
Confirmation: increasing resource
availability for transactional workflows

Chengfei Liu a, Xuemin Lin b, Maria Orlowska c,*,
Xiaofang Zhou c

a Advanced Computing Research Centre, School of Computer and Information Science,

University of South Australia, Adelaide, SA 5095, Australia
b School of Computer Science and Engineering, The University of New South Wales, Sydney,

NSW 2052, Australia
c Department of Computer Science and Electrical Engineering, University of Queensland, Brisbane,

St. Lucia, Qld 4072, Australia

Received 19 May 2002; received in revised form 27 September 2002; accepted 23 November 2002

Abstract

The notion of compensation is widely used in advanced transaction models as means

of recovery from a failure. Similar concepts are adopted for providing ‘‘transaction-

like’’ behaviour for long business processes supported by workflows technology. In

general, it is not trivial to design compensating tasks for tasks in the context of a

workflow. Actually, a task in a workflow process does not have to be compensatable in

the sense that the forcibility of ‘‘reverse’’ operations of the task is not always guaranteed

by the application semantics. In addition, the isolation requirement on data resources

may make a task difficult to compensate. In this paper, we first look into the require-

ments that a compensating task has to satisfy. Then we introduce a new concept called

confirmation. With the help of confirmation, we are able to modify most non-com-

pensatable tasks so that they become compensatable. This can substantially increase the

availability of shared resources and greatly improve backward recovery for workflow

applications in case of failures. To effectively incorporate confirmation and compen-

sation into a workflow management environment, a three level bottom-up workflow

Information Sciences 153 (2003) 37–53

www.elsevier.com/locate/ins

*Corresponding author.

E-mail addresses: chengfei.liu@unisa.edu.au (C. Liu), lxue@cse.unsw.edu.au (X. Lin),

maria@csee.edu.au (M. Orlowska), zxf@csee.uq.edu.au (X. Zhou).

0020-0255/03/$ - see front matter � 2003 Elsevier Science Inc. All rights reserved.

doi:10.1016/S0020-0255(03)00066-5

mail to: chengfei.liu@unisa.edu.au


design method is introduced. The implementation issues of this design are also dis-

cussed.

� 2003 Elsevier Science Inc. All rights reserved.

Keywords: Advanced transaction models; Workflows; Backward recovery; Compensat-

ing transactions

1. Introduction

Recent years have seen widespread use of databases in non-traditional ap-

plications such as office automation, CAD/CAM, publication environments

and software development environments. The transactions in such environ-

ments are often complex, with the need to access data held in multiple au-

tonomous database systems for a long duration. The traditional transactions

[7,15] are not appropriate for these applications since some of the ACID
properties contradict the requirements of these applications. For example, a

long-running transaction may access many data in the course of its execution.

Due to the isolation requirement, these data cannot be released until the

transaction commits. If some other transactions need to access some data held

by the transaction, it will wait––perhaps for hours or even days––for the long-

running transaction to commit. This is apparently unacceptable. To overcome

the limitations of the traditional transaction model, many advanced transac-

tion models have been proposed [1]. Most of them have taken the application
semantics into account and provided some semantic mechanisms for pro-

grammers. For examples, the Multi-level Transactions [1] allows more con-

currency at higher level compared to single-level concurrency control.

Commutativity of higher level operations can be explored by programmers

based on application-specific semantics. Concurrency control for transactions

on aggregate attributes has been particularly studied by Reuter [17], Gawlick

and Kinkade [4], O�Neil [16]. In their proposed methods, programmers are
allowed to make a special request to verify that an attribute bears some relation
to a known value. No lock needs to be put on a data item. Similarly, in the NT/

PV model [10] and the ConTract model [18], invariants have been used to allow

more concurrency.

To guarantee the atomicity of long-lived transactions, compensating trans-

actions [6,11] have been widely used in many advanced transaction models,

such as Sagas [3], ConTract, Flex [2], Multi-level Transactions and Open-

nested Transactions. For a transaction T , a compensating transaction C is a
transaction that can semantically undo the effects of T after T has been com-
mitted. For example, the compensation of a reservation can be a cancellation,

and the compensation of a withdrawal can be a deposit. To deal with the

38 C. Liu et al. / Information Sciences 153 (2003) 37–53



problem of long-lived transactions, the Sagas model, for instance, structures a

long-lived transaction as a sequence of subtransactions, and each of them is

associated with a compensating subtransaction. In case one of the subtrans-

actions in such a sequence aborts the previous subtransactions are undone by
automatically scheduling the associated compensating subtransactions. By al-

lowing transactions to release partial results before they complete, we are able

to avoid the long-duration waiting problem caused by long-lived transactions.

However, the Sagas model, like most other advanced transaction models based

on compensation, is useful only when the subtransactions in a Saga are rela-

tively independent and each subtransaction can be successfully compensated.

Reliability is of critical importance to workflow systems [5,19]. A workflow

consists of a set of tasks that are coordinated in order to achieve a common
business goal. Each task defines a logical step that contributes towards the

completion of the workflow. Workflows with transaction-like behaviours are

referred to as transactional workflows [8,19]. Transactional workflows share

the objectives of some advanced transaction models about selective relaxation

of transactional properties of business processes based on application seman-

tics. As a workflow instance (enactment process) tends to be long lasting,

failures could occur at various stages within its life-time. We can classify

failures into two separate groups: (1) system failures: failures in the underlying
infrastructure (e.g., hardware, network) or failures within the workflow system

(e.g., scheduler, databases); (2) semantic failures: failures associated with the

execution of workflow tasks (e.g., unavailability of resources, internal deci-

sions). A workflow management system (WfMS) normally deals with system

failures by implementing the feature of forward recovery. Dealing with se-

mantic failures requires the feature of backward recovery, i.e., to eliminate the

effects of failed workflow instances. In this paper, we focus on the support of

backward recovery.
The notion of compensation is important to workflow systems not only

because most workflow instances tend to be long lasting, but also because tasks

in a workflow instance may not always be able to be undone (e.g., human

actions and legacy system processing). One can define compensating tasks

which semantically undo the executed tasks of the failed workflow instance

[9,12]. Compensation has been applied to tasks and group of tasks (spheres) to

support partial backward recovery in the context of the FlowMark WfMS [13].

Usually, it is assumed a compensating task is associated with a task. However,
this assumption is not always true. A task can be non-compensatable if

the forcibility of the reverse operations of the task cannot be guaranteed by

the application semantics. In this paper, we carefully investigate the proper-

ties of shared resources and tasks which may be performed on these resources.

We find some tasks are non-compensatable because the reverse operations

of the task may not be always executed successfully. In addition, if the relax-

ation of isolation on a shared data resource cannot be compromised by a

C. Liu et al. / Information Sciences 153 (2003) 37–53 39



workflow application, the compensation cannot be applied to the tasks which

are performed on the resource. As such, we introduce a new mechanism called

confirmation. By using confirmation, we are able to modify some non-com-

pensatable tasks so that they become compensatable. once a workflow instance
is executed successfully, the confirmation tasks of all executed tasks are exe-

cuted automatically. This is in contrast to the compensation scenario: once a

workflow instance fails in its execution, the compensating tasks of all executed

tasks are executed. In this paper, we focus our presentation in the context of

workflows, though the concepts and mechanisms discussed in the paper are

also applicable to non-traditional database applications.

The rest of the paper is organised as follows. In Section 2, we look into the

requirements that a compensating task must satisfy. In Section 3, we introduce
the mechanism of confirmation and show how it is used to deal with the non-

compensatability problem. A bottom-up workflow design method which in-

cludes both compensation and confirmation is proposed in Section 4, together

with some implementation issues. Section 5 concludes the paper.

2. Requirements of a compensating task

Suppose a task T is defined in a workflow W , T is called compensatable if the
following conditions are satisfied.

(1) forcibility: Let C be the compensating task of the task T . Then after T is
invoked and executed in any instance WI of W , the execution of C must be

guaranteed to be successful within a period of time specified.

(2) relaxation of isolation: After T is invoked and executed in any instance
WI of W , the shared data resources which T has accessed will be released. This
relaxation of isolation on shared data resources is required as the purpose of

introducing compensation is to avoid long-duration waiting, otherwise, we

should use system level undo instead of compensation.

The following two examples illustrate these two requirements.

Example 1. Suppose a common account is used for effective financial man-

agement of multiple projects in an organisation. The organisation may have
two types of business processes which are specified by two workflows W1 and
W2, respectively. Instances of W1 involve a task Tp producing an amount of
money and putting it into the common account, while instances of W2 involve a
task Tc consuming funds from the common account.

To model these business processes, a shared data resource called Com-
mon_Account is used with two operations defined on it: deposit and withdraw.
The tasks Tp and Tc in the business processes can be implemented by invoking
the operations deposit and withdraw, respectively. The Common_Account can
be described by the following pseudocode. A compensation is associated with

40 C. Liu et al. / Information Sciences 153 (2003) 37–53



the implementation of each operation, it defines the compensating operation of

the operation, if needed. Consequently, the compensating tasks of tasks Tp and
Tc can invoke the compensation parts of the deposit and withdraw operations,
respectively.

Common_Account {

double balance;

/* operations on the account

boolean withdraw(double amount);

void deposit(double amount);

}

boolean withdraw(double amount) {

if ðbalance� amountP0Þ {
balance :¼ balance� amount;
return(true)

}

else return(false);

Compensation:

deposit(amount);

}

void deposit(double amount) {

balance :¼ balanceþ amount

Compensation:

/* not available

}

For a private account, deposit is always compensatable by withdrawal and

vice versa. However, for the common account as defined in this example,
the compensation of the deposit operation is not available. This is because the

forcibility of its reverse operation withdraw is not always guaranteed by the

application. Consequently, the compensating task of Tp is not available either.
Notice, concurrency control of aggregate attributes (balance in this example)
has been well addressed in Reuter�s method, Fast Path method and Escrow
method. These methods focus on the forward behaviour of transactions. In this
paper, we study the backward behaviour of transactions (workflows), i.e., the
compensatability of tasks which access aggregate attributes.
Let us have a look at the following scenario. Suppose WI1 is an instance of

WS1 and WI2 is an instance of WS2. Initially, the balance of Common_Account is
0. First, the task Tp of WI1 is executed which deposits $1000 to the Com-
mon_Account. After that, the task Tc in WI2 withdraws $800 from the Com-

mon_Account. In a later stage, WI1 fails due to some reason and tries to
rollback. This naturally includes withdrawing $1000 back which it previously

deposited into the account. Unfortunately, this withdrawal is unable to execute

C. Liu et al. / Information Sciences 153 (2003) 37–53 41



successfully since part of the money has been consumed by WI2 and it is pos-
sible the execution of WI2 has already been finished.
There are two system-level solutions to this problem:

(1) The Tp of WI1 holds the lock of the Common_Account until all tasks of
WI1 finishes.
(2) The Tp of WI1 releases the Common_Account after it is executed.

However, WI2 must wait for WI1 to successfully finish. If WI1 fails and the
compensation of Tp can not be executed successfully, WI2 may need to be
cascadedly rollbacked. This means much work done by WI2 may be lost.
Obviously, both solutions are not applicable since long-duration waiting is

unavoidable even when the balance of Common_Account is ample.

In real situation, one may use an approximate approach based on statistics
or experienced estimation of, say, the percentage of failed instances. In that

way, Tp of most failed instances of W1 can be compensated. However, there is
no guarantee that Tp of all failed instances of W1 can be compensated, especially
if the estimation is over-optimistic. In this case, the organisation may have

some policies for exceptional compensation. Can we provide guaranteed

compensation? We will answer this in Section 3.

Example 2. In many service organisations, there may exist one type of business
processes which include a task collecting customer information and other types

of business processes which include tasks using customer information. Due to

the variety of applications, the use of the customer information might be dif-

ferent. Let us first look at a dirty-read case where a business process does not
have to access accurate information about customers.

To model the business processes in this example, we may have two work-

flows W1 and W2, where W1 includes a task Ti for inserting customer information
while W2 includes a task Td which dirty-reads customer information. A shared
data resource called Customer_Info is needed with two operations insert and
dirty_read for Ti and Td to invoke, respectively. The following is the definition
of Customer_Info.

Customer_Info {

table customer;

/* operations on Customer_Info

void insert(tuple cust);

table dirty_read(string pred);

}

void insert(tuple cust) {

/* insert tuple cust to the table customer

Compensation:

/* delete tuple cust from table customer using cust.name;

}

42 C. Liu et al. / Information Sciences 153 (2003) 37–53



table dirty_read(string pred) {

/* return(��select * from customer where pred��)
Compensation:

/* do nothing

}

As seen above, in this dirty-read case, the operation insert is compensatable
with reverse operation defined which deletes what has been inserted. This is

because there is no isolation requirement on the shared data resource Cus-

tomer_Info. After Ti of an instance, say WI1 of W1, inserts a customer tuple into
customer table, the table with the new inserted customer tuple (partial result of

WI1) is immediately accessible for Td of any instance of W2, regardless whether
WI1 may fail later and thus the inserted customer information may be deleted.
Suppose now the service organisation needs to add a new business process

specified by W3 which needs to strict-read Customer_Info via a task Ts. In this
case, the operation insert defined above is no longer compensatable. This is
because the isolation on Customer_Info can no longer be compromised. After

Ti of WI1 inserts a customer tuple, that tuple can not be immediately accessed by
Ts of any instance of WS3 which accesses it. As a result, the compensating task
of Ti is no longer available. Even locking (in long-duration) on the customer
table cannot be applied as it restricts the use of dirty-read. To support this

mixed dirty-read and strict-read scenario by locking, an explicit and sophisti-

cated record-level locking feature must be supported. Unfortunately, this

feature is not easy to find in current SQL-based DBMSs.

3. Confirmation

In this section, after analysing the requirements of compensatable tasks, we
introduce a new concept called confirmation and show how it can be used to

cope with the non-compensatability problem. As seen from the above exam-

ples, a task can be implemented by invoking a set of operations. Similarly, the

compensating task of the task can be implemented by invoking the compen-

sation parts of the set of operations. If a task is compensatable, all operations it

may invoke must be compensatable. In the following, we will discuss the

compensatability at the operation level.

3.1. Coping with non-forcibility

As demonstrated by Example 1, if an operation is compensatable, its reverse

operation must be forcible. There are some non-compensatable operations

whose reverse operations are absolutely non-forcible. An often-mentioned
example is emitting a missile. If a workflow instance contains a task which

C. Liu et al. / Information Sciences 153 (2003) 37–53 43



invokes this kind of non-compensatable operations, the only solutions are ei-

ther delaying the task to a later stage, or ignoring/manually adjusting the effects

of the operation if the workflow instance fails. However, for most non-com-

pensatable operations, their reverse operations are not forcible only under
certain conditions. i.e., the reverse operation of a non-compensatable operation

cannot be executed successfully only when an undesired condition is reached.

For example, the compensation of the operation invocation deposit($1000) in

Example 1 fails only if the balance decreases to less than $1000. If the original

balance is no less than $800, the execution of the compensation will not en-

counter a problem. Therefore, if the organisation has a sufficient balance in the

common account for most of the time, the undesired condition will not be

easily reached. System-level locking is a simple way to deal with this non-
compensatability problem, but obviously it suffers two severe problems: (1)

Long-duration locking of the data resource until the invoking workflow in-

stances complete successfully. (2) Unnecessary locking since update of the data

resource will not cause any problem in most cases.

Based on the discussion, it is ideal to provide a semantic level mechanism

which can be used to prevent the undesired condition from being satisfied.

For this purpose, we propose a new mechanism called confirmation. For

each operation, a confirmation part may be defined with the default defi-
nition as ‘‘doing nothing’’. The confirmation part is not executed at the same

time when the operation is executed. Instead, the confirmation part is exe-

cuted at a later time for the purpose of confirming the execution of the

operation. The motivations for introducing the confirmation mechanism are

twofold: (1) to isolate the part of the operation which may affect the com-

pensatability of the operation and execute this part later; (2) to semantically

commit the operation at a safe time. Similar to a compensating task, the

confirmation task of a task can be implemented by invoking the confirma-
tion parts of the set of operations which have been invoked during the ex-

ecution of the task. The confirmation parts of all invoked operations in a

workflow instance are executed automatically once the system gets the in-

struction for confirmation.

More precisely, let Ocf and Ocp the confirmation part and the compensation
part of an operation O, respectively. Suppose the confirmation part and
compensation part are defined for each operation with the default definitions

for both as ‘‘doing noting’’. Then after O is executed, two possible situations
will happen later. (1) If the invoking workflow instance executes successfully,

Ocf will be automatically executed later to semantically commit O; (2) If the
invoking workflow instance fails, Ocp will be automatically executed later to
semantically rollback O.
To ensure that the undesired condition will never be reached, we can put the

unsafe part of an operation (e.g., deposit) into its confirmation part and delay

the execution of this part until a safe time later on, say, after an invoking

44 C. Liu et al. / Information Sciences 153 (2003) 37–53



workflow instance succeeds in its execution. At that time, changing the value of

the undesired condition by other operations (e.g., withdraw) will not cause any

problem because the compensation is no longer needed for this workflow in-

stance. As a result, an operation can always be compensated before the exe-
cution of the confirmation part of the operation. In addition, both an

operation and its confirmation part can be implemented as two separate short

transactions. Therefore, the shared resources that they may access only need to

be locked in a short time.

Note, O and Ocf are forward parts while Ocp is a backward part. If the for-
cibility of forward parts cannot be guaranteed, it will not leave any problem as

the invoking workflow instance can always choose to fail or try a contingency

plan.
Let us look at how confirmation can help our first example.

Example 3. A modification of Example 1 with confirmation.

Common_Account {

double balance;

double available_balance;

/* operations on the account

boolean withdraw(double amount);

void deposit(double amount);

}

boolean withdraw(double amount) {

if ðavailable balance� amountP0Þ {
available balance :¼ available balance� amount;
balance :¼ balance� amount;
return(true)

}

else return(false);

Compensation:

balance :¼ balanceþ amount;
available balance :¼ available balanceþ amount;
Confirmation:

/* do nothing

}

void deposit(double amount) {

balance :¼ balanceþ amount

Compensation:

balance :¼ balance� amount

Confirmation:

available balance :¼ available balanceþ amount

}

C. Liu et al. / Information Sciences 153 (2003) 37–53 45



As shown above, a new attribute available_balance is added to indicate the
available balance of the account. A confirmation part is added to the deposit

operation for increasing available balance. A workflow instance which invokes

a deposit operation can hold its deposited amount of money by delaying the
execution of the confirmation part of the operation later, say, until the

workflow instance succeeds later in its execution. By doing so, the deposit

operation becomes compensatable by the compensation part of the operation,

i.e., balance decrement.

Come back to the scenario in Example 1. If the original balance and

available balance are all zero, after deposit($1000) is invoked by WI1, the bal-
ance is increased to $1000. The available balance, however, remains to be zero.

Both balance and available balance can be accessed by other workflows for
whatever purposes. Before the confirmation part of the operation invocation

deposit($1000) is executed, withdraw($800) invoked by WI2 cannot be success-
fully executed. This guarantees that deposit($1000) invoked by WI1 is com-
pensatable. If the original available balance is no less than $800 or is increased

to no less than $800 (say, after the confirmation of the invocation de-
posit($1000)), there is no problem for WI2 to successfully invoke with-
draw($800). This reflects precisely the semantics of the application.
The confirmation mechanism used in this example is different from a con-

currency control method such as the invariant used by the NT/PV model and
the ConTract model. The former is used for guaranteeing successful backward

recovery, while the latter is used for increasing concurrency.

3.2. Coping with isolation

As shown in Example 2, if an operation performed on a shared data re-

source is compensatable, the isolation requirement on the data resource must
be compromised. Usually in a workflow instance, the compensation of an

operation is invoked at a later time after the invocation of the operation. If the

isolation on the data resource is required, other workflow instances have to

wait until the invoking workflow instance finishes. In that case, there is no need

to provide compensation at all. However, with the help of confirmation, we can

make an operation compensatable while still keeping the isolation requirement

on the shared data resources. This can be done by temporarily separating a

data resource into an isolation part and a non-isolation part.
Let us look how it works for our isolation example.

Example 4. A modification of Example 2 with confirmation.

Customer_Info {

table customer, temp_cust;

/* operations on Customer_Info

46 C. Liu et al. / Information Sciences 153 (2003) 37–53



void insert(tuple cust);

table dirty_read(string pred);

table strict_read(string pred);

}

void insert(tuple cust) {

/* insert tuple cust into table temp_cust

Compensation:

/* delete tuple cust from table temp_cust;

Confirmation:

/* swap the tuple cust from table temp_cust to customer

/* insert tuple cust into table customer;

/* delete tuple cust from table temp_cust.
}

table dirty_read(string pred) {

table temp1, temp2;

/* select * into temp1 from customer where pred

/* select * into temp2 from temp_cust where pred

/* return(temp1 union temp2)

Compensation:

/* do nothing

Confirmation:

/* do nothing

}

table strict_read(string pred) {

/* return(��select * from customer where pred��)
Compensation:

/* do nothing

Confirmation:

/* do nothing

}

In this example, we use the table customer and temp_cust to store the non-
isolation and isolation parts of Customer_Info, respectively. When an insert
operation is invoked, new customer information is put into temp_cust. When
the invoking workflow instance finishes successfully, the confirmation part of

the operation is executed to confirm the insert operation invocation by swap-
ping the customer information from the table temp_cust to the table customer.
If the invoking workflow instance fails, the invoked insert operation can be

easily compensated by removing the customer information from the table

temp_cust, without affecting other workflow instances which are concurrently
accessing the customer information.

With the help of confirmation, long-duration locking can be avoided but

isolation on the data resources can still be achieved. For invocations of

C. Liu et al. / Information Sciences 153 (2003) 37–53 47



operations such as strict_read where isolation is required, only non-isolation
part of customer information is made available for accessing; for invocations of

operations such as dirty_read where isolation can be compromised, both non-
isolation and isolation parts of the resource can be accessed. No interference
will occur among workflow instances regardless whether isolation on the data

resources is required. As a result, the availability of data resources is maxi-

mised. This is ideal for enterprises where a variety of requirements on data

resources may exist. However, without the help of confirmation, it is almost

impossible to effectively implement the above mixed strict_read and dirty_read

scenario where both compensatability and isolation on shared data resources

are required.

4. Bottom-up workflow design

In this section we propose a three level bottom-up workflow design method

as shown in Fig. 1. This design method can easily and perfectly incorporate

both compensation and confirmation into a workflow management environ-

ment.

(1) At the bottom level, data resources are modelled as resource classes. The

only interface to a data resource is via a set of operations together with their
compensations and confirmations. This is helpful in workflow environments.

For instance, a legacy system can be wrapped as an object with an interface

providing a set of operations. Compensation and confirmation can be devel-

oped at the time a legacy system is involved in some workflows. For example,

the resource class RCa has three operations op1, op2 and op3 defined in Fig. 1.
(2) The middle level is used to specify tasks. A task can be implemented

simply by invoking operations on data resources. As shown in Fig. 1, Ti is
implemented as invoking operation op1 of resource class RCb and op3 of
RCa.

(3) The top level is used to specify workflows. As usual, dependencies among

tasks of workflows are specified. To support confirmation and compensation,

extra control are added at this level. Partial backward recovery can be easily

realised by multiple use of confirmation control.

In the following, we present workflow design via these three levels first, then

discuss briefly the run-time support of workflows designed in such a way.

4.1. Specifying a workflow

Basically, a workflow is about the coordination of a set of tasks. This is

achieved by defining various types of dependencies among tasks, e.g., control

flows, data flows, temporal constraints, etc. Usually, a workflow specification
language is provided by a WfMS to specify these dependencies. In this paper,

48 C. Liu et al. / Information Sciences 153 (2003) 37–53



we concentrate on how compensation and confirmation can be incorporated

into the workflow specification. In supporting compensation and confirmation,

we add two statements called COMPENSATE and CONFIRM. Specifiers

should be allowed to put these statements into the workflow specification to

reflect their decisions. This is similar to including ROLLBACK and COMMIT

statements in a transaction. The difference between a workflow scenario and a
transaction scenario is that execution of COMPENSATE and CONFIRM

statements is an application behaviour, while execution of ROLLBACK

and COMMIT statements is a system behaviour. We may give another pair

of names SEMANTIC-ROLLBACK/SEMANTIC-COMMIT to represent

COMPENSATE/CONFIRMATION.

By putting a CONFIRM statement carefully at several places in a workflow,

we are able to confirm the executed tasks group by group, thus confirm the

execution of the workflow instances step by step. We may call such a group of
tasks as a sphere of joint confirmation with the similarity to the term a sphere of

RCb RCc

 RCa.op3;
  RCa.op1;

  RCc.op2

  RCb.op2;

......

 RCb.op1;

............ Ti Tj

... ... ... ... ... ...

Tj { Tk {
  ...

  ...

}

  ...

  ...
}

Ti {

}
 ... 

 ...

Workflow Specification Level

Task Specification Level

Data Resource Specification Level

op1

op2

op3

op1

op2

op1

op2

op3

RCa

Fig. 1. A bottom-up workflow design method.

C. Liu et al. / Information Sciences 153 (2003) 37–53 49



joint compensation discussed in [13]. In most cases, these two spheres can be

combined as a single concept. As a result, a workflow instance can be partially

confirmed or partially compensated in the unit of a sphere of compensation/

confirmation. Once a workflow instance confirms the execution of a group of
tasks at a point and fails its execution later, the system can apply partial re-

covery by compensating those tasks which are executed after that point.

4.2. Specifying a task

A task specification is mainly concerned with the implementation of the

task. When a task needs to access a data resource, it is implemented by in-

voking an operation defined at the interface of the data resource. A task may

invoke multiple operations defined on different data resources. For each task, a

compensating task and a confirmation task are automatically defined by the
compensation parts and confirmation parts of all operations the task may

access. This will be discussed next.

4.3. Specifying a data resource

For each data resource, an interface is provided which consists of a set of

operations. Tasks using a data resource of this type can only invoke these

operations. Beside the operation itself (we will call it as the normal part of the

operation in the following discussion), a compensation part and a confirmation

part of the operation must be defined, with the default definition as ‘‘doing

nothing’’.
(1) A normal part specifies what needs to be executed when the operation is in-

voked by a task.

(2) A compensation part specifies what needs to be executed to eliminate the ef-

fect of the normal part invoked previously by a task T . The compensation
part is invoked when the compensating task of the task T is executed.

(3) A confirmation part specifies what needs to be executed to confirm the work

done by the normal part invoked previously by a task T . The confirmation
part is invoked when the confirmation task of the task T is executed.
The specifications for shared data resources Common_Account and Cus-

tomer_Info have been given in Examples 3 and 4, respectively.

This design method has an appealing feature. It provides data resource in-

dependence from the workflow applications. The modification of implemen-

tation of the operations (including compensation and confirmation) on a data

resource has no impact on the workflow specification as long as the interface

remains unchanged.

50 C. Liu et al. / Information Sciences 153 (2003) 37–53



4.4. Executing a workflow instance

When an instance of an above-specified workflow is submitted to the

workflow engine of a WfMS for execution, the engine will schedule a com-
pensation process automatically while a COMPENSATE statement is being

executed. Similarly, the engine will schedule a confirmation process automat-

ically while a CONFIRM statement is being executed. This can happen as well

when an external event triggers the engine requiring COMPENSATE/CON-

FIRM the workflow instance. When a COMPENSATE request arrives, the

engine schedules the execution of all compensating tasks of those tasks which

have been executed yet have not been confirmed. This in turn triggers the ex-

ecution of compensation parts of all operations which have been invoked by
the above tasks. The latest point of the group of tasks confirmed is recorded by

the system. This point is used as a guide to where the backward recovery

should stop. Compensating tasks are executed in reverse order (backward).

Similarly, when a CONFIRM request arrives, the engine schedules the ex-

ecution of all confirmation tasks which have been executed yet have not been

confirmed. This in turn triggers the execution of confirmation parts of all

operations which have been invoked by the above tasks. The latest point is also

used as a guide to where the confirmation process should start. Confirmation
tasks are executed in the same order as their tasks (forward).

During the process of compensation or confirmation, the values of input

parameters of compensation part or confirmation part of each invoked oper-

ation are provided automatically. This can be done by appropriate computa-

tion after the completion of the normal part of each invoked operation and by

saving the results in the system log.

5. Concluding remarks

Designing compensating tasks is critical for supporting backward recovery

in workflow systems and non-traditional database applications. Workflow

evolution [14] can also be better supported by well-designed compensating

tasks. Due to the semantics of applications and their shared data resources, a
compensating task does not always exist for a task. In this paper, we studied

the requirements of a compensatable task. Based on our observations, we

proposed a novel semantic level mechanism called confirmation. The relation-

ship between confirmation and compensation is similar to that between a

commit and a rollback. By using confirmation properly, non-compensatable

operations on the shared data resources can be rewritten and become com-

pensatable. As such, the availability of shared data resources gets increased

substantially. The confirmation mechanism also found its applicability in
dealing with the isolation problem of workflows or long transactions. To

C. Liu et al. / Information Sciences 153 (2003) 37–53 51



effectively incorporate both confirmation and compensation into workflow

environments, a three level workflow design framework was presented together

with the discussion of its run-time support.

Like a compensation, a confirmation is also a semantic mechanism provided
to workflow specifiers. Workflow specifiers may use it in a flexible way, based

on the requirements of applications. Multiple versions of a confirmation and a

compensation may be provided based on certain factors such as time. It is also

interesting to build different patterns of compensation and confirmation ac-

cording to some typical applications. We will investigate these in the future.

References

[1] A. Elmagarmid (Ed.), Database Transaction Models For Advanced Applications, Morgan

Kaufmann, 1992.

[2] A. Elmagarmid, Y. Leu, W. Litwin, M. Rusinkiewicz, A multidatabase transaction model for

interbase, in: Proceedings of the 16th VLDB Conference, Brisbane, Australia, August 1990.

[3] H. Garcia-Molina, K. Salem, Sagas, in: Proceedings of the ACM Conference on Management

of Data, 1987, pp. 249–259.

[4] D. Gawlick, D. Kinkade, Varieties of concurrency control in ims/vs fast path, Bull. IEEE

Database Eng. 8 (2) (1985) 3–10.

[5] D. Georgakopoulos, M. Hornick, A. Sheth, An overview of workflow management: From

process modeling to workflow automation infrastructure, Distributed Parallel Databases 3

(1995) 119–153.

[6] J. Gray, The transaction concept: Virtues and limitations, in: Proceedings of the International

Conference on Very Large Data Bases, Cannes, France, 1981, pp. 144–154.

[7] J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann,

1993.

[8] P. Grefen, Transactional workflows or workflow transactions, in: Proceedings of the

International Conference on Database and Expert Systems Applications, Aix-en-Provence,

France, 2002, pp. 60–69.

[9] B. Kiepuszewski, R. Muhlberger, M. Orlowska. Flowback: Providing backward recovery for

workflow systems, in: Proceedings of the ACM SIGMOD International Conference on

Management of Data, 1998, pp. 555–557.

[10] H. Korth, G. Speegle, Long-duration transactions in software design projects, in: Proceedings

of the 6th International Conference on Data Engineering, 1990, pp. 568–574.

[11] H.F. Korth, E. Levy, A. Silberschatz, A formal approach to recovery by compensating

transactions, in: Proceedings of the 16th VLDB Conference, 1990, pp. 95–106.

[12] D. Kuo, M. Lawley, C. Liu, M. Orlowska, A model for transactional workflows, in: R. Topor

(Ed.), Seventh Australasian Database Conference Proceedings, vol. 18, Melbourne, Australia,

1996, Australian Computer Science Communications, pp. 139–146.

[13] F. Leymann, Supporting business transactions via partial backward recovery in work-flow

management systems, in: Proceedings of BTW�95, 1995, pp. 51–70.
[14] C. Liu, M. Orlowska, H. Li, Automating handover in dynamic workflow environments, in:

Proceedings of the 10th International Conference, CAiSE�98, Pisa, Italy, 1998, pp. 159–172.
[15] N. Lynch, M. Merritt, W. Weihl, A. Fekete, Atomic Transactions, Morgan Kaufmann, 1993.

[16] P. O�Neil, The escrow transactional method, ACM Trans. Database Syst. 11 (4) (1986) 405–

430.

52 C. Liu et al. / Information Sciences 153 (2003) 37–53



[17] A. Reuter, Concurrency on high-traffic data elements, in: Proceedings of ACM Symposium on

Principles of Database Systems, 1982, pp. 83–92.

[18] A. Reuter, Contracts: A means for extending control beyond transaction boundaries, in:

Proceedings of the 3rd International Workshop on High Performance Transaction Systems,

1989.

[19] M. Rusinkiewicz, A. Sheth, Specification and execution of transactional workflows, in: W.

Kim (Ed.), Modern Database Systems: The Object Model, Interoperability, and Beyond,

Addison-Wesley, 1994.

C. Liu et al. / Information Sciences 153 (2003) 37–53 53


	Confirmation: increasing resource availability for transactional workflows
	Introduction
	Requirements of a compensating task
	Confirmation
	Coping with non-forcibility
	Coping with isolation

	Bottom-up workflow design
	Specifying a workflow
	Specifying a task
	Specifying a data resource
	Executing a workflow instance

	Concluding remarks
	References


