
Building a Repository for Workflow Systems

Chengfei Liu Xuemin Lin
School of Computing Sciences

University of Technology, Sydney
NSW 2009, Australia

School of Computer Science and Engineering
The University of New South Wales

NSW 2052, Australia
liu@socs.uts. edu.au Lzue@cse.unsw.edu.au

Xiaofang Zhou Maria Orlowska
Dept of Computer Science and Electrical Engineering

University of Queensland
QLD 4072, Australia

{zxf, maria}@csee.uq.edu.au

Abstract

workflow technology is becoming the key technology for business process modeling, reengi-
neering and automating. During the workflow specification, enactment and administmtion,
there may appear various types of metadata about workflow specifications and instances.
A repository manager is, therefore, necessary to store and manage these metadata. In this
paper, a workflow metamodel is proposed first. Then the requirements of repository support
for workflows are explored and analysed. Based on the requirements, an object oriented
design for the repository manager is presented.

Keywords: Workflows, Repository, Object-Oriented Design.

1: Introduction

The requirement for streamlining business processes through re-engineering and au-
tomation has influenced research and development in workflow systems. Workflow manage-
ment systems (WfMSs) [3] have been used for modelling, re-engineering and automating
business processes to various degrees in application domains such as telecommunications,
finance and accounting, manufacturing, office automation, and healthcare. The success of
WfMSs has been driven by the need for businesses to stay technologically advanced in the
ever-increasing competition of global markets.

A workflow is used to model and automate a business process by coordinating a set
of tasks that are connected in order to achieve a common business goal. Typically, the
tasks in a workflow systems are executed by different processing entities in a heterogeneous,
distributed and autonomous environment. Each task defines a logical step that contributes
towards the completion of a workflow, it may be completed by human, by an application
system or by both of them. A workflow management system (WfMS) provides a set of tools
for workflow model specification, workflow enactment, administration and monitoring of
workflow instances.

348 0-7695-0393499 $10.00 Q 1999 IEEE

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

349

During the process of workflow design, execution and administration, there may appear
various types of metadata concerning the enterprise’s business activities, organization
and resources, the development, management and execution of workflows, etc. How to
store and manage these data and provide services to WfMS tools falls into the matadata
management, called repository system [l].

A repository is a shared database of information about engineered artifacts produced
or used by an enterprise. A repository manager implements a layer of control services
for modeling, retrieving, and managing the objects in a repository, usually on top of a
DBMS. The repository technology is introduced in CASE/CAD environments to provide
unified access and management to design data. Tools can work together by using common
services supported by a repository management system, such as checkout/checkin, version
and configuration control, notification, etc.

Currently, the market for repository systems is mainly driven by vendors of data dic-
tionaries, CASE tools and CAD tools. There has been, to the best of our knowledge, no
report on repository support for workflows so far in the literatures. Similar to a CASE
repository [lo, 61, there are many metadata management issues in a workflow repository,
e.g., team development support for workflows, WfMS tools integration, dependency track-
ing and design changes propagation. Besides, it is also necessary for a workflow repository
manager to support workflow execution and administration, e.g., services for scheduling,
execution and tracking of a workflow, statistics report, resource discovery and manage-
ment.

In this paper, we study repository support for workflows. The rest of the paper is
organized as follows: In section 2, we present a metamodel for workflows. Section 3
discusses the requirements of repository for workflows. Based on these requirements,
Section 4 introduces an object-oriented design of the workflow repository manager. Section
5 concludes the paper.

2: A Metamodel for Workflows

Business processes form a backbone of enterprises, they model routined work within an
enterprise, describe how individual tasks (activities) inside an enterprise can be connected
or coordinated to achieve a business process goal, and how processing resources and data
resources can be used to perform each task. For example, a telecommunication company
may have New Service Provisioning, Service Change Provisioning, Customer Billing pro-
cesses etc. The New Service Provisioning process consists of tasks to collect accurate
information from customers and create a corresponding service order record, then to pro-
vide line provioning either using existing facilities or physical installation of new facilities,
and change the telephone directory, finally to update the telephone switch to activate ser-
vice and then generate a bill. The tasks in the process may access data in some databases,
such as customer database, facility database, directory database and billing database.

A metamodel of workflows is fundamental to study a workflow repository. The meta-
model determines how information is stored and accessed in the repository, how well data
integrity can be maintained, and how easily the existing model can be extended to accom-
modate new needs. Therefore we propose a workflow metamodel as shown in Figure 1.

A workflow specification consists of a set of weak entities workflow task as its com-
ponents. A workflow task invokes a workflow specification. Workflow dependent task

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

350

Figure 1. Conceptual Model of Workflows

properties are defined on a workflow task such as whether the task is critical to a work-
flow, etc. Constraints between tasks are treated as a unary relationship of workflow tasks.
In specifying different types of constraints, we form a high level entity called construct
which is shown in figure 2. Based on the relationship between two set of tasks: prese-
cessor tasks and successor tasks, the construct is specialized to several subtypes which
comply with the Workflow Management Coalition [3]: sequential, conditional, iterative,
split (And/or), and join(And/Or).

parameters, visible states and cornpensatability of the task [9), etc. It may be invocated
by more than one workflow tasks from the same or different workflows. For the purpose of
nesting, a workflow specification is treated as a subtype of a task specification, it can be
invoked as a workflow task in another workflow specification. Another subtype of a task
specification is a primitive task specification. The properties of this entity set include im-
plementation of the task (i.e. the task body), the processing resources and data resources
used to execute the task, etc.

There are two appealing features in the metamodel compared with [2]: 1). We explic-
itly distinguish workflow dependent aspects of a task (modelled as workjlow task) from
workflow independent aspects of the task(model1ed as task specification), this enables in-
dependent development and reuse of tasks. 2). By defining workflow specification and
primitive task specification as subtypes of task specification, the model makes nesting and
modularization of workflows possible.

'

A task specification specifies workflow independent properties of a task, e.g., input/output

3: Requirements of Workflow Repository

To facilitate integration of tools in a workflow management environment, a workflow
manager should provide the following services:

basic operations for all data stored in the workflow repository
version management and configuration control - A version [4] is a semantically mean-
ingful snapshot of an object at a point in its lifecycle. A version history of an object

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

351

Figure 2. Subtypes of Constraints

can be represented as a directed acyclic graph. A configuration serves to group to-
gether objects that are to be treated as a unit for the purpose of versioning. The
configuration control mechanism is used to make a binding between a version of a
composite object and a version of each of its versioned components. Version manage-
ment and configuration control is useful to support team development of workilows
by allowing multiple designers working on different versions of same task specifi-
cation or workflow specification. It is also useful to support evolution of workflow
models [8].
verification - Once a workflow specification is completed, a verification of its cor-
rectness k important. Verification services can be supported given some correctness
criteria, e.g., acyclicness, reachability of a task, etc.
structured browsing and editing of workflow structures
worklist management - A worklist consists of a list of work items. Each work item
is assigned to a processing resource during the run-time. A task instance may have
one or more work items.
run time tracking - It is useful to provide services for tracing state transitions of a
workflow instance and record them into audit trail - a sequence of history records of
the state transitions of a workflow instance from the start to completion.
run time query facility - It is desirable to provide a query facility so that workflow
users can monitor the execution states of a workflow or a task.
performance turning - In order to improve workflow performance, a workflow system
administrator may need statistic data from previous executions for analysis. For
instance, we need to know average execution time of a workflow or a task, the
coverage of a task in a workflow, the workload of the processing entities.
resource management - The information about processing and data resources should
be well organized and stored in the repository. Services for retrieving information
about resources and finding proper resources might be supported.
context management - To find resources easily, we can use a context dictionary to
group resources. A context can be described by some properties and services.

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

352

4: Design of the Repository Manager

Objects in a workflow repository are complex. Storing complex objects in relational
tables usually requires taking the objects apart and storing a representation in a set of flat
tables. Reconstructing the objects involves a series of selects from the RDBMS and re-
assembling the objects. During this process, previous existing identity relationships must
be preserved. In contrast, an OODBMS has rich facilities for complex object modelling.
Complex objects are laid out in contiguous memory instead of splitting them into differ-
ent tables. A relationship between objects only costs a pointer dereference. In addition,
subtyping, version control and configuration management are usually supported by most
OODBMSs. Therefore, we choose object-oriented approach for workflow repository man-
agement. In this section, we introduce an object-oriented design of a repository manager
for enterprise workflows based on requirements.

4.1: Common Object Services

Every object in the repository may have some common properties, therefore, a class
called Object is designed as the root of the class hierarchy. Besides, the class ObjectSet is
designed to hold all instances of the class.

define class Object
type tuple(name: string,

neu: Object,
destroyCO: Object): boolean.

define class ObjectSet
type set(0bject);
createset: Objectset.
destroySet(os: Objectset): boolean,
add(os: ObjectSet, 0 : Object): boolean,
remove(os: ObjectSet. 0 : Object): boolean.

description: string) ;

4.2: Version Management and Configuration Control

The class VersionedObject defines a versioned object which consists of a set of Ob-
jectversios. current version and uersionCount is recorded together with a set of methods,
e.g., checkout and checkin a version, notify other versioned objects when a versioned object
has been modified.

define class Objectversion
type tuple(versionNumber: integer,

predversions: set(0bjectVersion).
succversions: set (Objectversion) ,
object: Object).

type tuple(versionSet: set(0bjectVersion).
current : Objectversion.
versioncount : integer) ;

define class VersionedObject subtype of Object

checkout(v0: VersionedObject, vn: integer) : Objectversion,
che&in(vo: VersionedObject, pred: set (ObjectVersion) , 0 : Object) : integer, .
notify(vo: VersionedObject, others: set(Versioned0bject)): void.

A versioned composite object is a natural configuration which groups together ver-
sioned component objects. When a version of a versioned composite object is checked

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

353

out to a workspace, the corresponding versions of all its versioned component objects are
also checked out to the space. If a change is to be made to the version of one of its
versioned component objects, this component version needs to be checked out to a more
private workspace from the workspace where its parent resides. After modification, one
can checkin (back) the new version of the component to the workspace of its parent. New
version of its parent composite object, therefore, may be created if one wants to checkin
the modified parent object.

4.3: Workflow Design

The class TaskSpec corresponds to the entity Task Specification and the relationship
Defined-by in Figure 1. Every task specification has a list of input/output parameters,
reveals a set of visible states, has a set of properties, say, compensatable or not, may
be referenced by tasks from several workflows. In order to make it easy to find when
designing a workflow specification, we use contezt to categorize task specifications. The
context management and task discovery issues will be discussed later.

define class TaskSpec subtype of Object
type tuple(inputParameters: set(Parameter),

OntputParameters: set (Parameter),
VisibleStates: set(State1.
context: set(Context) ,
property: set (Property),
reference: set (Task) 1 :

addContext(ts: Taskspec, c: Context):
removeContext(ts: TaskSpec. c: Context):
modifyContext(t6: TaskSpec. oc. nc: Context):
addProperty(t6: TaskSpec, p: Property):
removeProperty(t.6: TaskSpec, p: Property):
modifyProperty(t6: Taskspec, op. np: Property):
addRef erence (ts : Taskspec, t : Task) :
removeReference(ts: Taskspec, t: Task):
addInputParameter(ts: Taskspec. p: Parameter):
removeInputParameter(t6: Taskspec. p: Parameter) :
addOutputParameter(ts: Taskspec. p: Parameter):
removeOutputParameter(ts: Taskspec, p: Parameter):

boolean.
boolean,
boolean,
boolean,
boolean,
boolean,
boolean,
boolean,
boolean,
boolean,
boolean,
boolean.

As a subclass of TaskSpec, Pn'rnTaskSpec records the task body of a primitive task
specification, the processing and data resources used. A task or part of a task (work item)
can be assigned statically or dynamically to a processing resource.

define class PrimTaskSpec subtype of TaskSpec
type tnple(taskBody: TaskBody ,

procResource : set (ProcResource) ,
dataResource: set (DataResource)) ;

setTaskBody(t6: PrimTaskSpec. tb: TaskBody): boolean.
qualify(ts: PrimTaskSpec, p: ProcResonrce): boolean.
addPro;Resource(ts: &imTaskSpec. p: ProcResource) : boolean,
deleteProcResource(ts: PrimTaskSpc, p: ProcResource): boolean,
addOataResource(ts: PrimTaskSDec. D: ProcResource) : boolean. . . .
deleteDataResource(t6: PrimTaskSpec. p: OataResource) : boolean.

WFspec is defined as another subclass of Taskspec. I t consists of a set of Workflow
Tasks, with some tasks as initial, some as final. The operation acycZicDirected is used to
check if the workflow model forms an acyclic directed graph.

define class WSpec subtype of TaskSpec

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

354

type tuplectaskset: set(Task),
initialTasks: set(Task),
finalTasks: set(Task1);

addTask(t: Task, w: UFSpec): boolean,
removeTask(t: Task, w: UFSpec): boolean,
addInitialTask(t: Task, w: UFSpec): boolean,
removeInitialTask(t: Task, U: YFSpec): boolean.
addFinalTaskct: Task, w: UFSpec) : boolean,
removeFinalTask(t : Task, w: YFSpec) : boolean,
acyclicDirected(w: Workflow): boolean.

The class Task is designed to correspond to the entity workflow Task in Figure 1.
A workflow task acts as a component of a workflow specification. It defines how an
independent task is participated in the workflow, including constraints between tasks
(expressed by the attributes preConstmct and postConstmct), property (e.g.,, critical or
not), compensating task defined for backward recovery [5, 91.

define class Task subtype of Object
type tuple(workf1ow: UFSpec.

definedBy: Taskspec,
preconstruct: Construct,
postConstruct: Construct,
property : set (Property),
compensation: Taskspec) ;

createTask(w: YFSpec) : Task,
removeTask(t: Task) : boolean,
setYorkflow(t: Task. U: UFSpec): boolean,
setDefinedBy(t: Task. ts: Taskspec): boolean.
setPreConstruct(t: Task. c: Construct): boolean,
setPostConstrnct(t: Task, c: Construct): boolean,
addTrigger(t: Task, c: Construct): boolean,
removeTrigger(t: Task, c: Construct) : boolean,
addProperty(t: Task. p: Property): boolean,
removePropertyCt: Task, p: Property): boolean,
setCompensation(t: Task, cp: Taskspec) : boolean.

The class construct defines a constraint between two set of tasks: presecessor tasks and
successor tasks.

define class Construct subtype of Object
type tuple(predTask: setcfask) ,

addPredTask(t: Task, c: Constraint): boolean,
removePredTask(t: Task. c: Constraint): boolean,
addSuccTask(t: Task, c: Constraint): boolean,
removeSuccTask(t: Task, c: Constraint): boolean;

succlask: set(Task));

As shown in Figure 2, a construct entity may be specialized to several subtypes: sequen-
tial, conditional, iterative, split, and join. These subtypes can be defined as subclasses of
the construct class, e.g., the sequential, conditional and join subclasses can be defined as
follows:

define class Sequential subtype of Construct
type refine predTask with CardinalityCpredTask) = 1.

refine succTask with CardinalitybuccTask) = 1.
define class Conditional subtype of Construct
type tuple(condition: Condition) ;

define class Join subtype of Constrnct
refine predTask with cardinality(predTask) = 1.

type refine succTask with cardinality(succTask) = 1;

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

355

As designed above, repository objects together with their relationships constitute a
labeled directed graph, with nodes representing objects and arcs representing relationships.
A change made to an object, therefore, can be propagated along all dependency arcs
originated from the objects [7]. How the change impacts on its related objects depands
on the semantics of the dependency, i.e., the relationship between them and the type of
the change operation. For examples, a delete operation on an object will delete all its
component objects, but only unlink the references to its referenced objects.

4.4: Workflow Run-time Suppor t and Administration

The class WFZnst is designed to keep useful data about workflow instances. It is gen-
erated by scheduling tools, and used by tracking tools. It is also used by administration
tools to generate statistics for the workflows. The attribute wfSpec is used to refer to the
workflow specification from which the instance is made. The attribute taskLlist is used
to record information about tasks which are really executed during the run-time. These
include the processing resource assigned, the values of input/output parameters, etc. The
attribute log is used as audit trail of the workflow instance. It keeps all state transition
information of the instance. The state information of the workflow instance and its tasks
can be derived from the audit trail.

define class WFInst subtype of Object
type tuple(vfSpec: YFSpec.

tasklist: set(Task1nfo).
log: list(Log1tem)) ;

vorkflovStatus(v: WFInst) : set(tuple(Task, State)),
addTask(v: WFInst. t: TaskInfo): boolean,
addLog(v: WFInst. 1: LogItem): boolean,
taskStatus(v: WFInst, t: Task): State.

tuple(task: Task,
define type TaskInfo

proclntity: ProcResource,
inputParameter: set (Parameter),
outputparameter: set(parameter)).

define type LogItem
tuple(task: Task,

date : Date,
time : Time,
transition: String,
oldstate: State,
nevState: State).

The class worklist is used to record work items in a workflow environment, and their
assignments to processing resources.

define class Worklist subtype of Object
type tuple(procEntity: ProcResource,

addYorkItem(t: TaskItem. v: YorkList): boolean,
removeYorkItem(t : TaskItem, v: Worklist) : boolean,
resourceStatus(d: Date, t: Time): string.

define type YorkItem
tuple (date : Date,

time: Time,
duration: Time,
VfInst : WFInst *
task: Task).

workItem: list (YorkItem)) ;

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

356

4.5: Resource Management

The class ProcResource is designed to correspond to the processing resource entity. A
processing resource, from the perspective of practical use in workflows, can be abstracted
as providing a set of services with certain invocation formats. Each service has a signature,
belongs to some contexts, and has a set of properties. ProcResoum can be specialized to
several subclasses: Application, Surrogate and Human. An application system can be a
customized application programs, or a general purposed software system. A Surrogate is
designed to hold useful information of a foreign resource that tasks may invoke. A task
may also be accomplished by human being.

define class ProcResource subtype of Object
type tuple(function: set(Service) ,

invocationFormat: string).
define type Service:
tuple(name: string.

inputparameter: set (Parameter),
outputparameters: set (Parameter),
context: set (Context),
property: set(Property)).

define class Application subtype of ProcResource
type tuple(executab1e: File,

sourcecode: File,
document : File,
supportedBy: Application.
monntedh: Hachine).

type tuple(1ocation: Location,
define class Surrogate subtype of ProcResource

ownership: Organization.
authority: Authority).

define class Human subtype of ProcResource
type tuple(tit1e: string.

address: string).

A data resource is modelled by the class DataResource.

define class DataResource
type tuple(1ocation: string,

ownership: string.
executed0n: Application.
accessnode: integer,
security: AccessControl.
structure: string).

The class Contezt is used to classify resources in terms of characteristics. A context
forms a lattice.

define class Context subtype of Object
type tuple(super: . set(Context),

alias: set(string),
properties: set(Pr0pert.y));

addSuper(sc: Context):
rernoveSuper(sc: Context) :
addAlias(a: string):
removeAlias(a: string) :
addPropertiesCp: Property) :
removeProperties(p: Property):

type set(Context);
shovContextLattice(c: Context) :
listContext(c: Context, p: Property):

define class Contextset subtype of Object

boolean.
boolean,
boolean,
boolean,
boolean.
boolean.

;Set

set (Context),
set (Context).

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

357

In the class TaskSpec and the class ProcResource, the attribute context is included for
the purpose of finding proper tasks or processing resources using context. For example,
search methods based on context can be added to the class TaskSpecSet to find appropriate
tasks.

define c las s TaskSpecSet subtype of Objectset
type se t (TaskSpec) ;
l is tTasks(c: Context): s e t (Taskspec),
search(c: Context, ps: set(Property1): s e t (Taskspec),
bestNatch(c: Context, ps: set(Property)) : Taskspec.

5: Conclusion

In this paper, we proposed a metamodel and explored the requirements to build a
repository for workflow systems. An object-oriented design of a repository manager was
presented. Currently, a preliminary prototype of a workflow repository manager based
on the above design has been developed using Objectstore OODBMS in SmallTalk Vi-
sualWork2.0 environment. The implementation turns out that developing a workflow
repository manager based on an OODBMS is quite productive as some services such as
version management can be easily implemented using functions provided by Objectstore.

References

[I] Philip A. Bernstein and Umeshwar Dayal. An overview of repository technology. In
Proceedings of the 20th VLDB Conference, pages 705-712, 1994.

[2] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual modeling of workflows. In
Proceedings of 0 0 - E R conference, pages 341-354, 1995.

(31 Workflow Management Coalition. The workflow Management Coalition Specification
- Terminology and Glossary, 1996.

141 R. H. Kata. Toward a unified framework for version modeling in engineering
databases. AGM Computing Surveys, 22(4):375-408, December 1990.

[5] D. Kuo, M. Lawley, C. Liu, and M. Orlowska. A general model for nested transactional
workiiows. In Proceedings of the International Workshop on Advanced Dansaction
Models and Architectures, pages 18-35, Goa, India, September 1996.

[6] H. C. Leftkovits. IBM’s Repository Manager/Mvs: Concepts, Facilities, and Capa-
bilities. QED Technical Publishing Group, 1991.

[7] C. Liu, H. Li, and M. Orlowska. Supporting update propagation in object-oriented
databases. Data and Knowledge Engineering, 26(1):99-115, 1998.

[e] C. Liu, M. Orlowska, and H. Li. Automating handover in dynamic workflow environ-
ments. In Proceedings of Advanced Information Systems Engineering 10th Interna-
tional Conference (CAiSE*98), pages 159-171, Pisa, Italy, June 1998.

Confirmation: a solution to non-
compensatability problem in workflow systems. In Proceedings of the 15th Inter-
national Conference on Data Engineering, Sydney, Australia, March 1999.

[lo] L. Wakeman and J. Jowett. PCTE - The Standard for Open Repositories. Prentice-
Hall, 1993.

[9] C. Liu, M. Orlowska, X. Zhou, and X. Lin.

Authorized licensed use limited to: UNSW Library. Downloaded on August 10, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

