, we can group q1 and q2 together and

query a quantile in ½0:46; 0:54� with the precision 0:01.

Generally, we may expect that a quantile query q ¼
ð�q; �qÞ over an �-approximate (� � �q) summary S can be

transferred into the following interval:

Iq ¼ ½�q � ð�q � �Þ; �q þ ð�q � �Þ� \ ð0; 1�; ð2Þ

so that an answer of ð�; �Þ for a � 2 Iq can answer q. Let

R�q;�q denote the set of tuples that are valid results of query

q ¼ ð�q; �qÞ against S.

Theorem 2. Suppose that q ¼ ð�q; �qÞ is a quantile query. Then,

[�2IqR�;� ¼ R�q;�q against an �-approximate summary S.

Proof. Suppose that ðui; r�i ; rþi Þ 2 [�2IqR�;�; that is, there is a

� 2 Iq such that

�N � �N � r�i � rþi � �N þ �N: ð3Þ

Since � 2 Iq, (3) immediately implies:

�qN � �qN � r�i � rþi � �qN þ �qN: ð4Þ

Thus, ðui; r�i ; rþi Þ 2 R�q;�q ; consequently, [�2IqR�;� � R�q;�q .
Suppose that ti ¼ ðui; r�i ; rþi Þ 2 R�q;�q generated by the

GK-algorithm, then this t satisfies (4). Therefore,

ð�q � ð�q � �ÞÞN � �N � r�i ; ð5Þ

rþi � ð�q þ ð�q � �ÞÞN þ �N: ð6Þ

Note that, according to the GK-algorithm, it is immediate

that:

� �N < r�i � rþi � ð1þ �ÞN: ð7Þ

By the condition 3 of Theorem 1, we have that

rþi � �N � r�i þ �N . This, together with (5), (6), and

(7), immediately implies that Iq \ ½r
þ
i

N � �;
r�i
N þ �� 6¼ ;.
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Consequently, ti 2 R�;� for any � 2 Iq \ ½r
þ
i

N � �;
r�i
N þ ��.

Thus, R�q;�q � [�2IqR�;�. tu
We call Iq the query interval of q. Suppose that Q ¼

fð�q; �qÞg is a set of quantile queries. We use IQ to denote the
common part of query intervals in Q (i.e., IQ ¼ \q2QIq).
Theorem 2, together with the fact that R�;� 6¼ ; (8� 2 ð0; 1�)
against S, implies that all queries in Q with different �q and
�q can be answered by a quantile query ð�; �Þ against S,
where � 2 IQ, if IQ 6¼ ;. That is, any tuple t in [�2IQR�;� can
be a common answer to all queries in Q. Therefore, all
queries in Q can be treated virtually as a single query and
IQ is called the cluster interval of Q. A tuple in [�2IQR�;� is
called a result tuple of Q. These are fundamental to our
clustering algorithm.

3.2 Preliminaries of Lazy Updates

We present a way to choose a “good” tuple, so that it can
stay as long as possible as a result tuple against the arrival
of new data elements. We first present a sufficient and
necessary condition for a tuple ðu; r�; rþÞ in an �-summary,
generated by the GK-algorithm, to be a result tuple of a
query cluster Qi.

Theorem 3. Suppose that t ¼ ðu; r�; rþÞ is a tuple in an
�-approximate summary S (generated by the GK-algorithm)

of N data elements, and the interval IQi
of a query cluster is

½ai; bi�. Then, t is a result tuple ofQi (i.e., t 2 [�2IQi R�;�) if and

only if

ðai � �ÞN � r� � rþ � ðbi þ �ÞN: ð8Þ

Proof. Suppose that t is a result tuple; that is, t 2 [�2IQi R�;�.
Then, according to the definition, there is a � 2 ½ai; bi�
such that

ð�� �ÞN � r� � rþ � ð�þ �ÞN: ð9Þ

Consequently, (8) holds.
Now, we prove the sufficient condition. Suppose that

(8) holds. We need to find a � 2 ½ai; bi� such that (9) holds.
As S is generated by the GK-algorithm, S follows the
three conditions in Theorem 1. Thus, rþ � �N � r� þ �N .
From (8), it is immediate that ½ai; bi� \ ½r

þ

N � �; r
�

N þ �� 6¼ ;.
We can immediately verify that any � 2 ½ai; bi� \ ½r

þ

N �
�; r

�

N þ �� meets the inequalities in (9). tu

Remark. According to the definition, a query interval Iq
may be open on ai if ai ¼ 0. However, it can be immediately
shown that Theorem 3 and other theorems in this section all
hold for such an extreme situation. To simplify our
discussions, we present our results based on closed query
intervals.

Suppose that IQi
¼ ½ai; bi�. Let:

�Qi;t;N ¼
þ1 ai � �
r�þ�N�aiN

ai�� otherwise;

�
ð10Þ

�Qi;t;N ¼
þ1 1 � bi þ �
biN�rþþ�N

1�bi�� otherwise;

�
ð11Þ

LQi;t;N ¼ minf�Qi;t;N ; �Qi;t;Ng: ð12Þ

From Theorem 3, the corollary below follows immediately:

Corollary 1. Suppose that t ¼ ðu; r�; rþÞ is a tuple in an
�-approximate summary S (generated by GK-algorithm) of
N data elements. Then, t is a result tuple of query cluster Qi if
and only if LQi;t;N � 0.

Suppose that t ¼ ðu; r�; rþÞ is a result tuple to Qi with the
cluster interval ½ai; bi�; that is, (8) holds. Now, we calculate a
lower bound on the number � of new arrival data elements,
which keep (8) valid. According to the GK-algorithm, if
these � new elements are all inserted before the tuple t, then
t will be changed to ðu; r� þ �; rþ þ �Þ. If all are inserted
after t, then t remains unchanged in the summary. Since
a� � � 1, it is immediate that if all these � data elements are
inserted before t and (8) holds, then ðai � �ÞðN þ �Þ � r� þ �
always holds. However, in this case, to make rþ þ � �
ðbi þ �ÞðN þ �Þ hold, the following inequality must hold:

�ð1� bi � �Þ � ðbi þ �ÞN � rþ: ð13Þ

On the other hand, if all � elements are inserted after t,
then rþ � ðbi þ �ÞðN þ �Þ always holds due to (8). How-
ever, to make ðai � �ÞðN þ �Þ � r� hold, the following
equality must hold:

ðai � �Þ� � r� � ðai � �ÞN: ð14Þ

Note that, regardless of the value of � (� > 0), (13) always
holds if 1 � bi þ �, and (14) always holds if ai � �. But, 1 �
bi þ � and ai � � usually cannot hold simultaneously unless
every query q in Qi can share a result tuple to the quantile
query ð0:5; 0:5Þ; in this case, any tuple in the summary can
be an answer forever.

Theorem 4. Suppose that t ¼ ðu; r�; rþÞ is a tuple in an
�-approximate summary S (generated by the GK-algorithm)
of N data elements, and LQi;t;N � 0 for a query cluster Qi.
Then, u can remain as a result tuple, with respect to Definition
3, to the queries in Qi until the bLQi;t;Nc þ 1th new element
(exclusive) arrives regardless whether t is still kept as a tuple
in the continuously changed summary.

Proof. Suppose that v is always kept in the summary during
when these bLQi;t;Nc new elements arrive. Then, the
theorem is immediate according to the above arguments.

If v disappears on the half way (merged into another
tuple) when those elements are inserted, using similar
arguments as above and those in the proof of Theorem 3
also immediately implies that v can be used as a result,
according to Definition 3. tu

In fact, LQi;t;N is quite tight. As analyzed, if LQi;t;N ¼
�Qi;t;N and the bLQi;t;Nc þ 1 new elements are inserted before
t, then t is disqualified as a result tuple to Qi. Similarly,
LQi;t;N is tight when �Qi;t;N < �Qi;t;N .

Corollary 1 and Theorem 4 state that we need only to
reprocess a query cluster Qi when the ðLQi;t;N þ 1Þth new
element arrives. The larger the value LQi;t;N is, the longer (in
terms of the number of new elements) we can wait to
update the result. While a good estimation of LQi;t;N tends
to be difficult to obtain due to the uncertainty of summary
tuples maintained by the GK-algorithm, below we give a
lower-bound on LQi;t;N :
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Theorem 5. Suppose that IQi
¼ ½ai; bi� is a cluster interval.

Then, there is a tuple t in an �-approximate summary S
maintained by the GK-algorithm, such that LQi;t;N �

jIQi j
2ð1��ÞN ,

where � < 1.

Proof. Let � ¼ aiþbi
2 . Then, there is a tuple t ¼ ðv; r�; rþÞ 2 S

to answer the quantile query ð�; �Þ according to
Theorem 1. Thus, rþ � �N � �N � r� þ �N . Note that:

jIQi
j

2
N ¼ bi � ai

2
N ¼ bi þ ai

2
� ai

� �
N � r� þ �N � aiN:

Thus, �Qi;t;N �
jIQi j

2ð1��ÞN .
Similarly, we can show that �Qi;t;N �

jIQi j
2ð1��ÞN . tu

Theorem 6. Suppose that, for each clusterQi, a trigger-based lazy
update paradigm chooses the maximum value of LQi;t;N every
time after LQi;t;N þ 1 new elements, where N is the number of
elements in a data stream when LQi;t;N is chosen. Then, this
paradigm searches new values ofLQi;t;N (thus, reevaluateQi) by
Oðlog

1þ
jIQi j

2ð1��Þ
NÞ times if jIQi

j 6¼ 0.

Proof. We give an initialization N1. For the first N1 data
elements, we assume that the paradigm has to always
find the new L values. We could make N1 ¼ 1þ jIQi j

2ð1��Þ .
Then, Theorem 5 immediately implies that

1þ jIQi
j

2ð1� �Þ

� �n
N1 � N;

where n is the number of times to search new L values
after the first N1 times. The theorem immediately
follows. tu
Theorem 6, together with Theorem 4, implies that such a

trigger-based lazy update paradigm needs only to reeval-
uate a query cluster by logarithmic times instead of by
OðNÞ times.

3.3 Clustering Predefined Queries

In this section, we assume that a set Q of queries is
predefined. Our goal is to cluster queries, so that the total
number of times to reevaluate query clusters may be
minimized.

Suppose that a query interval Iq ¼ ½aq; bq� contains
another query interval Iq0 ¼ ½aq0 ; bq0 �. According to the
discussions in Section 3.1, we need only to process Iq0 by
clustering q and q0 together. Viewing each interval ½a; b� as a
point ða; bÞ in a 2D-space, we can run a skyline-like
computation algorithm [18] in 2D-space as a preprocess to
remove the containment relationships by keeping only the
query intervals which do not contain another interval. For
example, in Fig. 4, after preprocessing there are two
clusters: 1) queries containing the interval of q2 and
2) queries containing the interval of q4. Note that q1 can be
put into either the cluster with q2 or the cluster with q4 but
not in both. Clearly, our optimal clustering problems below
based on the output of such preprocess do not affect the

optimality of the solution since the preprocess output is a
subset of pregiven queries that also have to be processed.

As mentioned in Section 3.2, in our trigger-based lazy
update algorithm, the number of total times to reevaluate
query clusters equal the total summation of LQ;t;Ns and a
good estimation of LQ;t;N seems impossible. We propose the
following two alternative optimization problems.

3.3.1 Minimization against Worst-Cases

Theorem 6 shows that an upper-bound of the number of

times to reprocess a query cluster is approximately

proportional to logN
jIQj for a given �. We aim to minimize the

upper-bounds in Theorem 6.

Minimization against Worst-Cases (MWC)
Given: A set of quantile queries Q ¼ fqj : 1 � j � �g, � < 1

(the precision of the underlying summary), where jIqj 6¼ 0

and query intervals do not contain each other.

Problem: Find a set of clusters fQi : 1 � i � kg such that

1. [ki¼1Qi ¼ Q,
2. Qi \Qj ¼ ; for 1 � i < j � k, and
3.

Pk
i¼1

1

lnð1þ
jIQi j

2ð1��ÞÞ
is minimized.

Note that after the preprocessing above, for a point query
q (i.e., jIqj ¼ 0) Iq is not contained by another query interval;
thus, it forms a query cluster and is removed for a further
consideration. This is the reason why, in the input of MWC,
we assume jIqj 6¼ 0. Next, we show that the problem of
MWC can be solved efficiently by the dynamic program-
ming technique.

We can assume that the input query intervals in MWC
are already sorted increasingly on query intervals (treating
each interval as a point in 2D-space) after the above
preprocessing. For each i, let �i denote the optimal
clustering (i.e., an answer to MWC) against the first
i intervals and Cð�iÞ ¼

P
Qj2�i

1

lnð1þ
jIQj j

2ð1��ÞÞ
.

Lemma 1. Suppose that, in an optimal clustering �i against the
first i intervals, there is a cluster that uses the intersection of
the ith interval and the jth interval as its query interval
(1 � j < i). Then, the clustering by having query clusters in
�j�1 and the query cluster consisting of ql (for j � l � i) must
be also optimal against the first i intervals and can replace �i.
Note that �0 ¼ ;.

Proof. Let Ii;j denote the intersection. Clearly, each ql (for
j � l � i) contains Ii;j. Thus, modifying �i by putting ql
in the cluster while retaining the cluster interval Ii;j will
not increase Cð�iÞ. The lemma immediately follows. tu

Lemma 1 is the key observation by applying the dynamic
programming techniques. We iteratively construct �i from
i ¼ 1 and output �� as the solution. The algorithm is
presented in Algorithm 1.

Algorithm 1 MWC

Input:

Q ¼ fqi : 1 � i � �g. Assume that Q is already sorted

increasingly, by the preprocessing, on Ii (¼ Iqi ).
Output:

A group of clusters fQj : 1 � j � kg.
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Description

1: �0 :¼ ;; Cð�0Þ ¼ 0;

2: for i ¼ 1 to � do

3: Cð�iÞ :¼ Cð�i�1Þ þ 1

lnð1þ jIi j
2ð1��ÞÞ

;

4: �i :¼ �i�1 [ ffqigg; j :¼ i� 1;

5: while Ij \ Ii 6¼ ; & j � 1 do

6: j :¼ j� 1;

7: if Cð�j�1Þ þ 1

lnð1þjIj\Ii j
2ð1��ÞÞ

< Cð�iÞ then

8: �i :¼ �j�1 [ ffql : j � l � igg;
9: Cð�iÞ :¼ Cð�j�1Þ þ 1

lnð1þjIj\Ii j
2ð1��ÞÞ

;

10: Report ��;

From Lemma 1, it can be immediately verified that
Algorithm 1 is correct; that is, it gives a correct answer to
MWC. Moreover, the algorithm runs in time Oð

P�
i¼1 kiÞ,

where ki is the number of intervals, located before Iqi in the
sorting list, overlapping with Iqi . In theory,

P�
i¼1 ki ¼ Oð�2Þ

if all intervals have a common part. However, in practice,
this rarely happens; moreover, � is not very large after the
preprocessing. Our performance evaluation also confirms
that the algorithm is very efficient in practice. Furthermore,
this algorithm can be executed in a linear space Oð�Þ if we
build a link between �i and �j when �i uses �j as a
subplan in our algorithm.

3.3.2 Minimizing the Number of Clusters

It aims to cluster the queries so that the number of clusters
is minimized. This problem is well studied in computa-
tional geometry [28], [32]. It can be solved in time Oð�Þ by a
simple sweeping line technique if the preprocess is
executed and the intervals are sorted. In our performance
evaluation, we refer to this technique as QCB. The following
theorem is immediate.

Theorem 7. Suppose that, in a given set Q of continuous quantile
queries, the highest approximate precision is �1; that is, for each
query ð�q; �qÞ 2 Q, �q � �1. Further suppose that �1 > �, where
an �-approximate summary is maintained by the GK-
algorithm and lmin is the minimum query length in the given
set of continuous queries. Then, �1 � � � lmin � 2ð�1 � �Þ.
Moreover, the number of clustered generated by Algorithm
QCB is bounded by 1

lmin
.

Theorem 7 immediately implies that the number of
clusters to be generated by Algorithm QCB is bounded by
Oð 1

�1��Þ. When �1 ¼ �, the number of clusters generated by
QCB does not have such a theoretic upper-bound guarantee
and depends on query distribution. The experiment results
in Section 5 demonstrate that our query clustering
techniques are also very effective in such situations.

3.4 Online Clustering Algorithm

In many applications, ad hoc continuous queries, rather
than predefined, may be registered and dropped in an
arbitrary fashion. It may be computationally too expensive
to invoke Algorithm 1 (or QCB), per query insertion and
deletion, to generate the new optimal query clusters and
then to reprocess all clusters.

In our algorithm, we enforce an online environment by
treating each existing query cluster as a query while
ignoring the detailed “geometric” information of already

clustered individual queries. The existing clusters will
remain unchanged unless the arrival of a new query causes

clusters2 to be merged together with the new query to form
a new query cluster. In this case, reprocessing only the
newly formed cluster does not potentially lead to extra
processing overheads since a new query has to be processed

anyway. Our algorithm, outlined in Algorithm 2, is based
on a greedy paradigm to enforce the “local” optimality.

Algorithm 2. Online Clustering

Description

1: Register a Query q:

2: if 9IQj
\ Iq 6¼ ; then

3: if 9IQi
� Iq then

4: Qnew :¼ ð[ql2Qi
fqlgÞ [ fqg; IQnew

:¼ IQi
;

5: else

6: find a Qi such that jQi \ Iqj is maximized;

7: IQnew
:¼ IQi

\ Iq;
8: Qnew :¼ ð[IQi�IQnew [ql2IQi fqlgÞ [ fqg;
9: else

10: Qnew :¼ fqg; IQnew
:¼ Iq

11: Drop a Query q from Qj:

12: Qj :¼ Qj � fqg;
13: if Qj ¼ ; then

14: Drop Qj.

To speed up computation, an in-memory Bþ tree is
used to store the clusters sorted based on the left end of
intervals. Based on the property that the query intervals of

existing clusters are not mutually inclusive, it is immediate
that determining the query cluster to be merged with a new
issued q takes Oðlog kþ sÞ, where k is the number of clusters

and s is the number of clusters intersecting Iq. Note that the
old clusters have to be removed from Bþ tree. As all those
clusters are in the consecutive positions, such an update of
Bþ can be done in Oðlog kþ sÞ if we do it in a bottom-up

fashion. Thus, the costs of registering a query takes
Oðlog kþ sÞ. Once a query cluster drops due to a drop of
a query, it takes Oðlog kÞ to update the Bþ tree.

Once a query is removed, the corresponding query

cluster may increase its length. This is not dealt with in our
online algorithm because of the maintenance costs. To
compensate this, we could set up thresholds for the number

of new clusters created and the number of queries dropped.
Once one threshold is reached, the reclustering algorithm
(Algorithm 1 or QCB) runs at the background. Once the
reclustering finishes, new clusters are used to replace old

clusters. Our experiment results, nevertheless, indicated
that the online algorithm without this offline process
already performs very well.

3.5 Processing Continuous Queries by Lazy
Updates

As shown in Section 2.4, eager updates per data element are

not scalable enough to accommodate real-time processing

against high-speed data streams. In this section, we present

our trigger-based lazy update techniques.
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3.5.1 Synchronous Update

To update a result tuple of Qi, we always choose a tuple tQi

with the maximum LQj;tQj ;N
(in (12)). We use a global trigger

Tglobal that takes the smallest value among all LQj;tQj ;N
. Tglobal

is reduced by 1 upon new data item arrival. When Tglobal is
reduced to a negative value, the algorithm is invoked to
compute new result tuples for all clusters, respectively.

We assume that a set QQ of query clusters has been sorted
on the query intervals increasingly. This is maintained
either in our online clustering algorithm by Bþ tree or in
Algorithm 1 or in QCB.

Note that the cluster intervals do not contain each other.
Further, LQi;t;N is monotonic regarding to ai, bi, r

�, and rþ,
respectively. It can be easily shown that:

. For a tuple t in the summary S, if t is a result tuple of
Qi but not a result tuple of Qiþ1, then t cannot be a
result tuple of Qj for j � iþ 1.

. For a query cluster Ql, if ti in S is a result tuple to Ql

but tiþ1 in S is not a result tuple to Ql, then tj cannot
be a result tuple of Ql for j � iþ 1.

Based on these, the algorithm, presented in Algorithm 3,
runs in a “sort-merge” fashion between S and QQ to update
the results for all cluster.

Algorithm 3 Synchronous Update

Input:

List QQ: set of query clusters sorted on their intervals.

S: �-summary.

Output:

Answers to every query cluster in QQ and Tglobal.
Description:

1: List H :¼ ;; // list of intermediate results

2: Iterator fq :¼ first query cluster in QQ;

3: Iterator fs :¼ first tuple in S;

4: Tglobal :¼ 1;

5: while fq is not null or H 6¼ ; do

6: if fs is not null then

7: for each element ðQ; tbest; TQÞ 2 H do

8: if LQ;fs;N < 0 then

9: Report ðQ; tbestÞ; // tbest is the result of Q

10: Tglobal :¼ minfTglobal; TQg;
11: Remove ðQ; tbest; TQÞ in H;

12: else if LQ;fs;N > TQ then

13: tbest :¼ fs; TQ :¼ LQ;fs;N ; // update this

intermediate result

14: while Lfq;fs;N � 0 do

15: append ðfq; fs; Lfq;fs;NÞ to the tail of H;

16: fq :¼ the next in QQ;

17: fs :¼ the next in S;

18: else

19: Report H; Report Tglobal;

It can be immediately verified that Algorithm 3 can

always provide a quantile query with a result within its

precision requirement. Once a new cluster Q0 forms,

Algorithm 3 is invoked with only Q0 as the input. Then,

update Tglobal to be LQ0;tQ0 ;N if LQ0;tQ0 ;N is smaller than the

existing Tglobal. Clearly, if a set of continuous queries is

pregiven and cmin 6¼ 0, Algorithm 3 will be invoked

Oðlog1þ cmin
2ð1��Þ

NÞ times according to Theorem 6 where cmin is

the minimum value of cluster intervals. Note that, if cmin ¼ 0,

our performance study indicates this algorithm performs

reasonably well though no such upper-bound exists.

3.5.2 Asynchronous Update

While the trigger maintenance costs in Algorithm 3 are low,
it could happen very often that all the other valid query
results are updated just because one query result needs to
be updated. This may cause a great deal of unnecessary
computation. Further, a synchronous update paradigm may
potentially cause a significant delay of new results for
processing the whole set of query clusters.

We present an asynchronous update technique by
having one trigger TQi

for each cluster Qi, which initially
takes the value in (12): TQi

¼ LQi;t;N .
Our asynchronous update-based query processing algo-

rithm is outlined in Algorithm 4. Theorem 6 implies that
Algorithm 4 will guarantee to reprocess a static (i.e., no
query insertion or deletion to the cluster) query cluster Qi

by Oðlog
1þ

jIQi j
2ð1��Þ

NÞ times if jIQi
j 6¼ 0.

Algorithm 4 Asynchronous Update

Case 1. A new data element arrives.
Step 1: Reduce the trigger value by 1 for each trigger.

Step 2: If a trigger Tt is fired (i.e., trigger value is

negative), then reprocess the query cluster, update its

trigger value, and reinsert the trigger into the trigger list.

Case 2. Update triggers, whenever necessarily, after

dropping or insert a query.

Now, we present the execution details for each step in
Case 1 and Case 2, together with effective data structures.

Step 1. In Algorithm 4, each trigger value has to be
updated upon a data item arrival. To avoid actually
updating each trigger, we organize the trigger list > in a
min-heap [5]. Instead of an actual trigger value, we store at
each node i (apart from the root) the difference between the
actual trigger value of i and that of the parent of i. At the
root, we store the minimum trigger value.

Once a new data item arrives, we need only to reduce the
root value by 1. Therefore, Step 1 can be implemented in
constant time. Once the trigger value at root is negative, the
trigger is fired and deleted. This can be handled by the
standard heap technique in Oðlog j>jÞ.

Step 2. Once a trigger is fired, the corresponding query
cluster Qi has to be reevaluated to find a tuple t with
maximum LQi;t;N . Since the underlying summary S is
�-approximate, such a tuple must lead to a nonnegative
LQi;t;N .

It is immediate that the tuples in the summary leading to
nonnegative L values must be in the consecutive positions
because of the monotonic properties of r�, rþ, �Qi;t;N , and
�Qi;t;N .

While searching for a new result tuple for Qi, the system
certainly can start from one end of the summary. However,
this may be inefficient if the tuple t is too far from the end.
To avoid this, we propose to link a trigger to a tuple used in
this trigger. Therefore, once the trigger fires, query
reprocessing starts from the tuple. Note that a tuple t in
the summary may be merged into another tuple t0 in the
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GK-algorithm. In this case, the unfired triggers hanging on t

are all moved to t0. To do this in constant time, at each tuple,

triggers are organized as a linked list. Therefore, we need

only to move the whole group.
As rþ � r� � 2�N for every tuple t ¼ ðu; r�; rþÞ in S, it is

immediate that �Qi;t;N and �Qi;t;N cannot be both negative.

Further, �Qi;t;N is monotonically increasing regarding r�,

and �Qi;t;N is monotonically decreasing regarding rþ. Thus,

Qi can be reprocessed starting from t against the three cases

below:

. If �Qi;t;N � 0 and �Qi;t;N < 0, run the search techni-
que of Algorithm 3 to the left from t.

. If �Qi;t;N < 0 and �Qi;t;N � 0, run the search techni-
que of Algorithm 3 to the right from t.

. If �Qi;t;N � 0 and �Qi;t;N � 0, run the search technique
of Algorithm 3 to the both side alternately from t.

Once the largest LQi;t;N is obtained, insert it into the

trigger heap; this takes Oðlog>Þ.
Case 2. Dropping or inserting a query may either cause a

drop of a query cluster, or merge of several clusters into

one cluster, or creation of a new cluster. A deletion or an

insertion in a trigger heap > takes Oðlog>Þ.
When several clusters are merged into one cluster, we

reprocess (run search technique in Algorithm 3) the merged

cluster from any tuple linked to an old cluster using one of

the above three cases. To process a new cluster, we run the

search technique in Algorithm 3 from the beginning of the

summary.

4 PROCESSING SLIDING WINDOWS

In this section, we present our algorithm against sliding

windows. We use the algorithm in [19] to continuously

maintain an �-approximate summary for a sliding window;

it was described briefly in Section 2.3.2.
It has been proven [19] that the middle part bounded by

the big rectangle (as depicted in Fig. 2) is always an

�-approximate summary for the N elements in the whole

window. Further, the right most part will become the tail of

the middle part once it is full and the left most part will be

removed consequently. According to the properties, we

need only to focus on the middle part which is static before

every whole batch of the most recent �N
2 data elements

arrive. Therefore, we invoke Algorithm 3 to process the

middle part every time after the arrival of a batch of new �N
2

data elements. This is how we process continuous quantile

queries under sliding windows. It can be immediately

combined with our query clustering algorithms.

5 PERFORMANCE STUDIES

In our performance study, we focus on our techniques. This

is because the only existing technique first-hit is not

immediately applicable to real-time processing of a large

set of queries, as shown in Section 2.4. The following

algorithms have been implemented and evaluated:

. QCA: The query clustering algorithm, Algorithm 1,
for a given set of continuous quantile queries.

. QCB: The query clustering algorithm based on an
application of the swap-line technique in [28], [32] to
minimize the number of clusters, as described in the
second part of Section 3.3.

. OQC: Our online query clustering algorithm, Algo-
rithm 2, in Section 3.4.

. SU: The synchronous update algorithm, Algorithm 3
in Section 3.5, for processing continuous quantile
queries. (Note that, here, we run the algorithm
without clustering queries).

. CSU: A combination of Algorithm 3 and QCA (or
QCB) or a combination of Algorithm 3 and OQC
depending on if queries are issued dynamically.

. CASU: A combination of the asynchronous update
algorithm (Algorithm 4 in Section 3.5) and QCA

(or QCB) or a combination of Algorithm 4 and
OQC depending on whether queries are issued
dynamically.

We also implemented the summary maintenance techni-
ques for whole streams [13] and for sliding windows [19] to
support our experiments.

We implement all the algorithms in C++ and compile
them using GNU gcc v2.95 without a special code
optimization. We conduct our experiments on a PC with
an Intel P4 2.4G Hz CPU and 512MB memory. The
operating system is Debian Linux.

Table 1 lists possible factors that may affect the
performance of our algorithms. Two parameters are used
to describe a data stream, the size Nd, and the distribution
Dd (specifying the sortedness of a data stream). In our
experiments, Dd takes two random models—uniform and
normal, as well as a partially sorted data—semisort [13],
[19]. In a semisort data set, data elements are grouped by
disjointed groups such that elements arrived in “later”
blocks have larger values than those in earlier blocks
though the elements in each block are not sorted. To
describe a set of queries, the three parameters are used,
1) ranges of �q and �q, 2) distribution of ð�q; �qÞ, and 3) query
arrival patterns. Finally, the guaranteed precision � of an
underlying summary is also used.

In our performance study, we evaluate the efficiency of
our query techniques, as well as the effectiveness. We also
evaluate the scalability of our techniques with respect to the
number of input queries, query patterns, the number of

692 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 5, MAY 2006

TABLE 1
Parameters

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 02:17 from IEEE Xplore.  Restrictions apply. 



data items, and the arrival rate of data items. Finally, we
evaluate the performance of our sliding window techni-
ques. As our techniques have a proven accuracy guarantee
for any �, it is less interesting to report our accuracy
evaluation; thus, it is omitted.

5.1 Performance Study of Query Clustering

In the first set of experiments, we evaluate the performance
of QCA, QCB, and OQC regarding the two query sets below.

Both query sets take 2M (2 millions) for its size and the
default values for the ranges of �q and �q, respectively, with
the restriction that �q < �q. In the first query set, Dð�q;�qÞ
follows a uniform distribution (i.e., a uniform distribution
on ð�q; �qÞ), while Dð�q;�qÞ in the second query set follows a
zipf distribution [36] with the zipf parameter 1:0.

To evaluate the online query clustering algorithm OQC,
we randomize a query arrival order. To run these
three algorithms, we make � be the the minimum value of
�q in the generated query sets; thus, lmin ¼ 0 and cmin ¼ 0.
This makes Theorem 7 invalid; however, our experiment
demonstrates that these three algorithms still generate
(relatively) very small numbers of clusters. We record the
numbers of clusters generated by OQC for the first arrived
20K queries, 60K queries, 100K queries, 200K queries,
400K queries, and so forth, respectively, as well as their

running time. We also record the corresponding numbers of
clusters generated by QCA and QCB and their running costs
(time), respectively. The experiment results for the first
query set (uniform distribution) are presented in Fig. 5,
while the results for the second query sets are presented in
Fig. 6. The results indeed indicate a great reduction of the
number of queries if query clusters are used instead of each
individual query. As demonstrated, cluster techniques are
also very efficient. Note that both QCA and the online
clustering algorithm OQC require more computation time
for Zipf query distribution. This is because, in such a
distribution, there are many queries intersecting together;
this makes QCA and OQC less efficient.

In the second experiment, we evaluate the performance of
OQC against deletion of queries. We take the two sets of
queries generated in the first experiment, then randomly
divide a query set into 10 batches and 20 batches, respec-
tively. Consequently, we have four different query sets:
uni10, uni20, zipf10, and zipf20. For instance, uni20 means
that we randomly divide the query set, generated according
to a uniform distribution into 20 batches.

In the experiment, each batch of queries are inserted in a
random order. After the insertion of the first element of the
ith (i � 2) batch and before inserting the ðiþ 1Þth batch, the
queries in the ði� 1Þth batch are randomly dropped. Before
inserting the ith batch, we record the ratio of the number of
clusters generated by QCA (against the remaining queries)
and the number of clusters generated by OQC, as well as
the average ratio of the number of clusters by QCA over
OQC. We also record such ratios between QCB and OQC.
These average ratios, with respect to these four data sets,
are depicted in Fig. 7a. It demonstrated that OQC is very
effective in such a dynamic environment. This, together
with the evaluation of running time as depicted in Fig. 7,
suggested that our online clustering technique is efficient
and effective.

5.2 Query Processing Costs by QCA and QCB

A query set with 2M queries is generated in a similar way as
the query set (with uniform distribution of Dð�q;�qÞ) in the
first experiment in Section 5.1 except �q 2 ½0:005; 0:02�.
Two data stream models are used (semisort and uniform).
The others settings adopt system default values.

We run both QCA and QCB to generate clusters,
respectively, and then call CASU to process these clusters
in these two data streams. We record the number of total
times triggers are fired, respectively, at a set of moments in

LIN ET AL.: APPROXIMATE PROCESSING OF MASSIVE CONTINUOUS QUANTILE QUERIES OVER HIGH-SPEED DATA STREAMS 693

Fig. 5. Uniform distribution. (a) Cluster number. (b) Cluster running time.

Fig. 6. Zipf distribution. (a) Cluster numbers. (b) Clustering running time.

Fig. 7. Evaluation against different query patterns. (a) Ratio. (b) Computation time.
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the data streams, as well as the total processing time. The
experiment results, reported in Fig. 8, demonstrate that
CASU based on QCA leads to very similar processing time
to that by CASU based on QCB. However, QCB causes more
trigger fires; thus, more times query clusters are repro-
cessed and a greater number of messages sent out. There-
fore, we will use QCA as the offline query clustering
algorithm, thereafter, to illustrate our performance evalua-
tion results in combining with CASU and CSU.

5.3 Evaluation of Continuous Processing
Techniques

We evaluate the synchronous update technique (Algorithm 3)
and the asynchronous update technique (Algorithm 4). To
discount the great impact by our clustering techniques, we do
not apply them.

In this set of experiments, the precision guarantee � of a
summary is assigned to 5� 10�3. The number Nq of queries
is assigned the default value. The 1M queries are randomly
generated with the precisions eq 2 ½5� 10�3; 2� 10�2� and
are enforced without any query interval containment in
order to apply Algorithms 3 and 4, where mutual contain-
ment is disallowed.

Three data streams are used; each has 5,000,000 data
elements. In the three sets, the data distributions (Dd) are
uniform, normal, and semisort, respectively. We assume
that the query set is pregiven and the system continuously
runs the query processing SU and CASU (but without
clustering). Since SU is too slow to finish, we do not present
its evaluation results; it will not be further evaluated in our
performance study. In our experiment, we want to report
the processing time involved (query processing and
summary maintenance) per data item. As such time is too
short to be recorded precisely, we record the total
processing time for every batch of 1,000 elements, and then
divide it by 1,000; this average time is used as the
processing time “per data item.” The experiment results

reported in Fig. 9 demonstrated that our asynchronous

technique can process a quite rapid stream with an average

arrival rate at about 1,000 element per second against

1M unclustered continuous queries.
In the experiment results, the time per item in the initial

part is significantly higher than that of later arrival element.

This is because, with a small volume of stream, triggers are

fired more frequently and, thus, the query reprocessing

costs are higher.

5.4 Scalability against Streams

Now, we evaluate the scalability of CSU and CASU against

the whole data stream model regarding data stream sizes

and arrival rates.
In this set of experiments, the precision guarantee � of a

summary is assigned to 5� 10�3. The set of queries is

generated in a similar way as the uniform query set in the

first experiment in Section 5.1, except that we now limit �q in

the interval ½5� 10�3; 2� 10�2�. Nq is 2,000,000.
The three data streams in the experiments conducted in

the last section are used. We record the processing time per

data item in the same way as that in the last section. The

experiment results, reported in Fig. 10a, Fig. 10b, and

Fig. 10c, show that CASU can process a very rapid data

stream in real time with a stream arrival rate, more than

10K elements/second on average. Although CSU is much

slower than CASU, it still can support rapid data streams
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Fig. 8. Clustering algorithm comparison. (a) Semisort CASU. (b) Uniform CASU. (c) Semisort CASU. (d) Uniform CASU.

Fig. 9. Asynchronous update.
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with an arrival rate more than 1,000 elements/second on

average.
In the performance study, the semisort data set performs

slightly worse in contrast to the results in Section 5.3. This is

due to 1) query processing costs are very dominant without

query clustering, 2) a summary of semisort data gives more

tuples and is more expensive (than others) to continuously

maintained, and 3) continuous query processing costs

against a summary of semisort data are less expensive than

others.

5.5 Evaluation of Query Dynamic Behavior

Suppose that a summary maintained in the experiments is

0:005-approximate. We evaluate the performance of CSU

and CASU against a stream of queries that are dynamically

registered and removed. A stream of queries follow

two models: 1) insertions only and 2) insertions and

deletions.
In the first set of our experiments, the two data sets are

used 5M semisort data set and 5M normal data set. A set of

2M queries are used in order to have a reasonably frequent

updates (insertion or deletion) of query clusters; it is

generated in a similar way as the uniform query set in the

first experiment in Section 5.1 except that �q is in the interval

½5� 10�3; 2� 10�2�. The arrival of a query is randomly

assigned among the 5M data elements.
We measure the total processing time per data item e,

(i.e., the time of maintaining the summary, the time spent

on OQC, and the time spent on processing queries after e

arrives but before the next item arrives), in the same way as

in Section 5.3. The experiment results, illustrated in Fig. 11a

and Fig. 11b, also demonstrate that CASU can support a

very rapid data stream with stream arrival rate at least

10K items/second.

In the second set of experiments, we do a performance
study on a possible impact of dynamic deletions and
insertions of queries. The four sets of queries are generated
in a similar way to those for the second experiment in
Section 5.1, except �q is in the interval ½5� 10�3; 2� 10�2�.
They are also named uni10, uni20, zipf10, and zip20,
respectively. Note that each query set has 2M queries. We
assume that a batch of queries are issued simultaneously
and the arrival time of each batch is randomly chosen to
span the whole data set. Before a query batch is issued, the
queries in the previous batch are gradually removed in a
random order, like a “sliding window.” The data set used in
this experiment is a semisort data set with 2M data
elements. In our experiment, we record the total computa-
tion time and the total message numbers (i.e., the number of
total times to reprocess clusters) for result notification. The
experiment results are reported in Fig. 12. It shows that
CASU is not very sensitive to different dynamic behavior of
queries regarding the computation costs.

5.6 Evaluation of Sliding Window Techniques

In this section, we evaluate our technique (CSU) for
processing continuous quantile queries for sliding window
data stream model. We use default parameter settings for
queries as described in Table 1 except �.

We first examine the possible impacts of different data
distributions. Three data sets are generated with uniform,
normal, and semisort distributions, respectively. We fix the
window size to be 500K and � to be 0.005. We record the
total time in our experiment for each data set. In the results
depicted in Fig. 13, the dark shadow parts illustrate the
costs (time) spent on maintaining quantile summaries.

In the second experiment, we evaluate the performance
against different window sizes and �. A window size N is
chosen from one of f200K; 600K; 1Mg, while � is chosen
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Fig. 10. 2M Predefined queries on 5M data elements. (a) Uniform data. (b) Normal data. (c) Semisort data.

Fig. 11. 2M dynamically issued queries. (a) Semisort data. (b) Normal data.
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from one of f0:005; 0:01; 0:02g. We record the total time for
processing queries against the data set under a sliding
window model. The data set is chosen using the default
setting values in Table 1. The experiment results, reported
in Fig. 14, show that the smaller a window size is, the more
computation time is needed. This is because, in our
technique, the trigger value for CSU is proportional to the
window size. The smaller the window size is, the more
times CSU is invoked.

5.7 Evaluation for Real Data

In this section, we do the performance study of CSU and
CASU against a real data set downloaded from (http://
www.ldc.upenn.edu/Projects/TDT3/). We have archived
the news stories received through Reuters real-time
datafeed, which contains 365,288 news stories and
100,672,866 (duplicate) words. All words such as “the”
and “a” are removed before term stemming. We have done
similar experiments as those in the second set of experi-
ments in Section 5.5, but replace them with this new data
set. In the experiment, we report the total computation time,
which is illustrated in Fig. 15.

As a short summary, our comprehensive performance
study clearly demonstrates that the proposed query cluster-
ing techniques and query processing techniques are both
effective and efficient. Under the constraint of meeting
users’ precision requirements, CSU and CASU can both
support real-time processing of rapid streams and the
CASU is a much better choice.

6 CONCLUSIONS AND REMARKS

In this paper, we presented our techniques for online
processing of massive continuous quantile queries over data
streams. While many research results on continuous queries
and data stream computation have been recently reported in
the literature, the research in this paper is among the first
attempts to develop scalable techniques to deal with massive
query streams and data streams. Our query processing
techniques are not only efficient and scalable, but also can
guarantee the query precision requirements. Further, the
techniques are applicable to both whole streams and sliding
windows. Our experiment results demonstrated that the
techniques are able to support online processing of massive
queries over very rapid data streams.

Note that our techniques already cover a “composite”
quantile query (i.e., a set of quantile queries); in this case, a
composite quantile query is just decomposed into a set of
single quantile queries. The techniques presented in this
paper against whole data streams may be immediately
applied to any �-approximate quantile summary that
follows Definition 1 and the three conditions in Theorem 1.
Our sliding window techniques may also be extended to
support the deterministic quantile summary technique in
[1] by applying our synchronous update technique for
sliding windows to each level. Very recently, Cormode et al.
[6] develop a framework for computing biased quantiles
over data streams. Our techniques are not immediately

696 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 5, MAY 2006

Fig. 12. Query stream acting as a sliding window. (a) Time consumption. (b) Message number.

Fig. 13. Time consumption against different data.

Fig. 14. Time against different settings. Fig. 15. Time consumption for NewsData.
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applicable to such a biased quantile computation problem.

As possible future work, we will investigate this.
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