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ABSTRACT
Uncertain data are inherent in some important applications,
such as environmental surveillance, market analysis, and
quantitative economics research. Due to the importance
of those applications and the rapidly increasing amount of
uncertain data collected and accumulated, analyzing large
collections of uncertain data has become an important task
and has attracted more and more interest from the database
community. Recently, uncertain data management has be-
come an emerging hot area in database research and de-
velopment. In this tutorial, we systematically review some
representative studies on answering various queries on un-
certain and probabilistic data.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithm, Performance
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1. OBJECTIVES AND SCOPE
Uncertain data are inherent in some important applica-

tions, such as environmental surveillance, market analy-
sis, and quantitative economics research. Uncertain data
in those applications are generally caused by factors like
data randomness and incompleteness, limitations of mea-
suring equipment, delayed data updates, etc. Due to the
importance of those applications and the rapidly increasing
amount of uncertain data collected and accumulated, an-
alyzing large collections of uncertain data has become an
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important task and has attracted more and more interest
from the database community.

In the last several years, some exciting progress has been
achieved in the research and development on uncertain data
management (e.g., [33, 6, 20, 2, 17, 16, 19, 5, 10, 21]). Many
database researchers are joining the workforce to tackle the
grand challenges in large scale uncertain data processing. To
understand the challenges and the opportunities in the re-
search and development on uncertain and probabilistic data
management, we present a tutorial on a fundamental aspect
– query answering techniques on uncertain and probabilis-
tic data. We will briefly review the models of uncertain and
probabilistic data representation in databases and the possi-
ble worlds semantics, and go deep into query answering tech-
niques including algorithms and index structures for various
types of queries such as range search queries and ranking
queries. We will also discuss some interesting directions for
future work.

2. MODELS AND POSSIBLE WORLDS
We consider uncertain data in the possible worlds seman-

tics model [1, 24, 33, 16], which has been extensively adopted
by the recent studies on uncertain data processing, such
as [36, 6, 29]. Technically, uncertain data can be represented
in two ways as discussed in Sections 2.1 and 2.2, respectively.

2.1 The Probabilistic Database Model
A probabilistic database [33, 36, 6] is a finite set of prob-

abilistic tables. Generally, a probabilistic table T contains a
set of (uncertain) tuples, where each tuple t ∈ T is associ-
ated with a membership probability value Pr(t) > 0.

A generation rule on a table T specifies a set of exclusive
tuples in the form of R : tr1 ⊕ · · · ⊕ trm where tri ∈ T
(1 ≤ i ≤ m) and

∑m
i=1 Pr(tri) ≤ 1. The rule R constrains

that, among all tuples tr1 , . . . , trm involved in the rule, at
most one tuple can appear in a possible world. We denote
by |R| = m the number of tuples involved in R. We also say
tri ∈ R. A generation rule R is a singleton rule if there is
only one tuple involved in the rule (i.e., |R| = 1), otherwise,
R is a multi-tuple rule (i.e., |R| > 1).

The existence probability of a generation rule R is the
probability that one tuple involved in R appears. That is,
P (R) =

∑
t∈R Pr(t).

Let RT be the set of generation rules on table T in ques-
tion. For any two rules R1, R2 ∈ RT , we assume that R1

and R2 do not share any common tuple, i.e., R1 ∩R2 = ∅.



RID Loc. Time Sensor-id Temperature Conf.

R1 A 6/2/06 2:14 S101 25 0.3
R2 B 7/3/06 4:07 S206 21 0.4
R3 B 7/3/06 4:09 S231 13 0.5
R4 A 4/12/06 20:32 S101 12 1.0
R5 E 3/13/06 22:31 S063 17 0.8
R6 E 3/13/06 22:28 S732 11 0.2

Table 1: Temperature records.

Possible world Probability Top-2 on Duration

W1 = {R1, R2, R4, R5} 0.096 R1, R2
W2 = {R1, R2, R4, R6} 0.024 R1, R2
W3 = {R1, R3, R4, R5} 0.12 R1, R5
W4 = {R1, R3, R4, R6} 0.03 R1, R3

W5 = {R1, R4, R5} 0.024 R1, R5
W6 = {R1, R4, R6} 0.006 R1, R4
W7 = {R2, R4, R5} 0.224 R2, R5
W8 = {R2, R4, R6} 0.056 R2, R4
W9 = {R3, R4, R5} 0.28 R5, R3
W10 = {R3, R4, R6} 0.07 R3, R4

W11 = {R4, R5} 0.056 R5, R4
W12 = {R4, R6} 0.014 R4, R6

Table 2: The possible worlds of Table 1.

For a subset of tuples S ⊆ T and a generation rule R,
we denote the tuples involved in R and appearing in S as
R ∩ S. A possible world W is a subset of T such that for
each generation rule R ∈ RT , W contains exactly one tuple
involved in R (i.e., |R ∩ W | = 1) if Pr(R) = 1, and W
contains 0 or 1 tuple involved in R (i.e., |R ∩ W | ≤ 1) if
Pr(R) < 1. We denote by W the set of all possible worlds.

Clearly, for an uncertain table T and a set of generation
rules RT , the number of all possible worlds is

|W| =
∏

R∈RT ,Pr(R)=1

|R|
∏

R∈RT ,Pr(R)<1

(|R|+ 1)

The number of possible worlds on a large table can be huge.
Each possible world is associated with an existence prob-

ability Pr(W ) that the possible world happens. Following
with the basic probability principles, we have

Pr(W ) =
∏

R∈RT ,|R∩W |=1

Pr(R∩W )
∏

R∈RT ,R∩W=∅
(1−Pr(R))

Apparently, for a possible world W , Pr(W ) > 0. More-
over,

∑
W∈W Pr(W ) = 1.

Example 1. Sensors are often used to monitor environ-
ment conditions in remote areas. Due to limitations of sen-
sors, detections cannot be accurate all the time. Instead,
detection confidence is often estimated. Table 1 lists a set of
synthesized records of temperature detected by sensors.

In some locations such as B and E, multiple sensors may
be deployed to improve the detection quality. Two sensors
in the same location (e.g., S206 and S231, as well as S063
and S732 in Table 1) may detect the temperature at the (ap-
proximately) same time, such as records R2 and R3, as well
as R5 and R6. In such a case, if the temperature detected
by the multiple sensors are inconsistent, at most one sensor
can be correct.

The uncertain data in Table 1 carries the possible worlds
semantics [1, 24, 16, 33]. The data can be viewed as the
summary of a set of possible worlds. The possible worlds are
governed by some underlying generation rules which con-
strain the presence of tuple instances. In Table 1, the fact
that R2 and R3 cannot be true at the same time can be cap-
tured by a generation rule R2⊕R3. Another generation rule
is R5⊕R6.

Table 2 shows all possible worlds and their existence prob-
ability values. For example, possible world W1 contains 4
tuples R1, R2, R4, R5. The existence probability of W1 is
calculated as Pr(W1) = Pr(R1) × Pr(R2) × Pr(R4) ×
Pr(R5) = 0.3× 0.4× 1.0× 0.8 = 0.096.

Since Pr(R4) = 1.0, R4 appears in every possible world.
Moreover, in generation rule R5 ⊕ R6, Pr(R5 ⊕ R6) =
Pr(R5) + Pr(R6) = 0.8 + 0.2 = 1.0. Thus, in every pos-
sible world, either R5 or R6 appears, but not both. On the
other hand, for generation rule R2 ⊕ R3, Pr(R2 ⊕ R3) =
Pr(R2) + Pr(R3) = 0.9 < 1, in some possible worlds such
as W5, W6, W11, W12, neither R2 nor R3 appears.

It can be verified that the sum of existence probabilities of
all possible worlds is exactly 1.0.

2.2 The Uncertain Object Model
An uncertain object [11, 13, 37, 29] is conceptually de-

scribed by a probability density function (PDF) f in the
data space D. Generally, f(u) ≥ 0 for any point u in the
data space D, and

∫
u∈D

f(u)du = 1.
Practically, the probability density function of an uncer-

tain object is often unavailable explicitly. Instead, a set of
samples are drawn or collected in the hope of approximating
the probability density function. Correspondingly, we model
an uncertain object U as a set of multiple points in the data
space as its instances, denoted by U = {u1, . . . , ul}. It can
be regarded as the discrete case. Let the probability mass
function (pmf) of U be f , then f(ui) > 0 (1 ≤ i ≤ l), and∑

1≤i≤l f(ui) = 1. The number of instances of an uncertain

object U is denoted by |U | = l.
Let X1, . . . , Xn be n uncertain objects. A possible world

W = {x1, . . . , xn} contains one instance of each object, i.e.,
xi is an instance of Xi (1 ≤ i ≤ n). The existence proba-
bility of a possible world Pr(W ) =

∏n
i=1 fi(xi), where fi is

the probability density or mass function of object Xi.
Clearly, Pr(W ) > 0 for any possible world. Moreover,∑
W∈W Pr(W ) = 1.

2.3 Converting between the Two Models
The uncertain object model and the probabilistic database

model are equivalent in the discrete case, since a set of un-
certain objects can be represented by a probabilistic table
as follows. For each instance u of an uncertain object U ,
we create a tuple tu, whose membership probability is f(u).
For each uncertain object U = {u1, . . . , ul}, we create one
generation rule RU = tu1 ⊕ · · · ⊕ tul .

In all cases, a probabilistic table can be represented by
a set of uncertain objects with discrete instances. For each
tuple t in a probabilistic table T , we create an instance ut,
whose probability mass function is f(ut) = Pr(t). For a
generation rule R : tr1 ⊕ · · · ⊕ trm , we create an uncer-
tain object UR, which includes all instances utr1

, . . . , utrm

corresponding to tr1 , . . . , trm , respectively. Moreover, if∑m
i=1 Pr(tri) < 1, we create another instance u∅ whose

probability mass function is f(u∅) = 1−∑m
i=1 Pr(tri), and



add u∅ to the uncertain object UR. Since any two generation
rules do not share any common tuples, the uncertain objects
constructed as such do not share any common instances.

3. CHALLENGES OF QUERY ANSWER-
ING ON UNCERTAIN AND PROBA-
BILISTIC DATA

Answering various queries on certain data has been stud-
ied extensively and systematically. Then, what are the new
challenges that queries on uncertain and probabilistic data
pose?

3.1 Probabilities: A New Dimension
Due to the uncertainty, one fundamental challenge is how

to handle the probabilities of uncertain data and probabilis-
tic data. For example, on certain data, a range query re-
turns the points falling into a given range. On uncertain
and probabilistic data, a tuple or an uncertain object may
take a probability to fall into a given range. Consequently,
a range query may be extended to uncertain and probabilis-
tic data in multiple ways. First, we can output only those
tuples/objects which are absolutely (i.e., with probability
100%) falling into the query range. Second, we can out-
put those tuples/objects which have a non-zero probability
to fall into the query range. More generally, we may use
a threshold to control the probability requirement on the
tuples/objects in the answer set meeting the query range –
only those tuples/objects whose probability falling into the
query range passing the threshold are returned.

The probability of being an answer is a new dimension
that does not appear in conventional query answering on cer-
tain data. A few studies use probability thresholds to extend
conventional queries to probabilistic threshold queries, such
as range search queries [11, 13, 37, 38], ranking queries [22,
23, 27, 40], and skyline queries [30]. In some other methods,
results are ranked according to their probabilities of being
answers, such as U-Topk queries and U-kRanks queries [36]
and the ranking queries in [31].

3.2 Global and Local Uncertainty
In some queries on uncertain and probabilistic data, we

are only concerned with the uncertainty within individual
objects or tuples involved in individual generation rules. We
call such queries involving local uncertainty.

For example, in a range search query on uncertain data,
the probability whether a tuple/object falls into the query
range and thus in the answer set depends on the uncertainty
of the tuple/object itself, and is independent from other
objects/tuples.

On the other hand, we may have to consider global un-
certainty when answering some queries on uncertain and
probabilistic data, which is the uncertainty of combinations
of objects/tuples being answers in possible worlds. For ex-
ample, the ranking of an uncertain object or a probabilistic
tuple in an uncertain data set depends on not only the val-
ues of the instances of the object/tuple, but also the values
of the instances of the other objects/tuples.

Generally, when whether an object/tuple satisfies a query
depends on other objects or tuples not involved in the same
generation rule, global uncertainty has to be considered. Se-
mantically, we have to examine the possible worlds one by
one and count the probability that a combination of ob-

jects/tuples is an answer.
Therefore, assigning proper semantics to queries on un-

certain and probabilistic data is a new challenge.

3.3 Computational Cost: Enumeration or Not
For a query on certain data which can be answered effi-

ciently (i.e., in polynomial time), an extension of the query
on uncertain and probabilistic data may be in nature of ex-
ponential time complexity. Ranking queries are an example.
If an extension has to consider the global uncertainty by ex-
amining the possible worlds, due to the exponential number
of possible worlds, the problem is #P-complete [15].

To address the computational challenge from queries
on uncertain and probabilistic data, we need to explore
the tradeoff between accuracy and computational cost.
Sampling-based methods and randomized algorithms are
particularly interesting since they may provide good quality
guarantees on approximate answers for expensive queries, at
the same time, remain polynomial in computational cost.

In the next two sections, we will use range search queries
and ranking queries on uncertain and probabilistic data to
elaborate the challenges discussed above and some represen-
tative solutions.

4. RANGE SEARCH QUERIES
Cheng et al. [11] provided a general classification of prob-

abilistic queries and evaluation algorithms over uncertain
data sets. Different from query answering in traditional data
sets, a probabilistic quality estimate was proposed to evalu-
ate the quality of results in probabilistic query answering.

Particularly, probability-thresholding range queries [11, 13,
37, 38] are an essential type of queries. Formally, given a
region rq and a probability threshold tq, such a query returns
all objects that appear in rq with at least probability tq.

Cheng et al. [13] proposed the notion of x-bounds, which
leads to an efficient access method, called the probability
threshold index (PTI), for managing one-dimension uncer-
tain data. Tao et al. develop the U-tree [37, 38] which
extends PTI to index multidimensional uncertain objects.
Here, each object o is represented by an uncertainty region
o.ur and a pdf o.pdf(x). Specifically, o.ur defines the area of
the data space where o can possibly appear, while, for any
location x in the data space, o.pdf(x) equals the probabil-
ity that o appears at x (the function o.pdf(.) can also be a
probability mass function as described in Section 2.2). As
a special case, o.pdf(x) = 0 if x is outside o.ur. Next, we
discuss the U-tree in the context of probability-thresholding
range queries.

The U-tree is based on the concept probabilistically con-
strained region (PCR) (which generalizes the conventional
x-bounds [13]). A PCR of an object o depends on a param-
eter c ∈ [0, 0.5], and hence, is represented as o.pcr(c). It is a
d-dimensional rectangle, obtained by pushing, respectively,
each face of o.mbr inward, until the appearance probability
of o in the area swept by the face equals c. Figure 1a illus-
trates the construction of a 2D o.pcr(c), where the polygon
represents the uncertainty region o.ur of o, and the dashed
rectangle is the MBR of o, denoted as o.mbr. The o.pcr(c),
which is the grey area, is decided by 4 lines l[1]+, l[1]−, l[2]+,
and l[2]−. Line l[1]+ has the property that, the appearance
probability of o on the right of l[1]+ (i.e., the hatched area) is
c. Similarly, l[1]− is obtained in such a way that the appear-
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Figure 1: Pruning/validating with a 2D probabilistically constrained rectangle

ance likelihood of o on the left of l[1]− equals c (it follows
that the probability that o lies between l[1]− and l[1]+ is
1 − 2c). Lines l[2]+ and l[2]− are obtained in the same way,
except that they horizontally partition o.ur.

PCRs can be used to prune or validate an object, with-
out computing its accurate qualification probability. Let us
assume that the grey box in Figure 1a is the o.pcr(0.1) of
o. Figure 1b shows the same PCR and o.mbr again, to-
gether with the search region rq1 of a range query q1 whose
probability threshold tq1 equals 0.9. As rq1 does not fully
contain o.pcr(0.1), we can immediately assert that o cannot
qualify q1. Indeed, since o falls in the hatched region with
probability 0.1, the appearance probability of o in rq1 must
be smaller than 1 − 0.1 = 0.9. Figure 1c illustrates prun-
ing the same object with respect to another query q2 having
tq2 = 0.1. This time, o is disqualified because rq2 does not
intersect o.pcr(0.1) (the pruning conditions are different for
q1 and q2). In fact, since rq2 lies entirely on the right of l[1]+,
the appearance probability of o in rq2 is definitely smaller
than 0.1.

The second row of Figure 1 presents three situations where
o can be validated using o.pcr(0.1), with respect to queries
q3, q4, q5 having probability thresholds tq3 = 0.9, tq4 = 0.8,
and tq5 = 0.1, respectively. In Figure 1d (or Figure 1f), o
must satisfy q3 (or q5) due to the fact that rq3 (or rq5) fully
covers the part of o.mbr on the right (or left) of l[1]−, which
implies that the appearance probability of o in the query
region must be at least 1 − 0.1 = 0.9 (or 0.1), where 0.1 is
the likelihood for o to fall in the hatched area. Similarly, in
Figure 1e, o definitely qualifies q4, since rq4 contains the por-

tion of o.mbr between l[1]− and l[1]+, where the appearance
probability of o equals 1− 0.1− 0.1 = 0.8.

The queries in Figures 1d-1f share a common property:
the projection of the search region contains that of o.mbr
along one (specifically, the vertical) dimension. Accordingly,
we say that those queries 1-cover o.mbr. In fact, validation
is also possible, even if a query 0-covers o.mbr, namely, the
projection of the query area does not contain that of o.mbr
on any dimension. Next, we illustrate this using the third
row of Figure 1, where the queries q6, q7, q8 have probability
thresholds tq6 = 0.8, tq7 = 0.7, and tq8 = 0.6, respectively.

In Figure 1g, o is guaranteed to qualify q6, since rq6 covers
entirely the part of o.mbr outside the hatched area. Observe
that the appearance probability of o in the hatched area is
at most 0.2. To explain this, we decompose the area into
three rectangles ABCD, DCEF , BCGH, and denote the
probabilities for o to lie in them as ρABCD, ρDCEF , and
ρBCGH , respectively. By the definition of l[1]−, we know
that ρABCD + ρDCEF = 0.1, whereas, by l[2]+, we have
ρABCD + ρBCGH = 0.1. Since ρABCD, ρDCEF , and ρBCGH

are nonnegative, it holds that ρABCD + ρDCEF + ρBCGH ≤
0.2. This, in turn, indicates that o falls in rq6 with proba-
bility at least 0.8 (= tq6). With similar reasoning, it is not
hard to verify that, in Figure 1h (Figure 1i), the appearance
probability of o in the hatched area is at most 0.3 (0.4),
meaning that o definitely satisfies q7 (q8).

For each object, the U-tree pre-computes several PCRs at
a selected set of probability values, which constitute the U-
catalog. These PCRs are then organized in a fashion similar
to an R-tree.



RID R1 R2 R3 R4 R5 R6

Probability 0.3 0.4 0.38 0.202 0.704 0.014

Table 3: The top-2 probability values of records in
Table 1.

Query type (k = 2) Answer

U-TopK query 〈R5, R3〉
U-kRanks query 〈R5, R5〉

PT-k query (p = 0.35) {R2, R3, R5}

Table 4: The answers to three types of top-k queries
on Table 1.

5. RANKING QUERIES
Arguably, ranking queries are among the most popularly

used queries in databases. Several proposals of extending
ranking queries to uncertain data have been developed and
the corresponding algorithms have been devised.

5.1 Query Types
In [36], Soliman et al. proposed U-Topk queries and U-

kRanks queries. A U-Topk query returns a k-tuple sorted
list which has the highest probability to be the top-k list
in possible worlds. A U-kRanks query finds the tuple of
the highest probability at each ranking position. Thus, the
tuples returned by a U-kRanks query may not be a valid top-
k tuple list in any possible world, and a tuple may appear
more than once in the answer set.

In Table 1, for the U-Topk query, 〈R5, R3〉 should be re-
turned if k = 2. For the U-kRanks query, 〈R5, R5〉 should be
returned if k = 2, since R5 has the highest probability to be
ranked first in all possible worlds, and also has the highest
probability to be ranked second in all possible worlds.

Recently, Hua et al. tackled probabilistic threshold top-k
queries (PT-k query for short) on probabilistic data [22, 23].
Given a probability threshold p (0 < p ≤ 1) and a parameter
k, a PT-k query finds the set of tuples whose probabilities
to be in the top-k list are at least p.

In the case of Table 1, the probability that a tuple is in
the top-2 lists of all possible worlds is shown in Table 3. If
k = 2 and p = 0.35, then {R2, R3, R5} should be returned.
Table 4 shows the answers to those queries in this example.

The above extensions use an objective function to rank
probabilistic tuples. The critical differences among them
are on how ranking results should be captured.

Another category of extensions is to rank tuples based on
their probabilities of being answers. Particularly, in [31], Ré
et al. considered arbitrary SQL queries and the ranking is
on the probability that a tuple satisfies the query. Moreover,
Zhang and Chomicki developed the global top-k semantics
on uncertain data which returns k tuples having the largest
probabilities in the top-k list, and gave a dynamic program-
ming algorithm [40]. To this extent, [40] ranks tuples using
both an objective function and the top-k probabilities. Sim-
ilarly, Silberstein et al. [35] modeled each sensor in a sensor
network as an uncertain object whose values follow some
unknown distribution. Then, a top-k query in the sensor
network returns the top-k sensors such that the probability
of each sensor whose values are ranked top-k in any timestep
is the greatest. A sampling-based method collects all values
in the network as a sample at randomly chosen timesteps,

and the answer to a top-k query is estimated using the sam-
ples.

5.2 Query Answering Methods
Accompanying with the extensions of ranking queries on

uncertain and probabilistic data, several algorithms are de-
vised to answer various ranking queries [36, 22, 23, 40].
Moreover, Yi et al. [39] proposed efficient algorithms to an-
swer U-Topk queries and U-kRanks queries. Their algorithm
for U-kRanks uses the Poisson binomial recurrence [26].
Lian and Chen developed the spatial and probabilistic prun-
ing techniques for U-kRanks queries [27].

One of the fundamental ideas in those methods is to
enumerate and prune possible answers systematically. For
promising candidates, those methods (implicitly) search the
possible worlds by estimating the probabilities of those
promising candidates through considering the relationship
between the candidates and other tuples.

For example, consider a PT-k query [22, 23]. For a tuple
t and a possible world W such that t ∈ W , whether t is in
the top-k list of W , denoted by t ∈ Qk(W ), depends only on
how many other tuples in T ranked higher than t appear in
W . Technically, for a tuple t ∈ T , the dominant set of t is
the subset of tuples in T that are ranked higher than t, i.e.,
St = {t′|t′ ∈ T ∧ t′ ≺f t}. Moreover, dominant sets have a
nice property: for a tuple t ∈ T , the top-k probability of t
in T equals the top-k probability of t in St.

Using the dominant set property, the PT-k query answer-
ing algorithm in [22, 23] scans the tuples in T in the ranking
order, and derives the top-k probability of a tuple t based
on the tuples preceding t in the ranking order.

Technically, let L = t1 · · · tn be the list of all tuples in
table T in the ranking order. Then, in a possible world W ,
a tuple ti ∈ W (1 ≤ i ≤ n) is ranked at the j-th (j > 0)
position if and only if exactly (j−1) tuples in the dominant
set Sti = {t1, . . . , ti−1} also appear in W .

The position probability Pr(ti, j) is the probability that
tuple ti is ranked at the j-th position in possible worlds.
Moreover, the subset probability Pr(Sti , j) is the probability
that j tuples in Sti appear in possible worlds.

Trivially, we have Pr(∅, 0) = 1 and Pr(∅, j) = 0 for 0 <
j ≤ n. Then,

Pr(ti, j) = Pr(ti)Pr(Sti−1 , j − 1)

Apparently, the top-k probability of ti is given by

Prk(ti) =

k∑
j=1

Pr(ti, j) = Pr(ti)

k∑
j=1

Pr(Sti−1 , j − 1)

Particularly, when i ≤ k, we have Prk(ti) = Pr(ti).
Using the Poisson binomial recurrence [26], we can show

the following. When all tuples are independent (i.e.,
no multi-tuple generation rules), for 1 ≤ i, j ≤ |T |,
Pr(Sti , 0) = Pr(Sti−1 , 0)(1 − Pr(ti)) =

∏i
j=1(1 − Pr(ti)),

and Pr(Sti , j) = Pr(Sti−1 , j − 1)Pr(ti) + Pr(Sti−1 , j)(1 −
Pr(ti)). Using the result, we can compute the top-k proba-
bility values efficiently.

In the general case where multi-tuple generation rules
present, the generation rules involving multiple tuples are
handled by the rule-tuple compression technique. The prob-
ability threshold is used to prune tuples whose top-k prob-
ability values fail the threshold.



In addition to the exact algorithms, sampling-based ap-
proximation methods are explored (e.g., [23, 35]). The
central idea is to use a sample to estimate the probabil-
ities. The guarantees of the approximation quality often
come from statistics tools such as a sufficiently large sample
size determined by applying Chernoff-Hoeffding bound [4]
and distribution properties (e.g., Chernoff Bound of Pois-
son Trials [28]), and two-stage stochastic optimization with
recourse [34, 35].

6. FUTURE DIRECTIONS
In addition to range search queries and ranking queries

discussed above, several other types of queries are extended
to uncertain and probabilistic data, such as joins [3, 12, 25],
views [18, 32], spatial queries [14], skyline queries [30], and
OLAP queries [7, 8, 9].

As uncertain and probabilistic data have found more and
more applications, many interesting problems about man-
agement and analysis of uncertain and probabilistic data
emerge. Here, we list three interesting directions as exam-
ples for future work.

First, it is interesting to extend the well accepted queries
on certain data to uncertain and probabilistic data. For ex-
ample, it is interesting to explore the semantics and efficient
algorithms for advanced queries on uncertain and probabilis-
tic data such as k-nearest neighbor search, reverse nearest
neighbor search, continuous nearest neighbor search, etc.

Second, it is important to explore novel types of queries
unique for uncertain and probabilistic data. For example,
U-kRank queries are an example. An interesting idea is to
explore how queries can be formed to explore the probability
information.

Last, developing efficient algorithms for queries on un-
certain and probabilistic data is a critical task. Particu-
larly, many heuristic methods exist for queries on certain
data. How can those methods be extended to uncertain and
probabilistic data? What kinds of methods are effective on
uncertain and probabilistic data and what kinds are not?
In addition to experimental methods, theoretical analysis
like [15, 17] is highly desirable.
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